JP2006335819A - Method for laminating functional material and sheet-like structure - Google Patents

Method for laminating functional material and sheet-like structure Download PDF

Info

Publication number
JP2006335819A
JP2006335819A JP2005159985A JP2005159985A JP2006335819A JP 2006335819 A JP2006335819 A JP 2006335819A JP 2005159985 A JP2005159985 A JP 2005159985A JP 2005159985 A JP2005159985 A JP 2005159985A JP 2006335819 A JP2006335819 A JP 2006335819A
Authority
JP
Japan
Prior art keywords
sheet
water
soluble monomer
laminated
functional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159985A
Other languages
Japanese (ja)
Other versions
JP4776002B2 (en
Inventor
Hideaki Ichiura
英明 市浦
Masaaki Morikawa
政昭 森川
Katsuhisa Fujiwara
勝壽 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime Prefecture
Original Assignee
Ehime Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime Prefecture filed Critical Ehime Prefecture
Priority to JP2005159985A priority Critical patent/JP4776002B2/en
Publication of JP2006335819A publication Critical patent/JP2006335819A/en
Application granted granted Critical
Publication of JP4776002B2 publication Critical patent/JP4776002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for laminating functional materials on a surface of a sheet-like structure without using a binder, and to provide a sheet-like structure on which the functional materials are laminated. <P>SOLUTION: The method for laminating functional materials comprises the steps of: in the case of the W/O interfacial polymerization method, impregnating a sheet-like structure with an aqueous water-soluble monomer solution or an aqueous water-soluble polymer solution and immersing the resulting structure in an organic solvent in which an oil-soluble monomer is dissolved to polymerize the water-soluble monomer or the water-soluble polymer and the oil-soluble monomer; or in the case of the O/W interfacial polymerization method, impregnating a sheet-like structure with an organic solvent in which an oil-soluble monomer is dissolved and immersing the resulting structure in an aqueous water-soluble monomer solution or an aqueous water-soluble polymer solution to polymerize the water-soluble monomer or the water-soluble polymer and the oil-soluble monomer; or in the case of the polyion complex method, impregnating a sheet-like structure with an aqueous polyvalent metal cation solution and immersing the resulting structure in an aqueous polyanion solution to couple the polyvalent metal cations with the polyanions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紙、不織布等のシート状構造体にマイクロカプセル、多孔質体等の機能材料を積層する機能材料の積層方法及び機能材料が積層されたシート状構造体に関する。   The present invention relates to a functional material laminating method for laminating functional materials such as microcapsules and porous bodies on sheet-like structures such as paper and non-woven fabric, and a sheet-like structure in which functional materials are laminated.

紙、不織布等のシート状構造体に、マイクロカプセルや、活性炭、ゼオライト等の多孔質体といった機能材料を積層し、シート状構造体を高機能化する試みが活発に行われている。例えば、マイクロカプセルが積層されたシート状構造体は、マイクロカプセルに芯物質として発色剤、農薬、香料、殺虫剤等を内包させることにより、感圧複写紙、徐放性農薬シート、芳香紙、害虫忌避シート等に応用されている。また、多孔質体を積層させたシート状構造体は、多孔質体に触媒、酵素等を担持させて、自動車用触媒、バイオセンサ等に応用されている他、環境浄化分野において、バイオフィルタ、エアフィルタ、水処理フィルタ等に応用されている。   Attempts to increase the functionality of sheet-like structures by laminating functional materials such as microcapsules, porous bodies such as activated carbon and zeolite on sheet-like structures such as paper and non-woven fabrics have been actively conducted. For example, a sheet-like structure in which microcapsules are laminated includes pressure-sensitive copying paper, sustained-release agrochemical sheet, aromatic paper, by containing a color former, agricultural chemical, fragrance, insecticide and the like as a core substance in the microcapsule. It is applied to pest repellent sheets. In addition, the sheet-like structure in which the porous body is laminated has a catalyst, enzyme, etc. supported on the porous body, and is applied to automobile catalysts, biosensors, etc. It is applied to air filters and water treatment filters.

特開2000−263931号公報JP 2000-263931 A 特開2000−108509号公報JP 2000-108509 A

ところで、従来、シート状構造体に機能材料を積層する方法としてはバインダによる塗工法が用いられていた。しかしながら、バインダを用いるとバインダがその機能材料の表面を覆ってしまい、その機能が十分に発揮できないといった問題があった。   By the way, conventionally, as a method of laminating a functional material on a sheet-like structure, a coating method using a binder has been used. However, when the binder is used, there is a problem that the binder covers the surface of the functional material and the function cannot be sufficiently exhibited.

本発明は、このような従来の実情に鑑みて提案されたものであり、バインダを用いずにシート状構造体に機能材料を積層する機能材料の積層方法及び機能材料が積層されたシート状構造体を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and a functional material laminating method for laminating a functional material on a sheet-like structure without using a binder, and a sheet-like structure in which functional materials are laminated. The purpose is to provide a body.

上述した目的を達成するために、本発明に係る機能材料の積層方法は、シート状構造体を水溶性モノマ水溶液又は水溶性ポリマ水溶液に含浸させた後、油溶性モノマを溶解させた有機溶媒の中に浸積させ、上記シート状構造体の表面上で、上記水溶性モノマ又は上記水溶性ポリマと上記油溶性モノマとを重合させる。   In order to achieve the above-described object, the functional material laminating method according to the present invention includes an organic solvent in which an oil-soluble monomer is dissolved after a sheet-like structure is impregnated with a water-soluble monomer aqueous solution or a water-soluble polymer aqueous solution. The water-soluble monomer or the water-soluble polymer and the oil-soluble monomer are polymerized on the surface of the sheet-like structure.

また、上述した目的を達成するために、本発明に係る機能材料の積層方法は、シート状構造体を油溶性モノマを溶解させた有機溶媒に含浸させた後、水溶性モノマ水溶液又は水溶性ポリマ水溶液の中に浸積させ、上記シート状構造体の表面上で、上記水溶性モノマ又は上記水溶性ポリマと上記油溶性モノマとを重合させる。   In addition, in order to achieve the above-described object, the functional material laminating method according to the present invention includes a water-soluble monomer aqueous solution or a water-soluble polymer after impregnating a sheet-like structure with an organic solvent in which an oil-soluble monomer is dissolved. It is immersed in an aqueous solution, and the water-soluble monomer or the water-soluble polymer and the oil-soluble monomer are polymerized on the surface of the sheet-like structure.

また、上述した目的を達成するために、本発明に係る機能材料の積層方法は、シート状構造体を多価金属陽イオン水溶液に含浸させた後、ポリアニオン水溶液中に浸積させ、上記シート状構造体の表面上で、上記多価金属陽イオンと上記ポリアニオンとを結合させる。   In order to achieve the above-described object, the functional material laminating method according to the present invention includes a sheet-like structure impregnated with a polyvalent metal cation aqueous solution and then immersed in a polyanion aqueous solution. The polyvalent metal cation and the polyanion are combined on the surface of the structure.

また、本発明に係るシート状構造体は、上述した機能材料の積層方法によって機能材料が積層されたものである。   Moreover, the sheet-like structure according to the present invention is obtained by laminating functional materials by the functional material laminating method described above.

本発明に係る機能材料の積層方法によれば、バインダを用いずにシート状構造体に機能材料を積層することができる。また、本発明に係るシート状構造体は、バインダが用いられていないため、積層された機能材料の機能を十分に発揮することができる。   According to the method for laminating functional materials according to the present invention, the functional material can be laminated on the sheet-like structure without using a binder. Moreover, since the binder is not used for the sheet-like structure according to the present invention, the functions of the stacked functional materials can be sufficiently exhibited.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、バインダを用いずにシート状構造体に機能材料を積層する方法について説明するものである。なお、シート状構造体としては、紙、不織布、無機繊維シート、布等が挙げられ、機能材料としては、マイクロカプセル、多孔質体、ファイバ、膜が挙げられる。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, a method of laminating a functional material on a sheet-like structure without using a binder will be described. Examples of the sheet-like structure include paper, nonwoven fabric, inorganic fiber sheet, and cloth, and examples of the functional material include microcapsules, porous bodies, fibers, and membranes.

本実施の形態では、シート状構造体(以下、単に「シート」という。)に機能材料を積層する方法として、界面重合法とポリイオンコンプレックス法とを用いる。このうち、界面重合法は、水溶性モノマ又は水溶性ポリマと油溶性モノマとを水と有機溶媒との界面で重合させるものである。一方、ポリイオンコンプレックス法は、ポリアニオンと多価金属陽イオンとが静電相互作用により結合し、ゲル膜が形成される性質を利用するものである。   In this embodiment, an interfacial polymerization method and a polyion complex method are used as a method of laminating a functional material on a sheet-like structure (hereinafter simply referred to as “sheet”). Among these, the interfacial polymerization method is a method in which a water-soluble monomer or a water-soluble polymer and an oil-soluble monomer are polymerized at the interface between water and an organic solvent. On the other hand, the polyion complex method utilizes the property that a polyanion and a polyvalent metal cation are bonded by electrostatic interaction to form a gel film.

まず、界面重合法について説明する。界面重合法にはW/O系界面重合法とO/W系界面重合法とがある。   First, the interfacial polymerization method will be described. The interfacial polymerization method includes a W / O interfacial polymerization method and an O / W interfacial polymerization method.

W/O系界面重合法では、まず、シートを水溶性モノマ水溶液又は水溶性ポリマ水溶液に含浸させる。次に、有機溶媒中に水溶性モノマ又は水溶性ポリマが含浸されたシートを浸積させ、室温で所定時間静置して、水と有機溶媒との界面をシート表面上に形成させる。その後、この有機溶媒中に、油溶性モノマを同じ有機溶媒に溶解させた油溶性モノマ溶液を添加し、室温で所定時間静置して、シート表面上で界面重合反応を行わせる。最後に、使用した有機溶媒でシート表面を洗浄し、室温で乾燥させる。この結果、機能材料が積層されたシートが得られる。例えば、水溶性モノマとしてエチレンジアミンを用い、油溶性モノマとして二塩化テレフタロイルを用いた場合、シートに含浸されたエチレンジアミンのアミノ基と有機溶媒に溶解された二塩化テレフタロイルのカルボニル基とのアミド結合により、シート表面上に機能材料が積層されているものと推測される。   In the W / O interfacial polymerization method, first, the sheet is impregnated with a water-soluble monomer aqueous solution or a water-soluble polymer aqueous solution. Next, a sheet impregnated with a water-soluble monomer or water-soluble polymer in an organic solvent is immersed and allowed to stand at room temperature for a predetermined time to form an interface between water and the organic solvent on the sheet surface. Thereafter, an oil-soluble monomer solution obtained by dissolving an oil-soluble monomer in the same organic solvent is added to the organic solvent, and the mixture is allowed to stand at room temperature for a predetermined time to cause an interfacial polymerization reaction on the sheet surface. Finally, the sheet surface is washed with the organic solvent used and dried at room temperature. As a result, a sheet on which functional materials are laminated is obtained. For example, when ethylenediamine is used as the water-soluble monomer and terephthaloyl dichloride is used as the oil-soluble monomer, an amide bond between the amino group of ethylenediamine impregnated in the sheet and the carbonyl group of terephthaloyl dichloride dissolved in the organic solvent, It is assumed that the functional material is laminated on the sheet surface.

水溶性モノマの最終濃度としては、1.25重量%乃至25重量%の範囲が好ましい。なお、用いる有機溶媒により最適な濃度は変化するが、濃度が高すぎると積層される機能材料が厚くなり、シートから剥離してしまうため、機能材料がシートから剥離しない濃度を選択するとよい。また、最終濃度が1.25重量%未満では、機能材料は積層しない。   The final concentration of the water-soluble monomer is preferably in the range of 1.25 wt% to 25 wt%. The optimum concentration varies depending on the organic solvent to be used. However, if the concentration is too high, the functional material to be laminated becomes thick and peels off from the sheet. Therefore, it is preferable to select a concentration at which the functional material does not peel off from the sheet. Further, when the final concentration is less than 1.25% by weight, the functional material is not laminated.

水溶性ポリマの最終濃度としては、5重量%乃至25重量%の範囲が好ましい。25重量%を超えると、水溶性ポリマ水溶液は、粘度が高くなるためシートに十分に含浸されず、機能材料は積層しない。また、5重量%未満においても機能材料は積層しない。   The final concentration of the water-soluble polymer is preferably in the range of 5% to 25% by weight. If it exceeds 25% by weight, the water-soluble polymer aqueous solution has a high viscosity, so that the sheet is not sufficiently impregnated and the functional material is not laminated. Further, the functional material is not laminated even if it is less than 5% by weight.

油溶性モノマの最終濃度としては、0.25重量%乃至12.5重量%の範囲が好ましい。ただし、油溶性モノマとして酸塩化物を用いた場合には、塩酸のような副生成物が生じるため、0.25重量%乃至0.5重量%が好ましい。   The final concentration of the oil-soluble monomer is preferably in the range of 0.25% to 12.5% by weight. However, when an acid chloride is used as the oil-soluble monomer, a by-product such as hydrochloric acid is produced, so 0.25 wt% to 0.5 wt% is preferable.

なお、有機溶媒中には、反応を促進する反応助剤として界面活性剤を添加してもよい。界面活性剤は非イオン性で親油性の高いものが好ましい。このような界面活性剤としては、例えば、ソルビタントリステアレート、ソルビタンセスキオレエート、ソルビタンモノステアレート、ソルビタンモノパルミテート、ソルビタンモノオレエート、ソルビタントリオレエート、モノステアリン酸グリセリン、モノオレイン酸グリセリン、グリセロースモノステアレート、グリセロースモノオレエート等が挙げられる。   In the organic solvent, a surfactant may be added as a reaction aid for promoting the reaction. The surfactant is preferably nonionic and highly lipophilic. Examples of such surfactants include sorbitan tristearate, sorbitan sesquioleate, sorbitan monostearate, sorbitan monopalmitate, sorbitan monooleate, sorbitan trioleate, glyceryl monostearate, glyceryl monooleate, Examples thereof include glycerose monostearate and glycerose monooleate.

一方、O/W系界面重合法では、まず、油溶性モノマを有機溶媒に溶解させた油溶性モノマ溶液に、シートを含浸させる。次に、そのシートを純水中に浸積させ、室温で所定時間静置して、水と有機溶媒との界面をシート表面上に形成させる。その後、この純水中に水溶性モノマ水溶液又は水溶性ポリマ水溶液を添加し、室温で所定時間静置して、シート表面上で界面重合反応を行わせる。最後に、純水でシート表面を洗浄し、室温で乾燥させる。この結果、機能材料が積層されたシートが得られる。   On the other hand, in the O / W interfacial polymerization method, first, an oil-soluble monomer solution obtained by dissolving an oil-soluble monomer in an organic solvent is impregnated with a sheet. Next, the sheet is immersed in pure water and allowed to stand at room temperature for a predetermined time to form an interface between water and an organic solvent on the sheet surface. Thereafter, a water-soluble monomer aqueous solution or a water-soluble polymer aqueous solution is added to the pure water, and left at room temperature for a predetermined time to cause an interfacial polymerization reaction on the sheet surface. Finally, the sheet surface is washed with pure water and dried at room temperature. As a result, a sheet on which functional materials are laminated is obtained.

水溶性モノマの最終濃度としては、0.5重量%乃至12.5重量%の範囲が好ましい。なお、用いる有機溶媒により最適な濃度は変化するが、濃度が高すぎると積層される機能材料が厚くなり、シートから剥離してしまうため、機能材料がシートから剥離しない濃度を選択するとよい。また、0.5重量%未満では、機能材料は積層しない。   The final concentration of the water-soluble monomer is preferably in the range of 0.5% to 12.5% by weight. The optimum concentration varies depending on the organic solvent to be used. However, if the concentration is too high, the functional material to be laminated becomes thick and peels off from the sheet. Therefore, it is preferable to select a concentration at which the functional material does not peel off from the sheet. Further, when the content is less than 0.5% by weight, the functional material is not laminated.

水溶性ポリマの最終濃度としては、2.5重量%乃至12.5重量%の範囲が好ましい。12.5重量%を超えると、水溶性ポリマ水溶液は、粘度が高くなるためシートに十分に含浸されず、機能材料は積層しない。また、2.5重量%未満においても機能材料は積層しない。   The final concentration of the water-soluble polymer is preferably in the range of 2.5% to 12.5% by weight. If it exceeds 12.5% by weight, the water-soluble polymer aqueous solution has a high viscosity, so that the sheet is not sufficiently impregnated, and the functional material is not laminated. Further, the functional material is not laminated even at less than 2.5% by weight.

油溶性モノマの濃度としては、0.5重量%乃至25重量%の範囲が好ましい。ただし、油溶性モノマとして酸塩化物を用いた場合には、塩酸のような副生成物が生じるため、0.5重量%乃至1重量%が好ましい。   The concentration of the oil-soluble monomer is preferably in the range of 0.5 wt% to 25 wt%. However, when acid chloride is used as the oil-soluble monomer, a by-product such as hydrochloric acid is generated, so 0.5 wt% to 1 wt% is preferable.

なお、純水中には、W/O系界面重合法の場合と同様に界面活性剤を添加してもよい。界面活性剤は、非イオン性で親水性の高いものが好ましい。このような界面活性剤としては、例えば、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等が挙げられる。   In the pure water, a surfactant may be added as in the case of the W / O interfacial polymerization method. The surfactant is preferably nonionic and highly hydrophilic. Examples of such surfactants include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, and the like.

本実施の形態で用いる水溶性モノマとしては、分子中に2個以上のアミノ基又はカルボキシル基を有することが必要である。このような水溶性モノマとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、1,6−ヘキサメチレンジアミン、1,8−オクタメチレンジアミン、1,12−ドデカメチレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−フェニレンジアミン、o−キシリレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、メタンジアミン、ビス(4−アミノ−3−メチル)シクロヘキシルノメタン、イソフォロンジアミン、1,3−ジアミノシクロヘキサン、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシベンゾフェノン、o−ヒドロキシフェノール、m−ヒドロキシフェノール、p−ヒドロキシフェノール、ビフェノール、テトラメチルビフェノール、エチリデンビスフェノール、メチルエチリデンビス(メチルフェノール)、α―メチルベンジリデンビスフェノール、シクロヘキシリデンビスフェノール、アリル化ビスフェノール等が挙げられる。   The water-soluble monomer used in this embodiment needs to have two or more amino groups or carboxyl groups in the molecule. Examples of such water-soluble monomers include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, 1,6-hexamethylenediamine, 1,8-octamethylenediamine, 1,12-dodecamethylenediamine, o- Phenylenediamine, p-phenylenediamine, m-phenylenediamine, o-xylylenediamine, p-xylylenediamine, m-xylylenediamine, methanediamine, bis (4-amino-3-methyl) cyclohexylnomethane, isophorone Diamine, 1,3-diaminocyclohexane, bisphenol A, bisphenol F, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol S, dihydroxydiphenyl amine , Dihydroxybenzophenone, o-hydroxyphenol, m-hydroxyphenol, p-hydroxyphenol, biphenol, tetramethylbiphenol, ethylidenebisphenol, methylethylidenebis (methylphenol), α-methylbenzylidenebisphenol, cyclohexylidenebisphenol, allylation Bisphenol etc. are mentioned.

また、本実施の形態で用いる水溶性ポリマとしては、末端にアミノ基を有していることが必要である。このような水溶性ポリマとしては、例えば、ゼラチン、にかわ、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、L−リジン等の塩基性アミノ酸等が挙げられる。   Further, the water-soluble polymer used in the present embodiment needs to have an amino group at the terminal. Examples of such water-soluble polymers include basic amino acids such as gelatin, glue, polyethyleneimine, polyvinylamine, polyallylamine, and L-lysine.

また、本実施の形態で用いる有機溶媒としては、水と混和しないことが必要である。このような有機溶媒としては、例えば、ジクロロメタン、クロロホルム、クロロエタン、ジクロロエタン、トリクロロエタン、ベンゼン、シクロヘキサン、ヘプタン、四塩化炭素、キシレン、ニトロベンゼン、n−ヘキサン、トルエン、エチルエーテル、酢酸エチル等が挙げられる。なお、これらの有機溶媒を2種以上組み合わせて使用してもよい。   Further, the organic solvent used in this embodiment needs to be immiscible with water. Examples of such an organic solvent include dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane, benzene, cyclohexane, heptane, carbon tetrachloride, xylene, nitrobenzene, n-hexane, toluene, ethyl ether, and ethyl acetate. Two or more of these organic solvents may be used in combination.

また、本実施の形態で用いる油溶性モノマとしては、前記の水溶性モノマ又は水溶性ポリマのアミノ基又はカルボキシル基と界面重合反応できることが必要である。このような油溶性モノマとしては、例えば、酸無水物(無水マレイン酸、無水o−フタル酸、無水コハク酸等)、酸ハロゲン化物(二塩化テレフタロイル、二塩化アジポイル、二塩化γ−ベンゾイルピメリン酸、二塩化γ−アセチルピメリン酸等)、イソシアネート類(ヘキサメチレンジイソシアネート、メタフェニレンイソシアネート、トルイレンイソシアネート、トリフェニルメタン−トリイソシアネート、ナフタレン−1,5−ジイソシアネート)等が挙げられる。   In addition, the oil-soluble monomer used in the present embodiment needs to be capable of interfacial polymerization reaction with the amino group or carboxyl group of the water-soluble monomer or water-soluble polymer. Examples of such oil-soluble monomers include acid anhydrides (maleic anhydride, o-phthalic anhydride, succinic anhydride, etc.), acid halides (terephthaloyl dichloride, adipoyl dichloride, γ-benzoylpimerin dichloride). Acid, dichloride γ-acetylpimelic acid, etc.) and isocyanates (hexamethylene diisocyanate, metaphenylene isocyanate, toluylene isocyanate, triphenylmethane-triisocyanate, naphthalene-1,5-diisocyanate) and the like.

なお、油溶性モノマとして酸塩化物を用いた場合、副生成物である塩酸が生じ、機能材料の積層を阻害する場合がある。そこで、副生成物である塩酸を中和する目的で純水中にアルカリ水溶液を添加することが好ましい。そのアルカリ水溶液には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等を用いることができる。   In addition, when an acid chloride is used as an oil-soluble monomer, hydrochloric acid as a by-product is generated, which may hinder the lamination of functional materials. Therefore, it is preferable to add an alkaline aqueous solution to pure water for the purpose of neutralizing hydrochloric acid as a by-product. As the alkaline aqueous solution, sodium hydroxide, potassium hydroxide, sodium carbonate or the like can be used.

次に、ポリイオンコンプレックス法について説明する。   Next, the polyion complex method will be described.

ポリイオンコンプレックス法では、まず、シートを多価金属陽イオン水溶液に含浸させる。次に、そのシートをポリアニオン水溶液中に浸積させ、室温で所定時間静置し、シート表面上にゲル膜を形成させる。この結果、機能材料を積層させたシートが得られる。例えば、多価金属陽イオン水溶液として塩化カルシウム水溶液を用い、ポリアニオン水溶液としてアルギン酸ナトリウムを溶解した水溶液を用いた場合、シート中のカルシウムイオンとアルギン酸ナトリウムのカルボキシル基とが静電相互作用により結合し、架橋構造を形成することにより、ゲル膜状の機能材料がシート表面上に積層される。   In the polyion complex method, first, a sheet is impregnated with a polyvalent metal cation aqueous solution. Next, the sheet is immersed in an aqueous polyanion solution and allowed to stand at room temperature for a predetermined time to form a gel film on the sheet surface. As a result, a sheet in which functional materials are laminated is obtained. For example, when a calcium chloride aqueous solution is used as the polyvalent metal cation aqueous solution and an aqueous solution in which sodium alginate is dissolved as the polyanion aqueous solution, the calcium ion in the sheet and the carboxyl group of sodium alginate are bonded by electrostatic interaction, By forming a crosslinked structure, a gel film-like functional material is laminated on the sheet surface.

本実施の形態で用いる多価金属陽イオンとしては、カルシウムイオン、マグネシウムイオン、銅イオン、鉄イオン等が挙げられる。これらとゲル形成能を有するポリアニオン水溶液には、アルギン酸ナトリウム、ジェランガム、カラギーナン、ヒアルロン酸等を用いることができる。   Examples of the polyvalent metal cation used in the present embodiment include calcium ions, magnesium ions, copper ions, and iron ions. Sodium alginate, gellan gum, carrageenan, hyaluronic acid and the like can be used for these and polyanion aqueous solutions having gel-forming ability.

多価金属陽イオンの濃度としては、15重量%乃至30重量%が好ましい。30重量%を超えると機能材料は積層するが、多価金属類の溶解に時間がかかる。また、15重量%未満では、機能材料は積層しない。   The concentration of the polyvalent metal cation is preferably 15 to 30% by weight. If it exceeds 30% by weight, the functional material is laminated, but it takes time to dissolve the polyvalent metals. Moreover, if it is less than 15 weight%, a functional material will not be laminated | stacked.

ポリアニオンの濃度としては、膜積層能、溶解性、粘度を考慮して、1重量%乃至2重量%が好ましい。   The concentration of the polyanion is preferably 1% by weight to 2% by weight in consideration of membrane lamination ability, solubility, and viscosity.

界面重合法では、マイクロカプセル状、多孔質体状、ファイバ状、膜状の機能材料が、また、ポリイオンコンプレックス法では、膜状の機能材料がシート表面上で積層される。   In the interfacial polymerization method, functional materials in the form of microcapsules, porous bodies, fibers, and films are laminated on the sheet surface in the polyion complex method.

積層されたマイクロカプセルに、医薬品、農薬、殺虫剤、香料、酵素、高分子物質のモノマ、反応触媒等の芯物質を内包することにより、機能材料が積層されたシートを、感圧複写紙、徐放性農薬シート、芳香紙、害虫忌避シート等に応用することができる。マイクロカプセルに芯物質を内包する方法としては、芯物質が水溶性である場合には水溶性ポリマ水溶液に、また、芯物質が油溶性である場合には油溶性ポリマ水溶液に、予め芯物質を添加しておく方法、又は、積層されたマイクロカプセルが多孔質である場合には、芯物質溶液中に、多孔性マイクロカプセルが積層されたシートを含浸させる方法が挙げられる。   By encapsulating core materials such as pharmaceuticals, agricultural chemicals, insecticides, fragrances, enzymes, polymer monomers, reaction catalysts, etc. in the laminated microcapsules, sheets with functional materials laminated can be used for pressure-sensitive copying paper, It can be applied to sustained-release agrochemical sheets, aromatic paper, pest repellent sheets and the like. As a method of encapsulating the core material in the microcapsule, the core material is previously added to a water-soluble polymer aqueous solution when the core material is water-soluble, or to an oil-soluble polymer aqueous solution when the core material is oil-soluble. A method of adding, or when the laminated microcapsules are porous, includes a method of impregnating a core material solution with a sheet on which porous microcapsules are laminated.

また、積層された多孔質体、ファイバ、及び膜に、触媒、酵素等を担持させることにより、自動車用触媒、バイオセンサ等に応用することができる他、環境浄化分野においては、バイオフィルタ、エアフィルタ、水処理フィルタ等に応用することができる。   In addition, it is possible to apply the catalyst, enzyme, and the like to the laminated porous body, fiber, and membrane, so that it can be applied to automobile catalysts, biosensors, etc. It can be applied to filters and water treatment filters.

以下、本発明の具体的な実施例について説明する。   Hereinafter, specific examples of the present invention will be described.

[実施例1]
実施例1では、まず、ろ紙(3×2.5cm、厚さ:270μm、ADVANTEC NO.2)をエチレンジアミン水溶液と1M水酸化ナトリウム水溶液とを1:1の割合で混合し、エチレンジアミンの最終濃度を2.5重量%とした溶液10mLに含浸させた。次に、このろ紙をシクロヘキサン10mLに浸積させ、10分間静置して水−油界面を形成させた。これに、二塩化テレフタロイルの最終濃度が0.5重量%となるように、二塩化テレフタロイル/シクロヘキサン溶液10mLを添加し、室温で20分間静置後、10℃以下でさらに12時間静置した。その後、シクロヘキサンで過剰の二塩化テレフタロイルを除去し、室温で乾燥させ、機能材料が積層されたシートを得た。
[Example 1]
In Example 1, first, filter paper (3 × 2.5 cm, thickness: 270 μm, ADVANTEC NO. 2) was mixed with an ethylenediamine aqueous solution and a 1M sodium hydroxide aqueous solution at a ratio of 1: 1, and the final concentration of ethylenediamine was adjusted. It was impregnated with 10 mL of a 2.5% by weight solution. Next, this filter paper was immersed in 10 mL of cyclohexane and allowed to stand for 10 minutes to form a water-oil interface. To this, 10 mL of a terephthaloyl dichloride / cyclohexane solution was added so that the final concentration of terephthaloyl dichloride was 0.5% by weight, allowed to stand at room temperature for 20 minutes, and then allowed to stand at 10 ° C. or lower for another 12 hours. Thereafter, excess terephthaloyl dichloride was removed with cyclohexane and dried at room temperature to obtain a sheet on which functional materials were laminated.

[実施例2]
実施例2では、水溶性モノマ溶液としてエチレンジアミンの最終濃度を1.25重量%とし、有機溶媒としてシクロヘキサンとクロロホルムとを1:3の割合で混合する以外は、実施例1と同様に行った。
[Example 2]
Example 2 was carried out in the same manner as Example 1 except that the final concentration of ethylenediamine as a water-soluble monomer solution was 1.25% by weight and cyclohexane and chloroform were mixed at a ratio of 1: 3 as organic solvents.

[実施例3]
実施例3では、水溶性モノマ溶液としてエチレンジアミンの最終濃度を12.5重量%とし、有機溶媒としてシクロヘキサンとクロロホルムとを3:1の割合で混合する以外は、実施例1と同様に行った。
[Example 3]
Example 3 was carried out in the same manner as Example 1 except that the final concentration of ethylenediamine was 12.5% by weight as a water-soluble monomer solution, and cyclohexane and chloroform were mixed at a ratio of 3: 1 as an organic solvent.

[実施例4]
実施例4では、まず、ろ紙(3×2.5cm、厚さ:270μm、ADVANTEC NO.2)を25重量%ゼラチン水溶液に含浸させた。次に、このろ紙をシクロヘキサン10mLに浸積させ、10分間静置して水−油界面を積層させた。これに、二塩化テレフタロイルの最終濃度が0.5重量%となるように、二塩化テレフタロイル/シクロヘキサン溶液10mLを添加し、20分間静置後、10℃以下でさらに12時間静置した。次に、ろ紙表面の過剰の二塩化テレフタロイルをシクロヘキサンで除去し、純水で洗浄した。その後、イソプロパノール溶液で脱水した。最後に、室温で乾燥させ、機能材料を積層させたシートを得た。
[Example 4]
In Example 4, first, filter paper (3 × 2.5 cm, thickness: 270 μm, ADVANTEC NO. 2) was impregnated in a 25 wt% gelatin aqueous solution. Next, this filter paper was immersed in 10 mL of cyclohexane and allowed to stand for 10 minutes to laminate a water-oil interface. To this, 10 mL of a terephthaloyl dichloride / cyclohexane solution was added so that the final concentration of terephthaloyl dichloride was 0.5% by weight, allowed to stand for 20 minutes, and then allowed to stand at 10 ° C. or lower for another 12 hours. Next, excess terephthaloyl dichloride on the surface of the filter paper was removed with cyclohexane and washed with pure water. Then, it dehydrated with an isopropanol solution. Finally, it was dried at room temperature to obtain a sheet on which functional materials were laminated.

[実施例5]
実施例5では、まず、ろ紙(3×2.5cm、厚さ:270μm、ADVANTEC NO.2)を1重量%二塩化テレフタロイル/シクロヘキサン溶液に含浸させた。次に、このろ紙を純水10mLに浸積させ、10分間静置して水−油界面を積層させた。これに、エチレンジアミンの最終濃度が1.25重量%となるように、エチレンジアミン水溶液と1M水酸化ナトリウム水溶液とを1:1の割合で混合した溶液10mLを添加し、20分間静置後、10℃以下でさらに12時間静置した。その後、純水で過剰のエチレンジアミンを除去し、室温で乾燥させ、機能材料を積層させたシートを得た。
[Example 5]
In Example 5, first, a 1% by weight terephthaloyl dichloride / cyclohexane solution was impregnated with filter paper (3 × 2.5 cm, thickness: 270 μm, ADVANTEC NO. 2). Next, this filter paper was immersed in 10 mL of pure water and allowed to stand for 10 minutes to laminate a water-oil interface. To this, 10 mL of a solution in which an ethylenediamine aqueous solution and a 1M sodium hydroxide aqueous solution were mixed at a ratio of 1: 1 so that the final concentration of ethylenediamine was 1.25 wt% was added, and the mixture was allowed to stand for 20 minutes. It was left still for 12 hours below. Thereafter, excess ethylenediamine was removed with pure water and dried at room temperature to obtain a sheet on which functional materials were laminated.

[実施例6]
実施例6では、有機溶媒としてシクロヘキサンとクロロホルムとを、1:1の割合で混合する以外は、実施例5と同様に行った。
[Example 6]
In Example 6, it carried out like Example 5 except mixing cyclohexane and chloroform in the ratio of 1: 1 as an organic solvent.

[実施例7]
実施例7では、まず、ろ紙(3×2.5cm、厚さ:270μm、ADVANTEC NO.2)を15重量%塩化カルシウム水溶液に含浸させた。次に、1重量%アルギン酸ナトリウム水溶液10mLに浸積させた。その後、1分間静置して機能材料を積層させたシートを得た。
[Example 7]
In Example 7, first, filter paper (3 × 2.5 cm, thickness: 270 μm, ADVANTEC NO. 2) was impregnated in a 15 wt% calcium chloride aqueous solution. Next, it was immersed in 10 mL of 1 wt% aqueous sodium alginate solution. Then, it left still for 1 minute and obtained the sheet | seat on which the functional material was laminated | stacked.

[実施例8]
実施例8では、多価金属陽イオン水溶液として30重量%塩化カルシウム水溶液を用いる以外は、実施例7と同様に行った。
[Example 8]
In Example 8, it carried out similarly to Example 7 except using 30 weight% calcium chloride aqueous solution as polyvalent-metal cation aqueous solution.

[比較例1]
比較例1では、二塩化テレフタロイル/シクロヘキサン溶液を添加しない以外は、実施例1と同様に行った。
[Comparative Example 1]
In Comparative Example 1, the same procedure as in Example 1 was performed except that the terephthaloyl dichloride / cyclohexane solution was not added.

[比較例2]
比較例2では、エチレンジアミンの最終濃度を15重量%とする以外は、実施例2と同様に行った。
[Comparative Example 2]
Comparative Example 2 was carried out in the same manner as Example 2 except that the final concentration of ethylenediamine was 15% by weight.

[比較例3]
比較例3では、二塩化テレフタロイルの最終濃度を15重量%とする以外は、実施例1と同様に行った。
[Comparative Example 3]
Comparative Example 3 was carried out in the same manner as in Example 1 except that the final concentration of terephthaloyl dichloride was 15% by weight.

[比較例4]
比較例4では、ゼラチンの濃度を30重量%とする以外は、実施例4と同様に行った。
[Comparative Example 4]
Comparative Example 4 was carried out in the same manner as in Example 4 except that the gelatin concentration was 30% by weight.

[比較例5]
比較例5では、エチレンジアミン水溶液と1M水酸化ナトリウム水溶液とを、1:1の割合で混合した水溶液を添加しない以外は、実施例5と同様に行った。
[Comparative Example 5]
Comparative Example 5 was carried out in the same manner as in Example 5 except that an aqueous solution obtained by mixing an ethylenediamine aqueous solution and a 1M sodium hydroxide aqueous solution in a ratio of 1: 1 was not added.

[比較例6]
比較例6では、ろ紙を1重量%二塩化テレフタロイル/シクロヘキサン溶液に含浸させない以外は、実施例5と同様に行った。
[Comparative Example 6]
Comparative Example 6 was carried out in the same manner as in Example 5 except that the filter paper was not impregnated with a 1% by weight terephthaloyl dichloride / cyclohexane solution.

[比較例7]
比較例7では、塩化カルシウムの濃度を5重量%とする以外は、実施例7と同様に行った。
[Comparative Example 7]
In Comparative Example 7, the same procedure as in Example 7 was performed except that the concentration of calcium chloride was changed to 5% by weight.

実施例1〜8及び比較例1〜7における結果を以下の表1に示す。なお、機能材料の形態は、電子顕微鏡(日本電子株式会社、JSM−5510V)により確認し、マイクロカプセル、多孔質体、及びファイバの径は、加速電圧15kV、倍率35−10000倍で、計測ソフト(Smile View Ver.2.05,日本電子株式会社)を用いて測定した。また、膜厚は、紙厚計(熊谷理器工業製)を用いて、(膜厚)=(反応後のろ紙厚)−(反応前のろ紙厚)により算出した。   The results in Examples 1 to 8 and Comparative Examples 1 to 7 are shown in Table 1 below. The form of the functional material was confirmed by an electron microscope (JEOL Ltd., JSM-5510V), and the diameters of the microcapsule, porous body, and fiber were 15 kV acceleration voltage, 35-10000 times magnification, and measurement software It measured using (Smile View Ver.2.05, JEOL Ltd.). Moreover, the film thickness was calculated by (film thickness) = (filter paper thickness after reaction) − (filter paper thickness before reaction) using a paper thickness meter (manufactured by Kumagai Riki Kogyo).

Figure 2006335819
Figure 2006335819

実施例1では、図1の電子顕微鏡写真に示すように、ろ紙表面上に平均粒径が4.36μmであるマイクロカプセルが積層された。   In Example 1, as shown in the electron micrograph of FIG. 1, microcapsules having an average particle size of 4.36 μm were laminated on the filter paper surface.

実施例2では、図2(A)及び図2(B)の電子顕微鏡写真に示すように、ろ紙表面上に平均粒径が5.08μmであるマイクロカプセルと平均孔径が2.96μmである多孔質体とが積層された。   In Example 2, as shown in the electron micrographs of FIGS. 2A and 2B, microcapsules having an average particle diameter of 5.08 μm and porous having an average pore diameter of 2.96 μm on the filter paper surface. The material was laminated.

実施例3では、図3の電子顕微鏡写真に示すように、ろ紙表面上に平均径が0.96μmであるファイバが積層された。   In Example 3, as shown in the electron micrograph of FIG. 3, a fiber having an average diameter of 0.96 μm was laminated on the filter paper surface.

実施例4では、図4の電子顕微鏡写真に示すように、ろ紙表面上に膜厚が4.01μmである膜が積層された。   In Example 4, as shown in the electron micrograph of FIG. 4, a film having a film thickness of 4.01 μm was laminated on the filter paper surface.

実施例5では、図5の電子顕微鏡写真に示すように、ろ紙表面上に平均粒径が約100μmであるマイクロカプセルが積層された。   In Example 5, as shown in the electron micrograph of FIG. 5, microcapsules having an average particle size of about 100 μm were laminated on the filter paper surface.

実施例6では、図6の電子顕微鏡写真に示すように、ろ紙表面上に平均粒径が約100μmであるマイクロカプセルが積層された。   In Example 6, as shown in the electron micrograph of FIG. 6, microcapsules having an average particle diameter of about 100 μm were laminated on the filter paper surface.

実施例7では、図7に示すように、ろ紙表面上に膜厚が477μmである膜が積層された。   In Example 7, as shown in FIG. 7, a film having a film thickness of 477 μm was laminated on the filter paper surface.

実施例8では、ろ紙表面上に膜厚が490μmである膜が積層された。   In Example 8, a film having a film thickness of 490 μm was laminated on the filter paper surface.

比較例1では、二塩化テレフタロイルを添加していないことにより、機能材料が積層されなかった。   In Comparative Example 1, the functional material was not laminated because terephthaloyl dichloride was not added.

比較例2では、エチレンジアミンの最終濃度が15重量%と高いため、機能材料が厚くなり、ろ紙から機能材料の剥離が生じた。   In Comparative Example 2, since the final concentration of ethylenediamine was as high as 15% by weight, the functional material became thick and the functional material was peeled from the filter paper.

比較例3では、二塩化テレフタロイルの最終濃度が15重量%と高いため、ろ紙から機能材料の剥離が生じた。   In Comparative Example 3, since the final concentration of terephthaloyl dichloride was as high as 15% by weight, the functional material was peeled from the filter paper.

比較例4では、ゼラチンの濃度が30重量%であることから、粘度が高くなり、ろ紙への含浸が十分に行われず、機能材料が積層されなかった。   In Comparative Example 4, since the gelatin concentration was 30% by weight, the viscosity increased, the filter paper was not sufficiently impregnated, and the functional material was not laminated.

比較例5では、水溶性モノマであるエチレンジアミンを添加しないことから、機能材料が積層されなかった。   In Comparative Example 5, no functional material was laminated because ethylenediamine, which is a water-soluble monomer, was not added.

比較例6では、油溶性モノマである二塩化テレフタロイルにろ紙を含浸させないことから、機能材料が積層されなかった。   In Comparative Example 6, the functional material was not laminated because terephthaloyl dichloride, which is an oil-soluble monomer, was not impregnated with filter paper.

比較例7では、塩化カルシウムの濃度が低いため、機能材料が積層されなかった。   In Comparative Example 7, the functional material was not laminated because the concentration of calcium chloride was low.

以上、実施例1〜8、比較例1〜7の結果について説明したが、その他の実験例について以下に説明する。   Although the results of Examples 1 to 8 and Comparative Examples 1 to 7 have been described above, other experimental examples will be described below.

エチレンジアミンと最終濃度が0.5重量%二塩化テレフタロイルとを用いたW/O系界面重合法において、エチレンジアミンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を図8に示す。この図8から分かるように、シクロヘキサン:クロロホルム=10:0では、エチレンジアミンの濃度を変化させても、ろ紙表面上に積層された機能材料はマイクロカプセルのみであったが、シクロヘキサンとクロロホルムとの混合比を変化させた場合、各混合比におけるエチレンジアミンの濃度変化に伴い、種々の形態の機能材料が積層された。   FIG. 8 shows the results when the ethylenediamine concentration and the mixing ratio of cyclohexane and chloroform were changed in the W / O interfacial polymerization method using ethylenediamine and terephthaloyl dichloride having a final concentration of 0.5% by weight. As can be seen from FIG. 8, when cyclohexane: chloroform = 10: 0, the functional material laminated on the filter paper surface was only microcapsules even when the concentration of ethylenediamine was changed. When the ratio was changed, various types of functional materials were laminated with changes in the ethylenediamine concentration at each mixing ratio.

また、エチレンジアミンと最終濃度が1重量%二塩化テレフタロイルとを用いたO/W系界面重合法において、エチレンジアミンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を図9に示す。この図9から分かるように、ろ紙表面上にマイクロカプセルのみが積層された。このマイクロカプセルの平均粒径は約100μmであった。   FIG. 9 shows the results when the ethylenediamine concentration and the mixing ratio of cyclohexane and chloroform were changed in the O / W interfacial polymerization method using ethylenediamine and terephthaloyl dichloride having a final concentration of 1% by weight. As can be seen from FIG. 9, only the microcapsules were laminated on the filter paper surface. The average particle size of the microcapsules was about 100 μm.

また、ゼラチンと最終濃度が0.5重量%二塩化テレフタロイルとを用いたW/O系界面重合法において、ゼラチンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を図10に示す。この図10から分かるように、シクロヘキサン:クロロホルム=10:0ではろ紙表面上に膜が積層されたが、他の混合比では機能材料は積層されなかった。   FIG. 10 shows the results when the gelatin concentration and the mixing ratio of cyclohexane and chloroform were changed in the W / O interfacial polymerization method using gelatin and terephthaloyl dichloride having a final concentration of 0.5% by weight. Show. As can be seen from FIG. 10, when cyclohexane: chloroform = 10: 0, a film was laminated on the surface of the filter paper, but no functional material was laminated at other mixing ratios.

また、塩化カルシウムと1重量%アルギン酸ナトリウムとを用いたポリイオンコンプレックス法において、塩化カルシウムの濃度及びアルギン酸ナトリウム水溶液への浸積時間を変化させた場合にろ紙表面上に積層された膜の膜厚(mm)を以下の表2に示す。この表2から分かるように、上記膜厚(mm)は、塩化カルシウムの濃度に依存せず、さらにアルギン酸ナトリウム水溶液への浸積時間が約50分以上でほぼ一定になることがわかった。   In addition, in the polyion complex method using calcium chloride and 1% by weight sodium alginate, the film thickness of the film laminated on the filter paper surface when the concentration of calcium chloride and the immersion time in the sodium alginate aqueous solution were changed ( mm) is shown in Table 2 below. As can be seen from Table 2, the film thickness (mm) did not depend on the concentration of calcium chloride, and it was found that the immersion time in the sodium alginate aqueous solution was almost constant when it was about 50 minutes or more.

Figure 2006335819
Figure 2006335819

なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

実施例1でろ紙表面上に積層されたマイクロカプセルの電子顕微鏡写真を示す図である。3 is an electron micrograph of microcapsules laminated on a filter paper surface in Example 1. FIG. 実施例2でろ紙表面上に積層されたマイクロカプセル及び多孔質体の電子顕微鏡写真を示す図である。FIG. 3 is a diagram showing an electron micrograph of microcapsules and a porous body laminated on a filter paper surface in Example 2. 実施例3でろ紙表面上に積層されたファイバの電子顕微鏡写真を示す図である。FIG. 4 is an electron micrograph of the fiber laminated on the filter paper surface in Example 3. 実施例4でろ紙表面上に積層された膜の電子顕微鏡写真を示す図である。6 is an electron micrograph of a film laminated on a filter paper surface in Example 4. FIG. 実施例5でろ紙表面上に積層されたマイクロカプセルの電子顕微鏡写真を示す図である。6 is a diagram showing an electron micrograph of microcapsules laminated on a filter paper surface in Example 5. FIG. 実施例6でろ紙表面上に積層されたマイクロカプセルの電子顕微鏡写真を示す図である。6 is an electron micrograph of microcapsules laminated on a filter paper surface in Example 6. FIG. 実施例7でろ紙表面上に積層された膜を示す図である。FIG. 6 is a view showing a film laminated on the filter paper surface in Example 7. エチレンジアミンと最終濃度が0.5重量%二塩化テレフタロイルとを用いたW/O系界面重合法において、エチレンジアミンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を示す図である。It is a figure which shows the result at the time of changing the density | concentration of ethylenediamine and the mixing ratio of cyclohexane and chloroform in the W / O type | system | group interfacial-polymerization method using ethylenediamine and the final density | concentration of 0.5 weight% terephthaloyl dichloride. エチレンジアミンと最終濃度が1重量%二塩化テレフタロイルとを用いたO/W系界面重合法において、エチレンジアミンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を示す図である。It is a figure which shows the result at the time of changing the density | concentration of ethylenediamine and the mixing ratio of a cyclohexane and chloroform in the O / W type | system | group interfacial-polymerization method using ethylenediamine and the final concentration of 1 weight% terephthaloyl dichloride. ゼラチンと最終濃度が0.5重量%二塩化テレフタロイルとを用いたW/O系界面重合法において、エチレンジアミンの濃度及びシクロヘキサンとクロロホルムとの混合比を変化させた場合の結果を示す図である。It is a figure which shows the result at the time of changing the density | concentration of ethylenediamine and the mixing ratio of a cyclohexane and chloroform in the W / O type | system | group interface polymerization method using gelatin and the final density | concentration of 0.5 weight% terephthaloyl dichloride.

Claims (4)

シート状構造体の表面上に機能材料を積層する機能材料の積層方法であって、
シート状構造体を水溶性モノマ水溶液又は水溶性ポリマ水溶液に含浸させた後、油溶性モノマを溶解させた有機溶媒の中に浸積させ、上記シート状構造体の表面上で、上記水溶性モノマ又は上記水溶性ポリマと上記油溶性モノマとを重合させる
ことを特徴とする機能材料の積層方法。
A functional material laminating method for laminating a functional material on the surface of a sheet-like structure,
After impregnating the sheet-like structure with a water-soluble monomer aqueous solution or a water-soluble polymer aqueous solution, the sheet-like structure is immersed in an organic solvent in which an oil-soluble monomer is dissolved, and on the surface of the sheet-like structure, the water-soluble monomer is immersed. Alternatively, the functional material is laminated by polymerizing the water-soluble polymer and the oil-soluble monomer.
シート状構造体の表面上に機能材料を積層する機能材料の積層方法であって、
シート状構造体を油溶性モノマを溶解させた有機溶媒に含浸させた後、水溶性モノマ水溶液又は水溶性ポリマ水溶液の中に浸積させ、上記シート状構造体の表面上で、上記水溶性モノマ又は上記水溶性ポリマと上記油溶性モノマとを重合させる
ことを特徴とする機能材料の積層方法。
A functional material laminating method for laminating a functional material on the surface of a sheet-like structure,
After impregnating the sheet-like structure with an organic solvent in which an oil-soluble monomer is dissolved, the sheet-like structure is immersed in a water-soluble monomer aqueous solution or a water-soluble polymer aqueous solution, and the water-soluble monomer is immersed on the surface of the sheet-like structure. Alternatively, the functional material is laminated by polymerizing the water-soluble polymer and the oil-soluble monomer.
シート状構造体の表面上に機能材料を積層する機能材料の積層方法であって、
シート状構造体を多価金属陽イオン水溶液に含浸させた後、ポリアニオン水溶液中に浸積させ、上記シート状構造体の表面上で、上記多価金属陽イオンと上記ポリアニオンとを結合させる
ことを特徴とする機能材料の積層方法。
A functional material laminating method for laminating a functional material on the surface of a sheet-like structure,
Impregnating a sheet-like structure with a polyvalent metal cation aqueous solution and then immersing the sheet-like structure in a polyanion aqueous solution to bond the polyvalent metal cation and the polyanion on the surface of the sheet-like structure. A method for laminating functional materials.
請求項1乃至3のいずれか1記載の機能材料の積層方法によって機能材料が積層されたことを特徴とするシート状構造体。   A sheet-like structure in which functional materials are laminated by the functional material lamination method according to claim 1.
JP2005159985A 2005-05-31 2005-05-31 Functional material lamination method and sheet-like structure Expired - Fee Related JP4776002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159985A JP4776002B2 (en) 2005-05-31 2005-05-31 Functional material lamination method and sheet-like structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159985A JP4776002B2 (en) 2005-05-31 2005-05-31 Functional material lamination method and sheet-like structure

Publications (2)

Publication Number Publication Date
JP2006335819A true JP2006335819A (en) 2006-12-14
JP4776002B2 JP4776002B2 (en) 2011-09-21

Family

ID=37556662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159985A Expired - Fee Related JP4776002B2 (en) 2005-05-31 2005-05-31 Functional material lamination method and sheet-like structure

Country Status (1)

Country Link
JP (1) JP4776002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863054A (en) * 2021-09-27 2021-12-31 天津商业大学 Preparation method of functionalized paper and diffusion-driven paper functionalization device
CN114221087A (en) * 2021-11-15 2022-03-22 中国科学院宁波材料技术与工程研究所 Battery diaphragm, lithium ion battery and preparation method of battery diaphragm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156213A (en) * 1997-11-26 1999-06-15 Toto Ltd Surface treating agent for forming photocatalytic coating film and formation of photocatalytic coating film using the same
JPH11156205A (en) * 1997-11-21 1999-06-15 Toto Ltd Surface treating agent for forming photocatalyst coating film and formation of photocatalyst coating film using same
JP2001049006A (en) * 1999-08-10 2001-02-20 Japan Science & Technology Corp Thin film using helical polymer and its preparation
JP2001138434A (en) * 1998-09-16 2001-05-22 Matsushita Electric Ind Co Ltd Functional film and method of manufacturing the same, and liquid crystal display element using functional film and method of manufacturing the same
JP2001194503A (en) * 2000-01-06 2001-07-19 Seiko Epson Corp Method for imparting non-fogging performance to optical article and non-fogging optical article
JP2006307027A (en) * 2005-04-28 2006-11-09 Hitachi Chem Co Ltd Method for producing thin film and thin film obtained by the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156205A (en) * 1997-11-21 1999-06-15 Toto Ltd Surface treating agent for forming photocatalyst coating film and formation of photocatalyst coating film using same
JPH11156213A (en) * 1997-11-26 1999-06-15 Toto Ltd Surface treating agent for forming photocatalytic coating film and formation of photocatalytic coating film using the same
JP2001138434A (en) * 1998-09-16 2001-05-22 Matsushita Electric Ind Co Ltd Functional film and method of manufacturing the same, and liquid crystal display element using functional film and method of manufacturing the same
JP2001049006A (en) * 1999-08-10 2001-02-20 Japan Science & Technology Corp Thin film using helical polymer and its preparation
JP2001194503A (en) * 2000-01-06 2001-07-19 Seiko Epson Corp Method for imparting non-fogging performance to optical article and non-fogging optical article
JP2006307027A (en) * 2005-04-28 2006-11-09 Hitachi Chem Co Ltd Method for producing thin film and thin film obtained by the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113863054A (en) * 2021-09-27 2021-12-31 天津商业大学 Preparation method of functionalized paper and diffusion-driven paper functionalization device
CN113863054B (en) * 2021-09-27 2022-09-06 天津商业大学 Preparation method of functionalized paper and diffusion-driven paper functionalization device
CN114221087A (en) * 2021-11-15 2022-03-22 中国科学院宁波材料技术与工程研究所 Battery diaphragm, lithium ion battery and preparation method of battery diaphragm

Also Published As

Publication number Publication date
JP4776002B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CN106914153B (en) A kind of complex reverse osmosis membrane
Raaijmakers et al. Current trends in interfacial polymerization chemistry
US11059015B2 (en) Microcapsules modified with nanomaterial for controlled release of active agent and process for preparation thereof
CN105214579A (en) Realize the processing method of micron or nanoscale porous material functionalization
CN101687151A (en) Composite semipermeable membranes and process for production thereof
CN108176241B (en) Composite nanofiltration membrane containing aquaporin and preparation method thereof
JP2005525224A (en) Hybrid membrane, its manufacturing method and use of membrane
CA2297594A1 (en) Composite solvent resistant nanofiltration membranes
KR102120689B1 (en) Composite semipermeable membrane and manufacturing method thereof
JP4776002B2 (en) Functional material lamination method and sheet-like structure
CN107596929A (en) A kind of high temperature resistant high-flux composite reverse osmosis membrane and preparation method thereof
Nejad et al. Loose nanofiltration membranes functionalized with in situ-synthesized metal organic framework for water treatment
Fu et al. Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal
Quemener et al. Nanocomposite membranes with magnesium, titanium, iron and silver nanoparticles-A review
KR20110098503A (en) Polyamide reverse osmosis membranes with enhanced chlorine resistance and method for manufacturing the same
WO2003097218A1 (en) Novel composite tecto-membranes formed by interfacial reaction of crosslinked polymer microspheres with coupling agents
US5075011A (en) Composite semipermeable membrane created by precipitation of emulsion polymers onto base film microporous surfaces
Wang et al. A biomimetic strategy for improving activity of nano zero-valent iron based on the adhesive behavior of polydopamine on PVDFĚAl2O3 film
Ribba et al. Removal of pollutants using electrospun nanofiber membranes
KR100211338B1 (en) Producing method of the polyamide type crosslinked reverse osmosis separation membrane
WO1988003937A1 (en) Gas-permeable waterproof membrane and process for its production
CN113181783B (en) Polyamide composite membrane and preparation method thereof
JPH05507233A (en) Semipermeable composite membrane
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4776002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees