JP2006335592A - Manufacturing method of metal-including carbon nanocapsule - Google Patents
Manufacturing method of metal-including carbon nanocapsule Download PDFInfo
- Publication number
- JP2006335592A JP2006335592A JP2005161094A JP2005161094A JP2006335592A JP 2006335592 A JP2006335592 A JP 2006335592A JP 2005161094 A JP2005161094 A JP 2005161094A JP 2005161094 A JP2005161094 A JP 2005161094A JP 2006335592 A JP2006335592 A JP 2006335592A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- encapsulated carbon
- substrate
- nanocapsules
- encapsulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
この発明は、量産性に優れた金属内包カーボンナノカプセルの製造方法に関する。 The present invention relates to a method for producing metal-encapsulated carbon nanocapsules excellent in mass productivity.
カーボンナノカプセルはカーボンオニオン、ナノサイズ真球状黒鉛、オニオングラファイト、オニオンフラーレンなどとも呼ばれ、フラーレンやカーボンナノチューブとともに新しい炭素材料として注目されている材料であり、タマネギのように球状炭素構造が入れ子を成して重なっている。かかるカーボンナノカプセルには、内部に金属や金属炭化物を内包しているものがあり、金属内包カーボンナノカプセル、金属内包カーボンオニオン、金属内包フラーレン、カーボンナノカプセルなどと呼ばれている。 Carbon nanocapsules are also called carbon onions, nano-sized spherical graphite, onion graphite, onion fullerene, etc., and are attracting attention as new carbon materials along with fullerenes and carbon nanotubes. Overlapping. Some of these carbon nanocapsules contain metal or metal carbide inside, and are called metal-encapsulated carbon nanocapsules, metal-encapsulated carbon onions, metal-encapsulated fullerenes, carbon nanocapsules, and the like.
カーボンナノカプセルは、軽量かつ安定であり、放射線に対する耐性、高温での耐性が優れている。また、金属内包カーボンナノカプセルは内包金属または内包化合物の外側を炭素の殻が包んでいることから、内包された金属あるいは化合物が単体の場合より高度に化学的に安定である。内包された金属が強磁性体の場合には酸化せず、長期間に渡って安定な磁性体となることから、磁気記憶媒体、電磁波シールドなどへの適用が考えられ、化学的に安定なことから、化粧品、NMR診断用造影剤、あるいは触媒としての用途も考えられている。また、従来より様々な製造方法が提案されている。 Carbon nanocapsules are lightweight and stable, and have excellent resistance to radiation and resistance at high temperatures. In addition, since the carbon-encapsulated carbon nanocapsule has a carbon shell enclosing the encapsulated metal or compound, the metal-encapsulated carbon nanocapsule is more chemically stable than the case where the encapsulated metal or compound is a simple substance. If the encapsulated metal is a ferromagnetic material, it will not oxidize and will become a stable magnetic material over a long period of time, so it can be applied to magnetic storage media, electromagnetic wave shields, etc., and must be chemically stable. Therefore, applications as cosmetics, NMR diagnostic contrast agents, or catalysts are also considered. Conventionally, various manufacturing methods have been proposed.
金属内包カーボンナノカプセルの合成法としては、例えば、特許文献1には、金属あるいは金属酸化物存在下で非晶質炭素に電子線、粒子線、フォトン等の高エネルギー線を照射する方法が示されている。また、特許文献2にはゾルゲル法でシリカに担持させた粒状Ni/SiO2触媒とCeやLa微粒子を分散し、700℃に加熱した反応管内へ水素と二酸化炭素の混合ガスを送り、金属内包ナノカプセルを製造する方法が示されている。 As a method for synthesizing metal-encapsulated carbon nanocapsules, for example, Patent Document 1 discloses a method in which amorphous carbon is irradiated with high energy rays such as an electron beam, a particle beam, and a photon in the presence of a metal or a metal oxide. Has been. In Patent Document 2, a granular Ni / SiO2 catalyst supported on silica by a sol-gel method, Ce and La fine particles are dispersed, and a mixed gas of hydrogen and carbon dioxide is sent into a reaction tube heated to 700 ° C. A method of manufacturing a capsule is shown.
また、特許文献3には、反応槽内にメタンと水素の混合ガスとともに金属微粒子を供給し、該反応槽内にマイクロ波放電によるプラズマを生成し、金属微粒子を内包するカーボンナノカプセルを製造する方法が示されている。同様に、特許文献4には、カーボンを生成する原料ガスに金属微粒子または金属を含む化合物を混入して熱フィラメントとプラズマ発生手段を用いて金属内包ナノカプセルを製造する方法が示されている。 In Patent Document 3, metal fine particles are supplied into a reaction tank together with a mixed gas of methane and hydrogen, plasma is generated by microwave discharge in the reaction tank, and carbon nanocapsules enclosing the metal fine particles are manufactured. The method is shown. Similarly, Patent Document 4 discloses a method of manufacturing metal-encapsulated nanocapsules using a hot filament and plasma generating means by mixing metal fine particles or a compound containing metal into a raw material gas for generating carbon.
さらに、特許文献5,6には棒状電極の内部に金属を置いたカーボン陽極と、カーボン陰極とを対向させ、Heガス雰囲気で両電極の間でアーク放電を行わせ、これにより磁性金属内包カーボンナノカプセルを蒸発合成する方法が示されている。
しかし、かかる従来の製造方法では、金属内包カーボンナノカプセルはその生産性に大きな課題があり、実用に供するにはいずれの方法も問題があった。 However, in such a conventional production method, the metal-encapsulated carbon nanocapsules have a large problem in productivity, and any method has a problem in practical use.
すなわち、特許文献1,2の金属等の存在下で非晶質炭素に高エネルギー線を照射するものは、高エネルギー線を発生する装置が高価であり、しかも生産性が低いという問題があった。また、特許文献3の反応管内へ水素と二酸化炭素の混合ガスと金属粒子を送る手法は簡単であるが、生成されるナノカプセルが送る金属微粒子のサイズに限定され微細化には限界があるとともに、量産性にも問題があった。 In other words, those that irradiate amorphous carbon with high energy rays in the presence of metals or the like in Patent Documents 1 and 2 have a problem that an apparatus for generating high energy rays is expensive and productivity is low. . In addition, the method of sending a mixed gas of hydrogen and carbon dioxide and metal particles into the reaction tube of Patent Document 3 is simple, but the size of the metal fine particles sent by the nanocapsules to be produced is limited, and there is a limit to miniaturization. There was also a problem with mass productivity.
