JP2006334438A - 光美容処置及び光皮膚処置のための装置及び方法 - Google Patents

光美容処置及び光皮膚処置のための装置及び方法 Download PDF

Info

Publication number
JP2006334438A
JP2006334438A JP2006257572A JP2006257572A JP2006334438A JP 2006334438 A JP2006334438 A JP 2006334438A JP 2006257572 A JP2006257572 A JP 2006257572A JP 2006257572 A JP2006257572 A JP 2006257572A JP 2006334438 A JP2006334438 A JP 2006334438A
Authority
JP
Japan
Prior art keywords
lamp
skin
waveguide
spectrum
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006257572A
Other languages
English (en)
Inventor
Gregory B Altshuler
ビー.アールトシューラー グレゴリー
Mikhail Inochkin
イノチュキン ミハイル
Valery Yu Khramov
ユー クラモフ ヴァレリー
Sergey B Biruchinsky
ビー.ビルチンスキー セルゲイ
Andrei Erofeev
エロフェーフ アンドレ
Andrei V Belikov
ヴィ.ベリコフ アンドレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palomar Medical Technologies LLC
Original Assignee
Palomar Medical Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palomar Medical Technologies LLC filed Critical Palomar Medical Technologies LLC
Publication of JP2006334438A publication Critical patent/JP2006334438A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B2018/1807Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using light other than laser radiation

Abstract

【課題】種々の医療及び美容の皮膚科学処置を行う、適当なランプ等の源からのコヒーレント放射の利用のための改良された装置及び方法を提供する。
【解決手段】この発明は、患者の皮膚の処置のためのランプを使用する装置、及び種々の皮膚処置のためのランプを使用する方法に関し、該ランプは、従来のそのような装置よりも効率的である。該装置は、光子漏出を最小にすること及び他の向上により効率を改善する。本発明は、患者の皮膚における光学的処置に使用される波長に対する種々の増強をも含む。
【選択図】図1

Description

この発明は、光を用いる美容処置及び皮膚科学処置に関し、更に詳しくは、そのような処置のための改良された方法及び装置に関する。
この出願は、タイトルが「光美容処置及び光皮膚処置のための装置及び方法(Apparatus and Methodfor Photocosmetic and Photodermatological Treatment)である2001年3月2日付け出願の米国予備出願通し番号第60/272,745号に対する優先権を主張する。
光学的放射は、種々の医療及び美容の皮膚科学問題を扱う医学的及び非医学的な設備として、長年、利用されている。そのような問題は、不必要な体毛の除去、クモ状静脈、拡張蛇行静脈及び他の血管障害の処理、ポートワイン母斑及び他の色素性障害の処理、皺の処理のための乾癬、皮膚再表面化(skin resurfacing)及び皮膚(肌)の若返りの処理、座瘡のための処理、脂肪の低減もしくは除去のための種々の処理、セリュライトのための処理、入れ墨除去、種々の傷跡及び他の皮膚欠陥の除去その他を含むが、決してこれらに限定されない。そのような処理において、一般にレーザーから発せられるコヒーレント光及び一般にフラッシュランプもしくはその他のランプから発生せられるインコヒーレント(非干渉性)光の両方が使用されている。
近年、この分野において高まる関心が、種々のランプからのインコヒーレント光の使用に集中しており、その理由は、そのような光源の使用によってコスト削減の見込みがあるため、及び、処置領域に重なるか又はそれを囲む領域の患者の皮膚に対し起こり得る熱的又は他の損傷の観点及び目の安全の観点から、そのような光源が安全であると考えられているためである。しかしながら、既存のランプベース皮膚科学システムは、それらのコスト又は安全の可能性も十分に実現していない。この理由の一つは、これらの装置の最良のものでさえ、発生した放射(照射)の処置領域への送出におけるせいぜい15%の効率である。これは、より大きく高価な光源が、種々の処置に要求されるエネルギーレベルを達成するために利用されなければならないことを意味する。そのような装置において浪費したエネルギーは、熱をも作り出すことができ、該熱は、アプリケータが快適で安全に保持されることを許容し、かつ、患者の皮膚に対する熱的損傷を回避すべく、該システムに対する熱的損傷を防ぐため、効果的に除去されなければならない。熱管理を容易にするための装置は、これらの機器のコストをも高める。
これらの機器(装置)の使用における患者の皮膚に対する熱的損傷の一つの可能性のある源は、患者の皮膚に適用されている放射線ビームにおける局所的ホットスポットである。そのようなホットスポットを回避するため、適用放射は、実質ビーム全体にわたって強度(光度もしくは輝度)及びスペクトル内容において実質上均一であることが望ましい。これは、既存のランプシステムにはしばしば当てはまらなかった。
効率及び安全性の両面の達成における別の重要な要因は、各特定の処置に対する放射適用の利用波長帯域、強度及び持続時間を含むランプパラメーターを最適にすることである。装置を冷却するため、及び放射を発生させ、またこれを制御するための、選択された波長を達成するランプ出力のフィルタリング(フィルター処理)用の改良された機構は、効率向上、コスト削減及び安全性の向上により貢献できるであろう。
そのため、種々の医療及び美容の皮膚科学処置を行う、適当なランプ又は他の源からの非コヒーレント放射の利用のための改良された装置及び方法に対するニーズが存在する。
上記に従い、この発明は、患者の皮膚の処置のため、ランプを利用する装置を提供する。本装置は、患者の皮膚と光学接触するように適合された導波管と、ランプからの光子を導波管を通って患者の皮膚へと向ける機構とを含み、該機構は、本装置からの光子のロス(喪失)を抑制するサブ機構(副機構)を含む。該機構は、反射板を含み得、反射板及び導波管は、これらが共に、これらの間に実質上間隙を全く伴わずにフィットするように寸法及び形状が作られる。反射板と導波管との間に間隙が存在する限り、該間隙は、反射性材料で実質的にシールされ得る。反射板は、反射板上の各光子に対する反射数を最小化するように、ランプを基準にして寸法が決められ、かつランプに対し取り付けられる。反射板は、そのような最小反射数を実現するため、ランプに対し十分小さく、かつランプに対し十分近接して取り付けられる。反射板は、ランプの外側面に形成され得る。管が、ランプと該管との間に間隙を持ってランプを囲んで設けら得、該間隙を通って、流体がランプを冷却するために流される。反射板は、管の内側面又は外側面上に形成され得る。反射板は、好ましくは円筒形状である。反射板は、散乱散乱反射板であり得、また、それによってフィルター処理された波長を制御するための機構を含む。あるいは、反射板は、その上を伝播する光から選択波長をフィルター処理する(フィルターに通す)材料から形成され得る。
いくつかの実施形態では、反射板と導波管との間に間隙があり得る。第2反射板は、該間隙内に取り付けられ、これは、反射板と共に、ランプからの実質上全ての光子を導波管へと向ける。
本装置はまた、所望の波長スペクトルを実現するため、ランプからの光を選択的にフィルタリング(フィルター処理)するための機構を含む。このフィルタリング機構は、ランプ、ランプ上に形成されたコーティング、ランプを囲む管、ランプと管との間の間隙内のフィルター装置、ランプからの光のための反射板、導波管、及び、ランプと導波管との間のフィルター装置の内の一つ又は複数の一部として含まれ得る。フィルタリング機構は、吸収フィルター、選択的反射フィルター、及びスペクトル共振散乱体であり得る。フィルターは、多層コーティングを含み得る。
導波管は、ランプからの光出力の均一性を高めるように選択された長さであり得る。ランプからの光出力は、導波管長の関数としての共振を有し得る。導波管は、好ましくは、共振長の一つと等しい長さである。導波管の長さは、好ましくは、ランプ近傍の導波管の端部における導波管の幅及び深さの小さい方よりも長い。
本装置はまた、患者の皮膚内における光子の角スペクトルを制御するための機構を含み得る。更に詳しくは、ランプと導波管との間に間隙が設けられ得、該間隙は、選択された屈折率を有する物質で満たされる。管がランプを囲む場合、この間隙は、該管と導波管との間にある。間隙の長さは、最小化されるべきであり、好ましい実施形態では、該間隙は空気で満たされるべきである。
導波管は、受光面において光出力面におけるよりも大きい面積を有し得、これら受光面と光出力面との間に曲がった側部を有し得る。導波管は、これを通って形成された複数のカット(切除部)をも有し得、該カットは、これを通って冷却流体が流されるように適合される。導波管はまた、患者の皮膚と接触する面を有し得、これには、患者の皮膚への光子の送出を制御するようにパターン模様が形成される。導波管はまた、患者の皮膚と接触する凹状面を有し得、この凹状面は、凹面を有する導波管自体又は凹状縁を有する面を囲むリムのいずれかによって実現され得る。上記凹状面の深さは、本装置に適用される圧力と共に、本装置によって処置される血管の深さを制御するように好ましくは選択される。圧力下での患者の皮膚に対する凹状面の適用によって血流が制限される血管の深さを検出するための機構も設けられ得る。この機構は、所望の深さでの血管の処置を許容するように圧力が制御されることを可能にする。あるいは、導波管は、患者の皮膚に対する選択的な圧力の適用を可能にするように形状が作られた皮膚接触面を有し得、これにより、処置が行われる深さを制御する。導波管は、少なくても一部において、レイジング導波管又は超発光導波管であり得、また、光学導波管内部のレイジング導波管を含み得る。あるいは、レイジング材料又は超発光材料がランプを囲み得、該ランプからの光子は、この材料へと向けられる。
患者の皮膚及び導波管の皮膚接触面の両方に対し、接触直前に冷却スプレーを送出する機構も設けられ得る。導波管は、熱の良好な導体である材料から成る患者の皮膚に近い下方部分と、熱の良好な導体ではない材料から成る上方部分とを含み得、下方部分の厚さは、患者の皮膚を冷却する深さを制御する。そのような患者の皮膚における冷却深さの制御はまた、熱伝導材料から成る板であって、患者の皮膚と接触する面とは反対側のその面上に冷却流体を流す当該板の厚さを制御することによって実現され得る。本装置が患者の皮膚から予め決められた距離内にある場合を示す検出器も設けられ得、冷却スプレーは、そのような検出器に応答して作動される。
本装置はまた、導波管から後方に向く光出力チャネルを含み、これは、後方散乱検出器に至る。該チャネルは、皮膚に対する垂直線に対し角度αであり、これは、後方散乱光のみが該検出器に到達することを保証する。ランプは、図11のパワー分布44、45又は46の一つであるパワー分布によって作動され得る。導波管は、単一の構成要素として形成され得、ランプは、その中に形成される開口を貫通する。
本発明はまた、患者の皮膚における種々の処置を実行するため、ランプを利用する方法を含み、これは、表1のパラメーターを利用する、毛の除去(脱毛)を行うための方法と、表2、3及び4のパラメーターを利用する、血管障害の処置を行うための方法と、表2及び6のパラメーターを利用する、皮膚の若返り(再生)を行うための方法と、細菌(バクテリア)を殺すこと、皮脂腺の加熱分解、及び/又は皮脂腺に栄養を与えるクモ状静脈を末梢することによって座瘡を処置するための方法と、表5のパラメーターを利用する色素性障害を処置する方法とを含む。
患者の皮膚に適用されるランプからの光学的放射のための光学スペクトルは、患者の表皮の温度に対する処置ターゲットにおける温度の比率が選定値Sであるようにされ、これは、好ましくは1より大きい。フィルター処理は、上記目的を達成するため、ランプ出力から一又は複数の波長帯域を提供するために使用され得る。導波管温度に依存する散乱特性を有する導波管が利用され得、この特徴は、患者の皮膚を自動的に保護するために利用され得る。反射マスク、吸収マスク又はフェーズ(位相)マスクが、放射が適用される患者の皮膚の領域を制御するため、導波管の端部に取り付けられるか又は形成され得る。
本発明の上述した目的又は他の目的、特徴及び利点は、添付図面に例示されるような本発明の好ましい実施形態の以下のより詳細な説明から明らかとなろう。種々の図面における同様な構成要素は、同一又は関連した参照番号を有する。
図1及び図2において、皮膚1の美容及び医療の皮膚科学処置のための例示装置Dの断面が示される。以下の記述の大部分は、この装置に関連するが、これは本発明における限定ではない。光源は、ガス(Xe、Kr、Hg等)で満たされた直線的管状アークランプ2によって表される。該ランプは、円筒断面のガラス又はクリスタル管4内に封入される。ランプ2と管4との間の間隙7は、液体又はガスで満たされ、これはポンプで注入され得る。反射板3は、隙間をもって又は隙間なく該管の周囲に置かれる。該反射板は、基体上に真空又はガルヴァニック高反射皮膜を含み得、該基体は、湾曲管状部分を有し、また、平坦部を伸ばし、これは全側部において導波管5に達する(好ましくは導波管5に一部重なる)。該反射板は端板3を含み、これは、図2に最も良く示され、また、反射板3と導波管5との間のどのような隙間をも最小限にするように働く。少しでも隙間が残る限り、それは、光子漏出を最小限にする反射性材料で埋められ得る。該反射板はまた、該反射板と導波管との間の隙間が最小化され、全反射板面の10%を超えないような方法で、また、反射率が、そこに突き当たる放射の全波長に対し1.00に近づき、好ましくは、いかなるそのような波長に対しても0.85未満ではないような方法で形成されるべきである。反射板は、ランプを向く反射面を有する薄い可撓性金属シートの形態であり得る。該反射面は、高度な研磨面であり得、又は高反射コーティングを有し得る。該コーティングは、例えば銀又は金であり得る。該コーティングは、化学的劣化に対し該コーティングを保護するため、保護ポリマーフィルム又は薄い非有機的な誘電体によって覆われ得る。反射板コーティングは、皮膚処置に用いられる放射線のスペクトル範囲において低吸収である拡散反射被膜又は粉末(例えば、BaSO4)の層であり得る。
反射板は、導波管5と光学的に結合される。ランプ2からの直接光と反射板3で反射されたランプ2からの光は、皮膚への送出のため、フィルター6及び導波管を通って結合される。導波管は、ガラス又は誘電体結晶から形成され得る。ランプの放射線スペクトルは、皮膚における選択された対象の処置のために最適であるスペクトルに変換され得る。このスペクトルの変換は、以下の技術(a)〜(d)の内の一つ又はそれらの組合せによって与えられる。すなわち、(a)ランプ2のエンベロープ(外被)における吸収、(b)間隙7中の液体における吸収、(c)管4における吸収、及び/又は、(d)フィルター6における吸収又は有向散乱である。ランプ2のエンベロープ、間隙7の液体及び/又は管4に吸収されたエネルギーは、ストークスのルミネセンスの結果として所望の波長スペクトル範囲に変換され得る。例えば、管4は、蛍光性材料又は間隙7に使用され得る色素(染料)が入れられた(ドーピング(もしくはドープ)された)液体から成り得る。これらは、高域フィルターとして機能し得、選択された遮断波長より上で蛍光発光し、エネルギーを青から赤へ移す。これは、エネルギー損失なしに表皮に対するいくらかの保護を与え得る。ランプからの変換された放射線及び変換されていない放射線の両方が、導波管5を通って皮膚へと送られ得る。
吸収は、例えば、Ce、Sm、Eu、Er、Cr、Ti、Nd、Tm、Cu、Au、Ptといった金属のイオン、有機及び/又は無機色素、例えば半導体微結晶、又は、ガラス又は液体中に溶ける他の適当なドーピング物質と共に上記の成分をドーピング(注入)することによって与えられ得る。フィルター6は、導波管5の表面上、透明基体上又は散乱媒体上に多層誘電体干渉コーティングとして形成され得る。該散乱媒体は、例えばフォトリソグラフィによって製造された導波管5の表面における特別の規則的な分布として形成され得る。それは、例えば、処置に必要なスペクトル及び角度透過を有する位相格子であり得る。フィルター6は、いくつかの積重ねフィルター要素でもあり得、各フィルターは、選択された(一又は複数の)帯域内で機能し、いくつかの帯域は比較的狭いかもしれない。いくつかのフィルターの使用は、所望の波長を得ることをより容易にし、また、いつくかのフィルター要素の使用により、一のフィルター要素が過度に熱くなることはない。フィルタリングが例えば管4上及び/又は反射板7上のコーティングによって行われる限り、そのようなコーティングは多層でもあり得る。
フィルター6は、コールドフィルター又は非吸収フィルターでもあり得、これは好ましくは、複数層、例えば30層を有する。そのようなフィルターは、望ましくない波長を除去することができる干渉を作り出す種々の層で選択的に反射する。反射された放射線も光学的に除去され得る。しかしながら、これらのいわゆる多層誘電体フィルターは、熱管理問題を低減する点で有利であるが、これらは一般的に、短い波長を除去するにはそれ程有効ではなく、また、平行ビームに対し非常に良く光をフィルタリングするのに対し、高発散ランプビームでは、それらは、より良い波長選択性に必要とされる鋭い遮断フィルタリングを提供することができる。潜在的にフィルター6として使用されるかもしれな他のフィルターは、吸収帯を有す半導体材料から成るフィルムを含み、該吸収帯は、これに適用される電界の関数である。そのような半導体フィルムは、シュタルク効果を経験し得、そこでは、遮断周波数は、該材料を通る電流又は電圧を制御することにより制御され得る。
散乱フィルターもフィルター6に使用され得る。そのようなフィルターは、例えば、液晶材料から形成され得、該材料を横切って適用される電流又は電界が波長を制御し、そこでは該要素の反射率は同一であり、光子が通過することを許容する波長に対し、散乱は全く無い。他の波長は、散乱によって減衰される。散乱フィルター6は、通過帯域の幅及び波長を制御するため、異なる材料によって多層とされ得るか、又は、異なる材料が液晶材料の単一の層に使用され得る。そのような通過帯域は、一般に、温度及び電界の両方に依存するであろう。そのような散乱フィルターは、主に望ましくない波長を、後方を含む大きな角度で散乱させるように設計されるべきである。該後方散乱ビームの大きな角度は、多重反射をもたらし、これは、これらの不必要な周波数を更に減衰させる。
最終的に、追加のフィルター2は、該フィルターもこのチャネル7内の冷却液によって冷却されるように、チャネル7に取り付けられ得る。装置Dから所望の出力波長バンドを実現するために用いられるフィルターの位置及び種類の両方に対し、現在知られているか又は将来開発される他のオプションも使用され得る。装置Dからの所望出力波長バンドを実現するために利用されるフィルターに対する(一又は複数の)位置及びフィルターの種類を選択する上で重要な三つの基準が存在する。これらの基準は、フィルター内で生じる熱を最小限にするような、及び/又は、そこからの熱の除去を容易にするような熱設計、フィルターの選択及び配置である。処置の安全性及び効率にとって特に重要な第2の基準は、ランプの全角度スペクトルに対する信号遮断の鋭さである。第3の基準は、必要な波長の高い伝送である。フィルタリングは、ビームのエネルギーのいくらかを除去し、吸収フィルターに熱として散逸されるこのエネルギーが多いほど、装置Dの効率は低下する。
導波管5は、効率的な光の患者の皮膚1への結合(結びつけ)及び皮膚表面の冷却を与えるため、少なくとも処置中、該皮膚1と光学的及び熱的に接触する。ランプの低平均電力(処置の低繰返し率を含む)では、装置構成要素(ランプ2、反射板3、吸収フィルター)の冷却は、自然対流によって与えられ得る。ランプの高平均電力では、追加の冷却は、冷却システム11(図2)によって与えられ得、該システムは、液体又はガスを例えばチャネル又は間隙7を通って流し、冷却された構成要素と流れている冷却剤、例えば間隙7の液体との熱的接触の結果として、この場合、冷却する。もし皮膚(表皮)の冷却が必要ならば、導波管5は、照射の前、間及び/又は後に冷却され得る。導波管5を冷却するための模範的な技術は、後述される。ランプ電源10は、皮膚ターゲットの最適な照射のため、必要な動力、ランプ放出パルスの継続時間及び形状を提供する。適当の電源の一例は、2001年3月1日付け出願の同時継続出願シリアル番号第09/797,501号において提供される。装置Dの光学的配置は、最小限の光の損失、及び、反射板3及び導波管の壁に対する最大限の反射率を与える。そのため、ランプからのエネルギーの利用の最大効率が得られ、該装置のコストが最低となることを可能にする。皮膚から反射した光子は、導波管5を通って装置Dへと入り、反射板3及び導波管5によって最大効率で皮膚に向けて戻され、その結果、皮膚1におけるターゲットの照射が高められる。これら光子は、一般に、最小のエネルギーロスでランプ2を通過する。これは、エネルギー利用効率を更に高め、必要なランプ出力を更に低減することを可能にし、従って、該装置のコストを削減する。
上述した光学系(光学システム)は、最小光子漏出(MPL)の皮膚照射の光学系と時には称されるかもしれない。装置Dの光学系はまた、皮膚1の表面における光ビームのための比較的大きいスポットサイズ8、9と、表皮性損傷の可能性を下げるための皮膚面における光度の最大の均一性と、皮膚内部のターゲットの破壊のための最適な光分布とを与えるべきである。従って、該装置のパラメーターの定義において、1)皮膚に送られる光の望ましいスペクトルと、2)光ビームの空間的分布の最大の均一性を伴う皮膚面における光ビームの大きさと、3)皮膚内部の光の最適な分布と、4)皮膚に送られる光パルスの望ましい流束量、持続時間及び時間的(一時的)形状と、を与えるパラメーターを定義することが必要である。条件(1)〜(4)は、選択されたターゲット(血管、毛嚢、真皮等)及び患者の皮膚の種類に依存する。これらの条件は、皮膚におけるランプ光の分布と、選択的光熱分解(Anderson RR, Parrish J.;選択的光熱分解(Selective photothermolysis):パルス放射線の選択的吸収による正確な顕微手術、科学1983;220:524〜526)の理論、及び選択的光熱分解(Altshuler G.B., Anderson, R.R., Zenzie H.H., Smirnov M.Z.:選択的光熱分解の拡張理論、外科及び内科におけるレーザー29:416〜432,2001)の拡張理論とを考慮に入れたと考えられる。
図1a及び2aは、与えられたランプからのより大きい流束量が望まれると共に、より小さいスポットサイズが望まれるか又は少なくとも受け入れられる使用に適した本発明の別の実施形態を示す。そのよのな結果は、例えば、処置が深い深度であるよりも処置が浅い深度である場合、受け入れ可能であろう。望ましい結果は、導波管5の代わりに集信機導波管5’を使用することにより達成される。導波管5’は、導波管の皮膚接触面が導波管の光受け側部よりも小さくなるように内側に角度が付く壁を有する。しかしながら、直線状の壁の導波管5がその中における光子の実質的総内部反射を有する一方、集信機導波管5’の角度付きの壁は、これらの壁すなわち面を通るいくらかの光子漏出を許容する。この漏出の結果としての光子損失を防ぐため、反射板3''が、各壁に隣接して、例えば該壁上に被覆されて設けられる。該反射板は、例えば95%以上の高い反射率を有する。導波管漏出問題の認識と反射板3''又は同等の外部反射板の使用は、新規であり、本発明の一部であると考えられる。
