JP2006335754A - Thin film carrying percutaneous absorption preparation and its manufacturing process - Google Patents

Thin film carrying percutaneous absorption preparation and its manufacturing process Download PDF

Info

Publication number
JP2006335754A
JP2006335754A JP2005190585A JP2005190585A JP2006335754A JP 2006335754 A JP2006335754 A JP 2006335754A JP 2005190585 A JP2005190585 A JP 2005190585A JP 2005190585 A JP2005190585 A JP 2005190585A JP 2006335754 A JP2006335754 A JP 2006335754A
Authority
JP
Japan
Prior art keywords
thin film
transdermal
gel
polymer
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005190585A
Other languages
Japanese (ja)
Inventor
Tamotsu Senna
保 仙名
Sanshiro Nagarei
三四郎 永禮
Sayuri Nakayama
三佑里 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOFARM AXESZ KK
Original Assignee
TECHNOFARM AXESZ KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOFARM AXESZ KK filed Critical TECHNOFARM AXESZ KK
Priority to JP2005190585A priority Critical patent/JP2006335754A/en
Publication of JP2006335754A publication Critical patent/JP2006335754A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biocompatible thin film carrying a percutaneous absorption preparation which very efficiently transfers the percutaneous absorption preparation to the inside of the skin, manifests the dosage effect in a relatively short period of time and greatly reduces the pain experienced in dosage as compared to the conventional methods of dosage such as injections and infusions. <P>SOLUTION: The biocompatible thin film carrying a percutaneous absorption preparation is intended to administer percutaneous absorption preparation 1 in the skin 3 by a means of micro-needles 4 by making it carried on biocompatible thin film 2a and applying the thin film on the skin 3. The manufacturing process comprises a step to form a gel thin film 2b by applying a gel polymer consisting of a biocompatible polymer on hydrophobic release film 6 by adding percutaneous absorption preparation 1 to and making it carried on gel thin film 2b, a step to dry the gel thin film 2b and a step to release film 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医薬品,化粧品に代表される経皮投与剤担持薄膜とその製造法に関する。The present invention relates to a transdermal drug-carrying thin film represented by pharmaceuticals and cosmetics and a method for producing the same.

皮膚は、最も外側から表皮、真皮、皮下組織という構造をとっており、特に表皮は角質層と呼ばれる、タンパク質であるケラチンと死んだ細胞からなる膜に覆われ、これがバリヤーとなって薬剤は内部に透過し難い。The skin has the structure of the epidermis, dermis, and subcutaneous tissue from the outermost side.Especially, the epidermis is covered with a membrane made of protein keratin and dead cells called the stratum corneum, which becomes the barrier and the drug is inside It is difficult to penetrate.

このバリヤーを破るために通常は湿布剤や膏薬などのように、貼布基材に塗布した薬剤などによって表面のバリヤーを化学的に破壊し、皮膚内部に貼付面に塗布された薬剤を浸透させる。このような経皮吸収治療システム(TTS)に関して、薬剤を効率的に吸収させるための様々な方法が提案されている。In order to break this barrier, usually the surface barrier is chemically destroyed by a drug applied to the adhesive base material, such as a poultice or salve, and the drug applied to the adhesive surface is infiltrated into the skin. . With respect to such a transdermal therapeutic system (TTS), various methods for efficiently absorbing a drug have been proposed.

特許文献1では、長期間にわたる貼布で皮膚面に刺激などに起因するかぶれを引き起こすことを解消し、貼付中の皮膚接着強度を保つために添加しているバインダー物質の分子構造の改質などにより、低刺激性、皮膚接着性を保つことを提案している。Patent Document 1 eliminates the occurrence of rash caused by irritation and the like on the skin surface for a long period of time, and modifies the molecular structure of the binder substance added to maintain the skin adhesive strength during application. It is proposed to keep hypoallergenicity and skin adhesion.

また特許文献2では、アクリル系粘着材層中に、相溶性の高い油性の液体成分を含有させることで粘着材をゲル化し低刺激化している。Moreover, in patent document 2, the adhesive material is gelatinized and made low irritation | stimulation by making an acrylic adhesive material layer contain an oily liquid component with high compatibility.

TTSのその他の例として特許文献3では吸収を促進させるために、電気泳動を用いた経皮吸収促進システム(intophoresis)や超音波を用いた経皮吸収システム(sonophoresis)に対して使用できるような、薬物へのコーティング技術について示している。
特開平3−223212号公報 特開平8−81369号公報 特開平9−77658号公報
As another example of TTS, in Patent Document 3, in order to promote absorption, it can be used for a percutaneous absorption promotion system (electrophoresis) using electrophoresis or a percutaneous absorption system (sonophoresis) using ultrasound. Shows the drug coating technology.
JP-A-3-223212 JP-A-8-81369 Japanese Patent Laid-Open No. 9-77658

しかしながら、特許文献1、2、3の様な経皮吸収剤は、皮膚面に貼付して使用するものであるので、炎症などの恐れがある。また、皮膚内部に浸透するのに長時間を要し、バインダー物質の添加によって皮膚からの剥離時に痛みを伴うなどの問題点がある。However, since the percutaneous absorption agents such as Patent Documents 1, 2, and 3 are used by being attached to the skin surface, there is a risk of inflammation. In addition, it takes a long time to penetrate into the skin, and there is a problem that the addition of a binder substance causes pain when peeling from the skin.

皮膚接着性(密着性)と皮膚低刺激性とのバランスを維持し、しかも含有する薬剤の皮膚移行性や経皮吸収性を良好にする必要があり、これらの点を全て満足する経皮吸収製剤を開発することは今後の究極の課題でもあるが、現在のTTSではこの課題はまだ達成されていない。It is necessary to maintain the balance between skin adhesiveness (adhesion) and skin irritation, and to improve the translocation and transdermal absorbability of the contained drug, and satisfy all these points. Developing the formulation is also the ultimate challenge in the future, but this task has not yet been achieved in the current TTS.

また特許文献3に挙げた、電気泳動や超音波を用いて物理的に薬物輸送をはかる方法は、投与にあたっては電気や超音波を発するために製品薬剤以外の装置を必要とする。In addition, the method of physically transporting drugs using electrophoresis or ultrasound described in Patent Document 3 requires a device other than the product drug in order to emit electricity or ultrasound for administration.

そこで本発明者らは、上記課題を解決する為に従来の貼付剤を皮膚に貼付し貼付面全域における角質層を破壊して経皮投与剤を吸収せしめる方法を採用せず、転移器具等を用いて皮膚内へ経皮投与剤を直接投与するための経皮投与剤担持薄膜とその製造法を提供する。Therefore, in order to solve the above-mentioned problems, the present inventors do not adopt a method of applying a conventional patch to the skin and destroying the stratum corneum in the entire applied surface to absorb the transdermal administration agent. A transdermal drug-carrying thin film for directly administering a transdermal drug into the skin and a method for producing the same are provided.

本発明は生体親和性を有する薄膜に経皮投与剤を担持させ、該薄膜を皮膚に添付し、薄膜に担持された経皮投与剤を針状突起物等の転移手段により皮膚内に投与することを目的とした経皮投与剤担持薄膜を提供するものである。In the present invention, a transdermal administration agent is carried on a biocompatible thin film, the thin film is attached to the skin, and the transdermal administration agent carried on the thin film is administered into the skin by a transfer means such as a needle-like projection. It is an object of the present invention to provide a transdermal drug-carrying thin film intended for this purpose.

上記薄膜の材質が、キトサン,ヒアルロン酸,コンドロイチン硫酸,アルギン酸などの多糖類、フィブロイン,コラーゲン,アルブミン,カゼイン,グルテン,ゼラチンなどのタンパク質・ペプチド類、ポリエチレングリコール.ポリエチレンオキサイド,ポリ乳酸,ポリ酪酸などの高分子群から選択された1種、若しくは2種以上の混合物からなる。The material of the thin film is polysaccharides such as chitosan, hyaluronic acid, chondroitin sulfate, alginic acid, proteins / peptides such as fibroin, collagen, albumin, casein, gluten, gelatin, polyethylene glycol. It consists of 1 type selected from high molecular groups, such as a polyethylene oxide, polylactic acid, and polybutyric acid, or a mixture of 2 or more types.

経皮投与剤の形態は、10nm〜500μmの結晶粒子またはアモルファス固体粒子または経皮投与剤と賦形剤との複合粒子である。The form of the transdermal administration agent is a crystal particle or amorphous solid particle of 10 nm to 500 μm or a composite particle of the transdermal administration agent and an excipient.

上記経皮投与剤は1mm以下のマイクロカプセルに内包されている。The transdermal administration agent is encapsulated in microcapsules of 1 mm or less.

上記経皮投与剤担持薄膜の製造方法は、疎水性の剥離フィルム上に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜を形成する工程と、該ゲル状薄膜に経皮投与剤を添加し担持させる工程と、該ゲル状高分子薄膜を乾燥させる工程と、上記剥離フィルムを剥離する工程とを含む。The method for producing a transdermal drug-carrying thin film includes a step of adding a gel polymer comprising a biocompatible polymer on a hydrophobic release film to form a gel thin film, and transdermally administering the gel thin film. A step of adding and supporting an agent, a step of drying the gel-like polymer thin film, and a step of peeling the release film.

上記経皮投与剤担持薄膜の製造方法は、疎水性の剥離フィルム上に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜を形成する工程と、該ゲル状高分子薄膜を乾燥させる工程と、希釈したゲル状高分子に経皮投与剤を添加した溶液を乾燥した該高分子薄膜上に堆積させる工程と、該高分子薄膜を乾燥する工程と、上記剥離フィルムを剥離する工程とを含む。The method for producing a transdermal drug-carrying thin film includes a step of adding a gel-like polymer comprising a biocompatible polymer on a hydrophobic release film to form a gel-like thin film, and drying the gel-like polymer thin film. A step of depositing a solution obtained by adding a transdermal agent to a diluted gel polymer on the dried polymer thin film, a step of drying the polymer thin film, and a step of peeling the release film Including.

また上記製造方法に用いる上記経皮投与剤は好ましくはナノ粒子である。Moreover, the transdermal administration agent used in the production method is preferably nanoparticles.

また、上記経皮投与剤をマイクロカプセルに内包し薄膜に担持せしめる方法を採ることができる。Moreover, the method of encapsulating the said transdermal administration agent in a microcapsule and carrying it on a thin film can be taken.

本発明による生体親和性経皮投与剤担持薄膜によれば、極めて効率的に経皮投与剤を皮膚内部に転移させることができ、比較的短時間に投与効果を得ることが可能となる。更には投与時の苦痛が注射や点滴といった従来の方法に比べて極端に軽減され、他の貼布材のようなアレルギーの心配が軽減され、また極めて簡易な方法により製造し、使用することができる。According to the biocompatible transdermal drug-carrying thin film according to the present invention, the transdermal drug can be transferred into the skin very efficiently, and the administration effect can be obtained in a relatively short time. Furthermore, pain at the time of administration is drastically reduced compared to conventional methods such as injection and infusion, allergy concerns such as other patch materials are reduced, and it can be manufactured and used by a very simple method. it can.

また、これはマイクロニードル等の器具の使用法としても画期的なものである。従来のマイクロニードル等の使用法としては診断の際の血液採取法、また経皮投与に用いる際には内部を空洞にする等の特殊な工夫を施したマイクロニードル等を用いなければならなかった。This is also epoch-making as a method of using instruments such as microneedles. Conventional microneedles, etc. must be used for blood collection in diagnosis and when used for transdermal administration, microneedles with special measures such as hollowing out must be used. .

本発明の提唱する方法を用いれば、内部に空洞等のない既存のマイクロニードルの製法を変える事なくどんな経皮投与剤でも生体内に投与する事が可能であり、これは工業的にみてもより画期的な方法である。By using the method proposed by the present invention, it is possible to administer any transdermal agent into a living body without changing the manufacturing method of an existing microneedle having no cavity or the like. This is a more innovative method.

図1ないし図9ならびに表1に基づき、本発明に関わる経皮投与剤担持薄膜とその製造法について説明する。Based on FIGS. 1 to 9 and Table 1, the transdermal drug-carrying thin film and the method for producing the same according to the present invention will be described.

経皮投与剤担持薄膜は、図1、図2に示すように生体親和性を有する薄膜2aに経皮投与剤1を担持させ、該薄膜2aを人間を含む動物の皮膚3に添付し、薄膜に担持された経皮投与剤をマイクロニードル4等の転移手段により皮膚3内または皮膚3下に投与することを目的とする。As shown in FIG. 1 and FIG. 2, the transdermal drug-carrying thin film is made by carrying the transdermal drug 1 on a biocompatible thin film 2a and attaching the thin film 2a to the skin 3 of an animal including a human. It is intended to administer the transdermal administration agent carried on the skin 3 or under the skin 3 by a transfer means such as a microneedle 4.

上記薄膜2aの材質は、キトサン,ヒアルロン酸,コンドロイチン硫酸,アルギン酸などの多糖類、フィブロイン,コラーゲン,アルブミン,カゼイン,グルテン,ゼラチンなどのタンパク質・ペプチド類、ポリエチレングリコール,ポリエチレンオキサイド,ポリ乳酸,ポリ酪酸などの高分子群から選択された1種、若しくは2種以上の混合物からなる。The material of the thin film 2a is polysaccharides such as chitosan, hyaluronic acid, chondroitin sulfate, alginic acid, proteins and peptides such as fibroin, collagen, albumin, casein, gluten, gelatin, polyethylene glycol, polyethylene oxide, polylactic acid, polybutyric acid It consists of 1 type selected from polymer groups, such as these, or a mixture of 2 or more types.

経皮投与剤1の形態は、10nm〜500μmの結晶粒子またはアモルファス固体粒子または経皮投与剤と賦形剤との複合粒子,あるいは経皮投与剤を内包した1mm以内のマイクロカプセルである。The form of the transdermal administration agent 1 is a crystalline particle or amorphous solid particle of 10 nm to 500 μm, a composite particle of a transdermal administration agent and an excipient, or a microcapsule of 1 mm or less containing the transdermal administration agent.

図3ないし図5は上記経皮投与剤担持薄膜の製造法を示している。3 to 5 show the method for producing the transdermal drug-carrying thin film.

図3に示すように、容器5の内底面に剥離フィルム6を敷設し、該剥離フィルム6の上面に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜2bを形成し、該ゲル状薄膜2bの上面に均一に難水容性経皮投与剤1を添加する。As shown in FIG. 3, a release film 6 is laid on the inner bottom surface of the container 5, and a gel-like polymer made of a biocompatible polymer is added to the upper surface of the release film 6 to form a gel-like thin film 2b. The poorly water-soluble transdermal preparation 1 is uniformly added to the upper surface of the gel-like thin film 2b.

経皮投与剤1は、図4に示すように時間の経過に伴いゲル状薄膜2b内を沈降し、該剥離フィルム6上に沈殿する。この経皮投与剤1の一部はゲル状薄膜2bの層内に存在し他の一部はゲル状薄膜2bの下面より露出して剥離フィルム6と接する。As shown in FIG. 4, the transdermal administration agent 1 settles in the gel-like thin film 2 b with time and settles on the release film 6. A part of the transdermal administration agent 1 exists in the layer of the gel-like thin film 2b, and the other part is exposed from the lower surface of the gel-like thin film 2b and contacts the release film 6.

図5に示すように上記ゲル状高分子薄膜2bを乾燥・固化させ、該乾燥・固化後、上記剥離フィルム6を剥離することで経皮投与剤担持薄膜を製造する。As shown in FIG. 5, the gel-like polymer thin film 2b is dried and solidified, and after the drying and solidification, the release film 6 is peeled to produce a transdermal agent-supporting thin film.

上記高分子薄膜2aは吸湿性を持ち、水に接触すると容易にたわむので、上記高分子薄膜2aに糊を塗布することは不適切である。そこで難水溶性経皮投与剤と水溶性経皮投与剤で別個の添加方法を用いる。Since the polymer thin film 2a is hygroscopic and easily bends when contacted with water, it is inappropriate to apply glue to the polymer thin film 2a. Therefore, separate addition methods are used for the slightly water-soluble transdermal agent and the water-soluble transdermal agent.

水溶性経皮投与剤を添加する場合には、疎水性の剥離フィルム6上に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜2bを形成し、該ゲル状高分子薄膜2bを乾燥させる。一方、希釈したゲル状高分子に水容性経皮投与剤を添加した溶液を、乾燥した該高分子薄膜2a上に堆積させ、該高分子薄膜を再度乾燥し、上記剥離フィルム6を剥離する方法で経皮投与剤担持薄膜を製造する。In the case of adding a water-soluble transdermal agent, a gel-like polymer 2b is formed on the hydrophobic release film 6 to form a gel-like thin film 2b, and the gel-like polymer thin film 2b is added. Dry. On the other hand, a solution obtained by adding a water-soluble transdermal agent to a diluted gel polymer is deposited on the dried polymer thin film 2a, the polymer thin film is dried again, and the release film 6 is peeled off. The transdermal drug-carrying thin film is manufactured by the method.

好ましい例示として、生体親和性を有する上記ゲル状高分子薄膜2a上に、パルスレーザー堆積法やスパッター法等によってナノ粒子の経皮投与剤1を作り、これを添加する。このとき経皮投与剤の水溶性の有無は問わない。As a preferred example, a nanoparticle transdermal administration agent 1 is prepared on the gel-like polymer thin film 2a having biocompatibility by a pulse laser deposition method, a sputtering method, or the like and added thereto. At this time, it does not matter whether the transdermal preparation is water-soluble.

また他の例示として、経皮投与剤1を生体親和性を有する薄膜2aと同じもしくは性質の近い前記高分子内に、コアセルベーション法等によって内包させたマイクロカプセルを作り、これを添加する。As another example, a microcapsule in which the transdermal administration agent 1 is encapsulated by the coacervation method or the like in the polymer having the same or similar properties as the biocompatible thin film 2a is prepared and added.

図1、図2に基づき上記経皮投与剤担持薄膜の経皮投与方法を説明する。A method for transdermal administration of the transdermal drug-carrying thin film will be described with reference to FIGS.

図1に示すように生体親和性を有する高分子薄膜2a上に経皮投与剤1を担持した経皮投与剤担持薄膜を、経皮投与剤1が直接皮膚に接触するように皮膚3表面に添付し、図2のようにマイクロニードル4に代表される転移手段によって経皮投与剤1を皮膚3内または皮膚3下に押し込むことによって生体内に吸収させる。As shown in FIG. 1, a transdermal drug-carrying thin film carrying a transdermal drug 1 on a biocompatible polymer thin film 2a is applied to the surface of the skin 3 so that the transdermal drug 1 directly contacts the skin. As shown in FIG. 2, the transdermal administration agent 1 is absorbed into the living body by being pushed into the skin 3 or under the skin 3 by the transfer means represented by the microneedle 4 as shown in FIG. 2.

上記経皮投与剤1は薄膜2aの母材層内に埋設状態で担持せしめる。この場合には薄膜の一方表面または他方表面を皮膚3表面に添付する。The transdermal administration agent 1 is carried in an embedded state in the base material layer of the thin film 2a. In this case, one surface or the other surface of the thin film is attached to the surface of the skin 3.

または前記製造法によって経皮投与剤1の一部を薄膜2aの母材層内に埋設状態で担持せしめ、他の一部を薄膜2aの表面から露出状態で担持せしめる。また、上記経皮投与剤1を薄膜2aの表面に層着させ、担持せしめる。この場合には薄膜の一方表面に露出している経皮投与剤1を皮膚3表面に接触するように添付する。Alternatively, a part of the transdermal administration agent 1 is carried in an embedded state in the base material layer of the thin film 2a and the other part is carried in an exposed state from the surface of the thin film 2a by the manufacturing method. Further, the transdermal administration agent 1 is layered on the surface of the thin film 2a and carried. In this case, the transdermal administration agent 1 exposed on one surface of the thin film is attached so as to contact the surface of the skin 3.

ヒトの表皮の外側から、分裂が活発な真皮までの距離はおよそ200μm,一方投与に用いるマイクロニードル4に代表される突起物先端の曲率半径は10μm以下、より好ましくは2〜3μm、本体の直径は10〜500μm、より好ましくは50〜300μm、長さは50μm〜2mm、より好ましくは200μm〜1mmである。斯かるマイクロニードル4で薄膜を刺し貫き皮膚3内または皮膚3下まで刺し込み、これによって薄膜2aに担持された経皮投与剤1は皮膚3内または皮膚3下に移動し、体内に吸収される。上記マイクロニードル4は、一時に複数本用い上記経皮投与剤1の転移を効率的に行う。The distance from the outer surface of the human epidermis to the active dermis is about 200 μm, while the radius of curvature of the protrusion tip represented by the microneedle 4 used for administration is 10 μm or less, more preferably 2 to 3 μm, the diameter of the main body Is 10 to 500 μm, more preferably 50 to 300 μm, and the length is 50 μm to 2 mm, more preferably 200 μm to 1 mm. The microneedle 4 pierces the thin film and pierces the skin 3 or below the skin 3, whereby the transdermal administration agent 1 carried on the thin film 2a moves into the skin 3 or under the skin 3 and is absorbed into the body. The A plurality of the microneedles 4 are used at a time to efficiently transfer the transdermal administration agent 1.

経皮投与剤1が液状の場合は、経皮投与剤1を内包しているマイクロカプセルがマイクロニードル4等の転移手段によって破られ、放出し、固体薬剤の場合と同様にして突起物先端に付着した薬剤が皮膚内部に浸透し、体内に吸収される。When the transdermal administration agent 1 is in a liquid state, the microcapsules enclosing the transdermal administration agent 1 are broken and released by the transfer means such as the microneedle 4 and are applied to the tip of the projection as in the case of the solid drug. The attached drug penetrates into the skin and is absorbed by the body.

この投与方法は、薄膜の皮膚への添付にあたり、表皮細胞に刺激を与える化学物質(接着剤等)を使用しない。このため皮膚に対して低刺激であり、しかも生体親和性薄膜2bの性質によって適度な皮膚表面への接着性を持っている。更には転移手段によって経皮投与剤1が直接皮膚内部に輸送されるので極めて効率的であり、さらにはマイクロニードル4の長さ、経皮投与剤1の濃度を変える事によって従来の貼布剤よりも経皮投与剤の放出性、皮膚移行性を容易に幅広く制御可能である。This method of administration does not use chemical substances (such as adhesives) that stimulate the epidermal cells when attaching the thin film to the skin. For this reason, it has low irritation to the skin, and has appropriate adhesion to the skin surface due to the properties of the biocompatible thin film 2b. Furthermore, the transdermal administration agent 1 is directly transported into the skin by the transfer means, which is very efficient. Furthermore, the conventional patch can be obtained by changing the length of the microneedle 4 and the concentration of the transdermal administration agent 1. In addition, the release property and transdermal property of the transdermal administration agent can be easily and widely controlled.

容器5の内底面に疎水性のポリエチレン、ラミネート紙、シリコーン等の剥離フィルム6を敷設し、該剥離フィルム6上に膜の原料であるキトサン0.5重量%水溶液とポリエチレングリコール1.25重量%水溶液の体積比1:1混合物を供給し、ゲル状高分子薄膜を調製した。基材であるゲル状高分子薄膜2b上に、難水溶性経皮投与剤1を1cm当たり6.2mg散布し(図4)、薄膜内面に難水溶性経皮投与剤1を沈殿させ(図5)、その後50℃で24h乾燥することで難水溶性経皮投与剤担持薄膜(図6)を得た。難水溶性経皮投与剤1が薄膜基材であるキトサン・ポリエチレングリコール複合薄膜2a上に堆積している様子の電子顕微鏡写真を図6に示す。難水溶性経皮投与剤担持薄膜6断面の電子顕微鏡写真を図7に示す。A release film 6 made of hydrophobic polyethylene, laminated paper, silicone, or the like is laid on the inner bottom surface of the container 5, and a 0.5% by weight aqueous solution of chitosan as a film raw material and 1.25% by weight of polyethylene glycol are formed on the release film 6. A 1: 1 mixture of aqueous solutions in volume ratio was supplied to prepare a gel polymer thin film. On the gel-like polymer thin film 2b as a base material, 6.2 mg of poorly water-soluble transdermal drug 1 is sprayed per 1 cm 2 (FIG. 4), and the poorly water-soluble transdermal drug 1 is precipitated on the inner surface of the thin film ( 5), followed by drying at 50 ° C. for 24 hours to obtain a slightly water-soluble transdermal drug-carrying thin film (FIG. 6). FIG. 6 shows an electron micrograph showing that the slightly water-soluble transdermal administration agent 1 is deposited on the chitosan / polyethylene glycol composite thin film 2a which is a thin film substrate. FIG. 7 shows an electron micrograph of the cross section of the slightly water-soluble transdermal drug-carrying thin film 6.

容器5の内底面に疎水性のポリエチレン、ラミネート紙、シリコーン等の剥離フィルム6を敷設し、該剥離フィルム6上に膜の原料であるキトサン0.5重量%水溶液とポリエチレングリコール1.25重量%水溶液の体積比1:1混合物を供給し、ゲル状高分子薄膜2bを調製した。該ゲル状高分子薄膜2bを乾燥機内の50℃乾燥空気中で24h乾燥し、固化させた。固化後、ゲル状高分子原料を水で2倍に希釈したキトサン・ポリエチレングリコール水溶液中に水溶性経皮投与剤アスコルビン酸粉末を溶解した水溶液を、該乾燥高分子薄膜表面上に堆積させた。これを50℃で24h再度乾燥することで、アスコルビン酸担持薄膜を得た。水溶性経皮投与剤1がキトサン・ポリエチレングリコール基材2a中に担持されている様子の電子顕微鏡写真を図8に示す。アスコルビン酸担持薄膜の断面を図9に示す。固化後、上記剥離フィルム6を剥離した。A release film 6 made of hydrophobic polyethylene, laminated paper, silicone, or the like is laid on the inner bottom surface of the container 5, and a 0.5% by weight aqueous solution of chitosan as a film raw material and 1.25% by weight of polyethylene glycol are formed on the release film 6. A 1: 1 mixture by volume of the aqueous solution was supplied to prepare a gel polymer thin film 2b. The gel-like polymer thin film 2b was dried for 24 hours in 50 ° C. dry air in a dryer and solidified. After solidification, an aqueous solution obtained by dissolving a water-soluble transdermal drug ascorbic acid powder in a chitosan-polyethylene glycol aqueous solution obtained by diluting the gel polymer raw material twice with water was deposited on the surface of the dry polymer thin film. This was dried again at 50 ° C. for 24 hours to obtain an ascorbic acid-carrying thin film. An electron micrograph of the state in which the water-soluble transdermal administration agent 1 is supported on the chitosan / polyethylene glycol base 2a is shown in FIG. A cross section of the ascorbic acid-carrying thin film is shown in FIG. After solidification, the release film 6 was peeled off.

調製した経皮投与剤担持薄膜を背面から数回タッピングし、脱落した経皮投与剤の質量と混入した経皮投与剤の質量(50mg)の差から単位面積当たりの付着量を計測した。計測結果を表1に示す。
難水溶性・水溶性のどちらもタッピングでは経皮投与剤は脱落しなかった。図6,図8でも観察されるように、添加経皮投与剤1は高分子薄膜2aに強く固定されている。よって付着量は始めに添加した量と等しく、容易に経皮投与剤の添加量を微調整できる。
The prepared transdermal drug-carrying thin film was tapped several times from the back, and the amount of adhesion per unit area was measured from the difference between the mass of the transdermal drug dropped and the mass of the transdermal drug mixed (50 mg). Table 1 shows the measurement results.
In both poorly water-soluble and water-soluble, the transdermal drug did not fall off when tapping. As is also observed in FIGS. 6 and 8, the additive transdermal administration agent 1 is firmly fixed to the polymer thin film 2a. Therefore, the amount of adhesion is equal to the amount initially added, and the amount of the transdermal agent can be easily finely adjusted.

Figure 2006335754
Figure 2006335754

高分子薄膜2a中に経皮投与剤1が担持された薄膜を、皮膚面3上に添付した様子を示した断面図である。It is sectional drawing which showed a mode that the thin film by which the transdermal administration agent 1 was carry | supported in the polymer thin film 2a was attached on the skin surface 3. FIG. 図1の経皮投与剤担持薄膜の上からマイクロニードル4で薄膜を刺し貫き皮膚3内または皮膚3下まで刺し込み、これによって薄膜2aに担持された経皮投与剤1が皮膚3内または皮膚3下に移動する様子を示した断面図である。The thin film is pierced from the top of the transdermal drug-carrying thin film of FIG. 1 with the microneedles 4 into the skin 3 or below the skin 3, whereby the transdermal drug 1 carried on the thin film 2 a is within the skin 3 or 3 is a cross-sectional view showing a state of moving downward. ゲル状高分子薄膜2b中に難水溶性経皮投与剤1を添加した瞬間の断面図である。It is sectional drawing of the moment which added the slightly water-soluble transdermal administration agent 1 in the gel-like polymer thin film 2b. 図4をしばらく静置し、難水溶性経皮投与剤1が薄膜内面に沈殿した様子の断面図である。FIG. 5 is a cross-sectional view of the state in which FIG. 4 is left standing for a while and the poorly water-soluble transdermal administration agent 1 is precipitated on the inner surface of the thin film. 図5を乾燥・固化して得た難水溶性経皮投与剤担持薄膜の断面図である。It is sectional drawing of the poorly water-soluble transdermal agent carrying | support thin film obtained by drying and solidifying FIG. 難水溶性経皮投与剤担持薄膜7表面の50万倍の電子顕微鏡写真である。スケールバーの長さは50μmである。It is a 500,000 times electron micrograph of the surface of the thin film 7 carrying a hardly water-soluble transdermal agent. The length of the scale bar is 50 μm. 難水溶性経皮投与剤担持薄膜7断面の5万倍の電子顕微鏡写真である。スケールバーの長さは500μmである。矢印は断面を示す。It is an electron micrograph of 50,000 times the cross section of the thin film 7 carrying a hardly water-soluble transdermal drug delivery agent. The length of the scale bar is 500 μm. Arrows indicate cross sections. アスコルビン酸担持薄膜8表面の170万倍の電子顕微鏡写真である。スケールバーの長さは20μmである。It is a 1.7 million times electron micrograph of the ascorbic acid carrying thin film 8 surface. The length of the scale bar is 20 μm. アスコルビン酸担持薄膜8断面の14万倍の電子顕微鏡写真である。スケールバーの長さは200μmである。矢印は断面を示す。It is an electron micrograph of 140,000 times the cross section of the ascorbic acid carrying thin film 8. The length of the scale bar is 200 μm. Arrows indicate cross sections.

符号の説明Explanation of symbols

1…経皮投与剤
2a…生体親和性を有する高分子薄膜
2b…生体親和性を有するゲル状高分子薄膜
3…皮膚
4…マイクロニードル
5…容器
6…剥離フィルム
7…難水溶性経皮投与剤担持薄膜
8…アスコルビン酸担持薄膜
DESCRIPTION OF SYMBOLS 1 ... Transdermal administration agent 2a ... Polymer thin film 2b which has biocompatibility ... Gel-like polymer thin film 3 which has biocompatibility ... Skin 4 ... Microneedle 5 ... Container 6 ... Release film 7 ... Slightly water-soluble transdermal administration Agent-carrying thin film 8 ... ascorbic acid-carrying thin film

Claims (8)

生体親和性を有する薄膜に経皮投与剤を担持させ、該薄膜を皮膚に添付し、薄膜に担持された経皮投与剤を転移手段により皮膚内に投与することを目的とした経皮投与剤担持薄膜。  A transdermal administration agent for carrying a transdermal administration agent on a biocompatible thin film, attaching the thin film to the skin, and administering the transdermal administration agent carried on the thin film into the skin by a transfer means Supporting thin film. 上記薄膜の材質が、キトサン,ヒアルロン酸,コンドロイチン硫酸,アルギン酸などの多糖類、フィブロイン,コラーゲン,アルブミン,カゼイン,グルテン,ゼラチンなどのタンパク質・ペプチド類、ポリエチレングリコール,ポリエチレンオキサイド,ポリ乳酸,ポリ酪酸などの高分子群から選択された1種、若しくは2種以上の混合物からなる請求項1記載の経皮投与剤担持薄膜。  The material of the thin film is polysaccharides such as chitosan, hyaluronic acid, chondroitin sulfate, alginic acid, proteins / peptides such as fibroin, collagen, albumin, casein, gluten, gelatin, polyethylene glycol, polyethylene oxide, polylactic acid, polybutyric acid, etc. The transdermal drug-carrying thin film according to claim 1, comprising one or a mixture of two or more selected from the group of polymers. 経皮投与剤の形態は、10nm〜500μmの結晶粒子またはアモルファス固体粒子または経皮投与剤と賦形剤との複合粒子である請求項1記載の経皮投与剤担持薄膜。  The transdermal administration agent-supported thin film according to claim 1, wherein the transdermal administration agent is a crystal particle or amorphous solid particle of 10 nm to 500 µm, or a composite particle of a transdermal administration agent and an excipient. 上記経皮投与剤は1mm以下のマイクロカプセルに内包されている請求項1または請求項3記載の経皮投与剤担持薄膜。  The transdermal drug-carrying thin film according to claim 1 or 3, wherein the transdermal drug is encapsulated in a microcapsule of 1 mm or less. 疎水性の剥離フィルム上に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜を形成する工程と、該ゲル状薄膜に経皮投与剤を添加し担持させる工程と、該ゲル状高分子薄膜を乾燥させる工程と、上記剥離フィルムを剥離する工程とを含む請求項1記載の経皮投与剤担持薄膜の製造方法。  Adding a gel-like polymer composed of a biocompatible polymer on a hydrophobic release film to form a gel-like thin film; adding a transdermal administration agent to the gel-like thin film; The method for producing a transdermal drug-carrying thin film according to claim 1, comprising a step of drying the polymer thin film and a step of peeling the release film. 疎水性の剥離フィルム上に生体親和性高分子からなるゲル状高分子を添加しゲル状薄膜を形成する工程と、該ゲル状高分子薄膜を乾燥させる工程と、希釈したゲル状高分子に経皮投与剤を添加した溶液を乾燥した該高分子薄膜上に堆積させる工程と、該高分子薄膜を乾燥する工程と、上記剥離フィルムを剥離する工程とを含む請求項1記載の経皮投与剤担持薄膜の製造方法。  A step of adding a gel-like polymer composed of a biocompatible polymer on a hydrophobic release film to form a gel-like thin film, a step of drying the gel-like polymer thin film, and a step of passing through the diluted gel-like polymer. The transdermal administration agent according to claim 1, comprising a step of depositing a solution added with a skin administration agent on the dried polymer thin film, a step of drying the polymer thin film, and a step of peeling the release film. A method for producing a supported thin film. 上記経皮投与剤がナノ粒子である請求項5または請求項6記載の経皮投与剤担持薄膜の製造方法。  The method for producing a transdermal drug-carrying thin film according to claim 5 or 6, wherein the transdermal drug is nanoparticles. 上記経皮投与剤がマイクロカプセルに内包された経皮投与剤である請求項5または請求項6記載の経皮投与剤担持薄膜の製造方法。  The method for producing a transdermal agent-supporting thin film according to claim 5 or 6, wherein the transdermal agent is a transdermal agent encapsulated in microcapsules.
JP2005190585A 2005-06-01 2005-06-01 Thin film carrying percutaneous absorption preparation and its manufacturing process Pending JP2006335754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190585A JP2006335754A (en) 2005-06-01 2005-06-01 Thin film carrying percutaneous absorption preparation and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190585A JP2006335754A (en) 2005-06-01 2005-06-01 Thin film carrying percutaneous absorption preparation and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006335754A true JP2006335754A (en) 2006-12-14

Family

ID=37556607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190585A Pending JP2006335754A (en) 2005-06-01 2005-06-01 Thin film carrying percutaneous absorption preparation and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006335754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482691A (en) * 2010-08-10 2012-02-15 Nemaura Pharma Ltd Particulate preparation for transdermal drug delivery
WO2012173198A1 (en) * 2011-06-14 2012-12-20 株式会社 資生堂 Thin film supporting hyaluronic acid or derivative thereof and thin film cosmetic
JP2013223644A (en) * 2012-04-23 2013-10-31 Dainippon Printing Co Ltd Hydrogel thin film and method for manufacturing dried gel thin film
JP5419702B2 (en) * 2007-10-18 2014-02-19 久光製薬株式会社 Microneedle device
JP2020509087A (en) * 2017-02-23 2020-03-26 アリラ ヘルス ボストン エルエルシーAlira Health Boston Llc Eco-friendly antimicrobial formulations that destroy biofilms, their development and their use
CN111297833A (en) * 2019-12-31 2020-06-19 郑州清森科技有限公司 Novel application formulation and production process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755157A (en) * 1980-09-19 1982-04-01 Nitto Electric Ind Co Drug member having transcataneous absorbing property
JP2002535293A (en) * 1999-01-22 2002-10-22 パウダージェクト リサーチ リミテッド Methods for enhancing needle-free transdermal powder drug delivery
JP2002308728A (en) * 2001-04-13 2002-10-23 Pacific Corp Percutaneous absorbent using polymer nanoparticle and external preparation containing the same
WO2004000389A2 (en) * 2002-06-25 2003-12-31 Sung-Yun Kwon Rapidly dissolving micro-perforator for drug delivery and other applications
JP2004065775A (en) * 2002-08-08 2004-03-04 Sanwa Kagaku Kenkyusho Co Ltd Device equipped with needle-like structure element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755157A (en) * 1980-09-19 1982-04-01 Nitto Electric Ind Co Drug member having transcataneous absorbing property
JP2002535293A (en) * 1999-01-22 2002-10-22 パウダージェクト リサーチ リミテッド Methods for enhancing needle-free transdermal powder drug delivery
JP2002308728A (en) * 2001-04-13 2002-10-23 Pacific Corp Percutaneous absorbent using polymer nanoparticle and external preparation containing the same
WO2004000389A2 (en) * 2002-06-25 2003-12-31 Sung-Yun Kwon Rapidly dissolving micro-perforator for drug delivery and other applications
JP2004065775A (en) * 2002-08-08 2004-03-04 Sanwa Kagaku Kenkyusho Co Ltd Device equipped with needle-like structure element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419702B2 (en) * 2007-10-18 2014-02-19 久光製薬株式会社 Microneedle device
GB2482691A (en) * 2010-08-10 2012-02-15 Nemaura Pharma Ltd Particulate preparation for transdermal drug delivery
GB2482691B (en) * 2010-08-10 2013-08-14 Nemaura Pharma Ltd Structures for transdermal drug delivery
US10076495B2 (en) 2010-08-10 2018-09-18 Nemaura Pharma Limited Structures for transdermal drug delivery
WO2012173198A1 (en) * 2011-06-14 2012-12-20 株式会社 資生堂 Thin film supporting hyaluronic acid or derivative thereof and thin film cosmetic
CN103826841A (en) * 2011-06-14 2014-05-28 株式会社资生堂 Thin film supporting hyaluronic acid or derivative thereof and thin film cosmetic
JP5572263B2 (en) * 2011-06-14 2014-08-13 株式会社 資生堂 Hyaluronic acid or its derivative-supported thin film and thin film cosmetics
JP2013223644A (en) * 2012-04-23 2013-10-31 Dainippon Printing Co Ltd Hydrogel thin film and method for manufacturing dried gel thin film
JP2020509087A (en) * 2017-02-23 2020-03-26 アリラ ヘルス ボストン エルエルシーAlira Health Boston Llc Eco-friendly antimicrobial formulations that destroy biofilms, their development and their use
CN111297833A (en) * 2019-12-31 2020-06-19 郑州清森科技有限公司 Novel application formulation and production process thereof
CN111297833B (en) * 2019-12-31 2023-08-29 郑州清森科技有限公司 A Chinese medicinal preparation for topical application, and its preparation method

Similar Documents

Publication Publication Date Title
Chen et al. Preparation, properties and challenges of the microneedles-based insulin delivery system
Zhang et al. Advances in transdermal insulin delivery
Alkilani et al. Beneath the skin: a review of current trends and future prospects of transdermal drug delivery systems
Zhang et al. Separable microneedles for near-infrared light-triggered transdermal delivery of metformin in diabetic rats
US8419708B2 (en) Transdermal drug administration apparatus having microneedles
JP4875457B2 (en) Transdermal drug delivery device
KR101400545B1 (en) Microneedle device and method for producing the same
Queiroz et al. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review
KR20140125364A (en) Microneedle of short-time dissolution type
CN104117137A (en) Capsule type hollow medicine loading micro-needle array and producing method thereof
BR112015014969B1 (en) MICROSTRUCTURE APPARATUS AND METHOD OF MANUFACTURING A MICROSTRUCTURE APPARATUS
EP3117867B1 (en) Micro-needle preparation administration member for intradermal placement of target substance and apparatus for rapid administration of micro-needle preparation
Ye et al. Fabrication of tip-hollow and tip-dissolvable microneedle arrays for transdermal drug delivery
TW200539907A (en) Delivery of polymer conjugates of therapeutic peptides and proteins via coated microprojections
EP2566501A2 (en) Method and device for transdermal delivery of parathyroid hormone using a microprojection array
CN102657914A (en) Micro-needle transdermal delivery patch with high penetration efficiency
Bala et al. Transdermal drug delivery system (TDDS)-a multifaceted approach for drug delivery
Long et al. Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages
Nguyen et al. Advances of microneedles in hormone delivery
JP2006335754A (en) Thin film carrying percutaneous absorption preparation and its manufacturing process
Mahato Microneedles in drug delivery
Long et al. Microneedles for in situ tissue regeneration
Thirunavukkarasu et al. Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review
Liu et al. Stimuli-responsive polymer microneedles: a rising transdermal drug delivery system and Its applications in biomedical
Chen et al. Latest development and versatile applications of highly integrating drug delivery patch

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830