また、特許文献4の反応槽内にガスと金属微粒子を供給しプラズマを生成する方法では、やはり金属内包カーボンナノカプセルのサイズが金属粉のサイズ以下にならないという問題があり、さらに、供給した金属微粒子が反応せずに、カプセルを形成しない金属として多量に含まれるという問題があった。また、特許文献5,6カーボン陽極、陰極間でのアーク放電は、簡便であるが、アーク放電を行っているため、ナノカプセルの合成領域が狭いという問題があり、またナノカプセルが反応容器の壁に付着して生成するので、生産性に問題があった。 In addition, in the method of generating plasma by supplying gas and metal fine particles into the reaction tank of Patent Document 4, there is still a problem that the size of the metal-encapsulated carbon nanocapsules is not less than the size of the metal powder. There was a problem that a large amount of fine particles were not reacted and contained as a metal not forming a capsule. Patent Documents 5 and 6 Arc discharge between the carbon anode and the cathode is simple, but since arc discharge is performed, there is a problem that the synthesis region of the nanocapsules is narrow, and the nanocapsules are used in the reaction vessel. There was a problem in productivity because it was generated by adhering to the wall.
本発明の課題はかかる問題点に鑑みて、その課題は、容易な技術で、従来に比べ簡単かつ安価に金属内包カーボンナノカプセルを製造することができ、微細化が容易で、不用な残留金属粉がなく、回収のし易い、量産性、生産性に優れた実用的な方法を提供することにある。 In view of such problems, the problem of the present invention is that it is possible to manufacture metal-encapsulated carbon nanocapsules easily and cheaply compared with the conventional technique, which is easy to refine, and is an unnecessary residual metal. An object of the present invention is to provide a practical method which is free from powder and easy to collect and which is excellent in mass productivity and productivity.
前述した目的を達成するために、本発明金属内包カーボンナノカプセルの製造方法は、元素構成がCとH又はCとOとHを主成分とする単一または混合ガス中に放電によりプラズマを生成し、該プラズマ中またはその近傍に正に電位した鉄族基または鉄族基合金から成る基体を置き、該基体表面に金属内包カーボンナノカプセルを合成することを基本的特徴としている。 In order to achieve the above-described object, the method for producing a metal-encapsulated carbon nanocapsule according to the present invention generates plasma by discharge in a single or mixed gas whose main component is C and H or C, O and H as main components. The basic feature is that a substrate made of an iron group or an iron group alloy having a positive potential is placed in or near the plasma, and the metal-encapsulated carbon nanocapsules are synthesized on the surface of the substrate.
鉄族基または鉄族基合金を正に電位させ、元素構成がCとHを主成分とする単一または混合ガス、または、構成元素がCとOとHを主成分とする単一または混合ガスを放電プラズマにて活性化することで、前記ガスから直接基体上に金属内包カーボンナノカプセルを合成することができるので、入手が容易で安価なガスおよび触媒と、比較的低い活性化温度条件において、容易に金属内包カーボンナノカプセルを製造することができ、微細化が容易で、不用な残留金属粉がなく、回収がし易く、量産性、生産性に優れている。また、装置も一般的なプラズマCVD装置でよく、特別な装置を要さないので、低コスト化を実現可能である。 A single or mixed gas in which the iron group group or iron group group alloy is positively charged and the elemental composition is mainly composed of C and H, or the elemental element is composed of C, O and H as the main components By activating the gas with discharge plasma, the metal-encapsulated carbon nanocapsules can be synthesized directly on the substrate from the gas. Therefore, it is easy to obtain and inexpensive gas and catalyst, and relatively low activation temperature conditions. Therefore, metal-encapsulated carbon nanocapsules can be easily produced, miniaturization is easy, there is no unnecessary residual metal powder, collection is easy, and mass productivity and productivity are excellent. Further, the apparatus may be a general plasma CVD apparatus and does not require a special apparatus, so that the cost can be reduced.
本発明は以下の態様を含んでおり、これらを適用することにより、より効果的に前記目的を達成することができる。
1)CとHを主成分とする単一または混合ガスを用いた場合におけるC:Hの原子数比率が0.001〜0.5:1である。CとOとHを主成分とする単一または混合ガスを用いた場合におけるC:O:Hの原子数比率が(0.001〜0.5):(0.001〜0.5):1であり、かつOの原子数がCの原子数より少ない。
2)鉄族基または鉄族基合金基体は、鉄、ニッケル、およびコバルトの単体、またはそれらを含有する合金を基材中に1%以上の比率で含有するものから選択される。
3)金属内包カーボンナノカプセル合成用基体の温度が1000℃以下である。
4)金属内包カーボンナノカプセル製造用原料ガスの活性化方法が、直流放電、交流放電、高周波放電、およびマイクロ波放電のいずれかである。
5)金属内包カーボンナノカプセルの合成を大気圧下、加圧下または減圧下で行う。
The present invention includes the following aspects, and by applying these, the object can be achieved more effectively.
1) The atomic ratio of C: H in the case of using a single or mixed gas mainly composed of C and H is 0.001 to 0.5: 1. When a single or mixed gas containing C, O and H as main components is used, the atomic ratio of C: O: H is (0.001 to 0.5): (0.001 to 0.5): 1 and the number of O atoms is less than the number of C atoms.
2) The iron group group or iron group group alloy substrate is selected from those containing a simple substance of iron, nickel, and cobalt, or an alloy containing them in a ratio of 1% or more in the base material.
3) The temperature of the metal-encapsulated carbon nanocapsule substrate is 1000 ° C. or lower.
4) The method for activating the raw material gas for producing the metal-encapsulated carbon nanocapsule is any one of direct current discharge, alternating current discharge, high frequency discharge, and microwave discharge.
5) Synthesis of metal-encapsulated carbon nanocapsules is performed under atmospheric pressure, under pressure or under reduced pressure.
本発明はまた、基体上に金属内包カーボンナノカプセルを層として生成させる場合のほか、独立した粉末として簡単に得る場合を含んでいる。後者の態様としては、下記のものが挙げられる。
1)鉄族基または鉄族基合金基体上に合成された金属内包カーボンナノカプセル含有生成物を連続的または断続的に基体から擦り取る。
2)金属内包カーボンナノカプセルの合成を流動床法にて複数の基体上に連続的に行い、該合成物を基体相互の摩擦および衝突、または振動付与による摩擦および衝突にて連続的に基体から除去し、金属内包カーボンナノカプセルを得る。
The present invention also includes the case where the metal-encapsulated carbon nanocapsules are formed as a layer on the substrate and the case where the metal-encapsulated carbon nanocapsules are easily obtained as an independent powder. Examples of the latter embodiment include the following.