図2aはまた、この実施形態の別の新規な特徴を示し、これは、ランプ2が望ましいスポットサイズの全長よりも長いものであり得るという事実を補償する。通常、これは、光子漏出及び光子損失をもたらすであろう。しかしながら、図2aにおいて、反射板3’が反射板3と導波管5’との間の隙間に設けられ、この反射板は、ランプの端部からの光線すなわち光子83を、導波管5’を通って患者の皮膚に結びつけるのに有効である。従って、この実施形態は、集信機導波管の使用によって実現した流束量改善においてほぼ50%の向上をもたらす。
皮膚におけるランプ光の伝播及び吸収
レーザー光に対するランプ光の皮膚における伝播及び吸収の違いは、少なくとも部分的に、それらの選択された範囲の違いからもたらされ、ランプスペクトルは非常に広く(200〜1000nm)、これは、レーザー放射のスペクトル範囲の数千から数万倍広い。ランプ源の角度のあるスペクトルは、±180°程度の広さであり得る。これは、レーザー放射の角度のあるスペクトルよりも数百から数千倍広い。そのため、皮膚におけるランプ光の伝播及び吸収は、レーザーのそれとはかなり相違する。UV範囲近傍、可視範囲及びIR範囲近傍において、水、ヘモグロビン、オキシヘモグロビン、メラニン、脂質及びタンパク質の吸収、並びに、ドーパント(カーボン粒子、有機及び無機色素の分子)の吸収は、皮膚の光学的/光治療処置のために使用され得る。図3において、スペクトルは、主要天然皮膚構成要素、すなわち、12−水、13−動脈血(95%のヘモグロビン、5%のオキシヘモグロビン)、14−静脈血(65%のヘモグロビン、35%のオキシヘモグロビン)、15−フェオメラニン(赤毛)、15’−ユーメラニン(黒毛、表皮)、16−皮膚の低減した散乱係数に対し示される。図4において、平行な広い光ビームの三回の減衰が波長の関数として生じる深度依存性が、異なる種類の皮膚(17−白人ブロンド、18−白人ブルネット、19−日本人、20−インド人、21−ムラート、22−アフリカ系アメリカ人)に対し示される。
図5において、光パルスの異なる持続時間及び等しいエネルギーに対する典型的なアークランプ発光スペクトル(総エネルギーの小部分を含む発光性帯域なしで)が示される。これらのカーブは、次のパルス持続時間、24−1ms、25−5ms、26−20ms、27−50ms、28−100ms、29−200ms、30−500msをもつ、450トルの圧力下でXeで満たされた5x50mm放電ギャップを有する同じランプに対し得られた。異なるパルス持続時間は、ランプの異なる色温度に対応し、該ランプは、ランプ発光スペクトルの形状を決定する。従って、図5から理解され得るように、パルス幅の変更は、出力スペクトル及び色温度の両方を移し変えるのに使用され得る。図3、4及び5から理解され得るように、ランプのスペクトルは、皮膚における全ての発色団の吸収帯域をカバーする。そのため、該ランプは、全ての皮膚発色団に対し使用され得る。しかしながら、最適な処置及び光エネルギーの利用を実現するために、ランプの色温度、スペクトルフィルタリング、導波管の出力におけるビームのサイズ及び発散(広がり)、光パルスの強度、流束量、持続時間及び時間的形状の適正な組合せを与えることが必要である。これらの条件は、療法の種類に強く依存する。本発明において記述した装置は、皮膚の美容特性に影響を及ぼす主に美容処置及び皮膚科問題の処置のためのものであることを企図する。
これらの処置のうち、次のものは、特別な関心がある。すなわち、発毛の管理と、血管障害及び色素性障害の処置と、皺の減少/皮膚の若返り、きめの粗さ、低弾力性、不規則な色素沈着、炎症性座瘡及びセリュライトの低減を含む皮膚構造の改善とである。
発毛の管理
毛球に対する実質的な局部(選択的)損傷が生じると、発毛の停止又は遅延、及び毛のサイズの縮小及び色素沈着の低減が起こり得る。逆に、毛基質の非常に軽い損傷は、発毛及び色素沈着を加速することができる。膨れのレベルの外側根鞘に位置する濾胞幹細胞に対する損傷は、永久的な毛の抜けをまねき得る。永久的な毛の抜けは、濾胞(毛嚢)組織が結合組織によって完全に又は部分的に置き換えられるように毛嚢を囲む真皮が損傷を受けた場合、すなわち、微小の傷あとが該濾胞の所定部に発生する場合にも起こり得る。光脱毛は、毛基質又は毛幹に含まれるメラニンによって吸収された光の結果としての濾胞の加熱によって引き起こされる。メラニンの最大密度は、皮膚表面から2〜5mmの深さにおける真皮又は皮下脂肪の内部にある毛基質内である。従って、発毛の管理を提供するため、第1の損傷ターゲットは、毛球と、皮膚表面からほぼ1〜1.7mmである毛球の深さにおける幹細胞であり、第2の損傷ターゲットは、2〜5mmに位置する基質である。発毛管理における重要な問題は、上に重なる表皮を保全することであり、これもメラニンを含んでいる。図3、4、5から、毛嚢(濾胞)の選択的損傷を与えるため、放射線スペクトルは、360〜2400nmであるべきであることが分析され得る。スペクトルの短波長部分は、DNAを含むタンパク質の起こり得る損傷によって制限される。上方の波長は、強い水吸収によって制限される。メラニンの効果的な吸収は、360〜1200nmの範囲で起こる。しかしながら、スペクトルの1200〜2400nm部分の完全な遮断は、深く浸入した赤外光が水に吸収されて、毛嚢の付加的であるが選択的ではない加熱を与えるので、望ましくない。この場合、1.4μm付近及び1.9μm付近の水吸収帯域(図4参照)に近いスペクトル成分は、これらの波長が表皮に吸収されて、その過熱を引き起こし、患者の痛み及び潜在的な表皮破壊をまねき得るため、放射線スペクトルから除去されるべきである。これらの波長を取り除くための最も良い方法は、「水」スペクトルフィルターとして水を用いることである。装置D(図1、2)において、フィルタリング水は、ランプ2と管4との間の間隙7に配置される。フィルタリングをもたらすためにこの水にとって適当な厚さは、0.5〜3mmの範囲内であると推定される。メラニンによる吸収が基本的に360〜800nmの範囲内であるので、ランプの色温度Tc=3000〜10000°K内であるべきである(図5)。短波長のフィルタリングは、皮膚の種類によって決定される。図6a、6bにおいて、固定されたランプ噴出エネルギー下の短波長遮断フィルターの波長における、基底層(31)の温度に対する毛基質(3mm深さ)温度の比率の依存性、及び、基底層(32)の温度に対する膨れ(1mm)の深さにおける毛幹温度の比率の依存性が示される。血液が真皮内の小血管から除去されている押し付けられるか又は冷却された皮膚に対する上記同様の依存性がドットカーブ(33、34)によって示される。図6aから、白い皮膚の場合、短波長放射の使用が幹細胞破壊の効率を実質的に高め、また、該皮膚の押付け又は冷却が毛基質に対し同様の結果をもたらすことが理解される。この場合、表皮における熱作用は高まるが、絶対値は色素性の毛幹及び毛基質におけるよりも低下する。強着色性皮膚(図6b)において、短波長遮断は高められるべきである。図6a、6bに表された依存性は、異なる種類の皮膚にとっての短波長放射線のフィルタリングの要求を示す。このデータは表1に表される。
図7aにおいて、Tc=5000°K下のランプのスペクトル(35)及びフィルタリング後のスペクトル(36)が表される。このスペクトルは、褐色から黒色の毛を有するムラートの皮膚における処置に対し最適化される。このスペクトルにより、範囲が定められたランプパルスのエネルギーに対し、表皮の過熱を伴わない毛基質の最大加熱が達成される。スペクトルの上方の又は遠い波長は、間隙7内の1mm厚の水フィルターで取り除かれる。
図7bにおいて、フィルタリング前(35)及びフィルタリング後(36)のTc=6000°Kのためのランプのスペクトルが表される。このスペクトルは、深い(0.3〜1.0mm深度)血管の処置に対し最適化される。図7cにおいて、フィルタリング前(35)及びフィルタリング後(36)のTc=3000°Kのためのランプのスペクトルが表される。このスペクトルは、水吸収により、コラーゲンの処置のために最適化される。
図7a〜7cに示されたスペクトル36はそれぞれ、ランプのプロファイルドスペクトル(profiled スペクトル ofランプ(PSL))と称されるであろう。該ランプのスペクトルは、表皮の過熱を伴わないターゲットの最大加熱を与えるため、短波長及び遠い波長の両方又は長波長が減衰(プロファイルド)される。この条件は、いくつかのフィルター(処理)帯域(表2〜4におけるスぺクトル参照)を要求することができる。与えられた処置にとって最適なPSLは、ランプの出力スペクトルから一般にフィルタリングによって得られる一又は複数の波長帯域であり得る。該(一又は複数の)帯域は、表皮の温度上昇に対するターゲット(毛幹、基質、血管、静脈、色素障害、入れ墨等)の温度上方の比率が、ある数字Sより大きいように選択される。該数字Sは、該処置に対する安全性のレベルに依存する。数字Sが大きくなるほど、安全性のレベルが高まる。ランプの効率を最大にするためには、Sは約1であるべきである。
ビームの寸法範囲も重要である。拡大しているビームサイズ及び表面における一定の強度(流束量)では、ビームのいくらかの横断方向寸法がひとたび実現したら、深さでの光の強度(放射照度)は増加しかつ飽和することが知られている(図8参照)。
この寸法範囲が拡大する場合、表皮の照度に対する深さ3〜5mm(ここに毛球が位置する)での照度の比率が最大に達し、従って、表皮損傷/破壊の最小リスクで毛球又は幹細胞における最大温度を与えることを可能にする。
図8は、色温度Tc=6000Kと、図1、2に示された装置Dによって形成されたビームのサイズにおける適正なPSLとを有するランプに対する、ターゲットと同じメラニン密度を有する基底層Fepiでの熱生成に対する深さ1mm(F=1mm)(カーブ37)及び深さ3mm(F=3mm)(カーブ38)での皮膚のメラニンターゲットにおける熱生成の比率の依存性を示す。ビームの長さ9は固定され、45mmに等しい。通常、この長さは、ランプ放電(電極)ギャップの長さによって制限される。ビームの幅は、1〜45mmの範囲内で変えられる。図8は、皮膚中の深いターゲットでは、ビームの幅は、10mm以上(最小ビーム幅d=10mm)であるべきである。幅8が15mmを超えた場合に最も良い結果が成し遂げられる。
幅広ビームの第2の利点は、深さでの毛嚢の照度の均一性である。10mmより小さい幅のビームでは、深さでの分布が鋭い最大のガウス形状を有する。そのため、皮膚に沿って走査する際、ビームの大きな割合のオーバーラッピング(重なり)が該毛嚢の均一な照射にとって必要である。これは、処置速度の相当な低下、エネルギー利用効率の低減、及び、処置費用の増長をまねく。更に、不均一なオーバーラッピングにより濾胞(毛嚢)を「外す」可能性、及びそのため、外した毛の急速成長の可能性は、依然として存在する。10mm(カーブ39、40)及び16mm(カーブ41、42)のビームに対し、装置Dによって作り出された光度の分布が図9に示される。カーブ39及び41は、表面における分布を示し、カーブ40及び42は、深さでの分布を示す。図9は、10mm幅のビームの均一なオーバーラッピングが、少なくとも27%のオーバーラッピ(図9)を必要とするのに対し、16mm幅のビームには、15%のオーバーラップだけが必要であることを示す。
より幅広のビームの第3の利点は、図1、2に示されるようなMPL光学システムを有するランプベース装置において明らかになっている。上述したように、これらMPLシステムでは、表面から反射した光子が皮膚へと戻され、ランプエネルギーの利用効率を高める。この効率は、MPL光学システムを有する該ランプベース装置の光子の漏出が非常に低いならば、皮膚内部の照射を3倍まで高め得る。しかしながら、ビームのサイズが拡大したら、それはより大きくなる。図10は、図8の場合と同じ条件でのビームdのサイズにおいての、皮膚から反射された光子のリターンによって引き起こされる皮膚照射増幅gの依存性43を示す。図10は、ビーム幅が10mmより大きいならば増幅の効果が得られることを示す。従って、毛の処理の用途に対するビームの最小寸法は、好ましくは約10mmであり、15mmより大きいことが好ましい。
パルス持続時間及び時間的(一時的)形状の要求が、強度及び光の流れと同様に今度は考慮される。一時的な損傷又は成長の刺激を与えるため、濾胞の重要な部分は、発育相段階の毛嚢の毛球及びより重要な毛基質を含む。直径30〜120μmの成人の毛での毛基質の熱緩和時間は、0.6〜10msの範囲内である(Altshuler G.B., Anderson R.R., Zenzie H.H., Smirnov M.Z.:;選択的光熱分解の拡張理論、外科及び内科におけるレーザー29:416〜432、2001年参照)。そのため、10msまでの持続時間のパルスは、毛基質の加熱のため、毛基質の破壊又は発毛サイクルの切り換えにとって適当でかつ効果的である。毛乳頭は、微細結果における光の直接吸収により損傷を受け得る。しかしながら、濾胞の乳頭を損傷させるより良い方法は、毛基質から乳頭までの組織を損傷するのに十分な温度(65℃〜75℃)での熱的前部の拡散であり得る。時に熱損傷時間(TDT)と称されるこの拡散のための時間は、上記した寸法の毛に対し15〜20msである。全濾胞組織のTDT、すなわち、毛幹又は毛基質から毛嚢の外側接合部までの熱的組織損傷の前部の伝搬の時間は、濾胞の寸法及び放射強度に応じて、ほぼ30〜2000msである。この場合、該強度は、毛幹又は毛基質のメラニンによる吸収をパルスの終端まで維持するため(すなわち、毛幹又は毛基質の破壊をパルスの間、防ぐため)に制限されるべきでる。
毛幹では、これは、250℃未満の温度まで該幹を加熱することに対応する。同時に、パルスは、濾胞の破壊のために該濾胞へとエネルギーを送るのに十分長くあるべきである。従って、最適なパルス持続時間は、全体として濾胞組織のTDTである。毛嚢のTDT(30〜2000ms)は、表皮における吸収層の熱緩和時間(320ms)よりも本質的に長い。TDT持続時間を持つ長いパルスが使用される場合、表皮の温度は、表皮を損傷する危険性なしにより多くのエネルギーが濾胞に適用され得るように、冷却により低下されなければならない。長いパルスの効果は、いくつかの短いパルス(10msまで)から成る列では正確に模擬実験できない。その理由は、該短いパルスのピーク強度が、毛嚢における発色団を破壊するか又は表皮を損傷するのに十分高いものであり得るからである。パルスの一時的形状も重要である。従って、該パルスの形状は、表皮の性質、毛の直径及び長さの分散(ばらつき)、毛幹色素沈着及び冷却に依存する。
図11において、毛嚢の破壊に用いられる三つの主要なパルス形状が示され、該形状は、これら三つの要因に依存する。これらのパルスは、プロファイルドパルス(PP)と称される。カーブ44は、前部τf持続時間及び立下がり縁持続時間τrのランプパルスの形状である。ここで、τf<τrである。持続時間τfは、表皮の熱緩和時間(TRT)よりも相当長いが、ターゲットのTDTよりはずっと短いべきであり、TRT<<τf<<TDTであるべきである。持続時間τrは、TDTとほぼ等しいべきである。パルス型44によって与えられる加熱モードは、ターゲット(毛幹又は毛基質)における発色団の、最大温度までの急速な加熱を許容し、ここでは、発色団は、依然として漂白されずに存続でき、次いで、これらの温度を維持する(すなわち、発色団を過熱しない)。発色団(毛幹又は毛基質)の該温度は、従って、ほぼ一定に保たれ、これは発色団破壊の温度に近い。パルス温度は、実質的に均一な形状を有する。
最大温度までの毛幹又は毛基質の急速な加熱を伴う形状44のパルスでは、周辺組織の変性及び散乱の増加により吸収効率が高まる。発色団及び周辺組織の炭化も起こり得、吸収の向上をもたらす。表皮の事前冷却が行われる場合、表皮の温度及び周辺組織(接触クーラーを含む)の温度は低く、パルスの前部による加熱効果を部分的に補償する。更に、パルスの前部による加熱の間にτf<<TRTとなり次第、周辺事前冷却組織への熱の漏出のため、表皮は冷却される。パルスの縁でのパワーの減少は、該パルスの縁での皮膚へのエネルギー入力の間における加熱に対し、表皮を保護する。この場合、導波管を用いる平行した冷却が特に効果的である。
準均一パルスのカーブ45は、パルス立上がり持続時間τf及び頂部が平らな持続時間τmを有する。頂部におけるパルスのパワーは、パルス端部の近くでのみτm≒TDTが実現され、かつ、発色団の吸収が減少する直前に発色団の温度が最大値に達するように選択される。カーブ45のこの加熱モードは、より小さいパワーであるがより長いTDTと、より大きい総エネルギーとを必要とする。このモードの利点は、カーブ44によって記述したモードと同程度に強力な事前冷却を必要とせず、電源10の出力パワーが最小化され得ることである。
カーブ46は、長い立上がり時間τ1の光パルスと、持続時間τ2の短くより高いパワーの端部パルスを記述する。そのようなパルスは、高分散の色素沈着及び大きい直径の毛を有する患者の処置にとって最も効果的であり得る。この場合、強吸収の濾胞が最初に損傷を受け、パルスの端部において、より高いパワーを要する低吸収の濾胞が傷付けられる。形状46の光パルスは、持続時間τ1でのパルスの前部の事前加熱効果により、効果的であり得る。この場合、間隔τ1(0.1〜5s)において、ランプの温度は低く、かつ水吸収の範囲内で多くのエネルギーを放射する。そのため、この段階で、表皮及び真皮(そこに毛球が位置している)の事前加熱が起こり、表皮の温度は、導波管5による平行した冷却により、低く保たれる。ほぼTDTだけ続く段階τ2の間、ターゲットの損傷が生じ、一方、ターゲットの温度は45〜60℃であり、損傷はわずかなエネルギーを必要とする。光パルス44、45、46の前部及び縁部を記述する関数は、段状、線形、二次、指数又は他の同様の関数であり得る。表1において、提案した装置を使用する毛の処理のモードが表される。これらのモードは、最適なエネルギー利用及び望ましいコストを考慮に入れた数値的最適化に基づいて得られる。
血管障害
記述した装置は、フィルター処理したランプスペクトル、パルス持続時間及びパルス形状の慎重な最適化による血管障害の処置に最も効果的である。表層部の血管障害の処置では、ビームの大きさはあまり重要ではない。深い静脈の処置では、ビームサイズにおける要求は、上記で考察した毛の処理の場合と同じである。スペクトルの最適化に対する判断基準は、上記と同様である。しかしながら、図3に示されるヘモグロビンのスペクトルは、考慮されるべきである。白い皮膚では、PSLは青色光を含むことができ、該青色光は、血液に非常に効果的に吸収され、また、黄色スペクトルよりも低いエネルギーを必要とする。青色光の使用は、該装置をより効果的なものにする。パルスの持続時間及び形状は、内皮の熱的壊死が生じるとすぐに血管壁の熱的損傷を引き起こすように選択される。該パルスのパワーは、TDTの間、65〜75℃の範囲内の温度で決して100℃を超えない温度に保つのに十分であるべきである。パルスの形状は、図11に示される三つの形状から選択される。それは、毛の処理の場合と同じ方法で形成され得る。選択的な表皮の冷却の適用は、短波長範囲におけるよりも幅広のランプスペクトルが使用されることを許容し、ランプエネルギーのより高い効率を与える。表2(表在性クモ状静脈、酒さ、叢、ポートワイン母斑、ゲマンジノマ(gemanginoma)等)、3(より深い静脈、供給血管)及び4(深い大きな足の静脈)において、上記の装置を使用する、異なる深さに位置する血管障害の処置のモードは、数値的最適化に基づいて表される。表2、3に示されるように、血管の処置のための最適なPSLは、一つ、二つ(図7b)、又は三つの帯域を含み得る。
色素性障害
記述した装置は、異なる色素性障害の処置に使用され得る。色素性障害は、通常、50〜300μmの深さにあり、そのため、ビームのサイズは本質的ではない。放射線のスペクトルにおいて、メラニンによって吸収され得るUV放射線を含む全ての成分が存在し得る。パルスの持続時間は、色素性障害又はランプ放射が侵入する層厚に対しTRTの最短時間未満であるべきである。いくつかの色素性障害処置は、組織周辺の層を傷付けることを必要とする。この場合、パルスの持続時間は、全てのターゲットのTDT未満であるべきである。冷却は、痛み作用及び水ぶくれの危険を低減するために使用され得る。表3において、上記装置を使用する色素性障害の処置のモードは、数値的最適化に基づいて示される。高度な(大変な)色素沈着及び/又は深いところの障害は、より赤い方のスペクトルによって処置され得る。低色素沈着及び/又は表在性障害は、より緑か又は青いスペクトルによって処置され得る。
同様のパラメーターは、入れ墨処置に使用され得るが、この処置に対する最適PSLは、ランプスペクトルによってフィルター処理された一又はいくつかの波長帯域であり、これに対し、表皮の温度上昇に対する入れ墨粒子又は乾燥組織の温度上昇の比率は1以上である。
皮膚の若返り
皮膚の限定された損傷は、損傷組織の新しい組織による取り替えを刺激し得、また、皮膚の美容特性を改善し得る。上記装置は、この目的、すなわち、乳頭の及び細網の真皮における組織及び周辺血管、色素性基礎膜、及び真皮におけるコラーゲンを損傷するために使用され得る。この最初の二つの場合、処置モード及び該装置のパラメーターは、血管障害及び色素性障害の処置に対して上述したものに近いものであるべきである。真皮のより深い層(100〜500μm)に損傷を与えるため、皮膚表面の冷却と組み合わせて水の吸収が使用され得る。この場合、ランプの色温度は低くあるべきであり、スペクトルフィルターは、水によって非常によく吸収されるスペクトル成分を選択するべきである(図7cのPSL参照)。表6において、ある深さ(100〜500μm)での真皮の損傷による皮膚若返りのモードは、数値的最適化に基づいて示される。皮膚若返りのため、プロファイルドパルス(PP)(図11)が用いられる。従って、カーブタイプ44のPPは、真皮の薄い層にとって最適である。カーブタイプ45のPPは、より深い層の破壊に最適である。カーブタイプ46のPPは、水の吸収による真皮の損傷と、基底層付近にある血管及び真皮の破壊とを組み合わせるために使用され得る。この場合、カーブ44に従うパルス照射は、装置出力スペクトルの切換え(スイッチング)と組み合わされ得る。持続時間τ1のカーブ44の長い部分において、ランプのパワーは低く、スペクトルは水吸収の範囲へと移される。パルスτ2の短い部分において、該パワーは急速に高められ、スペクトルの最大は、可視又はUF範囲に向かって動く。持続時間τ2は、薄い血管のTDT(0.1〜10ms)及び真皮の薄層のTDT(1〜20ms)より短いものであり得る。スペクトルの切換えを与えるため、伝播が制御された追加のスペクトルフィルター又は伝播スペクトルがランプのパワーに依存する非線形スペクトルフィルターが使用され得る。
新しいコラーゲンの成長はまた、乳頭真皮における小血管の周囲の炎症反応の結果として実現され得る。この場合、処置パラメーターは、表2のものと同じである。この処置モードは、上述したコラーゲン成長を成し遂げるモードに加えられるか、又はそれに代えられ得る。
座瘡処置
尋常性座瘡は、最も普通の皮膚病の一つであり、皮脂腺及び座瘡細菌の活動過多に関連する。ランプ放射は、細菌成長を低減するため、及び、皮脂腺構造の一時的な又は恒久的な損傷のために使用され得る。細菌成長を減じるため、光力学的効果が、細菌に寄与するポルフィリン上に使用され得る。ポルフィリンは、赤色からUV範囲までの変調された広い吸収スペクトルを有する。最適な処置モードは、利用されるスペクトルバンドがポルフィリンの吸収スペクトルに適合するように選択され、スペクトル範囲が340〜1200nmのCDモードにおけるランプ光による座瘡の長期(1〜30分)照射である。細菌(深さが0〜3mm)に送られる光の強度は、できるだけ高いものであるべきである。提案装置において、それは、照射と同時の表皮の集中的な平行冷却によって与えられる。従って、該冷却(−5〜+5℃)により、乳頭真皮の血管における血液循環は低下し、青色及びUV光に対する皮膚真皮の伝播は高められる。伝播の高まりはまた、導波管5によって皮膚に適用される圧力により達成され得る。
記述方法によれば、340〜900nm範囲内で20W/cm2までの強度のランプ放射を皮膚へと送ることが可能である。従って、スペクトルの短波長部分、例えば410nmは、タンパク質によって激しく吸収されるが、この吸収は、0.5mmまでの深さにおいて相当低減される。同時に、赤色放射は、タンパク質によって弱く吸収されるが、深さ1mmでわずかに低減される。そのため、幅の広いスペクトルは、光力学的効果を介して細菌を傷付けるのに最も効果的である。
尋常性座瘡の処置の第2のそしてより効果的な機構は、皮脂腺の皮脂生成機能を低減することである。これは、皮脂細胞の破壊、又は皮脂細胞及び栄養基質を供給する血管の凝固によって実現され得る。皮脂細胞の活動過多の期間中、血管網は、血液で満たされる。
The combination of a wide-band 広帯域(340〜2400nm)光源と、水吸収帯域(1400〜1900nm)の範囲内の放射線を減衰させる水フィルタリングとの組合せ、及び、表皮の強力な冷却(−5〜+5℃)及び皮膚の押付けと組合せは、皮脂腺に栄養を与えるクモ状静脈の選択的損傷を許容する。従って、パルスの持続時間は、これらの血管のTDTと相互に関連があるべきであり、エネルギー密度5〜50J/cm2に対し約1〜100msであり得、該エネルギー密度は、増長するパルス長と共に大きくなる。皮脂腺を全体的に又は部分的に傷付けるため、皮膚表面と皮脂腺との間の直接拡散チャネルを使用することが可能である。このチャネルは、毛幹と外側根鞘との間の隙間によって表され、通常、皮脂によって満たされる。親液性物質特性を有する3μm未満の大きさの分子及び粒子は、この隙間を通って拡散し、皮脂腺に蓄積し得る。更に、これらの分子及び粒子は、ランプの赤色放射による皮脂腺の選択的な光熱分解に使用され得る。この目的のため、ランプ放射スペクトルは、フィルター処理部分が分子及び粒子の吸収スペクトルと同じになるようにフィルター処理を受けなければならない。例えば、有機色素分子、メラニン、炭素、PDT効果を伴うフラーレン、プラズマ共鳴を伴うAu、Cu、Ag粒子は、粒子周囲の放射照度を高め得る。パルスの持続時間は、50〜1000msである皮脂腺の熱的緩和の時間よりも短いべきである。
強度及び流束量は分子又は粒子の密度及び吸光度に依存するが、これらは、表皮の損傷又は破壊の閾を超えないものであるべきである。そのため、表皮の冷却は、該破壊の効率を高めるために用いられ得る。皮脂腺への吸収分子又は粒子のより効率的な送出のため、これらは、親液性物質粒子と結合され得る。色素分子は、食用色素、ヘアカラー用染料その他の分子によって表され得る。粒子は、メラニン、炭素(例えば墨)等の粒子によって表され得る。フラーレンの分子(例えば、C60)は最も有効である。これら分子は、可視範囲における広帯域吸収スペクトルを有する。これらの分子の重要な性質は、光励起下の一重項酸素の発生である。一重項酸素は、皮脂細胞及び細菌を付加的に損傷し得る。皮脂腺内への吸収分子及び粒子の挿入は、皮膚の加熱、音声泳動、電気泳動、磁気泳動(粒子が電気モーメント又は磁気モーメントを有する場合)によって行われ得る。
毛嚢及び皮脂細胞内に挿入された粒子は、毛の処理のために用いられ得る。この場合、表皮に対する毛嚢の吸収における対比は増長され得る。これは、色が薄い毛/灰色の毛及び高色素性(ひどく色素沈着した)皮膚の処置をより簡単にし、また、いっそうの永久脱毛を与える(すなわち、吸収粒子又は分子は、膨れに近い領域へと容易に送られ得る。)。皮脂腺はまた、該腺対周辺真皮の比熱の選択性を利用することによって破壊され得る。この選択性は、該腺における高濃度の脂質による。従って、該腺は、高い水/脂質吸収及び深い透過、例えば0.85〜1.85μmであって、1〜3mm水フィルター及び皮脂腺の深さまでの(0.5〜1mm)の真皮の選択的冷却によって、水吸収の強ピーク周囲1.4μmをカッティング/フィルタリングしたものを伴うスペクトルの帯域を使用することによって加熱され得る。
上記に基づき、図1、2に示された装置Dのための好ましい構成要素は、次に考慮される。
ランプ
図1に示された装置のランプ2は、不活性ガスXe、Kr、Neその他に基づくガス放電灯、ハロゲン化金属ランプ、高圧ナトリウムランプ、蛍光灯、ハロゲンランプ、白熱灯等であり得る。該ランプは、直線管形状を有する。他のバリエーションは、U字形状又はリング形状を含む。ランプの寸法は、装置出力パラメーターに基づいて選定される。直線管状ランプの場合、出力ビームの最適な形状は、矩形a×bである。放電(電極)ギャップの長さ、すなわち、電極間の距離1は、一の矩形寸法bと等しいか又は大きいように選択される。ランプの内径は、最小限にされるべきであるが、ランプの所与の寿命Nを提供するのに十分なものであるべきである(ここで、N=ランプ作業サイクルの数)。最小ランプ径は、皮膚に対する放射エネルギーの移送のための最高の効率を与え、ランプ内における吸収による光の喪失を最小にする。ランプ内部の光の最小限の吸収は、皮膚からの戻り反射光の効率を高める。低いパルス繰返し率では、ランプは、間隙7内のガスによって冷却され得、また、高い繰返し率及び高平均電力では、間隙7内の液体による。ランプ管は、不要なスペクトル成分を吸収するイオンを含み得、また、これらの成分を望ましいスペクトル範囲に転換し得る。これを実現する最適な方法は、コーティングでは、不要な放射線を反射してランプに戻すことである。これは、プラズマにおける反射された成分の付加的吸収により、望ましいスペクトル範囲におけるランプの効率を高める。
反射板
反射板3は、種々の形状を有し得る(図13)。最大反射板効率を与える主要条件は、次の通りである。
1.わずかな反射を与えるか又は全くない反射板の構成要素の面積の合計に対する有効な反射を提供する反射板の構成要素の面積の合計の比率は、最大にされなければならない。この条件を与えるため、反射の動作部分のための反射率は、スペクトルの動作範囲内における一に近づかねばならない。鏡面反射板のための最適な材料は、Ag(可視又はIR範囲)又はAl(UV範囲)である。反射板は、ポリマーコート又は無機コートによって被覆され得、又は、該コーティングが、管4の外側もしくは内側又はランプ2上に被覆され得る。後述の場合において、管又は他の反射翼から延長する箔は、光子ロスを最小にするため、導波管へと伸長し得る。拡散反射板の場合、BaSO4粉末が使用され得る。ランプの軸線に対し垂直な平面における低反射又は無反射構成要素の面積は、最小化されるべきである。この要求が満たされたなら、装置の設計はより簡易になり、反射板の冷却を避けることが可能となる。
2.鏡面反射板の配置構成は、反射板3からのランプ光の反射を、導波管へとつながれる前に、最小数にするべきである。この理由は、反射当たり約5%〜15%の光子ロスがあるためである。そのため、反射数を低減するほど光子ロスが減る。反射数を減らす一つの方法は、一般に、反射板をランプ近くに移動することにより、反射板をできるだけ小さく保つことである。ランプの高い色温度の下では(T>6000K)、ランプ放電ギャップを横切って進行する光線の経路の全長も、ランプ内部での吸収によるロスを減らすため、最小化されるべきである。拡散反射板は、鏡面反射板よりも低効率であり、それは、より低い反射表面からの反射数が、最適な鏡面反射板に比べてより大きく、また、ランプ内部の光路の全長がより長いからである。しかしながら、拡散反射板は、反射居の低反射構成要素の面積が小さく、かつランプが低い色温度を有する場合、高効率を有し得る。これらの条件では、該装置の出力における角スペクトルが最も幅広となる。そのため、この反射板は、皮膚への深い浸入を要求しない場合、例えば肌の若返り及び色素性障害に対し使用され得るが、深いクモ状静脈には使用されない。この装置のための鏡面反射板は、結像又は非結像であり得る。結像反射板は、最小サイズのスポットに対し、特に放出源の寸法が小さい場合、ランプ光を集中させるのに有利である。しかしながら、放出源の寸法が大きい場合、結像反射板は不利であり、それは、ラジエーターがハンドピース内に配置されるからである。これら反射板のコストも高い(すなわち、それらは、格段に高品質の反射板構成要素を必要とする)。
非結像反射板は、より低い効率である。しかしながら、それらは、より安価で、寸法がより小さく、また、大きなスポットサイズに対しより均一な照射を供給することができる。表5において、図13に示された異なる鏡面反射板に対する効率値が表される。ランプの寸法は5×50mmであり、ランプにおける平均吸収は0.1cm-1(Tc=6000K)であり、また、反射板の反射率は0.94である。ランプ2の中心と導波管入力との間の距離は、h=7.5mmである(13a、13c及び13lに示された反射板を含む)。表5から理解され得るように、表示された反射板は、12%の範囲内で相違する。反射板の効率の向上は、電極とランプ冷却のための間隙とがある反射板表面に衝突するランプ光線数を減らすことによって達成され得る。この仕様を提供するため、反射板の軸方向断面(図14)は、その中心がランプの中心にある湾曲面(球、放物線、楕円)、又は台形として表され得る。しかしながら、これは、構成のコストを高める。簡易かつ効率的な構成は、図13a又は13bに示された反射板である。この反射板において、反射面は、単純な円筒形状を有し、また、ランプエンベロープ又は管4の面と組み合わされ得る。第1の場合、ランプ及び反射板の冷却は、反射板外部で行われ得、第2の場合、管内部で行われ得る。更に、電極が一般に無反射なので、これらは、光子ロスの主要原因であり得る。一つのオプションは、RF又は他の適当な技術によって充電又は励起される電極の無いランプを使用することである。別のオプションは、高反射の材料から成る電極を使用することである。
導波管
導波管は、記述装置において次の機能を有する。
1.反射板3と皮膚1との間の光学的接合(すなわち、最小ロスでの皮膚への及び戻りのランプ光及び反射光の移送(透過率))
換言すれば、最小光子漏出の光学システム(光学系)が提供され、導波管はまた、光子の戻り又はリサイクルからもたらされる皮膚照射の増加の主要要因である。
2.固定スポット寸法による皮膚表面における均一な照射の生成
3.表皮保護のための皮膚の冷却
4.光透過率の向上及びより良好な熱的及び光学的接触のための皮膚の押付け
5.レーザー又は光の超発光変換
6.皮膚の性質に依存する皮膚へ送られる光のパワーを制御するための皮膚からの光反射率の測定
7.患者の安全性を高めるための皮膚のランプからの付加的な機械的及び電気的分離(遮断)
導波管5は、矩形角柱(図1)、裁断角錐(図15)又は複合曲率裁断角錐(図16)の形態であり得る。コーティングのない矩形角柱では、屈折率は、ランプから皮膚へのロスのない放射線の移送のためには、条件n>1.4(nは導波管の屈折率)を満たさねばならず、皮膚から反射した光子の皮膚へのリターンのためには、条件n>1.7を満たさねばならない。従って、ランプ2又は管4と導波管6との間に空隙が設けられるべきである。皮膚表面への均一な照射及び最小の光子ロスを与えるため、管4と導波管間の空隙は最小の大きさであるべきである。ランプと導波管との間の点接触が可能であり得るが、起こり得るランプの振動が、これを、それほど望ましくないオプションとする。
図17において、皮膚照射の不均一性の導波管の長さへの依存性(ランプの寸法5×50mm、導波管の横断寸法16×46、導波管の屈折率1.76)が表される。導波管5は、皮膚表面における流束量の強度の向上のため、裁断直角錐(図15)又は裁断湾曲角錐(図16)角柱の形態であり得る。該湾曲裁断角錐は、矩形スポットの対称四角形又は円への変形をも許容する。エネルギー密度の集中の最大値は、導波管におけるロスが高くなく、かつ、出力開口に対する四角形の入力開口の比率が最大の場合、実現される。
導波管におけるロスが5%までに制限されるなら、最大集中(最大密度又は最大集光)(すなわち、直角柱(図1)による皮膚表面におけるエネルギー密度に対する裁断角錐(図15)による皮膚表面におけるエネルギー密度の比率)は、二次元において定義される角錐のある角度に対し実現される。この角度は、長軸では17°に等しく、短軸では3.8°に等しい。
導波管の長さは、導波管の吸収ロス及びハンドピースの寸法によって制限される。H=60mm、A=46mm、B=16mmの導波管の長さでは、直角柱と比較した裁断角錐による光の最大集中は、nw=1.45(クォーツ)に対し1.95に等しく、nw=1.76(サファイア)に対し2.3に等しい。Aは、導波管の受光端部における長軸に沿う導波管の長さに等しく、Bは短軸に沿う長さに等しい。
導波管によって皮膚へと結びつけられる角スペクトルの幅、管4と導波管との間の間隙に入れられた媒体の屈折率、並びに、角錐の角度に依存する。図17において、表面近くの皮膚における装置(図1)からの角放射スペクトル(弾道(衝撃)光子)が表される。カーブ47は、直角柱(A=46mm、B=16mm、H=15mm)として形成されたサファイア導波管と、管4と導波管5間の間隙中の空気とを有する装置(図12)の場合の、皮膚における弾道光子の角エネルギー分布を示す。カーブ48は、同じ状態を表すが、管4と導波管5間の間隙は、屈折率がn=1.42に等しい透明物質で満たされる。カーブ49は、裁断クウォーツ角錐(A=46mm、B=16mm、a=11.6mm、b=28mm、H=50mm)として形成された導波管の場合の弾道光子のエネルギーの角分布を表す。図17から、導波管5を使用し、かつ、管と導波管間に配された物質の屈折率を変えることにより、皮膚内部の光子の角スペクトルを制御することが可能であることが理解される。周知の理論に従い、皮膚内部の光子の角スペクトルを変えることは、特に長波にとって、光の皮膚内への浸入の深さを制御する最良の方法である。極めて狭い角スペクトル及び最大浸入深度を達成するため、管4と導波管5間の間隙に空気で満たすべきであり、また、導波管は、直角柱又は「末広」裁断角錐51(図15)として形成されるべきである。面A×Bは、ランプに向けられ、a×bは、皮膚と接触される。この形状は、毛の膨れ、毛球、真皮/下皮の接合部、皮下脂肪、深部静脈等といった深いターゲットの処置に最適である。最大角スペクトル及び皮膚に対する光浸入の最小深度を与えるため、管と導波管間のスペースは、1より大きい屈折率、好ましくは皮膚の屈折率と等しいか又はそれより大きいが導波管の屈折率より小さい屈折率を有する物質で満たされるべきである。角スペクトルは、収束裁断角錐50として形成された導波管の適用により、付加的に拡張され得る。皮膚における放射が高発散でかつ低浸入深度である装置は、色素性障害、血管障害及び皮膚の若返りに対し使用され得る。
図18は、皮膚の表面近くに最大密度のエネルギーを供給する反射管と組み合わされた最も簡易な導波管を有する装置を示す。この装置において、導波管52は、管4の機能を円滑に実行するため、この導波管とランプ間に形成されている間隙7を変形する。反射板53は、導波管に取り付けられるか、もしくは導波管上にコートされるか、又は別の方法で導波管上に形成される。導波管52の表面上の反射板は必要である。この実施形態において、反射の広い角スペクトルのため、導波管接合部に全内部反射を与えることは不可能である。反射板53は、誘電体導波管52上の真空もしくはガルヴァニック金属コーティング(Ag、Cu、Au、Al)として、又は反射コーティングを有する可撓性シートとして形成され得る。導波管とランプ間の間隙7内の液体又は気体の流れは、導波管52及びランプ2の両方を冷却するために(及び導波管反射板53を通じて)使用される。
導波管の重要な機能は、皮膚表面上に放射の均一な分布を与えることであり、これは、表皮の安全にとって重要なパラメーターである。照射の均一性は、導波管の長さの選定を補正することにより与えられる。導波管の長さHに対する、皮膚表面54における放射分布強度不均一性の典型的な依存性が、図19に示される。該不均一性(ばらつき)Zは、Z=(Imax−Imin)/2(Imax+Imin)で定義され、ここで、Imaxは、皮膚表面上の最大エネルギー密度(パワー)であり、Iminはその最小エネルギー密度である。より安全のためには、Z=0である。図19から、この依存性が、増長するHに対し、周期的な共振減少特性を有することが理解され得る。長さH≒Bの場合の短い導波管では、導波管の長さは、共振H1、H2、H3、H4に対する長さに近いべきである。H>>Bの場合、放射分布は、導波管の長さHとは無関係に均一である。
皮膚へランプ放射の最大結合(結びつき)効率を与えるため、導波管52の前面は、皮膚1と光学的に接触するべきである。これを与えるため、導波管は、皮膚に対し押し付けられ、また、導波管の出力平面と皮膚との間の0.2μm以上の全ての隙間は、屈折率n>1.2の液体で埋められるべきである。これらの隙間を最小にするため、接触領域における皮膚を拡張することが有益である。良好な光学的接触は、導波管5と皮膚1との間の良好な熱的接触を自動的に与える。特に骨に近い箇所において、又は、処置されている皮膚の下に堅い板がある場合、例えば、患者の歯又は歯の詰め物による放射線の吸収と、それによる患者の口唇が処置されている場合の歯の加熱とを防ぐため、患者の内側の唇と歯/歯茎との間の隙間に堅い反射板が挿入されて場合において、皮膚の導波管による押し付けは、皮膚内への光浸入深度の相当な増長を許容する。この効果は、圧力下の皮膚における散乱の低減、及び下にある血管からの血液の除去により実現される。既述したものが明らかに好ましい一方、皮膚に非常に近いが、皮膚との接触を要しない導波管により適切な光学接触を得ることができる適用が存在し得る。
皮膚上の圧力を高めるため、導波管の前面は、凸状面の形態(図20a)に形成され得る。血管の処置が行われている場合、血管内の血液が通例、処置に用いられる発色団であるので、皮膚の押付けは一般に避けられるべきである。この場合、導波管の該面は、凹状面の形態(図20b)に形成されるか、又はリム55(図20c)を有し得る。リム55又は導波管の鋭い縁(図20b)は、処置範囲のいずれの側でも血管内の血流を阻止することができ、その結果、処置範囲内に流れない血液の集中をもたらす。
例えば図20b及び20cの導波管はまた、扱われている血管を制御するために利用され得る。特に、皮膚の真皮表皮(DE)接合部の真下にある叢に細い、例えば10〜30μmの血管の集結がある。これらの叢血管の下には、より太いがなお比較的細いクモ状静脈があり、クモ状静脈の下には、より太い血管がある。一般に、叢血管の処置は望まれない。しかしながら、これら血管における放射線吸収は、次に水ぶくれ及び痛みを引き起こす叢の不要な加熱をもたら得、またエネルギーを吸収し、処置が望まれる血管に到達する光子を減らす。そのため、これら叢血管から血液を除去するため、処置される血管を圧縮しないまま、叢血管が圧縮されること(及び/又は叢を冷却すること)が望ましい。図20bの導波管又はリム55(図20c)の凹部(くぼみ)は、該凹部の頂部が叢血管を押し、ここから血液を除去する一方、該凹部の縁が、処置が行われる血管を単に締め付け、血液をその中に閉じ込めるように選択され得る。導波管/リムのより深い凹部は、血液が例えばクモ状静脈からも除去されることを許容し、より深く大きい血管の処置を容易にするであろう。従って、導波管/リムにおける凹部の深さ及び適用圧力の両方を制御することにより、処置されている血管の深さが制御され得る。赤色又は青色光は、処置されている血管に応じて、血管中の血流を検出するため、及び従って、患者の皮膚に導波管によって適用される圧力を制御すべくフィードバックを供給するために使用され得る。図20aの凸状導波管では、圧力の制御のみが、処置されている血管の深さを制御するために使用され得る。適当な形状の導波管の使用による処置されている血管の深さのこの制御は、本発明の別の特徴である。
肌のきめの改善も、叢及び表面の乳頭真皮における小血管に炎症反応を作り出す該血管の加熱により達成され得、その結果、エラスチンの生成をもたらし、また、繊維芽細胞が新規なコラーゲンを成長させるように刺激する。この場合、リム55(図20c)による処置領域を囲む皮膚の制御された圧縮は、小血管の血管新生及び処置の効率を著しく増長することができる。
導波管の出力縁又は出力面は、空間的不均一性を有し得る。この場合、皮膚の損傷は、不均一となる。該不均一領域の大きさは、50μm未満であり得る。該不均一な損傷は、皮膚の若返り、又は血管障害もしくは色素性障害、入れ墨等に有益であり得る。その理由は、それが、皮膚の極度に激しい損傷、水ぶくれ、紫斑病等のピークを下げるためである。同時に、該損傷アイランドは、該損傷アイランド間の組織が損傷を受けていないのですぐに治り、そのため、細胞増殖を与えることができる。皮膚表面の不均一損傷を与えるため、導波管の面は、図20dに示されるような調節された外形(波の形の側面/プロフィール)56を有し得る。空間的マスク58(図20e)、例えば平坦マスクも、導波管の前面に被せられ得る(反射マスク)。パターンインデックスバリエーション(フェーズマスク)も使用され得る。他の光学技術も、この目的を達成するために利用され得る。少なくとも提示されたいくつかの技術は、選択された処置スポットを設けるために光を再配分する。
導波管5は、レイジング導波管又は超発光導波管として製造され得る。この場合、ランプの波スペクトルは積極的に分布測定され、ランプの角スペクトルは、より深部へ光を送るため、狭められ得る。導波管5は、ランプ放射の範囲の吸収帯域及び望ましいスペクトル範囲におけるレイジング移行又は超発光移行を有するイオン、原子又分子によって充満(浸透)された材料から部分的に又は全体的に製造され得る。導波管面59及び60(図21a)は、高精度で平行であるべきであり、これは、レーザー発生の最小ロスを与え(30分より良く、好ましくは10秒より良い)、また、導波管面59及び60は回折損を最小にする曲率を有するべきである。面59及び60はコーティングを有し、面59上のコーティングは、レイジング波長又は超発光波長に対する100%に近い屈折率と、望ましいスペクトル範囲、及びイオン、原子および分子吸収の範囲内におけるランプ放射に対する最小の屈折率とを有する。面60上のコーティングは、レーザー発生(生成)に最適な値の屈折率を有する。レーザー発生の強度又は流束量を高めるため、導波管5は、二つの部品、すなわち、能動部品61と受動部品62(図21b)から成り得る。能動部品61はドープされ、部品62は、吸収性ドーパントを全く有しない。導波管は、いつくかの部品61及び62から成り得、又は、能動部品61は、空間的選択性ドーピングによって形成され得る。高反射コーティング59及び60は、導波管の能動部品の縁にのみ形成され得る。更に、導波管の能動部品の屈折率は、レーザー放射に対する導波効果を実現するため、受動部品の屈折率よりも大きいものであり得る。ランプの放射は、導波管5に沿って伝播し、能動部品61と何度も交差し、かつ、活性ドーパントを刺激(励起)する。導波管がいくつかの部品から成る場合、該発生は、該導波管よりも小さい断面を有する構成要素61において起こる。そのため、該放射は、波スペクトル及び空間スペクトルを低減し、流束量を増やす。適当なレイジング材料は、Cr3+:Al23,Ti3+:Al23,Nd:YAG,SiO2:ローダミン(Rodamin)6G等を含む。従って、図21bの実施形態は、ランプ及びレーザーの両方の組合せによる処置を提供し、導波管61は、ランプ62によって励起されるレーザーである。該組合せは、もし全導波管がレーザーから形成されたならば、望ましい処置のための十分な流束量がないであろうため、換言すれば、十分なゲインがないであろうため、要求される。図22は、提案装置の放射線スペクトル63を示す。この例において、ルビーとNd:YAGから成る構成要素61を有する能動導波管が使用される。この導波管は、波長が694nm及び1064nmのレイジングを与えるコーティング59、60を有する。導波管の無いランプのスペクトル64が比較のために示される。スペクトル63は、深い静脈の処置にとって効率的であり得る。
光のフィルター処理
ランプの最適プロファイルドスペクトル(OPSL)は、ターゲットの処置によって決定される。最適な条件は、1)表皮の温度が熱的壊死の温度よりも低く、2)ターゲットの温度が熱的壊死の温度よりも高く、3)フィルターにおける光エネルギーのロスが最小である、ことである。OPSLが鋭いカットオフを要求することが数学的に実証されている。図7a〜7cは、以下の上記条件の計算結果としてのOPSLを示す。図7aは、ムラート皮膚/脱毛の場合、図7bは、白い皮膚/クモ状静脈処置の場合、及び図7cは、コラーゲン加熱を通じての肌の若返りに対する場合である。OPSLに対する単純な基準は、ランプスペクトルから選択/フィルター処理された一又は複数の波長帯域を含み得る。(一又は複数の)帯域は、表皮の温度上昇に対するターゲット(毛幹、基質、血管、静脈、色素障害、入れ墨等)の温度上昇の比率がある数字Sより大きいように選択される。数字Sは、処置にとっての安全性の望ましいレベルに依存する。より高いSは、より高い安全性レベルを与える。ランプの効率を最大にするためには、Sは約1であるべきである。
光スペクトルのフィルター処理は、提案装置の全ての最適な構成要素によって実現され得る。可能性のあるフィルター処理機構は、ランプ2、間隙7内の液体、管4、導波管5、フィルター6における光の波長選択性吸収と、反射板3での光の波長選択性吸収とを含む。フィルター6は、多層誘電体コーティング、反射コーティング、吸収媒体又はスペクトル共振散乱体として実現され得る。
フィルターとしての反射コーティングの使用は、光の付加的ロス、過度の光加熱を避けるのに望ましく、また、必要な冷却を最小にするために望ましい。この種のフィルターは、ランプにおける余分な光の吸収と、その光出力の増加とにより、提案装置におけるランプの放射効率を高める。しかしながら、入射(範囲)の大きな角度では、誘電体干渉フィルターは、光スペクトルの短長波部分を、長波長部分よりも皮膚へとより良く伝送する。これは、血管障害が非常に表面的であるという前提で、色素性障害及び血管障害にのみ有益な表皮の付加的な加熱をまねく。逆に、吸収フィルターは、スペクトルの長波長部分を、短波長部分よりもより良く伝送する。これは、より深いターゲットの処置にとって好ましく、かつ表皮にとって安全である。あいにく、吸収フィルターは光で加熱され、また冷却を要する。そのため、このフィルターをランプ2上又は管4内部に配置することが最も効率的である。これがその場合なら、間隙7内の液体又は気体がランプと同時にフィルターを冷却し、該ランプは主要な熱源である。フィルターは、間隙7内の液体又はランプ2もしくは管4が形成される材料に加えられた吸収ドープ(イオン、原子、分子、微結晶)として実現され得る。水フィルタリングが望ましい場合、間隙7内の流体は、所望により単独の又ドープされた水であり得る。油、アルコール等の他の流体も間隙7に使用され得る。
更には、追加の管65(図23a)が管4内部に含められ得る。管65は、例えば、Ce、Sm、Eu、Cr、Nd、La、Fe、Mg、Tm、Ho、Er等、イオン又は半導体微結晶がドープされたガラスから成る。該管は、ランプ2と管4との間の空隙に埋め込まれた粒子もしくはスラブ、繊維、又は、同様の材料から成る他の構成要素66(図23b)によって置き換えられ得る。管65及び構成要素66は冷却され、後者は、提案された装置の強力なフィルター処理及び高い平均パワーのため、有利である。フィルター処理は、屈折率に対する共振散乱を用いることで実行され得る。例えば、波長λでの冷却液体の屈折率と一致する粒子66の屈折率を選ばせる。その際、波長での管における散乱は存在せず、そのため、伝送は最大である。波長がλから離調されると、屈折率の不整合が増加し、光の散乱及び吸光度の両方を強化する。構成要素7又は66の少なくとも一方の屈折率が、光のパワー又は温度の関数として変化する場合、この散乱媒体は、該組織における流束量を自動的に(自動)調節をすることができる。例えば、低パワーでは、7と66間の屈折率Δnにおける差異は最小であり、また、散乱により光の減衰も最小である。しかし、高パワーでは、7又は(及び)66の屈折率の非線形により、Δnは増加し、光の減衰も増える。この機構は、高流束量からの皮膚の保護に使用され得る。フィルター6は、同じ原理を用いて実施され得る。この場合、散乱構成要素(散乱成分)の一つ、例えば液晶又はセグネットエレクトリカル(segnetelectrical)セラミックが、電界への強い依存を示すならば、例えば電界によってスペクトルの透過率(スペクトルの伝送)が制御され得る。フィルター6は、液体が凍結された際の整合屈折率Δn≒0を有する液体(例えば水)及び固体状態の粒子の懸濁として形成され得る。この状態における光の散乱及び減衰は非常に低い。導波管5の温度(0℃周辺)は、液体が完全に溶解するまでフィルター6の融解温度に留まる。この時間は、良好な冷却による皮膚の処置に使用され得る。液体中の媒体の屈折率及び結晶条件は、非常に異なる。そのため、溶解後、液体6は、ビームの著しい減衰を有する高散乱板になる。6がその冷却能力を失うと、組織における流束量は、従って、自動的に下がり、組織を損傷から保護する。
1.4μm及び1.9μmで水のIR吸収ピーク付近の光スペクトルをフィルターに通すため、厚さ1〜3mmの液体水フィルターが使用され得、この水は、冷却用にも使用され得る。
冷却
皮膚に堆積される光エネルギーを高めるため、皮膚は選択的に冷却される。4℃以下の温度までの皮膚の冷却が、痛みを減らすか又は取り除くのに効果的であり得る。提案装置において、皮膚冷却は、導波管5の冷却チップとの接触を通じて実施される。導波管5を冷却するためのいくつかの機構があり得る。図24は、導波管5に対する冷却機構を示し、これは、最も効果的である。長いA及びBの寸法及び皮膚からの著しい熱流束に対し最も効果的である(著しい色素性皮膚、長いパルス)。サファイアのような良好な熱伝導特性を有する材料から成る導波管は、それを通って形成された複数のカット67を有し、冷却液体又は気体が該カットを通って循環する。該カットは、円形、矩形又は他の断面を有し得る。カットの内側面は、皮膚と接触する導波管チップの面の総面積を上回るべきである。カットは、導波管にわたって均一に分布され、そのため、もし側部のみが冷却される場合にそれらがなるであろう温度から温度勾配を除去し又は勾配を少なくとも低減する。冷却はまた、カット面からのフレオンのような液体の蒸発を通じて成し遂げられ得る。図25は、乏しい熱伝導材料から成り得る部品69と高熱伝導材料から成る板70とが組み合わされた複合導波管における冷却機構を示し、冷却液体又は気体68は、それらの間の薄い間隙を流通し、該間隙内を満たす。更には、光揮発性液体が(例えば、R134Aとしての蒸発スプレー)、69と70間の間隙内に注入され得る。図25の機構はまた、大きな導波管に対し、皮膚の均一な冷却を与える。図26は、循環流体、気体又はスプレーを利用する、導波管の側面のための冷却機構を示す。該機構は、導波管5の側面から熱を除去する構成要素71を含む。構成要素71は、循環冷却流体であり得、又はぺルティエもしくは他の熱電気構成要素であり得る。この機構は、少なくとも一の寸法A、Bが十分に小さいならば、適用可能である。同じ冷却構成要素71によって冷却される追加の板72が設けられ得、板72は、該装置が皮膚表面にわたって走査される際、皮膚の事前及び事後冷却に使用される。
図27は、フレオンのような低蒸発温度の流体のスプレー73によって冷却される複合導波管69、70を示す。液化流体を収容するリザーバ76は、電気的又は機械的機構74によって制御される弁77に管75を通じて接続される。弁77が開放されると、液化ガスがリザーバ76から圧力下で管71へと送られ、次いで、ノズル72からスプレーされる。弁が開放する間のパルス持続時間は、構成要素70を上記温度まで冷却するために十分な流体を該要素70へと送るように選定される。この温度、及び要素70の厚さは、上記深さまで皮膚を冷却し、表皮の損傷を防ぐように選定される。管71は、管71が皮膚と接触する際に弁77が作動されるように、接触センサーを好ましくは含む。これが、構成要素すなわち板70が皮膚と接触する前に起こることが理解される。これは、皮膚及び板70の両方に適用される極低温又は他の冷却スプレーをもたらし、皮膚の事前冷却をもたらし、また、板70が皮膚と接触するようになると、平行した冷却をもたらす。板70の厚さは、冷却の深さを制御することができる。
構成要素70は、サファイア又はダイヤモンドから形成され得る。導波管69の材料は、低熱伝導率及び低熱容量の少なくとも一方を通じて(例えば、プレキシガラス又はガラス)又はにかわを用いて導波管70から部分的に断熱されなければならない。
図27の機構の利点は、たとえ板70の初期温度が低くても、適正に選択された板70の厚さに対し、該機構が表皮の過度の冷却を防ぐことである。更に、(スプレーを使わない場合に)避けがたい温度勾配は、流体が板70上へとスプレーされる場合、滑らかになる。流体は、導波管70が皮膚に接触する前にスプレーされる。板又は導波管70は、皮膚表面に非常に近接して配置され得、そのため、スプレーされた流体は、導波管及び皮膚を同時に予冷する。次いで、皮膚と導波管との間の光学的及び熱的接触の両方が確立され、随意時間遅延が導入され、ランプからの光が次に皮膚を照射する。数値シミュレーションは、サファイア板厚1が0.5〜3mmならば、−26℃で沸騰するフレオンは、効果的に表皮を冷却する。
予冷持続時間は、0.2〜1sである。同期される全てのプロセスでは、弁77を開放する機構は、皮膚接触センサー、例えば管71内のセンサーによって好ましくは制御される。
冷却流体、例えば水又は空気が接触板70上に流される光学的皮膚科学装置にとって、この板の厚さはまた、図27の板70の場合、冷却の深さを制御するように選択され得る。
付加的安全対策
この発明の装置は、医師による使用のみでなく、サロン、理髪店及びことによると家庭での使用をも企図する。この上記理由のため、一つのバージョンには、皮膚との接触を検出するためのシステムが提供される。該システムは、人の目の光照射を防ぎ得、また患者の皮膚の色素沈着を測定し得る。特に後者の機能は、特定の患者に対する最も安全な照射パラメーターを自動的に決定する能力を与える。そのような検出システムの実施形態は、図28に示される。アークランプ2又は追加の光源82(マイクロランプ、導波管)からの光は、導波管5の出口へと向けられる。光ファイバー79は、例えばプリズム78によって導波管5に結合される。角度αは、理想的には皮膚1から反射された光(光子)のみが検出器81に達すように、ランプ2又は光源82からの光を最小にするか又は該光のプリズム78の通過を防ぐように選択される。角度αの範囲は次の限度内に入る。
arcsin(1/nw)<α<90° サファイアでは、34.6°<α<90° 皮膚に接触し次第、皮膚からの後方散乱光は、導波管78に入る。導波管内において、該後方散乱光は、2又は82からの直接光よりも広角なスペクトルを有する。前者の光は、角度範囲arcsin(nskin/nw)<α<90°内で伝播する。サファイアでは、これは、53.8°<α<90°をもたらす。そのため、条件arcsin(1/nw)<α、arcsin(nskin/nw)が有効ならば、導波管の開口角はこの角度範囲内であり、その際、皮膚からの後方散乱光以外の光は導波管78へは全く入らない。この光の強度は、特に好ましいスペクトル範囲600nm<λ<800nm内で、皮膚の種類に依存する。反射信号は、不要な波長を遮断するフィルター80を通じて光検出器81によって測定される。光検出器81からの出力は、電源10(図2)を制御するシステムに利用される。導波管の皮膚との完全な光学的接触に対し到達した最小信号レベルは、患者の皮膚の種類に対する拡散反射係数に基づいて前もってセットされる。接触検出は、検出器81に適用される信号が接触時に著しく跳び上がるという事実によって助長される。フィルター80は、これが反射光に対してのみ起こることを保証する。図27の光学システムは、皮膚パラメーターにおける変化、例えば不均一な色素沈着によって引き起こされる損傷から皮膚を保護する。光検出器81は、導波管5に直接連結され得る。更には、該装置は、最小光子漏出を被る光学システム内部の放射照度の測定に基づいて制御されることもできる。この放射照度は、ランプが空中で又は標準的な反射板に対し放射している場合、ランプの出力エネルギーに比例する。しかし、ランプが皮膚内に照射しているなら、この放射照度は、皮膚からの反射に比例する。後者の場合、該光学システムは、積分球のように動作する。
本発明は、多くの実施形態について上記され、多くの変形が論じられたが、これらの記述は例示目的にすぎず、更なる変形が、添付の請求の範囲によってのみ定義されるべき本発明の精神及び範囲内に依然として留まったまま、当業者によってここになされ得る。例えば、上述した概念は、ランプに基づく実施に使用されたが、これら概念の多くは、放射源としてランプを使用するシステムにおいての使用のみに限定されず、又は、非コヒーレント放射源にさえも限定されない。
以下の表における全ての波長は、公差+/−5%で求められる。例えば、0.51μmは、0.485〜0.536μmを意味する。
Figure 2006334438
Figure 2006334438
Figure 2006334438
Figure 2006334438
Figure 2006334438
Figure 2006334438
本発明の実施形態のためのランプ装置の破断側面図である。 本発明の別の実施形態のためのランプ装置の破断側面図である。 本発明の実施形態のためのランプ装置の軸方向断面図である。 本発明の別の実施形態のためのランプ装置の軸方向断面図である。 ある固有の発色団に対する吸収スぺクトルを示すチャートである。 異なる種類の皮膚に対する浸入度(浸入深さ)スペクトルのチャートである。 選択されたパラメーターでの典型的なアークランプ放射スペクトルを示すチャートである。 白い皮膚での基底層の温度上昇に対する毛幹及び毛基質それぞれの温度上昇のチャートである。 浅黒い皮膚での基底層の温度上昇に対する毛幹及び毛基質それぞれの温度上昇のチャートである。 異なる皮膚の種類及び/又は処置に対する初期ランプスペクトル及び分布スペクトルである。 異なる皮膚の種類及び/又は処置に対する初期ランプスペクトル及び分布スペクトルである。 異なる皮膚の種類及び/又は処置に対する初期ランプスペクトル及び分布スペクトルである。 光ビームのサイズにおける表皮の照度に対する、1mmの深さ及び3mmの深さでの光照度の依存性を示すチャートである。 10mmビーム幅及び15mmビーム幅それぞれでの表面及び深さにおける光の分布を示すチャートである。 ビーム幅における光子リサイクリングによる流束量の改善の依存性を示すチャートである。 三つの異なるパルス形状での時間に対するパルスパワーの図である。 表皮における流体に対する浅いターゲット(クモ状静脈)における流体の比率に対してのマイクロメートル単位の波長の関係を示すチャートである。 本発明のある側面の実施に使用するのに適した種々のランプ断面の概略図である。 異なるフィルター構造を有する別の実施形態のためのランプの正面破断図である。 この発明の教示の実施に使用するのに適した二つの別の導波管構造の斜視図である。 本発明の教示の実施に使用するのに適した更に別の導波管の斜視図である。 ランプの外側管と導波管との間に配された材料における光子の角スペクトルの依存性を示すチャートである。 導波管材料がランプを実質上囲む本発明の別の実施形態に従うランプの側面破断図である。 導波管長における放射の均一性の依存性を示すチャートである。 異なる用途での本発明の教示の実施に使用するのに適した種々の導波管の側面図(図20cからの破断)である。 異なる用途での本発明の教示の実施に使用するのに適した種々の導波管の側面図(図20cからの破断)である。 異なる用途での本発明の教示の実施に使用するのに適した種々の導波管の側面図(図20cからの破断)である。 異なる用途での本発明の教示の実施に使用するのに適した種々の導波管の側面図(図20cからの破断)である。 その上にマスクが形成された導波管の底面図である。 レイジング特性又は超発光特性を有する導波管を利用するランプ構造の側面図である。 レイジング特性又は超発光特性を有する導波管を利用するランプ構造の側面図である。 標準導波管を有するランプでの出力スペクトルと、図21のレイジング導波管又は超発光導波管を有するランプでの例示的出力スペクトルとを示すチャートである。 新規なフィルタリング技術を組み込んだ二つの別の実施形態の場合の側面破断図である。 新規なフィルタリング技術を組み込んだ二つの別の実施形態の場合の側面破断図である。 新規な冷却チャネルが内部を通って形成された導波管の斜視図である。 特有の冷却能力を示す導波管の実施形態の側面図である。 導波管を冷却するための更に別の機構の側面図である。 導波管に対する更に別の冷却機構の側面図である。 患者の皮膚の安全な照射を検出するための特有の機構を提供する本発明の実施形態のやや概略的な部分破断正面図である。
符号の説明
1 皮膚
2 アークランプ
3 反射板
4 管
5 導波管
6 フィルター
7 間隙(チャネル)

Claims (42)

  1. 患者の皮膚を処置する方法であって、
    患者の皮膚への適用に適している光放射の少なくとも一つのパルスを発生可能なランプを準備する工程にして、該パルスは調整可能なパルス幅を有する該工程と、
    望ましい皮膚処置に適したスペクトルを得るためにパルス幅を調整する工程と、
    前記放射を皮膚領域に当てる工程とを含む方法。
  2. 前記スペクトルは、患者の皮膚における一又は複数の発色団によって吸収される一又は複数の波長成分を含む請求項1の方法。
  3. 前記パルス幅の調整は、約1ミリ秒〜約500ミリ秒の範囲からパルス幅を選択することを含む請求項1の方法。
  4. 前記スペクトルは、約200nm〜約1000nmの範囲の波長においてピーク発光を示す請求項1の方法。
  5. 皮膚への適用のために一又は複数の波長成分を分離するために、前記スペクトルをスペクトルフィルタリングする工程を更に含む請求項1の方法。
  6. 前記スペクトルは、ランプ放射の望ましい色温度に対応する請求項1の方法。
  7. 前記パルス幅の調整は、約3400K〜約10,000Kの範囲内とされる前記色温度を選択することを含む請求項6の方法。
  8. 前記ランプを、フラッシュランプ、ハロゲン化金属ランプ、水銀ランプ、高圧ナトリウムランプ、蛍光灯、ハロゲンランプ及び白熱電球からなる群から選択する工程を更に含む請求項1の方法。
  9. 患者の皮膚を処置するための光放射を発生させる方法であって、
    患者の皮膚への適用に適している複数の光放射パルスを発生可能なランプを準備する工程と、
    前記放射線パルスを皮膚に当てる工程と、
    前記パルスの少なくとも一つのパルス幅を、その波長スペクトルを少なくとも別のパルスの波長スペクトルに対してシフトするように調整する工程とを含む方法。
  10. 前記パルス幅の調整は、約1ミリ秒〜約500ミリ秒の範囲内とされるパルス幅を選択することを含む請求項9の方法。
  11. 患者の皮膚を処置するための装置であって、
    患者の皮膚への適用に適している光放射パルスを発生させるように適合されたランプにして、調整可能なパルス幅を有する該ランプと、
    ランプに電気的に結合され、かつ前記パルスの発光スペクトルを変更するようにパルス幅を調整可能な機構とを備えた装置。
  12. 前記機構は、パルス幅を、約1ミリ秒〜約500ミリ秒の範囲内で調整する請求項11の装置。
  13. 前記機構は、パルスのパルス幅を、そのスペクトルのピーク波長を約200nm〜約1000nmの範囲で変更するように調整する請求項11の装置。
  14. 前記ランプは、フラッシュランプ、ハロゲン化金属ランプ、水銀ランプ、高圧ナトリウムランプ、蛍光灯、ハロゲンランプ及び白熱電球から選択される請求項11の装置。
  15. 前記機構は、該装置のユーザから入力されたパルス幅を受信するためのインターフェースを含む請求項11の装置。
  16. 組織の処置を行うための装置であって、
    放射を光放射源から前記組織へと当てるための出力端部がある導波管を有するハンドピースと、
    ハンドピースに結合されるマスクにして、前記組織に分離した処置スポットを与えるため、放射の通過を許容する空間的パターンを有する該マスクとを備えた装置。
  17. 前記マスクは、前記導波管の出力端部に結合される請求項16の装置。
  18. 前記マスクは反射性を有する請求項16の装置。
  19. 前記マスクは非吸収性である請求項16の装置。
  20. 前記光放射源は非コヒーレント源である請求項16の装置。
  21. 前記光放射源はランプである請求項20の装置。
  22. 前記光放射源はハンドピース内にある請求項16の装置。
  23. 前記マスクは、前記導波管の出力端部上のコーティングである請求項16の装置。
  24. 前記装置は、使用時において前記組織を冷却する冷却機構を含む請求項16の装置。
  25. 前記冷却機構は前記導波管を冷却する請求項24の装置。
  26. 前記空間的パターンは、光学的な複数の開口を含む請求項16の装置。
  27. 前記開口は同じ形状を有する請求項26の装置。
  28. 前記開口は、正方形、長方形又は円形のうちの一つの形状とされる請求項27の装置。
  29. 前記光学的な開口は、前記マスクにおいて周期的に間隔が置かれる請求項26の装置。
  30. 該装置と前記組織との接触を感知する接触センサを更に備えた請求項16の装置。
  31. 前記マスクから反射された光子を該マスク及び前記組織へと戻すように向けるための機構を更に備えた請求項16の装置。
  32. 前記機構は反射板を含む請求項31の装置。
  33. 前記組織から反射された光子を該組織へと戻すように向けるための機構を更に備えた請求項16の装置。
  34. 前記機構は、前記導波管の外側面に形成された反射板を備える請求項33の装置。
  35. 前記反射板は散乱反射板である請求項33の装置。
  36. 前記組織における前記処置スポットの少なくともいくつかは、50μm未満の大きさである請求項16の装置。
  37. 前記マスクは、別個の領域において伝えることができる請求項16の装置。
  38. 前記マスクは、複数の領域において伝えることができかつ反射性がある請求項16の装置。
  39. 前記マスクは、導波管上のコーティングを含む請求項16の装置。
  40. 前記マスクは、導波管を通過する光の位相変調によって形成される請求項16の装置。
  41. 前記マスクは、導波管の屈折率における変化によって形成される請求項16の装置。
  42. 前記マスクは、導波管の表面における表面変調によって形成される請求項16の装置。
JP2006257572A 2001-03-02 2006-09-22 光美容処置及び光皮膚処置のための装置及び方法 Pending JP2006334438A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27274501P 2001-03-02 2001-03-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002569008A Division JP2004530464A (ja) 2001-03-02 2002-02-22 光美容処置及び光皮膚処置のための装置及び方法

Publications (1)

Publication Number Publication Date
JP2006334438A true JP2006334438A (ja) 2006-12-14

Family

ID=37483067

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002569008A Pending JP2004530464A (ja) 2001-03-02 2002-02-22 光美容処置及び光皮膚処置のための装置及び方法
JP2006257572A Pending JP2006334438A (ja) 2001-03-02 2006-09-22 光美容処置及び光皮膚処置のための装置及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002569008A Pending JP2004530464A (ja) 2001-03-02 2002-02-22 光美容処置及び光皮膚処置のための装置及び方法

Country Status (7)

Country Link
US (3) US20020173780A1 (ja)
EP (2) EP1365699A2 (ja)
JP (2) JP2004530464A (ja)
CN (3) CN1568163A (ja)
CA (1) CA2439882A1 (ja)
IL (3) IL157684A0 (ja)
WO (1) WO2002069825A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512722A (ja) * 2009-12-06 2013-04-18 シネロン メディカル リミテッド 個人用皮膚トリートメントの方法及び装置
US11452565B2 (en) 2016-09-15 2022-09-27 El.En. S.P.A. Device for treating skin ulcers

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149343A1 (en) * 1996-12-02 2006-07-06 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
ES2226133T3 (es) 1997-05-15 2005-03-16 Palomar Medical Technologies, Inc. Aparato de tratamiento dermatologico.
ES2245506T3 (es) 1998-03-12 2006-01-01 Palomar Medical Technologies, Inc. Sistema de aplicacion de radiacion electromagnetica sobre la piel.
CN1836639B (zh) * 2000-12-28 2012-03-21 帕洛玛医疗技术有限公司 用于皮肤的emr治疗处理的方法和装置
US20080306471A1 (en) * 2000-12-28 2008-12-11 Palomar Medical Technologies, Inc. Methods and devices for fractional ablation of tissue
US20060004347A1 (en) * 2000-12-28 2006-01-05 Palomar Medical Technologies, Inc. Methods and products for producing lattices of EMR-treated islets in tissues, and uses therefor
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
CA2439882A1 (en) * 2001-03-02 2002-09-12 Palomar Medical Technologies, Inc. Apparatus and method for photocosmetic and photodermatological treatment
US6597487B2 (en) * 2001-11-05 2003-07-22 Ut-Battelle, Llc Dielectric waveguide gas-filled stark shift modulator
US6811565B2 (en) * 2001-11-14 2004-11-02 Healing Machines, Inc. System and method for light activation of healing mechanisms
WO2003057059A1 (en) * 2001-12-27 2003-07-17 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
US20070239143A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US20040034388A1 (en) * 2002-06-14 2004-02-19 Healing Machines, Inc. Apparatus and method for physiological treatment with electromagnetic energy
EP1539013A4 (en) 2002-06-19 2005-09-21 Palomar Medical Tech Inc METHOD AND DEVICE FOR TREATING SKIN AND SUB-TISSUE DISEASES
US20040015158A1 (en) * 2002-07-19 2004-01-22 To-Mu Chen Transilluminator device
US20040034397A1 (en) * 2002-08-14 2004-02-19 Lin J. T. Method and apparatus for treating skin disorders using a short pulsed incoherent light
US20070219605A1 (en) * 2006-03-20 2007-09-20 Palomar Medical Technologies, Inc. Treatment of tissue volume with radiant energy
CN1723058A (zh) * 2002-10-07 2006-01-18 帕洛玛医疗技术公司 用于进行光生物刺激的设备
US20070213792A1 (en) * 2002-10-07 2007-09-13 Palomar Medical Technologies, Inc. Treatment Of Tissue Volume With Radiant Energy
KR20050071618A (ko) 2002-10-23 2005-07-07 팔로마 메디칼 테크놀로지스, 인코포레이티드 냉각제 및 국소용 물질과 함께 사용하기 위한 광처리 장치
US7931028B2 (en) * 2003-08-26 2011-04-26 Jay Harvey H Skin injury or damage prevention method using optical radiation
CN100479886C (zh) * 2002-11-28 2009-04-22 皇家飞利浦电子股份有限公司 通过射线处理人体皮肤的装置
US6981970B2 (en) * 2002-12-16 2006-01-03 Msq (M2) Ltd. Device and method for treating skin
AU2003276607A1 (en) * 2002-12-18 2004-07-09 Koninklijke Philips Electronics N.V. A device for treating human skin by means of radiation
WO2004058352A2 (en) * 2002-12-20 2004-07-15 Palomar Medical Technologies, Inc. Apparatus for light treatment of acne and other disorders of follicles
US7147654B2 (en) * 2003-01-24 2006-12-12 Laserscope Treatment Site Cooling System of Skin Disorders
US20050177141A1 (en) * 2003-01-27 2005-08-11 Davenport Scott A. System and method for dermatological treatment gas discharge lamp with controllable current density
US20040230258A1 (en) * 2003-02-19 2004-11-18 Palomar Medical Technologies, Inc. Method and apparatus for treating pseudofolliculitis barbae
ES2570987T3 (es) 2003-02-25 2016-05-23 Tria Beauty Inc Aparato de tratamiento dermatológico, basado en láser de diodo y autónomo
US20100069898A1 (en) * 2003-02-25 2010-03-18 Tria Beauty, Inc. Acne Treatment Method, System and Device
EP2604215B1 (en) 2003-02-25 2017-10-11 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus and method
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
EP1596744B1 (en) * 2003-02-25 2016-02-17 Tria Beauty, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US7354433B2 (en) * 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
ES2441407T3 (es) * 2003-03-27 2014-02-04 The General Hospital Corporation Aparato para tratamiento dermatológico y rejuvenecimiento cutáneo fraccional
US7144247B2 (en) 2003-04-25 2006-12-05 Oralum, Llc Hygienic treatments of structures in body cavities
US6989023B2 (en) 2003-07-08 2006-01-24 Oralum, Llc Hygienic treatments of body structures
KR200335313Y1 (ko) * 2003-08-13 2003-12-06 주식회사 프로스인터네셔날 레이저와 광다이오드를 이용한 탈모치료기
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US20050090878A1 (en) * 2003-10-24 2005-04-28 Solsberg Murray D. Disposable chemiluminescent infrared therapy device
RU2250119C1 (ru) * 2003-10-30 2005-04-20 Борисов Владимир Алексеевич Устройство для электромагнитного воздействия на биологическую ткань
US7720527B2 (en) * 2003-11-14 2010-05-18 Panasonic Corp. Subcutaneous fat thickness measuring method, subcutaneous fat thickness measuring apparatus, program and recording medium
US7326199B2 (en) 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US20060009749A1 (en) * 2004-02-19 2006-01-12 Weckwerth Mark V Efficient diffuse light source assembly and method
US8777935B2 (en) 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US20080132886A1 (en) * 2004-04-09 2008-06-05 Palomar Medical Technologies, Inc. Use of fractional emr technology on incisions and internal tissues
US20070016181A1 (en) 2004-04-29 2007-01-18 Van Der Weide Daniel W Microwave tissue resection tool
US20070055224A1 (en) * 2004-04-29 2007-03-08 Lee Fred T Jr Intralumenal microwave device
US7467015B2 (en) * 2004-04-29 2008-12-16 Neuwave Medical, Inc. Segmented catheter for tissue ablation
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
DE102004050143A1 (de) * 2004-10-14 2006-04-27 EKA Gesellschaft für medizinisch-technische Geräte mbH Gerät zur Behandlung von sichtbaren feinen Oberflächenvenen
US7780656B2 (en) * 2004-12-10 2010-08-24 Reliant Technologies, Inc. Patterned thermal treatment using patterned cryogen spray and irradiation by light
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US20070248930A1 (en) 2005-02-17 2007-10-25 Biolux Research Ltd. Light therapy apparatus and methods
JP2008529746A (ja) * 2005-02-18 2008-08-07 パロマー・メディカル・テクノロジーズ・インコーポレイテッド 皮膚科学的治療装置
US20060253176A1 (en) * 2005-02-18 2006-11-09 Palomar Medical Technologies, Inc. Dermatological treatment device with deflector optic
US8529560B2 (en) 2005-03-04 2013-09-10 The Invention Science Fund I, Llc Hair treatment system
US8157807B2 (en) 2005-06-02 2012-04-17 The Invention Science Fund I, Llc Skin treatment including patterned light
US8679101B2 (en) * 2005-03-04 2014-03-25 The Invention Science Fund I, Llc Method and system for temporary hair removal
US20060200114A1 (en) * 2005-03-04 2006-09-07 Searete Llc, A Limited Liability Corporation Of State Of Delaware Hair removal system with light source array
US8540701B2 (en) * 2005-03-04 2013-09-24 The Invention Science Fund I, Llc Hair treatment system
US20060276859A1 (en) * 2005-06-02 2006-12-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Photopatterning of skin
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US20070032846A1 (en) * 2005-08-05 2007-02-08 Bran Ferren Holographic tattoo
US9055958B2 (en) * 2005-06-29 2015-06-16 The Invention Science Fund I, Llc Hair modification using converging light
US20070038270A1 (en) * 2005-07-05 2007-02-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Multi step photopatterning of skin
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
EP1912585A2 (en) * 2005-08-05 2008-04-23 Koninklijke Philips Electronics N.V. Skin-treatment device
CN101282692A (zh) * 2005-08-08 2008-10-08 帕洛玛医疗技术公司 人眼安全的光美容设备
US20070048340A1 (en) * 2005-08-31 2007-03-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Multi step patterning of a skin surface
US20070173799A1 (en) * 2005-09-01 2007-07-26 Hsia James C Treatment of fatty tissue adjacent an eye
CA2622560A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
EP2796168B1 (en) 2005-09-28 2017-09-06 Candela Corporation Treating cellulite
US20070270717A1 (en) * 2005-09-30 2007-11-22 Cornova, Inc. Multi-faceted optical reflector
CA2662530A1 (en) * 2005-09-30 2007-04-12 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
US20070083190A1 (en) * 2005-10-11 2007-04-12 Yacov Domankevitz Compression device for a laser handpiece
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US10357662B2 (en) * 2009-02-19 2019-07-23 Pthera LLC Apparatus and method for irradiating a surface with light
WO2007095183A2 (en) * 2006-02-13 2007-08-23 Reliant Technologies, Inc. Laser system for treatment of skin laxity
US20070194717A1 (en) * 2006-02-17 2007-08-23 Palomar Medical Technologies, Inc. Lamp for use in a tissue treatment device
US20070213695A1 (en) * 2006-03-08 2007-09-13 Paul Perl Continuous skin contact handpiece system for cooling during controlled emmission of light and a method thereof
WO2007106856A2 (en) * 2006-03-14 2007-09-20 Allux Medical, Inc. Phototherapy device and method of providing phototherapy to a body surface
EP3797721A1 (en) * 2006-03-24 2021-03-31 Neuwave Medical, Inc. Transmission line with heat transfer ability
WO2007112102A1 (en) * 2006-03-24 2007-10-04 Micrablate Center fed dipole for use with tissue ablation systems, devices, and methods
US20070255355A1 (en) * 2006-04-06 2007-11-01 Palomar Medical Technologies, Inc. Apparatus and method for skin treatment with compression and decompression
US8460280B2 (en) * 2006-04-28 2013-06-11 Cutera, Inc. Localized flashlamp skin treatments
US7465312B2 (en) * 2006-05-02 2008-12-16 Green Medical, Inc. Systems and methods for treating superficial venous malformations like spider veins
WO2007130465A2 (en) * 2006-05-02 2007-11-15 Green Medical, Inc. Systems and methods for treating superficial venous malformations like spider veins
US20090326435A1 (en) * 2006-05-02 2009-12-31 Green Medical, Inc. Systems and methods for treating superficial venous malformations like varicose or spider veins
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US11389235B2 (en) * 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20090187108A1 (en) * 2006-09-29 2009-07-23 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
WO2008088814A2 (en) * 2007-01-17 2008-07-24 Lerner Medical Devices, Inc. Phototherapy handpiece
US20080172900A1 (en) * 2007-01-19 2008-07-24 Carlos Jose Ceva Halogen hair dryer
US20080188914A1 (en) * 2007-02-01 2008-08-07 Candela Corporation Detachable handpiece
US20080221649A1 (en) * 2007-03-09 2008-09-11 Agustina Echague Method of sequentially treating tissue
WO2008124839A1 (en) * 2007-04-10 2008-10-16 Intenzity Innovations, Inc. Self-contained handpiece and method for optical tissue surface treatment
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
EP2155100A4 (en) * 2007-06-08 2013-11-06 Cynosure Inc SECURITY FOLLOWING THERMAL SURGERY
US20100174196A1 (en) * 2007-06-21 2010-07-08 Cornova, Inc. Systems and methods for guiding the analysis and treatment of a body lumen
JP5595270B2 (ja) 2007-08-08 2014-09-24 トリア ビューティ インコーポレイテッド 皮膚検知のための静電容量型センシング方法及び装置
US8251903B2 (en) * 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US20090149930A1 (en) * 2007-12-07 2009-06-11 Thermage, Inc. Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue
WO2009076306A2 (en) * 2007-12-07 2009-06-18 The General Hospital Corporation System and apparatus for dermatological treatment
ES2301447B1 (es) * 2007-12-17 2009-07-06 S.O.R. Internacional, S.A. Pistola con lampara para fotodepilacion y electrodepilacion.
US20090175576A1 (en) * 2008-01-08 2009-07-09 Cornova, Inc. Shaped fiber ends and methods of making same
MX2010007860A (es) 2008-01-17 2010-11-30 Syneron Medical Ltd Un aparato de eliminacion de vello para uso personal y metodo para usarlo.
MX2010007407A (es) 2008-01-24 2010-08-16 Syneron Medical Ltd Dispositivo, aparato, y metodo para tratamiento de tejido adiposo.
US20090222068A1 (en) * 2008-02-29 2009-09-03 Clrs Technology Corporation Rapid flash optical therapy
CN103479427B (zh) * 2008-03-11 2016-11-23 莎责有限公司 皮肤病治疗设备
FR2929831B1 (fr) * 2008-04-10 2011-09-02 Eurofeedback Sa Dispositif de traitement par emission de flashs lumineux
FR2929832B1 (fr) * 2008-04-10 2012-08-10 Eurofeedback Sa Dispositif et traitement par emission de flash lumineux
US9687671B2 (en) 2008-04-25 2017-06-27 Channel Investments, Llc Optical sensor and method for identifying the presence of skin and the pigmentation of skin
US8515553B2 (en) * 2008-04-28 2013-08-20 Thermage, Inc. Methods and apparatus for predictively controlling the temperature of a coolant delivered to a treatment device
WO2009146432A1 (en) * 2008-05-30 2009-12-03 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US8121704B2 (en) * 2008-06-19 2012-02-21 Thermage, Inc. Leakage-resistant tissue treatment apparatus and methods of using same
US8285392B2 (en) * 2008-06-19 2012-10-09 Thermage, Inc. Leakage-resistant tissue treatment apparatus and methods of using such tissue treatment apparatus
WO2010011400A2 (en) * 2008-07-22 2010-01-28 Cornova, Inc. Shaped fiber ends and methods of making same
EP2591745B1 (en) * 2008-09-21 2015-01-21 Syneron Medical Ltd. Apparatus for personal skin treatment
US20100100083A1 (en) * 2008-10-22 2010-04-22 Scott Lundahl Method of treatment for dermatologic disorders
KR20110099256A (ko) * 2008-11-24 2011-09-07 그라디언트 리서치, 엘엘씨 연부 조직의 광열 치료
US20110190749A1 (en) * 2008-11-24 2011-08-04 Mcmillan Kathleen Low Profile Apparatus and Method for Phototherapy
EP2401026B1 (en) 2009-02-25 2014-04-02 Syneron Medical Ltd. Electrical skin rejuvenation
EP2432542A4 (en) * 2009-05-20 2013-07-03 Cornova Inc SYSTEMS AND METHOD FOR THE ANALYSIS AND TREATMENT OF A BODY LUMEN
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
DK2459096T3 (en) 2009-07-28 2015-01-19 Neuwave Medical Inc ablation device
GB2474032B (en) 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector
US20110190745A1 (en) * 2009-12-04 2011-08-04 Uebelhoer Nathan S Treatment of sweat glands
EP3804651A1 (en) 2010-05-03 2021-04-14 Neuwave Medical, Inc. Energy delivery systems
US8192429B2 (en) 2010-06-29 2012-06-05 Theravant, Inc. Abnormality eradication through resonance
US9962225B2 (en) 2010-10-07 2018-05-08 Gradiant Research, Llc Method and apparatus for skin cancer thermal therapy
EP2648651B1 (en) 2010-12-08 2016-11-23 Biolux Research Limited Apparatuses useful for regulating bone remodeling or tooth movement using light therapy and a functional appliance
ITFI20110015A1 (it) * 2011-01-25 2012-07-26 El En Spa "dispositivo e metodo per l'applicazione di una radiazione ottica ad un bersaglio"
US8997572B2 (en) 2011-02-11 2015-04-07 Washington University Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
KR101339402B1 (ko) * 2011-05-25 2013-12-09 주식회사 칼라세븐 색광 치료기
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
EP3769712A1 (en) 2011-12-21 2021-01-27 Neuwave Medical, Inc. Energy delivery systems
EP2839552A4 (en) 2012-04-18 2015-12-30 Cynosure Inc PICOSCOPE LASER DEVICE AND METHOD FOR THE TREATMENT OF TARGET FABRICS THEREWITH
CN104334108B (zh) * 2012-06-04 2017-05-31 皇家飞利浦有限公司 基于liob的毛发切割设备
JP2014018320A (ja) * 2012-07-13 2014-02-03 Scandinavia Corp 温熱光照射装置
DE102012107468B4 (de) * 2012-08-15 2016-03-24 Von Ardenne Gmbh Gasentladungslampe mit einem Mantelrohr und einem darin gestützten Lampenrohr
WO2014063005A1 (en) * 2012-10-18 2014-04-24 Washington University Transcranialphotoacoustic/thermoacoustic tomography brain imaging informed by adjunct image data
TWI468195B (zh) * 2013-02-05 2015-01-11 發光二極體護膚裝置
US9117636B2 (en) 2013-02-11 2015-08-25 Colorado State University Research Foundation Plasma catalyst chemical reaction apparatus
US9269544B2 (en) 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
JP2014161455A (ja) * 2013-02-22 2014-09-08 Panasonic Corp 体毛用光美容装置
JP6094963B2 (ja) 2013-02-22 2017-03-15 パナソニックIpマネジメント株式会社 体毛用光美容装置
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
EP2973894A2 (en) 2013-03-15 2016-01-20 Cynosure, Inc. Picosecond optical radiation systems and methods of use
JP6112416B2 (ja) * 2013-09-06 2017-04-12 パナソニックIpマネジメント株式会社 体毛用光照射装置
DE202014011570U1 (de) 2013-10-22 2023-04-04 Biolux Research Holdings, Inc. Intraorale Lichttherapiegeräte
WO2015077355A1 (en) 2013-11-19 2015-05-28 Washington University Systems and methods of grueneisen-relaxation photoacoustic microscopy and photoacoustic wavefront shaping
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
CN104587610B (zh) * 2014-12-31 2017-05-17 长光华雷(苏州)医疗科技有限公司 可快速对皮肤冷却的激光治疗辅助装置
DE102015000150B4 (de) * 2015-01-03 2019-11-21 Lenicura Gmbh Vorrichtung zur Behandlung von Hidradenitis suppurativa
TW201613750A (en) * 2015-08-13 2016-04-16 Zheng-Hong Shi Pulsed color light dressing film product
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
MX2018005116A (es) 2015-10-26 2018-09-05 Neuwave Medical Inc Sistemas de suministro de energia y sus usos.
WO2017097923A1 (en) * 2015-12-11 2017-06-15 Koninklijke Philips N.V. A skin treatment device
ES2893295T3 (es) * 2016-02-02 2022-02-08 Braun Gmbh Dispositivo para el tratamiento de la piel
JP6949873B2 (ja) 2016-04-15 2021-10-13 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー供給のためのシステム及び方法
US10255674B2 (en) * 2016-05-25 2019-04-09 International Business Machines Corporation Surface reflectance reduction in images using non-specular portion replacement
CN109475383A (zh) * 2016-06-29 2019-03-15 鲁美斯有限公司 用于分级光处理的装置和方法
CN106039589A (zh) * 2016-07-01 2016-10-26 曾丽华 一种皮肤病理疗器
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
EP3528891A4 (en) * 2016-10-21 2020-05-13 The General Hospital Corporation THERMAL GRADIENT PRECONDITIONING SYSTEMS AND METHODS FOR SELECTIVE PHOTOTHERMAL TARGETING
CN208031343U (zh) * 2016-11-02 2018-11-02 江苏安惠医疗器械有限公司 一种康健装置
EP3579746A1 (en) * 2017-02-09 2019-12-18 Corning Incorporated Assessment of microvascular dysfunction with spectral imaging
US11672426B2 (en) 2017-05-10 2023-06-13 California Institute Of Technology Snapshot photoacoustic photography using an ergodic relay
US20190096045A1 (en) * 2017-09-28 2019-03-28 4Sense, Inc. System and Method for Realizing Increased Granularity in Images of a Dataset
WO2019165426A1 (en) 2018-02-26 2019-08-29 Cynosure, Inc. Q-switched cavity dumped sub-nanosecond laser
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
WO2020037082A1 (en) 2018-08-14 2020-02-20 California Institute Of Technology Multifocal photoacoustic microscopy through an ergodic relay
US11592652B2 (en) 2018-09-04 2023-02-28 California Institute Of Technology Enhanced-resolution infrared photoacoustic microscopy and spectroscopy
US11369280B2 (en) 2019-03-01 2022-06-28 California Institute Of Technology Velocity-matched ultrasonic tagging in photoacoustic flowgraphy
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
CN109793572A (zh) * 2019-03-29 2019-05-24 丁云凤 一种基于核光四联的祛斑系统
CA3139053A1 (en) 2019-06-03 2020-12-10 Cooler Heads Care, Inc. Cooling cap assembly and cooling unit
CN112057744B (zh) * 2019-06-11 2022-04-26 承奕科技股份有限公司 光照入肤器材用的防烫伤机壳及具该防烫伤机壳的器材
US11110294B2 (en) * 2019-09-13 2021-09-07 Candela Corporation Cooling system for tissue treatment system with both tissue and light source cooling
US11517765B2 (en) * 2019-12-31 2022-12-06 L'oreal Hands-free skin treatment system
JPWO2022085526A1 (ja) * 2020-10-19 2022-04-28
CN113262396B (zh) * 2021-04-25 2023-02-07 华南师范大学 一种改善光热效应温度分布的方法
FR3131832A1 (fr) * 2022-01-19 2023-07-21 Quantel Medical Appareil à main à lumière intense pulsée à guide de lumière
US20240099753A1 (en) * 2022-09-23 2024-03-28 Dgi Group Llc Skin tag removal devices

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US558667A (en) * 1896-04-21 Door-hanger
BE346723A (ja) * 1926-11-13
US2068721A (en) * 1932-11-18 1937-01-26 Wappler Frederick Charles Method for electrosurgical severance of adhesions
US2669771A (en) * 1949-11-17 1954-02-23 Gen Motors Corp Armature coil lead staker
US3793723A (en) * 1971-12-03 1974-02-26 Ultrasonic Systems Ultrasonic replaceable shaving head and razor
GB1458356A (en) * 1973-01-31 1976-12-15 Wilkinson Sword Ltd Shaving equipment
US3794028A (en) * 1973-02-27 1974-02-26 A Griffin Method for injecting chemicals into the papilla for depilation
US3858577A (en) * 1974-04-05 1975-01-07 Univ Southern California Fiber optic laser light delivery system
US4133503A (en) * 1975-08-29 1979-01-09 Bliss John H Entry, display and use of data employed to overcome aircraft control problems due to wind shear
US4139342A (en) * 1977-07-18 1979-02-13 Hughes Aircraft Company Dye impregnated plastics for laser applications
US4188927A (en) * 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
US4313431A (en) * 1978-12-06 1982-02-02 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Endoscopic apparatus with a laser light conductor
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
AU555410B2 (en) * 1982-10-15 1986-09-25 Asahi Kasei Kogyo Kabushiki Kaisha Removing salt impurities from sugar syrup or molasses
US4566271A (en) * 1982-12-01 1986-01-28 Lucas Industries Public Limited Company Engine systems
JPS60148567A (ja) * 1984-01-13 1985-08-05 株式会社東芝 レ−ザ治療装置
US4569345A (en) * 1984-02-29 1986-02-11 Aspen Laboratories, Inc. High output electrosurgical unit
US4724835A (en) * 1984-03-06 1988-02-16 Pain Suppression Labs, Inc. Laser therapeutic device
IL75998A0 (en) * 1984-08-07 1985-12-31 Medical Laser Research & Dev C Laser system for providing target tissue specific energy deposition
US4994060A (en) * 1984-09-17 1991-02-19 Xintec Corporation Laser heated cautery cap with transparent substrate
US4566438A (en) * 1984-10-05 1986-01-28 Liese Grover J Fiber-optic stylet for needle tip localization
US4799479A (en) * 1984-10-24 1989-01-24 The Beth Israel Hospital Association Method and apparatus for angioplasty
US4638800A (en) * 1985-02-08 1987-01-27 Research Physics, Inc Laser beam surgical system
JPS6222237A (ja) * 1985-07-22 1987-01-30 Victor Co Of Japan Ltd 磁気記録媒体
US5196004A (en) * 1985-07-31 1993-03-23 C. R. Bard, Inc. Infrared laser catheter system
DE3686621T2 (de) * 1985-07-31 1993-02-25 Bard Inc C R Infrarot laser-kathetergeraet.
GB2184021A (en) * 1985-12-13 1987-06-17 Micra Ltd Laser treatment apparatus for port wine stains
WO1988000072A1 (en) * 1986-06-30 1988-01-14 Medical Laser Research Co., Ltd. Semiconductor laser therapeutic apparatus
US4901323A (en) * 1987-05-01 1990-02-13 Universities Research Association, Inc. Laser pulse stretcher method and apparatus
US4898439A (en) * 1988-02-10 1990-02-06 Kei Mori Light radiation device for use in medical treatment
US5242437A (en) * 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
US4891817A (en) * 1988-06-13 1990-01-02 Eastman Kodak Company Pulsed dye laser apparatus for high PRF operation
JPH0213479A (ja) * 1988-07-01 1990-01-17 Takashi Mori 光照射治療具
US4890898A (en) * 1988-08-18 1990-01-02 Hgm Medical Laser Systems, Inc. Composite microsize optical fiber-electric lead cable
US5180378A (en) * 1989-04-24 1993-01-19 Abiomed, Inc. Laser surgery system
US5486172A (en) * 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5057104A (en) * 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US4896329A (en) * 1989-06-01 1990-01-23 Exciton Incorporated Laser dye liquids, laser dye instruments and methods
US5152759A (en) * 1989-06-07 1992-10-06 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
US5182557A (en) * 1989-09-20 1993-01-26 Semborg Recrob, Corp. Motorized joystick
US4992256A (en) * 1989-09-27 1991-02-12 Colgate-Palmolive Company Plaque disclosing compositions
DE3936367A1 (de) * 1989-11-02 1991-05-08 Simon Pal Rasierapparat
US5080660A (en) * 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
US5090019A (en) * 1991-01-10 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Laser diode-pumped tunable solid state laser
US5488626A (en) * 1991-01-14 1996-01-30 Light Age, Inc. Method of and apparatus for pumping of transition metal ion containing solid state lasers using diode laser sources
US5492894A (en) * 1991-03-21 1996-02-20 The Procter & Gamble Company Compositions for treating wrinkles comprising a peptide
US5484436A (en) * 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5178617A (en) * 1991-07-09 1993-01-12 Laserscope System for controlled distribution of laser dosage
US5871480A (en) * 1991-10-29 1999-02-16 Thermolase Corporation Hair removal using photosensitizer and laser
US5817089A (en) * 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5405368A (en) * 1992-10-20 1995-04-11 Esc Inc. Method and apparatus for therapeutic electromagnetic treatment
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5287372A (en) * 1992-04-24 1994-02-15 Hughes Aircraft Company Quasi-resonant diode drive current source
WO1994005200A1 (en) * 1992-09-01 1994-03-17 Adair Edwin Lloyd Sterilizable endoscope with separable disposable tube assembly
US5683380A (en) * 1995-03-29 1997-11-04 Esc Medical Systems Ltd. Method and apparatus for depilation using pulsed electromagnetic radiation
US5620478A (en) * 1992-10-20 1997-04-15 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5720772A (en) * 1992-10-20 1998-02-24 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US6280438B1 (en) * 1992-10-20 2001-08-28 Esc Medical Systems Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
GB2272278B (en) * 1992-10-23 1997-04-09 Cancer Res Campaign Tech Light source
WO1995022283A1 (en) * 1992-10-26 1995-08-24 Ultrasonic Sensing & Monitoring Systems, Inc. Catheter using optical fibers to transmit laser and ultrasonic energy
EP0719113A1 (en) * 1992-11-13 1996-07-03 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5287380A (en) * 1993-02-19 1994-02-15 Candela Laser Corporation Method and apparatus for generating long output pulses from flashlamp-excited lasers
US5707403A (en) * 1993-02-24 1998-01-13 Star Medical Technologies, Inc. Method for the laser treatment of subsurface blood vessels
US5387211B1 (en) * 1993-03-10 1996-12-31 Trimedyne Inc Multi-head laser assembly
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5458140A (en) * 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5386427A (en) * 1994-02-10 1995-01-31 Massachusetts Institute Of Technology Thermally controlled lenses for lasers
IL108918A (en) * 1994-03-10 1997-04-15 Medic Lightech Ltd Apparatus for efficient photodynamic treatment
JP3263275B2 (ja) * 1994-04-05 2002-03-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 生体組織のレーザー処理のための装置並びに火焔状斑点母斑のレーザー処理装置
US5698866A (en) * 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
US5522813A (en) * 1994-09-23 1996-06-04 Coherent, Inc. Method of treating veins
US5531739A (en) * 1994-09-23 1996-07-02 Coherent, Inc. Method of treating veins
AT403654B (de) * 1994-12-01 1998-04-27 Binder Michael Dr Einrichtung zur optischen untersuchung von human-haut sowie derselben zugeordnete auswertungs-einrichtung
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5598426A (en) * 1995-02-03 1997-01-28 Candela Laser Corporation Method and dye laser apparatus for producing long pulses of laser radiation
US5728090A (en) * 1995-02-09 1998-03-17 Quantum Devices, Inc. Apparatus for irradiating living cells
US5868731A (en) * 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
US5885273A (en) * 1995-03-29 1999-03-23 Esc Medical Systems, Ltd. Method for depilation using pulsed electromagnetic radiation
DE29508077U1 (de) * 1995-05-16 1995-08-10 Wilden Lutz Dr Med Mundpflegegerät
DE19521003C1 (de) * 1995-06-08 1996-08-14 Baasel Carl Lasertech Gepulste Lichtquelle zum Abtragen von biologischem Gewebe
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
US5879376A (en) * 1995-07-12 1999-03-09 Luxar Corporation Method and apparatus for dermatology treatment
CA2166034A1 (en) * 1995-12-22 1997-06-23 Chia-Yu Cheng Skin brush massage method
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
JP3662068B2 (ja) * 1996-03-21 2005-06-22 飯村 惠次 光触媒装置および光触媒を用いたクリーニング装置
EP0921840B1 (en) * 1996-07-03 2003-05-28 Altea Therapeutics Corporation Multiple mechanical microporation of skin or mucosa
US5814008A (en) * 1996-07-29 1998-09-29 Light Sciences Limited Partnership Method and device for applying hyperthermia to enhance drug perfusion and efficacy of subsequent light therapy
US5913883A (en) * 1996-08-06 1999-06-22 Alexander; Dane Therapeutic facial mask
US6096029A (en) * 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
US6214034B1 (en) * 1996-09-04 2001-04-10 Radiancy, Inc. Method of selective photothermolysis
WO1998010711A1 (fr) * 1996-09-10 1998-03-19 Grigory Borisovich Altshuler Brosse a dents
US6338855B1 (en) * 1996-10-25 2002-01-15 The Procter & Gamble Company Cleansing articles for skin and/or hair which also deposit skin care actives
US6517532B1 (en) * 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6015404A (en) * 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US6653618B2 (en) * 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US6162211A (en) * 1996-12-05 2000-12-19 Thermolase Corporation Skin enhancement using laser light
US6200309B1 (en) * 1997-02-13 2001-03-13 Mcdonnell Douglas Corporation Photodynamic therapy system and method using a phased array raman laser amplifier
US6171302B1 (en) * 1997-03-19 2001-01-09 Gerard Talpalriu Apparatus and method including a handpiece for synchronizing the pulsing of a light source
US5891063A (en) * 1997-04-03 1999-04-06 Vigil; Arlene Skin rejuvinating system
ES2226133T3 (es) * 1997-05-15 2005-03-16 Palomar Medical Technologies, Inc. Aparato de tratamiento dermatologico.
GB9710562D0 (en) * 1997-05-23 1997-07-16 Medical Laser Technologies Lim Light delivery
US6030399A (en) * 1997-06-04 2000-02-29 Spectrx, Inc. Fluid jet blood sampling device and methods
US5883471A (en) * 1997-06-20 1999-03-16 Polycom, Inc. Flashlamp pulse shaper and method
US5885274A (en) * 1997-06-24 1999-03-23 New Star Lasers, Inc. Filament lamp for dermatological treatment
US6104959A (en) * 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
ATE313353T1 (de) * 1997-08-25 2006-01-15 Advanced Photodynamic Technolo Einrichtung zur topischen photodynamischen therapie
WO2000053261A1 (en) * 1999-03-08 2000-09-14 Asah Medico A/S An apparatus for tissue treatment and having a monitor for display of tissue features
US6171300B1 (en) * 1997-09-04 2001-01-09 Linvatec Corporation Tubing cassette and method for cooling a surgical handpiece
US6176854B1 (en) * 1997-10-08 2001-01-23 Robert Roy Cone Percutaneous laser treatment
US6229831B1 (en) * 1997-12-08 2001-05-08 Coherent, Inc. Bright diode-laser light-source
FR2772274B1 (fr) * 1997-12-16 2002-01-04 Galderma Rech Dermatologique Dispositif comprenant une composition chromophore a appliquer sur la peau, procede de fabrication d'un tel dispositif et utilisations
IL122840A (en) * 1997-12-31 2002-04-21 Radiancy Inc Hair removal device and methods
AU1934699A (en) * 1998-01-07 1999-07-26 Kim Robin Segal Diode laser irradiation and electrotherapy system for biological tissue stimulation
US6200134B1 (en) * 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
US7048731B2 (en) * 1998-01-23 2006-05-23 Laser Abrasive Technologies, Llc Methods and apparatus for light induced processing of biological tissues and of dental materials
US6162055A (en) * 1998-02-13 2000-12-19 Britesmile, Inc. Light activated tooth whitening composition and method of using same
US6173202B1 (en) * 1998-03-06 2001-01-09 Spectrx, Inc. Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue
US6530915B1 (en) * 1998-03-06 2003-03-11 Spectrx, Inc. Photothermal structure for biomedical applications, and method therefor
US6022316A (en) * 1998-03-06 2000-02-08 Spectrx, Inc. Apparatus and method for electroporation of microporated tissue for enhancing flux rates for monitoring and delivery applications
ES2245506T3 (es) * 1998-03-12 2006-01-01 Palomar Medical Technologies, Inc. Sistema de aplicacion de radiacion electromagnetica sobre la piel.
AU3363999A (en) * 1998-03-27 1999-10-18 General Hospital Corporation, The Method and apparatus for the selective targeting of lipid-rich tissues
US6306130B1 (en) * 1998-04-07 2001-10-23 The General Hospital Corporation Apparatus and methods for removing blood vessels
US6223071B1 (en) * 1998-05-01 2001-04-24 Dusa Pharmaceuticals Inc. Illuminator for photodynamic therapy and diagnosis which produces substantially uniform intensity visible light
US6319274B1 (en) * 1998-06-22 2001-11-20 John H. Shadduck Devices and techniques for light-mediated stimulation of trabecular meshwork in glaucoma therapy
GB9816914D0 (en) * 1998-08-05 1998-09-30 Smithkline Beecham Gmbh Novel device
DE19836071A1 (de) * 1998-08-10 2000-02-17 Schlafhorst & Co W Verfahren zur Erkennung von Fadenresten auf Spinnkopshülsen
DE19836649C2 (de) * 1998-08-13 2002-12-19 Zeiss Carl Meditec Ag Medizinisches Handstück
US6059820A (en) * 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
DE19852948C2 (de) * 1998-11-12 2002-07-18 Asclepion Meditec Ag Dermatologisches Handstück
US6663659B2 (en) * 2000-01-13 2003-12-16 Mcdaniel David H. Method and apparatus for the photomodulation of living cells
US6936044B2 (en) * 1998-11-30 2005-08-30 Light Bioscience, Llc Method and apparatus for the stimulation of hair growth
US6183500B1 (en) * 1998-12-03 2001-02-06 Sli Lichtsysteme Gmbh Process and apparatus for the cosmetic treatment of acne vulgaris
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
US6183773B1 (en) * 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
SE522249C2 (sv) * 1999-01-13 2004-01-27 Biolight Patent Holding Ab Styranordning för styrning av utvärters behandling medelst ljus
DE19914108A1 (de) * 1999-03-23 2000-10-05 Plasmaphotonics Gmbh Bestrahlungsanordnung, insbesondere zur optischen Thermolyse
US6709269B1 (en) * 2000-04-14 2004-03-23 Gregory B. Altshuler Apparatus and method for the processing of solid materials, including hard tissues
GB9912998D0 (en) * 1999-06-04 1999-08-04 Sls Biophile Limited Depilation
US6685699B1 (en) * 1999-06-09 2004-02-03 Spectrx, Inc. Self-removing energy absorbing structure for thermal tissue ablation
US6290713B1 (en) * 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6406474B1 (en) * 1999-09-30 2002-06-18 Ceramoptec Ind Inc Device and method for application of radiation
US6527764B1 (en) * 1999-12-02 2003-03-04 Ceramoptec Industries, Inc. Device and method for laser biomodulation in PDT/surgery
US6354370B1 (en) * 1999-12-16 2002-03-12 The United States Of America As Represented By The Secretary Of The Air Force Liquid spray phase-change cooling of laser devices
US6261595B1 (en) * 2000-02-29 2001-07-17 Zars, Inc. Transdermal drug patch with attached pocket for controlled heating device
GB2360946B (en) * 2000-04-08 2002-06-12 Lynton Lasers Ltd Dermatological treatment apparatus
ATE377404T1 (de) * 2000-05-19 2007-11-15 Michael S Berlin Laserapplikationssystem und methode zur verwendung im auge
US6503269B2 (en) * 2000-06-12 2003-01-07 Scott A. Nield Method of treating intervertebral discs using optical energy and optical temperature feedback
US6613040B2 (en) * 2000-06-30 2003-09-02 Nikolai Tankovich Twin light laser
US6471712B2 (en) * 2000-10-05 2002-10-29 Steven A. Burres Dermabrasion and skin care apparatus
CN1836639B (zh) * 2000-12-28 2012-03-21 帕洛玛医疗技术有限公司 用于皮肤的emr治疗处理的方法和装置
US20060004347A1 (en) * 2000-12-28 2006-01-05 Palomar Medical Technologies, Inc. Methods and products for producing lattices of EMR-treated islets in tissues, and uses therefor
US20030023284A1 (en) * 2001-02-20 2003-01-30 Vladimir Gartstein Method and apparatus for the in-vivo treatment of pathogens
US6682523B2 (en) * 2001-02-21 2004-01-27 John H. Shadduck Devices and techniques for treating trabecular meshwork
US6989007B2 (en) * 2001-02-21 2006-01-24 Solx, Inc. Devices and techniques for treating glaucoma
US20020149326A1 (en) * 2001-03-01 2002-10-17 Mikhail Inochkin Flashlamp drive circuit
CA2439882A1 (en) * 2001-03-02 2002-09-12 Palomar Medical Technologies, Inc. Apparatus and method for photocosmetic and photodermatological treatment
US6503486B2 (en) * 2001-03-12 2003-01-07 Colgate Palmolive Company Strip for whitening tooth surfaces
US6679837B2 (en) * 2001-06-01 2004-01-20 Intlas Ltd. Laser light irradiation apparatus
JP4790982B2 (ja) * 2001-06-15 2011-10-12 ユーブイ−ソルーションズ・エルエルシー バンデージを通して領域を滅菌または消毒する方法および器具
US20030009158A1 (en) * 2001-07-09 2003-01-09 Perricone Nicholas V. Skin treatments using blue and violet light
CH695085A5 (de) * 2001-07-13 2005-12-15 Mibelle Ag Cosmetics Formulierungen zur Pflege der Haut nach Laserbehandlungen und/oder chemischen Peelings und Verwendung der Formulierungen.
US7170034B2 (en) * 2002-02-05 2007-01-30 Radiancy Inc. Pulsed electric shaver
WO2003011159A1 (en) * 2001-07-27 2003-02-13 Koninklijke Philips Electronics N.V. Skin treating device comprising a processor for determination of the radiation pulse dose
US20030032900A1 (en) * 2001-08-08 2003-02-13 Engii (2001) Ltd. System and method for facial treatment
JP2005500108A (ja) * 2001-08-15 2005-01-06 リライアント テクノロジーズ,インコーポレイティド 生物学的組織の熱的切除のための装置と方法
US6648904B2 (en) * 2001-11-29 2003-11-18 Palomar Medical Technologies, Inc. Method and apparatus for controlling the temperature of a surface
WO2003057059A1 (en) * 2001-12-27 2003-07-17 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US6942663B2 (en) * 2002-03-12 2005-09-13 Board Of Regents, The University Of Texas System Laser treatment of cutaneous vascular lesions
IL163946A0 (en) * 2002-03-12 2005-12-18 Gen Hospital Corp Method and apparatus for hair growth managment
US7647092B2 (en) * 2002-04-05 2010-01-12 Massachusetts Institute Of Technology Systems and methods for spectroscopy of biological tissue
WO2003086218A1 (en) * 2002-04-09 2003-10-23 Gregory Altshuler Method and apparatus for processing hard material
US7322972B2 (en) * 2002-04-10 2008-01-29 The Regents Of The University Of California In vivo port wine stain, burn and melanin depth determination using a photoacoustic probe
US20070239143A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US7001413B2 (en) * 2002-07-03 2006-02-21 Life Support Technologies, Inc. Methods and apparatus for light therapy
US20040015158A1 (en) * 2002-07-19 2004-01-22 To-Mu Chen Transilluminator device
US6991644B2 (en) * 2002-12-12 2006-01-31 Cutera, Inc. Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
US7006223B2 (en) * 2003-03-07 2006-02-28 3Gen, Llc. Dermoscopy epiluminescence device employing cross and parallel polarization
US7153298B1 (en) * 2003-03-28 2006-12-26 Vandolay, Inc. Vascular occlusion systems and methods
US6989023B2 (en) * 2003-07-08 2006-01-24 Oralum, Llc Hygienic treatments of body structures
EP1653876A1 (en) * 2003-07-11 2006-05-10 Reliant Technologies, Inc. Method and apparatus for fractional photo therapy of skin
US8870856B2 (en) * 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512722A (ja) * 2009-12-06 2013-04-18 シネロン メディカル リミテッド 個人用皮膚トリートメントの方法及び装置
US11452565B2 (en) 2016-09-15 2022-09-27 El.En. S.P.A. Device for treating skin ulcers

Also Published As

Publication number Publication date
IL177598A0 (en) 2006-12-10
EP1665996A2 (en) 2006-06-07
EP1365699A2 (en) 2003-12-03
IL157684A0 (en) 2004-03-28
WO2002069825A2 (en) 2002-09-12
JP2004530464A (ja) 2004-10-07
CN1568163A (zh) 2005-01-19
EP1665996A3 (en) 2007-11-28
WO2002069825A3 (en) 2003-02-06
CN1872363A (zh) 2006-12-06
CA2439882A1 (en) 2002-09-12
IL177597A0 (en) 2006-12-10
US20060009750A1 (en) 2006-01-12
US20070027440A1 (en) 2007-02-01
CN1966106A (zh) 2007-05-23
US20020173780A1 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
JP2006334438A (ja) 光美容処置及び光皮膚処置のための装置及び方法
Patil Overview of lasers
AU742982B2 (en) Pulsed filament lamp for dermatological treatment
RU2181571C2 (ru) Устройство для терапевтической и косметологической фотообработки биотканей и способ его использования
US5968034A (en) Pulsed filament lamp for dermatological treatment
EP1078604B1 (en) Device for therapeutic electromagnetic treatment
JP3245426B2 (ja) 皮膚科学上の被検物を処置するためのアレキサンドライトレーザシステム
US5630811A (en) Method and apparatus for hair removal
US7998181B2 (en) System and method utilizing guided fluorescence for high intensity applications
US20080183162A1 (en) Methods And Devices For Fractional Ablation Of Tissue
US20060206103A1 (en) Dermatological treatment device
US20080200908A1 (en) Light beam wavelength mixing for treating various dermatologic conditions
WO2008070851A2 (en) Use of fractional emr technology on incisions and internal tissues
AU2002306584A1 (en) Apparatus and method for photocosmetic and photodermatological treatment
CN112438799B (zh) 用于多束组织治疗的尖端件
AU2006201454A1 (en) Apparatus and method for treatment of skin
AU2006203488A1 (en) Apparatus for treatment on tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202