1) A metal-encapsulated carbon nanocapsule-containing product synthesized on an iron group or iron group alloy substrate is scraped from the substrate continuously or intermittently.
2) The synthesis of metal-encapsulated carbon nanocapsules is carried out continuously on a plurality of substrates by a fluidized bed method, and the composite is continuously removed from the substrate by friction and collision between substrates or by friction and collision by applying vibration. Removal of metal-encapsulated carbon nanocapsules is obtained.
以下本発明を詳細に説明すると、金属内包カーボンナノカプセルの生成プロセスは良く理解されていないのであるが、従来より開示されている方法、すなわち炭素または炭素化合物に熱エネルギーを付与する方法、イオンビームなどの高エネルギー粒子で衝撃する方法、X線、マイクロ波などの励起エネルギーを付与する方法などでカーボンオニオンを製造するが、その際に金属または金属酸化物を原料ガスとともに供給すると、カーボンナノカプセル生成時に金属または金属化合物を内包した金属内包カーボンナノカプセルを生成する。 In the following, the present invention will be described in detail. Although the process for producing metal-encapsulated carbon nanocapsules is not well understood, a conventionally disclosed method, that is, a method of imparting thermal energy to carbon or a carbon compound, an ion beam, Carbon onion is produced by a method of bombarding with high energy particles such as X-rays, a method of applying excitation energy such as microwaves, etc. When carbon or metal oxide is supplied together with a raw material gas, carbon nanocapsules are produced. At the time of production, a metal-encapsulated carbon nanocapsule encapsulating a metal or a metal compound is produced.
また、内包される金属は高温時に周囲の炭素を固溶して取り込み、冷却されるときに再び炭素を析出し、その炭素が金属の周囲を取り囲むように多層の炭素の殻を生成するという説もある。 In addition, the encapsulated metal takes in the surrounding carbon as a solid solution at high temperatures, and precipitates the carbon again when cooled, forming a multi-layered carbon shell so that the carbon surrounds the metal. There is also.
本発明者らは、これらの方法とは全く異なるプロセスによる金属内包カーボンナノカプセルの製造方法を見いだしたもので、元素構成がCとH又はCとOとHを主成分とする単一または混合ガス中に放電によりプラズマを生成し、該プラズマ中またはその近傍に正に電位した鉄族基または鉄族基合金から成る基体を置き、該基体表面に金属内包カーボンナノカプセルを合成することを基本的な特徴としている。 The present inventors have found a method for producing metal-encapsulated carbon nanocapsules by a process completely different from these methods, and the elemental composition is a single or mixed element mainly composed of C and H or C and O and H. Basically, a plasma is generated by discharge in a gas, a substrate made of an iron group or an iron group alloy having a positive potential is placed in or near the plasma, and metal-encapsulated carbon nanocapsules are synthesized on the surface of the substrate. Characteristic.
すなわち、本発明者らは、図1のように、ガス供給口6と排気口7を有する真空容器5内に回転軸3で回転自在な支持台2を配し、陽極とし、この支持台2と対峙する位置に陰極4を配した一般的なプラズマCVD装置を用い、試みに、前記支持台2に金属内包カーボンナノカプセル生成用の鉄族系材料からなる基板(基体)1を装着し、前記ガス供給口6を通して真空容器5内を炭化水素と水素の混合ガス雰囲気とし、この雰囲気中で前記支持台2を陽極として放電プラズマ8を生成せしめた。その結果、基板1の表面に煤状の金属内包カーボンナノカプセル9が生成されることを知見した。 Specifically, as shown in FIG. 1, the present inventors arrange a support base 2 that is rotatable by a rotary shaft 3 in a vacuum vessel 5 having a gas supply port 6 and an exhaust port 7, and use it as an anode. A substrate (base) 1 made of an iron group material for generating metal-encapsulated carbon nanocapsules was attached to the support base 2 in an attempt using a general plasma CVD apparatus in which a cathode 4 is disposed at a position facing the substrate, The inside of the vacuum vessel 5 was made a mixed gas atmosphere of hydrocarbon and hydrogen through the gas supply port 6, and discharge plasma 8 was generated in the atmosphere using the support 2 as an anode. As a result, it was found that a cage-like metal-encapsulated carbon nanocapsule 9 was generated on the surface of the substrate 1.
さらに詳細に調べると、構成元素がCとHから成る炭化水素系の単一または混合ガスのほか、構成元素がCとHとOから成る炭化水素系のガスでも同様に鉄基板の上に金属内包カーボンナノカプセルを生成することが判った。Cはカーボンナノカプセルの原料となる元素であるから必須であり、HとOには不飽和の炭素鎖を持つカーボンをエッチングする作用があると言われており、これが金属内包カーボンナノカプセルを効果的に生成する役割を果たしているものと思われる。 In more detail, in addition to a hydrocarbon-based single or mixed gas composed of C and H as constituent elements, a hydrocarbon-based gas composed of C, H and O as well as a constituent element is similarly formed on the iron substrate. It was found to produce encapsulated carbon nanocapsules. C is essential because it is an element that is a raw material for carbon nanocapsules, and it is said that H and O have the effect of etching carbon with unsaturated carbon chains, which is effective for metal-encapsulated carbon nanocapsules. It seems to play a role to generate automatically.
前記CとHを主成分とする単一または混合ガスにおいては、C:Hの原子数比率が0.001〜0.5:1の範囲で金属内包カーボンナノカプセルが生成され、それ以外のCの多い領域では不定形炭素が中心で、Hの多い領域では何も生成されなくなった。また、CとHとOを主成分とする単一または混合ガスにおいては、C:O:Hの原子数比率が(0.001〜0.5):(0.001〜0.5):1であり、かつOの原子数がCの原子数より少ない範囲で金属内包カーボンナノカプセルが合成され、その範囲外のCの多い領域では不定形炭素が生成され、OとHの多い領域およびCの少ない領域では何も生成されなかった。前者のガスの代表的なものはCH4単体あるいはこれとH2の混合ガスが挙げられ、後者のガスの例としては、H2とCOとCH4の混合ガスが挙げられる。 In the single or mixed gas containing C and H as main components, metal-encapsulated carbon nanocapsules are produced in the range of C: H atomic ratio of 0.001 to 0.5: 1, and other C In the region with a lot of hydrogen, amorphous carbon is the center, and in the region with a lot of H, nothing is generated. Moreover, in the single or mixed gas which has C, H, and O as a main component, the atomic ratio of C: O: H is (0.001-0.5) :( 0.001-0.5): 1 and a metal-encapsulated carbon nanocapsule is synthesized in a range where the number of O atoms is less than the number of C atoms, and amorphous carbon is generated in a C-rich region outside the range, Nothing was generated in the region with less C. Typical examples of the former gas include CH 4 alone or a mixed gas of H 2 and this, and examples of the latter gas include a mixed gas of H 2 , CO, and CH 4 .
基体1は陽極及びカーボンナノカプセル生成のための触媒機能を果たすので、基体の金属はカーボンナノカプセル形成の際に金属あるいは金属炭化物としてその中心部に取り込まれる。基体材料には鉄を使用できるが、その後の実験の結果、鉄のほかにも、コバルト、ニッケル、クロムの単体、鉄、コバルト、ニッケル、クロムなどの鉄族金属の一種以上を含む鉄族基合金上にも金属内包カーボンナノカプセルの合成が確認された。このとき、金属内包カーボンナノカプセルの金属部には上記基体合金中に含まれていた鉄族元素の他に鉄族以外の合金元素も同時に取り込まれることが判った。前記鉄族金属は基体中に1%以上含有される程度でも十分に効果があり、例えば炭化タングステンを主成分とする超硬合金上にも金属内包カーボンナノカプセルが合成されることが確認された。こうしたことから、基体としては鉄族基または鉄族基合金基体としたのである。 Since the substrate 1 functions as a catalyst for producing an anode and carbon nanocapsules, the metal of the substrate is taken into the center as a metal or a metal carbide during the formation of the carbon nanocapsules. Although iron can be used as the base material, as a result of subsequent experiments, in addition to iron, an iron group containing at least one of iron group metals such as cobalt, nickel, chromium, iron, cobalt, nickel, chromium, etc. The synthesis of metal-encapsulated carbon nanocapsules was also confirmed on the alloy. At this time, it was found that in addition to the iron group elements contained in the base alloy, alloy elements other than the iron group were simultaneously taken into the metal part of the metal-encapsulated carbon nanocapsules. Even when the iron group metal is contained in the substrate in an amount of 1% or more, it is sufficiently effective. For example, it is confirmed that metal-encapsulated carbon nanocapsules are synthesized on a cemented carbide containing tungsten carbide as a main component. . For these reasons, the substrate is an iron group or iron group alloy substrate.
金属内包カーボンナノカプセルを生成させる基体1の温度は、プラズマにさらされて上昇するが、特に基体の温度が1000℃を越える領域ではカーボンナノカプセル自体が生成されにくいので、不可である。これは、ガスの分解で生成するCが、高温のため基体の鉄族金属中へ溶解したためと考えられる。基体温度は原料ガスを活性化するための加熱手段あるいは放電プラズマにより受動的に変化するので、それらの出力を低減すると基体温度も低下するので、合成速度との関係もあり一概には決められないが、実質的には約200℃以下では金属内包カーボンナノカプセルの生成速度が減少し、実用的ではなくなる。したがって、基体温度は、200℃〜1000℃の範囲が好適である。 The temperature of the substrate 1 for generating the metal-encapsulated carbon nanocapsules rises when exposed to plasma, but this is not possible because the carbon nanocapsules themselves are difficult to be generated, particularly in the region where the substrate temperature exceeds 1000 ° C. This is presumably because C generated by gas decomposition was dissolved in the iron group metal of the substrate due to high temperature. Since the substrate temperature is passively changed by the heating means for activating the raw material gas or the discharge plasma, if the output is reduced, the substrate temperature is also lowered. However, the production rate of the metal-encapsulated carbon nanocapsules decreases substantially at about 200 ° C. or less, which is not practical. Therefore, the substrate temperature is preferably in the range of 200 ° C to 1000 ° C.
金属内包カーボンナノカプセル製造用原料ガスの活性化には様々な方法が利用できる。代表的なものとしては、陽極である基体と対峙する関係位置に陰極のフィラメントを配し、フィラメントを2000℃以上に通電加熱して両極間に放電を行わせ、これにより生成する放電プラズマとフィラメントによる加熱で活性化する方法、あるいは、直流放電、交流放電、高周波放電およびマイクロ波放電、あるいはそれらの1種以上を組み合わせて生成した放電プラズマ雰囲気で活性化する方法などがあげられる。このとき、基体を陽極として正に電位するのは、放電により生成したプラズマから電子を基体に引き寄せるためであり、通常は直流放電では放電電極の陰極より正側すなわち陽極とすることで目的が達成される。マイクロ波や高周波などの正負が交互に変化する電場を使って生成した放電プラズマについても、基体に電子を引き寄せるための正の電位を与えることが必要で、その電位は基体に流入する電流値と基体の温度をモニターしながら決定され、通常は反応容器の接地電位より正側となる。 Various methods can be used to activate the raw material gas for producing the metal-encapsulated carbon nanocapsules. As a typical example, a cathode filament is arranged at a position facing the substrate which is an anode, and the filament is heated to 2000 ° C. or more to discharge between both electrodes, thereby generating discharge plasma and filament. Or a method of activation in a discharge plasma atmosphere generated by combining DC discharge, AC discharge, high-frequency discharge, microwave discharge, or a combination of one or more thereof. At this time, the positive potential with the substrate as the anode is to attract electrons from the plasma generated by the discharge to the substrate. Usually, in DC discharge, the purpose is achieved by setting the anode to the positive side of the discharge electrode, that is, the anode. Is done. It is necessary to give a positive potential for attracting electrons to the substrate for the discharge plasma generated using an electric field such as a microwave or a high frequency that alternates between positive and negative, and the potential depends on the current flowing into the substrate. It is determined while monitoring the temperature of the substrate, and is usually on the positive side of the ground potential of the reaction vessel.
金属内包カーボンナノカプセルの合成は大気圧下、減圧下のいずれでも行える。ただし、実用的には、通電加熱したフィラメントを用いる方法は大気圧下および減圧下の合成に適し、その他の放電を用いる方法は減圧下の合成に適している。 The synthesis of metal-encapsulated carbon nanocapsules can be performed under atmospheric pressure or reduced pressure. However, practically, the method using the electrically heated filament is suitable for synthesis under atmospheric pressure and reduced pressure, and the other methods using discharge are suitable for synthesis under reduced pressure.
本発明の方法では、金属内包カーボンナノカプセルが鉄属基または鉄属基合金基体上に合成されるが、金属内包カーボンナノカプセルを含む炭素質膜が厚くなると、金属をカーボンナノカプセルの生成割合が減少するので連続生産の面で問題が残る。この対策として、本発明は、鉄属基または鉄属基合金基体上に合成された金属内包カーボンナノカプセルを含む炭素質膜を、合成中に連続的または断続的に基体から物理的に除去するものである。 In the method of the present invention, metal-encapsulated carbon nanocapsules are synthesized on an iron group-based or iron-group-based alloy substrate, but when the carbonaceous film containing the metal-encapsulated carbon nanocapsules becomes thicker, the metal is produced at a carbon nanocapsule production rate. However, there is still a problem in terms of continuous production. As a countermeasure against this, the present invention physically removes a carbonaceous film containing metal-encapsulated carbon nanocapsules synthesized on an iron group or iron group alloy substrate from the substrate continuously or intermittently during the synthesis. Is.
図2は、この例を示しており、真空容器5中に支持台を介しまたは介さないで円盤状または円柱状の基体1を横軸の周りに回転自在に配し、基体を陽極とし、該基体1の所要範囲たとえば半周領域の対向する位置に、放電プラズマ発生手段(この例では陰極)4を配置するとともに、基体1の金属内包カーボンナノカプセル生成領域から外れた位置、この例では円周方向で反対側に、静止するかまたは基体の回転方向に逆向する擦り取りないし掻き取り手段12を配し、掻き取り手段12の下方に基体表面から掻き取られた煤状の金属内包カーボンナノカプセル13を収容する手段14を配している。金属内包カーボンナノカプセルを収容する手段の代わりに吸引排出ホースを用いてもよい。これにより、金属内包カーボンナノカプセルを合成しつつ、生成物を連続的または断続的に基体から分離収集することができる。 FIG. 2 shows this example, in which a disk-shaped or columnar substrate 1 is disposed in a vacuum vessel 5 with or without a support base so as to be rotatable around a horizontal axis, and the substrate is used as an anode. The discharge plasma generating means (cathode in this example) 4 is disposed in a required range of the substrate 1, for example, at a position opposite to the half-circumferential region, and at a position deviated from the metal-encapsulating carbon nanocapsule generation region of the substrate 1. On the opposite side in the direction, scraping or scraping means 12 that is stationary or opposite to the rotation direction of the substrate is arranged, and a cage-like metal-encapsulated carbon nanocapsule scraped from the surface of the substrate below the scraping means 12 Means 14 for accommodating 13 is provided. A suction / discharge hose may be used instead of the means for containing the metal-encapsulated carbon nanocapsules. Thereby, the product can be separated and collected from the substrate continuously or intermittently while the metal-encapsulated carbon nanocapsules are synthesized.
本発明は、また、金属内包カーボンナノカプセルの合成を流動床法にて複数の基体上に連続的に行い、該合成物を基体相互の摩擦および衝突、または振動付与による摩擦および衝突にて連続的に基体から除去し、金属内包カーボンナノカプセルを得る方法を含んでいる。 In the present invention, the metal-encapsulated carbon nanocapsules are continuously synthesized on a plurality of substrates by a fluidized bed method, and the composite is continuously subjected to friction and collision between substrates, or friction and collision by applying vibration. And removing the substrate from the substrate to obtain metal-encapsulated carbon nanocapsules.
図3はその例を示しており、真空容器5内にエンドレスコンベア16を配置し、少なくともコンベアの張り側が陽極となるようにする。該コンベアの張り側と対峙する関係位置に加熱または放電プラズマ発生手段(この例では陰極)4を配置する。そして、前記コンベア16には複数のボックス状の隔壁18を配し、隔壁内の空間に、前記鉄族基または鉄族基合金からなる球などの転動自在な形状の基体15を装填する。そして、コンベア16の緩み側(下側)には、基体15の落下を防止する手段を兼ねた多孔部材(板あるいは金網)17を配し、その下方に金属内包カーボンナノカプセルを収容する手段14を配している。コンベア16は振動器などの振動発生手段を搭載していてもよい。 FIG. 3 shows such an example, in which an endless conveyor 16 is disposed in the vacuum vessel 5 so that at least the tension side of the conveyor serves as an anode. A heating or discharge plasma generating means (cathode in this example) 4 is disposed at a position facing the tension side of the conveyor. A plurality of box-shaped partition walls 18 are arranged on the conveyor 16, and a base 15 having a rollable shape such as a sphere made of the iron group group or iron group group alloy is loaded in the space in the partition wall. Further, on the loose side (lower side) of the conveyor 16, a porous member (plate or wire mesh) 17 that also serves as a means for preventing the base 15 from falling is arranged, and means 14 for housing the metal-encapsulated carbon nanocapsules below the porous member 17. Is arranged. The conveyor 16 may be equipped with vibration generating means such as a vibrator.
この装置においては、コンベア16を駆動して転動自在な形状の基体15を移動させつつ、CとHを主成分とする単一または混合ガスを加熱または放電プラズマ8にて活性化するので、移動中に陽極とされた複数の基体15の表面にそれぞれ金属内包カーボンナノカプセル9が合成され、当該金属内包カーボンナノカプセル膜つきの基体は、コンベア端部領域において相互に摩擦および衝突し、または振動付与による摩擦および衝突を受け、それらによる衝撃で金属内包カーボンナノカプセル13が基体15から離脱され、多孔部材17の孔を通して収容手段14に収容される。したがって、容易かつ安価に金属内包カーボンナノカプセルを量産することができる。 In this apparatus, while the conveyor 16 is driven to move the rollable base 15, a single or mixed gas mainly composed of C and H is activated by the heating or discharge plasma 8. Metal-encapsulated carbon nanocapsules 9 are respectively synthesized on the surfaces of a plurality of bases 15 that have become anodes during movement, and the bases with the metal-encapsulated carbon nanocapsule films rub and collide with each other or vibrate in the conveyor end region. The metal-encapsulated carbon nanocapsules 13 are separated from the base 15 by the impact and friction caused by the application, and are accommodated in the accommodating means 14 through the holes of the porous member 17. Therefore, the metal-encapsulated carbon nanocapsules can be mass-produced easily and inexpensively.
金属内包カーボンナノカプセル合成時には金属を内包しないカーボンナノカプセルも同時に生成されるが、内包金属が強磁性特性を持つ場合には、磁気的手段を用いてカーボンナノカプセル、磁気特性を持たない金属内包カーボンナノカプセル、およびその他の炭素化合物と分離することが出来る。 At the time of synthesis of carbon nanocapsules with metal inclusion, carbon nanocapsules that do not encapsulate metal are generated at the same time. However, if the encapsulated metal has ferromagnetic properties, carbon nanocapsules with a magnetic means or metal inclusions without magnetic properties are used. It can be separated from carbon nanocapsules and other carbon compounds.
図1に概略構成を示す装置を用いて金属内包カーボンナノカプセルの合成を行った。 Metal-encapsulated carbon nanocapsules were synthesized using an apparatus having a schematic configuration shown in FIG.
1)金属内包カーボンナノカプセル製造原料には水素99%、メタン1%の混合ガスを用い、金属内包カーボンナノカプセルを合成する基体としては、直径36mm、厚さ7mmの鉄合金SKD11製円板を用いた。 1) A metal encapsulated carbon nanocapsule is made from a 99% hydrogen and 1% methane mixed gas, and the base for synthesizing the metal-encapsulated carbon nanocapsule is an iron alloy SKD11 disk with a diameter of 36 mm and a thickness of 7 mm. Using.
2)合成は、まず真空容器内を図示してない真空排気装置を用いて1×10-2Pa以下まで真空排気し、しかる後にガス供給口6から原料ガスを真空容器内に2000Paの圧力まで導入し、直径0.75mmのタングステンフィラメント陰極をパイロメータによる測定で2000〜2500℃になるように交流電源10を用いて通電加熱し、直流電源を用いて陰極と陽極となる鉄合金製円板基体1を載置した基体支持台2との間で放電を行わせる手順で行った。このとき、陰極と陽極間の放電電流は4Aとした。このときの基体の温度は高温部で850℃、低温部で700℃であった。 2) In the synthesis, first, the inside of the vacuum vessel is evacuated to 1 × 10 −2 Pa or less using a vacuum evacuation device not shown, and then the source gas is supplied from the gas supply port 6 into the vacuum vessel up to a pressure of 2000 Pa. Introduced and heated a 0.75 mm diameter tungsten filament cathode using an AC power source 10 to 2000 to 2500 ° C. as measured by a pyrometer, and an iron alloy disk substrate serving as the cathode and anode using the DC power source 1 was carried out in the procedure of performing discharge between the substrate 1 and the substrate support 2 mounted thereon. At this time, the discharge current between the cathode and the anode was 4A. The temperature of the substrate at this time was 850 ° C. in the high temperature part and 700 ° C. in the low temperature part.
3)これにより、鉄合金製円板基体1上に煤状の物質9が合成された。この煤状の物質9をメチルアルコールに分散し、ポリエチレン袋で覆った磁石を溶媒中に入れ、その表面に集まった煤状物質を取り出した。この煤状物質を透過電子顕微鏡で観察したところ、図4に示すように内部に金属を置き、その外側に多層化した構造の殻が包む物質が生成された。図5はさらにそれを拡大して観察したものであり、これより層間が0.34nmのカーボンナノカプセル構造を取っていることが判った。また、中心部の金属は同時に行った分析から、Feであることが判った。 3) As a result, a bowl-shaped substance 9 was synthesized on the iron alloy disk substrate 1. This rod-like substance 9 was dispersed in methyl alcohol, a magnet covered with a polyethylene bag was put in a solvent, and the rod-like substance collected on the surface was taken out. When this cage-like material was observed with a transmission electron microscope, a metal was placed inside, as shown in FIG. FIG. 5 is an enlarged view of this, and it has been found that a carbon nanocapsule structure with an interlayer of 0.34 nm is taken. The metal in the center was found to be Fe from the analysis performed simultaneously.
4)基体をステンレス鋼SUS304(Fe‐18Cr‐8Ni)、およびに超微粒子超硬合金(WC‐12%Co)に変えて同様な方法で合成を行っても同様に金属内包カーボンナノカプセルが合成された。また、原料ガスを水素80%、一酸化炭素18%、メタン2%の混合ガスとして、同様な方法で合成を行った場合も金属内包カーボンナノカプセルが合成された。 4) Even if the substrate is changed to stainless steel SUS304 (Fe-18Cr-8Ni) and ultrafine particle cemented carbide (WC-12% Co) and synthesized in the same manner, the metal-encapsulated carbon nanocapsules are also synthesized. It was done. Further, when the raw material gas was a mixed gas of 80% hydrogen, 18% carbon monoxide, and 2% methane, the metal-encapsulated carbon nanocapsules were also synthesized by the same method.
また、図2に示す装置を用い、直径250mmの回転陽極を基体として、金属内包カーボンナノカプセルの生成を行った。 In addition, using the apparatus shown in FIG. 2, metal-encapsulated carbon nanocapsules were generated using a rotating anode having a diameter of 250 mm as a base.
1)基体材料には表面に鉄、クロム、ニッケルおよび銅をプラズマ溶射した鋳鉄FC250を用いた。陰極4には直径1mmの溶接用タングステン線を用い、回転陽極(基体)1との間で放電を行わせ、基体となる回転陽極表面に金属内包カーボンナノカプセル9を合成した。 1) As a base material, cast iron FC250 whose surface was plasma sprayed with iron, chromium, nickel and copper was used. A tungsten wire for welding having a diameter of 1 mm was used as the cathode 4, and discharge was performed between the anode and the rotating anode (substrate) 1, and the metal-encapsulated carbon nanocapsules 9 were synthesized on the surface of the rotating anode serving as the substrate.
2)合成手順は、まず真空容器5内を1×10-2Pa以下まで真空排気した後、ガス供給口6から水素70%、一酸化炭素27%、メタン3%から成る混合ガスを総流量300cc/分の流量で供給し、図示してないフィラメント状陰極と陽極(基体)1間で放電を開始し、これをスタート補助放電として、陰極4と回転陽極基体1の間に放電を移行させた。これにより生成されるプラズマ8を用いて原料ガスを活性化し、金属内包カーボンナノカプセル9を回転陽極表面に合成した。 2) The synthesis procedure is as follows. First, the inside of the vacuum vessel 5 is evacuated to 1 × 10 −2 Pa or less, and then a mixed gas composed of 70% hydrogen, 27% carbon monoxide, and 3% methane is supplied from the gas supply port 6 to the total flow rate. Supply is performed at a flow rate of 300 cc / min, and discharge is started between a filamentary cathode and an anode (substrate) 1 (not shown), and this discharge is transferred between the cathode 4 and the rotating anode substrate 1 as a start auxiliary discharge. It was. The raw material gas was activated using the plasma 8 generated thereby, and the metal-encapsulated carbon nanocapsules 9 were synthesized on the surface of the rotating anode.
3)このとき、陰極と回転陽極間の放電電流を10A、回転陽極の回転数は1rpmとし、放電プラズマの生成している側とは反対側で、合成物9をすき取り板12を用いて連続的に回転陽極1からをすき取り、合成物粉13をすき取り板の下方に置かれたトレイ14に集めた。上記条件にて24時間運転後、すき取った煤状の合成物粉を実施例1と同様な方法で分離して透過電子顕微鏡で観察したところ、金属内包カーボンナノカプセルの合成が確認された。また、この煤状物質の元素分析を行ったところ、図6に示すようにプラズマ溶射した金属成分すなわち鉄、クロム、ニッケルおよび銅が検出され、金属内包カーボンナノカプセルには基体の金属が単体、合金またはその炭化物として取り込まれていることが判った。この時の煤状物質の合成速度は約1g/時間であった。 3) At this time, the discharge current between the cathode and the rotating anode is 10 A, the rotation speed of the rotating anode is 1 rpm, and the composite 9 is removed using the scraping plate 12 on the side opposite to the side where the discharge plasma is generated. The rotary anode 1 was scraped continuously and the composite powder 13 was collected on a tray 14 placed below the scraper plate. After operation for 24 hours under the above conditions, the scraped bowl-shaped composite powder was separated by the same method as in Example 1 and observed with a transmission electron microscope. As a result, synthesis of metal-encapsulated carbon nanocapsules was confirmed. Further, when elemental analysis of this rod-shaped substance was performed, as shown in FIG. 6, plasma sprayed metal components, that is, iron, chromium, nickel and copper were detected, and the metal-encapsulating carbon nanocapsules contained the base metal alone, It was found to be incorporated as an alloy or its carbide. The synthesis rate of the rod-like substance at this time was about 1 g / hour.
さらに、図3に示す流動床方式の装置を用いて金属内包カーボンナノカプセルの連続的生成を行った。本装置は、コンベヤ16で金属内包カーボンナノカプセルが合成される直径20mmの軸受鋼SUJ2製の球状基体15を循環させる機構を有している。 Furthermore, continuous generation of metal-encapsulated carbon nanocapsules was performed using a fluidized bed system apparatus shown in FIG. This apparatus has a mechanism for circulating a spherical substrate 15 made of bearing steel SUJ2 having a diameter of 20 mm, in which metal-encapsulated carbon nanocapsules are synthesized by a conveyor 16.
1)金属内包カーボンナノカプセルの合成は、真空容器5内を排気口7を通して1×10-2Paまで真空排気後、陰極となるタンタル管4の穴を通して水素ガス97%、メタンガス3%の割合の混合ガスを毎分500ccの流量で供給し、次いで、図示してないフィラメントを陰極、球状基体15を装荷したコンベヤ16を陽極として、放電を開始し、これをスタート補助放電として、タンタル管製陰極4と球状基体を装荷したコンベヤ間へ放電を移し、本放電を開始した。これにより生成されたプラズマ8中で、原料ガスが励起され、球状基体上に金属内包カーボンナノカプセルを含む煤状物質を合成した。 1) The synthesis of metal-encapsulated carbon nanocapsules was performed by evacuating the inside of the vacuum vessel 5 to 1 × 10 −2 Pa through the exhaust port 7, and then hydrogen gas 97% and methane gas 3% through the hole of the tantalum tube 4 as the cathode. The gas mixture is supplied at a flow rate of 500 cc per minute, and then discharge is started using a filament (not shown) as a cathode and the conveyor 16 loaded with a spherical substrate 15 as an anode. The discharge was transferred between the conveyor loaded with the cathode 4 and the spherical substrate, and the main discharge was started. In the plasma 8 generated thereby, the source gas was excited to synthesize a cage-like substance containing metal-encapsulated carbon nanocapsules on a spherical substrate.
2)球状基体上に合成された煤状物質は基体15がコンベヤ16で合成領域外へ運ばれ、下方へ落下する間に、基体の転動、摺動および落下による衝突で基体から離れ、コンベヤ16の下方に置かれた穴あき板17を通して落下し、穴あき板の下方のトレイ14に集めた。 2) The soot-like substance synthesized on the spherical substrate is separated from the substrate by the collision of the rolling, sliding and dropping of the substrate while the substrate 15 is moved out of the synthesis region by the conveyor 16 and falls downward. It dropped through a perforated plate 17 placed under 16 and collected in a tray 14 below the perforated plate.
3)この方法により、24時間の連続運転でトレイ内に金属内包カーボンナノカプセルを含む粉末13(合成物粉)が堆積することを確認した。合成速度は基体や構造物への付着残留が多く正確には求められないが、1〜2g/時間で金属内包カーボンナノカプセルを含む粉末が合成されたものと推定した。 3) By this method, it was confirmed that the powder 13 (synthetic powder) containing the metal-encapsulated carbon nanocapsules was deposited in the tray by continuous operation for 24 hours. Although the synthesis rate was not accurately determined due to much adhesion residue on the substrate or structure, it was estimated that the powder containing the metal-encapsulated carbon nanocapsules was synthesized at 1 to 2 g / hour.
本発明の実施例においては、鉄属基または鉄属基合金基体を陽極とし、これに対向する陰極との間で放電プラズマを生成し、基体上に金属内包カーボンナノカプセルを合成したが、マイクロ波や高周波などの正負が交互に変化する電場を使って生成した放電プラズマを利用して金属内包カーボンナノカプセルを合成する場合も基体に電子を引き寄せるために必要な正の電位を与えることで同様な効果を得ることができる。 In an embodiment of the present invention, an iron group base or an iron group base alloy substrate is used as an anode, a discharge plasma is generated between the cathode and the cathode, and metal-encapsulated carbon nanocapsules are synthesized on the substrate. In the case of synthesizing metal-encapsulated carbon nanocapsules using discharge plasma generated using an electric field with alternating positive and negative waves, such as waves and high-frequency waves, the same applies by applying a positive potential necessary to attract electrons to the substrate. Effects can be obtained.
1 基体(鉄族基基体、鉄族基合金基体)
2 支持台(陽極)
4 陰極(フィラメント、タンタル管)
8 (放電)プラズマ
9 金属内包カーボンナノカプセル
12 擦り取り又は掻き取り手段(すき取り板)
13 合成物粉(金属内包カーボンナノカプセル)
15 球状基体
16 コンベヤ(流動床)
17 穴あき板
1 Substrate (iron group base substrate, iron group base alloy substrate)
2 Support base (anode)
4 Cathode (filament, tantalum tube)
8 (Discharge) Plasma 9 Metal-encapsulated carbon nanocapsules 12 Scraping or scraping means (scraping plate)
13 Synthetic powder (metal-encapsulated carbon nanocapsules)
15 Spherical substrate 16 Conveyor (fluidized bed)
17 Perforated board
Claims (11)
The synthesis of metal-encapsulated carbon nanocapsules is continuously performed on a plurality of substrates by a fluidized bed method, and the synthesized product is continuously removed from the substrate by friction and collision between substrates or by friction and collision by applying vibration. The method for producing metal-encapsulated carbon nanocapsules according to claim 1, wherein metal-encapsulated carbon nanocapsules are obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005161094A JP4936349B2 (en) | 2005-06-01 | 2005-06-01 | Method for producing metal-encapsulated carbon nanocapsules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005161094A JP4936349B2 (en) | 2005-06-01 | 2005-06-01 | Method for producing metal-encapsulated carbon nanocapsules |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006335592A true JP2006335592A (en) | 2006-12-14 |
JP4936349B2 JP4936349B2 (en) | 2012-05-23 |
Family
ID=37556457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005161094A Expired - Fee Related JP4936349B2 (en) | 2005-06-01 | 2005-06-01 | Method for producing metal-encapsulated carbon nanocapsules |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4936349B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008216083A (en) * | 2007-03-05 | 2008-09-18 | Sharp Corp | Chemical substance sensing element, chemical substance sensing device, and manufacturing method of the chemical substance sensing element |
JP2012046393A (en) * | 2010-08-30 | 2012-03-08 | Nagoya Univ | Powder for nanocarbon production and method for forming metal-including fullerene |
RU228335U1 (en) * | 2024-05-15 | 2024-08-23 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" | Device for initiating microwave breakdown in metal-dielectric powder mixtures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001080912A (en) * | 1999-09-10 | 2001-03-27 | Agency Of Ind Science & Technol | Production of carbon nanotube |
JP2005060116A (en) * | 2003-06-18 | 2005-03-10 | Kyoto Institute Of Technology | Method for manufacturing fine particle and manufacturing apparatus for fine particle |
JP2005067916A (en) * | 2003-08-28 | 2005-03-17 | Hitachi Zosen Corp | Carbon nanotube manufacturing method and apparatus |
-
2005
- 2005-06-01 JP JP2005161094A patent/JP4936349B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001080912A (en) * | 1999-09-10 | 2001-03-27 | Agency Of Ind Science & Technol | Production of carbon nanotube |
JP2005060116A (en) * | 2003-06-18 | 2005-03-10 | Kyoto Institute Of Technology | Method for manufacturing fine particle and manufacturing apparatus for fine particle |
JP2005067916A (en) * | 2003-08-28 | 2005-03-17 | Hitachi Zosen Corp | Carbon nanotube manufacturing method and apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008216083A (en) * | 2007-03-05 | 2008-09-18 | Sharp Corp | Chemical substance sensing element, chemical substance sensing device, and manufacturing method of the chemical substance sensing element |
JP2012046393A (en) * | 2010-08-30 | 2012-03-08 | Nagoya Univ | Powder for nanocarbon production and method for forming metal-including fullerene |
RU228335U1 (en) * | 2024-05-15 | 2024-08-23 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" | Device for initiating microwave breakdown in metal-dielectric powder mixtures |
Also Published As
Publication number | Publication date |
---|---|
JP4936349B2 (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4718742B2 (en) | Method for producing a nanotube layer on a substrate | |
JP5416402B2 (en) | Method and reactor for producing carbon nanotubes | |
Xu et al. | Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution | |
Levchenko et al. | Low-temperature plasmas in carbon nanostructure synthesis | |
Neyts | PECVD growth of carbon nanotubes: From experiment to simulation | |
WO2000040509A1 (en) | Amorphous nano-scale carbon tube and production method therefor | |
JP2008273807A (en) | Method for generating temperature controlled reaction field by heat generating material having high absorption of microwave and method for synthesizing functional nanoparticle and nano-carbon material | |
JP2008071656A (en) | Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus | |
KR20080082646A (en) | Carbon nanotubes functionalized with fullerenes | |
US8609060B1 (en) | Method of producing carbon coated nano- and micron-scale particles | |
JP4680612B2 (en) | Production method of carbon onion | |
JP4936349B2 (en) | Method for producing metal-encapsulated carbon nanocapsules | |
Devi et al. | Carbon-based nanomaterials: carbon nanotube, fullerene, and carbon dots | |
JP3463091B2 (en) | Method for producing carbon nanotube | |
Jagdeo | Physical Methods for Synthesis of Nanoparticles | |
JP4665113B2 (en) | Fine particle production method and fine particle production apparatus | |
JP5272136B2 (en) | Method for producing nanocarbon material | |
Corbella et al. | Energy considerations regarding pulsed arc production of nanomaterials | |
JP2005314206A (en) | Method of manufacturing carbon nanotube and carbon nanotube-containing composition | |
JP2000109310A (en) | Production of functional carbon material | |
KR100661795B1 (en) | Thermal Chemical Vapor Deposition Apparatus for Producing Carbon Nanotube and a Carbon Nanofiber | |
JP2011178635A (en) | Film deposition apparatus, system and film deposition method | |
Nakamura et al. | Metal-filled carbon nanocapsules | |
JP2008150246A (en) | Method for producing diamond | |
JPH11263610A (en) | Production of carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080526 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100510 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20100510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4936349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |