JP2006333742A - Cell and method for transducing dna into cell - Google Patents

Cell and method for transducing dna into cell Download PDF

Info

Publication number
JP2006333742A
JP2006333742A JP2005160013A JP2005160013A JP2006333742A JP 2006333742 A JP2006333742 A JP 2006333742A JP 2005160013 A JP2005160013 A JP 2005160013A JP 2005160013 A JP2005160013 A JP 2005160013A JP 2006333742 A JP2006333742 A JP 2006333742A
Authority
JP
Japan
Prior art keywords
sequence
cell
loxp
dna
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160013A
Other languages
Japanese (ja)
Inventor
Fumiyo Saito
文代 齋藤
Hirofumi Yokota
弘文 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemicals Evaluation & Res Ins
Chemicals Evaluation and Research Institute
Original Assignee
Chemicals Evaluation & Res Ins
Chemicals Evaluation and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicals Evaluation & Res Ins, Chemicals Evaluation and Research Institute filed Critical Chemicals Evaluation & Res Ins
Priority to JP2005160013A priority Critical patent/JP2006333742A/en
Publication of JP2006333742A publication Critical patent/JP2006333742A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for transducing a DNA into a cell, by which the cell capable of being used for RNAi method or the like can efficiently be produced in a short time. <P>SOLUTION: This method for transducing the DNA into the cell comprises making Cre enzyme to act on a cell and a donor vector to stably transduce the insertion DNA of the donor vector into the cell. The cell is a cell in which an accept vector having lox 66 sequence represented by a base sequence having a specific sequence or lox 71 sequence represented by a base sequence having a specified sequence, and lox P sequence represented by a base sequence having a specific sequence are stably inserted into a region not containing exon and intron on the genome. The donor vector has an accept vector-free sequence among the lox 66 sequence and the lox 71 sequence, the loxP sequence, and an inserted DNA inserted between the lox 66 sequence or lox 71 sequence and the loxP sequence. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、所定の塩基配列を安定に有する細胞、及び前記細胞に組み換え酵素を作用させて所望のDNAを安定に導入する細胞へのDNA導入方法に関する。   The present invention relates to a cell having a predetermined base sequence stably, and a method for introducing DNA into a cell in which a desired enzyme is stably introduced by allowing a recombinant enzyme to act on the cell.

近年、ゲノムプロジェクトにより様々な生物種のゲノム配列が解明され、生命現象を司る遺伝子の種類や数が推定されてきているが、その機能については未知なものが多い。ヒトにおいては、疾患原因遺伝子の同定を目的とし、ゲノム情報をもとに遺伝子領域の特定や遺伝子からのタンパク質発現量を網羅的に解析する技術(トランスクリプトーム解析、プロテオーム解析等)が開発されている。しかし、個々の遺伝子の機能については解明が進んでおらず、ゲノム配列情報からの疾患メカニズムの推定には限界があるのが現状である。   In recent years, genome projects of various species have been elucidated by the genome project, and the types and numbers of genes responsible for life phenomena have been estimated, but there are many unknown functions. In humans, technologies (transcriptome analysis, proteome analysis, etc.) have been developed for the purpose of identifying disease-causing genes, and comprehensive analysis of gene region identification and protein expression from genes based on genomic information. ing. However, the functions of individual genes have not been elucidated, and there is a limit to the estimation of disease mechanisms from genome sequence information.

従来、ほ乳類において個々の遺伝子機能を解析する方法には、生体(in vivo)又は培養細胞(in vitro)において、目的遺伝子を消失させ(ノックアウト)あるいは導入して(ノックイン)その影響を調べる方法がある。   Conventionally, as a method for analyzing individual gene functions in mammals, there is a method in which the target gene is lost (knocked out) or introduced (knocked in) in a living body (in vivo) or a cultured cell (in vitro) and the effect is examined. is there.

ノックアウト法は、標的とする遺伝子に変異を導入してその遺伝子を消失させる方法である。   The knockout method is a method of introducing a mutation into a target gene and eliminating the gene.

In vivoノックアウト法では、ヒトにゲノム配列が近く成熟期間が短いマウスが多用されているが、標的とする遺伝子に変異を導入してノックアウトしたマウス個体の作製には最低でも1系統につき約1年を要する。in vitroの系では、ノックアウトしたマウス生体から分取した細胞を使用するので、ノックアウトした細胞を得るのに要する期間はin vivoの系と同様約1年である。   In the in vivo knockout method, a mouse having a genome sequence close to that of humans and a short maturation period is frequently used, but at least one year per strain is required to produce a mouse individual knocked out by introducing a mutation into a target gene. Cost. In the in vitro system, cells collected from the knocked-out mouse body are used, and therefore the period required to obtain the knocked-out cell is about one year, as in the in vivo system.

ノックアウト法は、in vivo及びin vitroのいずれの系においても個体や細胞の作製に時間がかかるため、最近注目されているのが標的遺伝子を消失させずに遺伝子の発現を抑制する方法(ノックダウン法)である。   Since the knockout method takes time to produce individuals and cells in both in vivo and in vitro systems, a method that suppresses gene expression without losing the target gene is recently attracting attention (knockdown) Law).

ノックダウンの代表的な方法としては、発現するmRNAの機能を特異的に阻害するRNAi(RNA interference;RNA干渉)法がある。RNAi法においては、生体又は培養細胞のゲノムに標的遺伝子から発現するmRNAに相補的な配列を有するsiRNA (small interference RNA;スモールインターフェレンスRNA)やshRNA(short heapin RNA;ショートヘアピンRNA)を発現するDNAを導入する方法、もしくはオリゴ合成したsiRNAやshRNAを一過的に細胞内に導入する方法などがある。siRNAやshRNAは二本鎖RNA切断酵素の一種であるダイサー(Dicer)で切断された後、siRNA/タンパク質複合体(RNA−induced silencing complex(RISC))に取り込まれる。siRNAと相補的な配列を有するmRNAは、そのRISC複合体によって認識され、RISCに含まれるタンパク質によって切断されてその機能を消失する。   As a typical method of knockdown, there is an RNAi (RNA interference) method that specifically inhibits the function of expressed mRNA. In the RNAi method, siRNA (small interference RNA) or shRNA (short hairpin RNA) having a sequence complementary to mRNA expressed from a target gene is expressed in the genome of a living body or a cultured cell. There are a method of introducing DNA to be performed, a method of transiently introducing oligo-synthesized siRNA and shRNA into cells, and the like. siRNA and shRNA are cleaved by Dicer, which is a kind of double-stranded RNA cleaving enzyme, and then incorporated into a siRNA / protein complex (RNA-induced silencing complex (RISC)). mRNA having a sequence complementary to siRNA is recognized by the RISC complex and cleaved by the protein contained in RISC to lose its function.

RNAi法においてsiRNAやshRNAを発現するDNAは細胞本来の機能を阻害しないゲノム上の領域であれば挿入が可能であるので、ノックアウト法に比較して挿入可能な範囲が広い。また、DNAの2本鎖のいずれか一方にsiRNA又はshRNAを発現するDNAを挿入すればよく、2本鎖の両方に存在する標的遺伝子に変異を導入する必要があるノックアウト法に比較して、遺伝子発現が抑制されたマウス個体や培養細胞を作製する期間が飛躍的に短縮できる。RNAi法において、in vivoマウス個体を作製する期間は約半年、in vitro培養細胞を作成する期間は約3ヶ月である。   In the RNAi method, siRNA or shRNA-expressing DNA can be inserted as long as it is a region on the genome that does not inhibit the original function of the cell, so the range of insertion is wider compared to the knockout method. Moreover, what is necessary is just to insert the DNA which expresses siRNA or shRNA in any one of the double strands of DNA, and compared with the knockout method which needs to introduce | transduce a mutation into the target gene which exists in both double strands, The period for producing mouse individuals and cultured cells in which gene expression is suppressed can be dramatically shortened. In the RNAi method, the period for producing an in vivo mouse individual is about half a year, and the period for producing an in vitro cultured cell is about 3 months.

特許文献1には、loxP配列及び変異lox配列を有するベクターを所定の遺伝子に導入した細胞及びノックアウトマウスが記載されている。この文献によれば、組み換え酵素(Cre酵素)を利用したlox/Creシステムにより細胞に導入したベクター内のlox部位に任意の遺伝子を挿入できるとある。   Patent Document 1 describes a cell and a knockout mouse in which a vector having a loxP sequence and a mutant lox sequence is introduced into a predetermined gene. According to this document, an arbitrary gene can be inserted into a lox site in a vector introduced into a cell by a lox / Cre system using a recombinant enzyme (Cre enzyme).

この文献に記載の細胞やノックアウトマウスは、所定の遺伝子がloxP及び変異lox配列を含むベクターで破壊されたものであるので、他の遺伝子の機能を調べる際にはその遺伝子を消滅させることが必要になり、ノックアウトマウス自体の作製期間を短縮するものではない。組み換え酵素により細胞に任意のDNAを挿入するとしても内在性遺伝子の破壊により細胞本来の機能の一部が既に失われているので、挿入したDNAによる細胞への影響を正確に判定することができず、RNAi法を適用することはできない。
特開2002−369689号公報(特許請求の範囲)
In the cells and knockout mice described in this document, a predetermined gene is disrupted with a vector containing loxP and a mutant lox sequence, so it is necessary to extinguish that gene when examining the functions of other genes. Therefore, the preparation period of the knockout mouse itself is not shortened. Even if any DNA is inserted into the cell by a recombinant enzyme, the intrinsic function of the cell has already been lost due to the destruction of the endogenous gene, so the influence of the inserted DNA on the cell can be accurately determined. Therefore, the RNAi method cannot be applied.
JP 2002-369689 A (Claims)

RNAi法において、siRNA又はshRNAを発現させる配列を有するDNAを細胞のゲノムへ挿入する際には、通常電気刺激やウイルス感染による方法が多く用いられる。これらの方法によるDNAの挿入は、挿入位置や挿入されるDNAの数をコントロールすることができず、DNAはゲノム上へランダムに挿入される。上述したように、RNAi法は、ゲノムから発現するmRNAの機能を阻害することにより細胞の喪失した機能を調べて内在性遺伝子の機能を決定する方法であるので、siRNA又はshRNAを発現するDNAは細胞本来の機能を妨げない位置に導入することが要求される。従って、RNAi法を行うに際しては、DNAの挿入を行う度に挿入位置をゲノム解析により特定して細胞の機能を妨げない位置に導入された細胞を選定する必要があり、多大な手間と時間を要している。   In the RNAi method, when a DNA having a sequence that expresses siRNA or shRNA is inserted into the genome of a cell, a method based on electrical stimulation or virus infection is often used. In the insertion of DNA by these methods, the insertion position and the number of inserted DNAs cannot be controlled, and the DNA is randomly inserted into the genome. As described above, the RNAi method is a method for determining the function of an endogenous gene by examining the lost function of a cell by inhibiting the function of mRNA expressed from the genome. Therefore, the DNA expressing siRNA or shRNA must be It is required to be introduced at a position that does not interfere with the original function of the cell. Therefore, when performing the RNAi method, each time DNA is inserted, it is necessary to specify the insertion position by genome analysis and select a cell introduced at a position that does not interfere with the function of the cell. I need it.

本発明者は、所定の配列を有するアクセプトベクターを予め細胞のゲノム上の内在性遺伝子を傷つけない領域に安定に挿入しておき、このアクセプトベクターと、所望のDNAが挿入してあるドナーベクターとを組み換え酵素を用いて組み換えることにより、所望のDNAをゲノムの所定位置に安定に挿入した細胞が容易に得られることを見出した。更に、挿入するDNAを適宜選択することにより得られた細胞が目的遺伝子のノックインやRNAi法などを用いた目的遺伝子のノックダウンに使用できることを確認し、本発明を完成するに到った。   The present inventor stably inserts an accept vector having a predetermined sequence into a region that does not damage an endogenous gene on the cell genome in advance, and the accept vector and a donor vector into which a desired DNA is inserted It was found that by recombining with a recombination enzyme, cells in which the desired DNA was stably inserted at a predetermined position in the genome could be easily obtained. Furthermore, it was confirmed that the cells obtained by appropriately selecting the DNA to be inserted can be used for knocking down the target gene using the target gene knock-in or RNAi method, and the present invention has been completed.

即ち、上記課題を解決する本発明は以下に記載するものである。   That is, the present invention for solving the above problems is described below.

〔1〕 配列番号1で示されるlox66配列又は配列番号2で示されるlox71配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞。   [1] An accept vector having a lox66 sequence represented by SEQ ID NO: 1 or a lox71 sequence represented by SEQ ID NO: 2 and a loxP sequence represented by SEQ ID NO: 3 is stable in an exon and intron-free region on the genome. Inserted cells.

〔2〕 配列番号4で示されるlox71/66配列と、配列番号3で示されるloxP配列と、挿入DNAとが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞であって、挿入DNAがlox71/66配列とloxP配列との間に安定に挿入された細胞。   [2] A cell in which the lox71 / 66 sequence represented by SEQ ID NO: 4, the loxP sequence represented by SEQ ID NO: 3, and the inserted DNA are stably inserted into a region not containing exons and introns on the genome. , Cells in which the inserted DNA is stably inserted between the lox71 / 66 and loxP sequences.

〔3〕 lox71/66配列とloxP配列との間に、マーカー遺伝子と、前記マーカー遺伝子発現のためのプロモータと、前記マーカー遺伝子の転写終結シグナルとを有する〔2〕に記載の細胞。   [3] The cell according to [2], which has a marker gene, a promoter for expressing the marker gene, and a transcription termination signal for the marker gene between the lox71 / 66 sequence and the loxP sequence.

〔4〕 配列番号1で示されるlox66配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、配列番号2で示されるlox71配列と、loxP配列と、前記lox71配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。   [4] A cell in which an accept vector having the lox66 sequence represented by SEQ ID NO: 1 and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome; The Cre vector is allowed to act on a donor vector having the indicated lox71 sequence, the loxP sequence, and the inserted DNA inserted between the lox71 and loxP sequences, and the inserted DNA of the donor vector is stably introduced into the cells. To introduce DNA into cells.

〔5〕 配列番号2で示されるlox71配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、配列番号1で示されるlox66配列と、loxP配列と、前記lox66配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。   [5] A cell in which an accept vector having the lox71 sequence represented by SEQ ID NO: 2 and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome; The Cre vector is allowed to act on a donor vector having the lox66 sequence shown, the loxP sequence, and the inserted DNA inserted between the lox66 and loxP sequences, and the inserted DNA of the donor vector is stably introduced into the cells. To introduce DNA into cells.

〔6〕 3’側変異loxP配列又は5’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞。   [6] A cell in which an accept vector having a 3′-mutated loxP sequence or a 5′-mutated loxP sequence and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome .

〔7〕 3’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、5’側変異loxP配列と、loxP配列と、前記5’側変異loxP配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。   [7] A cell in which an accept vector having a 3 ′ mutant loxP sequence and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome, and a 5 ′ mutant loxP sequence , A Cre enzyme is allowed to act on a donor vector having a loxP sequence and an inserted DNA inserted between the 5 ′ mutant loxP sequence and the loxP sequence, thereby stably introducing the inserted DNA of the donor vector into the cell. To introduce DNA into cells.

〔8〕 5’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、3’側変異loxP配列と、loxP配列と、前記3’側変異loxP配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。   [8] A cell in which an accept vector having a 5′-mutated loxP sequence and a loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome, and a 3′-mutated loxP sequence , A Cre enzyme is allowed to act on a donor vector having a loxP sequence and an inserted DNA inserted between the 3 ′ mutant loxP sequence and the loxP sequence, thereby stably introducing the inserted DNA of the donor vector into the cell. To introduce DNA into cells.

本発明においては、ゲノム上の内在性遺伝子を破壊しない領域に予め導入してあるアクセプトベクターに目的とするDNAを導入するので、クローンを作製する度に煩雑なゲノム解析を行ってDNAが所望の位置に導入された細胞を選定する必要がない。このため、短期間で効率よく目的のDNAを安定に導入した細胞を得ることができる。細胞へのDNAの導入は、loxP配列と、loxP配列に変異を導入したlox66、lox71配列とを組み合わせて利用するので、導入後の脱落率が低く、効率よく目的のDNAを導入した形質転換体を得ることができる。   In the present invention, since the target DNA is introduced into an accept vector that has been previously introduced into a region that does not destroy the endogenous gene on the genome, a complicated genome analysis is performed every time a clone is prepared, and the desired DNA is obtained. There is no need to select cells introduced into the location. For this reason, it is possible to obtain cells into which the target DNA has been stably and efficiently introduced in a short period of time. Since the introduction of DNA into cells uses a combination of the loxP sequence and the lox66 and lox71 sequences in which mutations are introduced into the loxP sequence, the dropout rate after introduction is low, and a transformant in which the target DNA is efficiently introduced Can be obtained.

本発明のDNA導入方法により得られる細胞は、導入するDNAを目的に応じて選択することにより、目的遺伝子のノックイン、RNAi法等の目的遺伝子のノックダウン等に使用できる。   The cells obtained by the DNA introduction method of the present invention can be used for knocking in a target gene, knocking down a target gene such as RNAi method, etc. by selecting the DNA to be introduced according to the purpose.

以下、図1を参照して本発明のDNA導入方法を説明する。   Hereinafter, the DNA introduction method of the present invention will be described with reference to FIG.

DNAを導入する細胞(親株)1には、予め配列3(lox71配列)と、配列5(loxP配列)とを有するアクセプトベクター7が安定に挿入してある。   An accept vector 7 having a sequence 3 (lox71 sequence) and a sequence 5 (loxP sequence) is stably inserted in advance into a cell (parent strain) 1 into which DNA is introduced.

loxPは大腸菌P1ファージ由来の配列で、図2に示すように、5’末端から3’末端へむかって順に、センス側反復配列、スペーサ、アンチセンス側反復配列の3つの領域で構成されることが知られている。loxPの配列は、5’末端から3’末端方向の配列と、3’末端から5’末端方向の配列が、互いに相補的になっている。 loxP is a sequence derived from E. coli P 1 phage, as shown in FIG. 2, in order toward 'from the 3' end 5 to end, the sense side repeats, spacers, made up of three regions of the antisense side repeats It is known. In the sequence of loxP, the sequence from the 5 ′ end to the 3 ′ end and the sequence from the 3 ′ end to the 5 ′ end are complementary to each other.

lox71は配列番号3で示される塩基配列で、loxP配列のセンス側反復配列に変異を導入した配列である。   lox71 is a base sequence represented by SEQ ID NO: 3, and is a sequence in which a mutation is introduced into the sense side repetitive sequence of the loxP sequence.

細胞1におけるアクセプトベクター7の挿入位置は、ゲノム上のタンパク質発現に関与しない領域、即ちエキソンとイントロンを含まない領域とする。ゲノム上のエキソンとイントロンを含まない領域としては、非翻訳領域、遺伝子間DNAの領域等を挙げることができる。   The insertion position of the accept vector 7 in the cell 1 is a region not involved in protein expression on the genome, that is, a region not containing exons and introns. Examples of regions that do not contain exons and introns on the genome include untranslated regions and intergenic DNA regions.

アクセプトベクター7には、lox71、loxPの他に、マーカー遺伝子27や、マーカー遺伝子発現のためのプロモータ25、マーカー遺伝子の転写終結シグナル29等の他の配列が挿入されていてもよい。マーカー遺伝子としては公知のものを使用できるが、例えばゼオシン耐性遺伝子、ブラストシジン耐性遺伝子等を挙げることができる。   In addition to lox71 and loxP, other sequences such as a marker gene 27, a promoter 25 for marker gene expression, a transcription termination signal 29 of the marker gene may be inserted into the accept vector 7. Known marker genes can be used, and examples thereof include a zeocin resistance gene and a blasticidin resistance gene.

上記アクセプトベクターを有する細胞1(親株)は、例えば以下の方法により製造することができる。   The cell 1 (parent strain) having the accept vector can be produced, for example, by the following method.

まず、lox71配列と、loxP配列とを有するアクセプトベクターを含むDNA断片を、制限酵素等を用いた公知の方法により作製する。次に、このDNA断片を電気刺激により哺乳類培養細胞(HeLa細胞)のゲノムへ導入する。アクセプトベクターにマーカー遺伝子が導入してある場合には、導入してあるマーカー遺伝子に応じて薬剤を添加した培地で細胞を培養し、マーカー遺伝子がゲノムに導入された細胞が形成するコロニーを選択する。得られた細胞についてサザンブロット法、PCR法等によるゲノム解析を行い、ゲノム上のエキソンとイントロンを含まない領域にアクセプトベクターが1コピー導入されたクローンを選定し、細胞1(親株)とする。   First, a DNA fragment containing an accept vector having a lox71 sequence and a loxP sequence is prepared by a known method using a restriction enzyme or the like. Next, this DNA fragment is introduced into the genome of a mammalian cultured cell (HeLa cell) by electrical stimulation. When a marker gene is introduced into the accept vector, the cells are cultured in a medium to which a drug is added according to the introduced marker gene, and colonies formed by the cells into which the marker gene has been introduced into the genome are selected. . The obtained cells are subjected to genome analysis by Southern blotting, PCR, etc., and a clone in which one copy of the accept vector is introduced into a region not containing exons and introns on the genome is selected and designated as cell 1 (parent strain).

一方、ドナーベクター9は、図1中11で示されるlox66と、13で示されるloxP配列とを有している。lox66は配列番号1で示される塩基配列で、loxPのアンチセンス側反復配列に変異を導入した配列である。ドナーベクターのlox66とloxPとの間には細胞1に挿入する所望の配列を有するDNA(以下、挿入DNAと称す)15が導入してある。   On the other hand, the donor vector 9 has a lox66 indicated by 11 in FIG. 1 and a loxP sequence indicated by 13. lox66 is a base sequence represented by SEQ ID NO: 1, and is a sequence in which mutations are introduced into the antisense sequence of loxP. A DNA 15 having a desired sequence to be inserted into the cell 1 (hereinafter referred to as insert DNA) is introduced between lox66 and loxP of the donor vector.

ドナーベクター9に導入されたlox66配列とloxP配列との間には、挿入DNA15のほかに、マーカー遺伝子33、マーカー遺伝子発現のためのプロモータ31、マーカー遺伝子の転写終結シグナル35、挿入DNA発現のためのプロモータ等を有していてもよい。マーカー遺伝子としては、細胞1に導入してあるマーカー遺伝子27、28と異なる公知のものが使用できる。   Between the lox66 sequence and the loxP sequence introduced into the donor vector 9, in addition to the inserted DNA 15, a marker gene 33, a promoter 31 for marker gene expression, a transcription termination signal 35 for the marker gene, for expression of the inserted DNA May have a promoter or the like. As the marker gene, a known gene different from the marker genes 27 and 28 introduced into the cell 1 can be used.

ドナーベクター9は例えば以下のようにして調製することができる。   For example, the donor vector 9 can be prepared as follows.

まず、lox66とloxPとの間に挿入DNA15が導入されたDNA断片を、制限酵素等を用いた公知の方法により作製する。次いで、プラスミド、ファージ等の公知のベクターとDNA断片とを同じ制限酵素で処理し、それぞれの粘着末端同士をDNAリガーゼでつなぎ合わせることにより調製する。   First, a DNA fragment into which inserted DNA 15 is introduced between lox66 and loxP is prepared by a known method using a restriction enzyme or the like. Next, a known vector such as a plasmid or phage and a DNA fragment are treated with the same restriction enzyme, and the respective sticky ends are joined together with a DNA ligase.

細胞1への挿入DNA15の導入は、細胞1とドナーベクター9に組み換え酵素41を作用させてアクセプトベクター7と、細胞1へ導入したドナーベクター9との間でDNAを組み換えることにより行う。   The insertion DNA 15 is introduced into the cell 1 by allowing the recombinant enzyme 41 to act on the cell 1 and the donor vector 9 to recombine the DNA between the accept vector 7 and the donor vector 9 introduced into the cell 1.

組み換え酵素としては、Cre酵素を使用する。Cre酵素は、loxPのスペーサ配列を切断し、粘着末端同士を結合して組み換えを行う酵素である。loxPの塩基対にCre酵素を作用させたときの切断位置を図2に示す。   As the recombinant enzyme, Cre enzyme is used. The Cre enzyme is an enzyme that recombines by cleaving the loxP spacer sequence and joining sticky ends together. The cleavage position when the Cre enzyme is allowed to act on loxP base pairs is shown in FIG.

Cre酵素をアクセプトベクター7とドナーベクター9に作用させるに際しては、Cre酵素発現ベクターを公知の方法により細胞1へ導入する方法やCre酵素を添加した培地で細胞1を培養する方法等が採用できる。   When the Cre enzyme is allowed to act on the accept vector 7 and the donor vector 9, a method of introducing the Cre enzyme expression vector into the cell 1 by a known method, a method of culturing the cell 1 in a medium to which the Cre enzyme is added, or the like can be employed.

Cre酵素は、塩基対を形成するloxPの2本鎖の一方又は両方を、センス側又はアンチセンス側のいずれかに変異が導入された変異lox配列に置き換えた場合であっても、スペーサ配列の切断、結合を行う(但し、2本鎖の両方に変異loxを使用する場合であって、変異の導入位置がセンス側同士又はアンチセンス側同士の組み合わせである場合を除く)。従って、loxPとlox71、loxPとlox66、lox71とlox66の間でも、loxP同士の場合と同様に配列の組み換えが行われる。   The Cre enzyme has a spacer sequence even when one or both of the two loxP strands forming a base pair are replaced with a mutant lox sequence in which a mutation is introduced on either the sense side or the antisense side. Cleavage and binding are performed (provided that the mutation lox is used for both double strands, and the mutation introduction position is a combination of the sense sides or the antisense sides). Therefore, sequence recombination is performed between loxP and lox71, between loxP and lox66, and between lox71 and lox66 as in the case of loxP.

アクセプトベクター7とドナーベクター9にCre酵素を作用させると、アクセプトベクターのlox71とドナーベクターのlox66、アクセプトベクターのloxPとドナーベクターのloxPの間でCre酵素による組み換えがおこる。その結果、ドナーベクター9のlox66とloxPの間の配列19がゲノムに安定に組み込まれた細胞(子株)17を得る。   When the Cre enzyme is allowed to act on the accept vector 7 and the donor vector 9, recombination by the Cre enzyme occurs between the accept vector lox71 and the donor vector lox66, and between the accept vector loxP and the donor vector loxP. As a result, a cell (child strain) 17 in which the sequence 19 between lox66 and loxP of the donor vector 9 is stably integrated into the genome is obtained.

この組み換えにより、細胞17のドナーベクターに由来する配列19の両端には、図1中、21で示されるlox71/66配列と、23で示されるloxP配列とが形成される。lox71/66配列は、スペーサ配列の両端に、それぞれlox71のセンス側反復配列と、lox66のアンチセンス側反復配列を有する配列を示す。lox71/66の塩基配列は、配列番号4に示す配列である。   By this recombination, the lox71 / 66 sequence indicated by 21 and the loxP sequence indicated by 23 in FIG. 1 are formed at both ends of the sequence 19 derived from the donor vector of the cell 17. The lox71 / 66 sequence is a sequence having a lox71 sense repeat sequence and a lox66 antisense repeat sequence at both ends of the spacer sequence. The base sequence of lox71 / 66 is the sequence shown in SEQ ID NO: 4.

loxPのセンス側反復配列とアンチセンス側反復配列の両方に変異が導入されたlox71/66配列にはCre酵素はほとんど作用しない。そのため、細胞17からの配列19の脱落はごく僅かで、ゲノム上に挿入DNA15が安定に導入された細胞17を高い収率で得ることができる。本発明において「安定に」とは、細胞分裂の過程でゲノム上から所定の塩基配列が脱落せず半永久的に保持される状態をいう。   The Cre enzyme hardly acts on the lox71 / 66 sequence in which mutations are introduced into both the sense side repeat sequence and the antisense side repeat sequence of loxP. Therefore, the loss of the sequence 19 from the cell 17 is negligible, and the cell 17 in which the inserted DNA 15 is stably introduced onto the genome can be obtained in high yield. In the present invention, “stable” refers to a state where a predetermined base sequence is not dropped from the genome during cell division and is semipermanently retained.

本発明においては、挿入DNA15の配列を目的に応じて適宜選択することにより、得られる細胞に様々な機能を付与でき、その結果様々な用途に使用することができる。   In the present invention, by appropriately selecting the sequence of the inserted DNA 15 according to the purpose, various functions can be imparted to the obtained cells, and as a result, it can be used for various applications.

例えば、挿入DNAに標的遺伝子から発現するmRNAを阻害するsiRNA又はshRNAを発現させるような配列を有するDNAを選択した場合には、得られた細胞はRNAi法に使用できる。挿入DNAにレポーター遺伝子やレポーター遺伝子の応答配列を組み込んだ場合には、得られた細胞はレポーターアッセイに使用することができる。   For example, when a DNA having a sequence that expresses siRNA or shRNA that inhibits mRNA expressed from the target gene in the inserted DNA is selected, the obtained cells can be used in the RNAi method. When a reporter gene or a reporter gene response element is incorporated into the inserted DNA, the resulting cells can be used for reporter assays.

なお、図1においては、アクセプトベクターの配列3にlox71、ドナーベクターの配列11にlox66を使用する場合について示したが、配列3にlox66、配列11にlox71を使用する場合についても同様に挿入DNA15を細胞1に導入することができる。   Although FIG. 1 shows the case where lox71 is used for sequence 3 of the accept vector and lox66 is used for sequence 11 of the donor vector, the insertion DNA 15 is similarly applied when lox66 is used for sequence 3 and lox71 is used for sequence 11. Can be introduced into cell 1.

更に、アクセプトベクターの配列3とドナーベクターの配列11には、lox71とlox66に代えて、loxPのセンス側反復配列が一部変異した5’側変異loxPと、loxPのアンチセンス側反復配列が一部変異した3’側変異loxPとを組み合わて使用することが可能である。5’側変異loxPはloxPのセンス側反復配列の2〜7塩基が、3’側変異loxPはloxPのアンチセンス側反復配列の2〜7塩基が他の塩基で置換された配列である。但し、5’側変異loxPのスペーサ配列から5’末端へ向かう塩基配列と、3’側変異loxPのスペーサ配列から3’末端へ向かう塩基配列が同じ配列となる組み合わせは、配列19が脱落する割合が高くなるので、異なる組み合わせを選択することが好ましい。   Furthermore, the accept vector sequence 3 and the donor vector sequence 11 have a single 5 ′ mutant loxP in which the loxP sense side repeat sequence is partially mutated instead of lox71 and lox66, and the loxP antisense side repeat sequence. It can be used in combination with a partially mutated 3 ′ mutant loxP. The 5'-side mutation loxP is a sequence in which 2 to 7 bases of the loxP sense-side repeat sequence is substituted, and the 3'-side mutation loxP is a sequence in which 2 to 7 bases of the loxP antisense-side repeat sequence are substituted with other bases. However, in the combination in which the base sequence from the spacer sequence of the 5′-mutant loxP toward the 5′-end and the base sequence from the spacer sequence of the 3′-mutant loxP to the 3′-end are the same sequence, the ratio at which the sequence 19 is dropped Since it becomes high, it is preferable to select a different combination.

5’側変異loxPと3’側変異loxPの一例を以下に示す。以下の配列中、小文字で示した塩基は、loxP配列と異なる塩基である。   An example of 5 ′ side mutation loxP and 3 ′ side mutation loxP is shown below. In the following sequences, the bases shown in lower case are different bases from the loxP sequence.

〔5’側変異loxP〕
(a) 5'-AatgCaTgcTATA GCATACAT TATACGAAGTTAT-3'(配列番号24)
(b) 5'-taccgggCGTATA GCATACAT TATACGAAGTTAT-3'(配列番号25)
(c) 5'-tagcgTTCGTATA GCATACAT TATACGAAGTTAT-3'(配列番号26)
(d) 5'-taccgggCGTATA GCATACAT TATACGAAGTTAT-3'(配列番号27)
〔3’側変異loxP〕
(a) 5'-ATAACTTCGTATA GCATACAT TATAgGtAccgAg-3'(配列番号28)
(b) 5'-ATAACTTCGTATA GCATACAT TATACGcccggta-3'(配列番号29)
(c) 5'-ATAACTTCGTATA GCATACAT TATACGcAcggta-3'(配列番号30)
(d) 5'-ATAACTTCGTATA GCATACAT TATAgGtAccgta-3'(配列番号31)
(e) 5'-ATAACTTCGTATA GCATACAT TATACGtAccggg-3'(配列番号32)
[5 'side mutation loxP]
(a) 5'-AatgCaTgcTATA GCATACAT TATACGAAGTTAT-3 '(SEQ ID NO: 24)
(b) 5'-taccgggCGTATA GCATACAT TATACGAAGTTAT-3 '(SEQ ID NO: 25)
(c) 5'-tagcgTTCGTATA GCATACAT TATACGAAGTTAT-3 '(SEQ ID NO: 26)
(d) 5'-taccgggCGTATA GCATACAT TATACGAAGTTAT-3 '(SEQ ID NO: 27)
[3 'side mutation loxP]
(a) 5'-ATAACTTCGTATA GCATACAT TATAgGtAccgAg-3 '(SEQ ID NO: 28)
(b) 5'-ATAACTTCGTATA GCATACAT TATACGcccggta-3 '(SEQ ID NO: 29)
(c) 5'-ATAACTTCGTATA GCATACAT TATACGcAcggta-3 '(SEQ ID NO: 30)
(d) 5'-ATAACTTCGTATA GCATACAT TATAgGtAccgta-3 '(SEQ ID NO: 31)
(e) 5'-ATAACTTCGTATA GCATACAT TATACGtAccggg-3 '(SEQ ID NO: 32)

製造例1(アクセプトベクターの作製)
(1)lox71断片の増幅
下記成分をPCRチューブへ入れて混合した。
・pDNR-1r (Clontech社製) 1 ml
・5'Xho-lox71 (5'-TAGCTCgagAAAGATCCtaccgTTCGTATAGC-3':配列番号5)[10 mM]
1 ml
・3'Xho-lox71 (5'-cgcCTCgagTCACTAAATAATAG-3':配列番号6) [10 mM] 1 ml
・dNTP [2 mM] 10 ml
・Mg2+[10 mM] 6 ml
・10×buffer (付属品) 10 ml
・ddH2O 69 ml
・KOD plus (TOYOBO社製;酵素) 2 ml
100 ml
PCRチューブに蓋をした後、pDNR-1rを鋳型として、PCRにより両端にXhoIサイトを付加してあるlox71断片の増幅を行った。PCR条件は、95℃-30秒、53℃-30秒、68℃-30秒を30サイクルとした。
Production Example 1 (Production of Accept Vector)
(1) Amplification of lox71 fragment The following components were placed in a PCR tube and mixed.
・ PDNR-1r (Clontech) 1 ml
-5'Xho-lox71 (5'-TAGCTCgagAAAGATCCtaccgTTCGTATAGC-3 ': SEQ ID NO: 5) [10 mM]
1 ml
・ 3'Xho-lox71 (5'-cgcCTCgagTCACTAAATAATAG-3 ': SEQ ID NO: 6) [10 mM] 1 ml
・ DNTP [2 mM] 10 ml
・ Mg 2+ [10 mM] 6 ml
・ 10 × buffer (accessory) 10 ml
・ DdH 2 O 69 ml
・ KOD plus (TOYOBO; enzyme) 2 ml
100 ml
After the PCR tube was capped, the lox71 fragment with the XhoI site added at both ends was amplified by PCR using pDNR-1r as a template. PCR conditions were 95 ° C. for 30 seconds, 53 ° C. for 30 seconds, and 68 ° C. for 30 seconds for 30 cycles.

(2)loxP断片の増幅
下記成分をPCRチューブへ入れて混合した。
・pDNR-1r (Clontech社製) 1 ml
・5'Xba-loxP (5'-GCTTCtagAGCTCCTGAAAGATCC-3':配列番号7)[10 mM] 1 ml
・3'Xba-loxP (5'-TcCtCTAgATAATAGTGAACGGC-3':配列番号8) [10 mM] 1 ml
・dNTP [2 mM] 10 ml
・Mg2+[10 mM] 6 ml
・10×buffer (付属品) 10 ml
・ddH2O 69 ml
・KOD plus (TOYOBO社製;酵素) 2 ml
100 ml
PCRチューブに蓋をした後、pDNR-1rを鋳型として、PCRにより両端にXbaIサイトを付加してあるloxP断片の増幅を行った。PCR条件は、95℃-30秒、53℃-30秒、68℃-30秒を30サイクルとした。
(2) Amplification of loxP fragment The following components were placed in a PCR tube and mixed.
・ PDNR-1r (Clontech) 1 ml
・ 5'Xba-loxP (5'-GCTTCtagAGCTCCTGAAAGATCC-3 ': SEQ ID NO: 7) [10 mM] 1 ml
・ 3'Xba-loxP (5'-TcCtCTAgATAATAGTGAACGGC-3 ': SEQ ID NO: 8) [10 mM] 1 ml
・ DNTP [2 mM] 10 ml
・ Mg 2+ [10 mM] 6 ml
・ 10 × buffer (accessory) 10 ml
・ DdH 2 O 69 ml
・ KOD plus (TOYOBO; enzyme) 2 ml
100 ml
After the PCR tube was capped, the loxP fragment with the XbaI site added to both ends was amplified by PCR using pDNR-1r as a template. PCR conditions were 95 ° C. for 30 seconds, 53 ° C. for 30 seconds, and 68 ° C. for 30 seconds for 30 cycles.

(3)アクセプトベクターの作製
(1)で得られたPCR産物(約110bp)をPCR Purification Kit(QIAGEN社製)により精製した後、XhoIで消化した。XhoI消化したPCR精製産物(約110bp)とXhoI消化したpCMVZeo (Invitrogen社製)とをリガーゼでつなぎ合わせ、p71CMVZeoを作製した。
(3) Preparation of accept vector
The PCR product (about 110 bp) obtained in (1) was purified by PCR Purification Kit (manufactured by QIAGEN) and then digested with XhoI. The XhoI-digested PCR purified product (about 110 bp) and XhoI-digested pCMVZeo (manufactured by Invitrogen) were joined with ligase to prepare p71CMVZeo.

次いで、(2)で得られたPCR産物(約110bp)をPCR Purification Kit(QIAGEN社製)により精製した後、XbaIで消化した。XbaI消化したPCR精製産物(約110bp)とXbaI消化したp71CMVZeoとをリガーゼでつなぎ合わせ、p71CMVZeoP(約3.8Kbp)を作製し、アクセプトベクターとした。得られたアクセプトベクター(p71CMVZeoP)の構成図を図3に示す。   Next, the PCR product (about 110 bp) obtained in (2) was purified by PCR Purification Kit (manufactured by QIAGEN) and then digested with XbaI. The XbaI-digested PCR purified product (about 110 bp) and XbaI-digested p71CMVZeo were connected with ligase to prepare p71CMVZeoP (about 3.8 Kbp), which was used as an accept vector. The block diagram of the obtained accept vector (p71CMVZeoP) is shown in FIG.

なお、アクセプトベクターに挿入されたlox71配列とloxP配列はシーケンサー(ベックマン社製)によって配列と挿入の向きが正しいことを確認した。   The lox71 and loxP sequences inserted into the accept vector were confirmed to be correct in sequence and orientation by a sequencer (Beckman).

製造例2(細胞(親株)の作製)
(1)HeLa細胞へのアクセプトベクターの挿入
実施例1で作製したアクセプトベクター(p71CMVZeoP)20mgをPvuIIで消化し、直鎖状にした。直鎖状アクセプトベクターをTE buffer 50mlに溶解させ、さらに氷冷PBS(-)を50 ml加え、100 mlとした。
Production Example 2 (Production of cells (parent strain))
(1) Insertion of accept vector into HeLa cell 20 mg of the accept vector (p71CMVZeoP) prepared in Example 1 was digested with PvuII to make it linear. The linear acceptor vector was dissolved in 50 ml of TE buffer, and 50 ml of ice-cold PBS (−) was further added to make 100 ml.

培養したHeLa細胞をトリプシン消化により、接着したデイッシュ上から回収し、氷冷PBS(-)0.7mlに懸濁した。この時、細胞数を計測したところ、約1.0×107個であった。 The cultured HeLa cells were collected from the adhered dish by trypsin digestion and suspended in 0.7 ml of ice-cold PBS (−). At this time, when the number of cells was measured, it was about 1.0 × 10 7 .

Gene Pluser Cuvette (サイズ;0.4cm electrode; BioRad社製)へ細胞懸濁液と直鎖状アクセプトベクター溶解液を移し、Gene Pluser (BioRad社製)にセットし、800V、3mFの条件で電気刺激を与えた。   Transfer cell suspension and linear acceptor vector lysate to Gene Pluser Cuvette (size: 0.4cm electrode; BioRad), set to Gene Pluser (BioRad), and apply electrical stimulation under conditions of 800V and 3mF. Gave.

この混合液を細胞培養用の10cmデイッシュに移し、400mg/mlゼオシンを含むDMEM培地で10日〜14日間培養した。   This mixture was transferred to a 10 cm dish for cell culture and cultured in DMEM medium containing 400 mg / ml zeocin for 10 to 14 days.

出現したコロニーを実態顕微鏡下でピックアップし、48ウエル細胞培養プレートへ移した(クローン化)。面積比で約12倍になるまで、通常のDMEM培地で細胞培養を続けた後、細胞をトリプシンによって剥がし、セルバンカーに溶解させ、-80℃で保存した。   The appearing colonies were picked up under a microscope and transferred to a 48-well cell culture plate (cloning). The cell culture was continued in a normal DMEM medium until the area ratio was about 12 times, and then the cells were detached with trypsin, dissolved in a cell banker, and stored at −80 ° C.

(2)細胞株の選別
a) (1)で得られた細胞を殖やし、ゲノム抽出(QIAGEN社)した。
(2) Cell line selection
a) The cells obtained in (1) were grown and subjected to genome extraction (QIAGEN).

b) genomic PCRによってアクセプトベクターが挿入されたことを確認するため、以下の操作を行った。   b) The following operation was performed to confirm that the accept vector was inserted by genomic PCR.

下記成分をPCRチューブへ入れて混合した。
・それぞれのクローンのgenomic DNA 1 ml
・Zeo-S2 (5'-GAGGAGCAGGACTGA-3':配列番号9)[10 mM] 0.2ml
・CMVZeo-MCS-A1 (5'-GTGCTGCAAGGCGATTAAG-3':配列番号10) [10 mM] 0.2ml
・dNTP [2.5 mM] 1.6 ml
・10×buffer (付属品) 2 ml
・ddH2O 15ml
・EX Taq (TAKARA社製;酵素) 0.1ml
20 ml
PCRチューブに蓋をした後、PCRによりゲノムの増幅を行った。PCR条件は、95℃-30秒、55℃-30秒、72℃-30秒を30サイクルとした。PCR産物をアガロースゲル電気泳動に供し、約300bpの位置のバンドの有無を確認した。
The following components were placed in a PCR tube and mixed.
Genomic DNA 1 ml of each clone
・ Zeo-S2 (5'-GAGGAGCAGGACTGA-3 ': SEQ ID NO: 9) [10 mM] 0.2 ml
CMVZeo-MCS-A1 (5'-GTGCTGCAAGGCGATTAAG-3 ': SEQ ID NO: 10) [10 mM] 0.2 ml
・ DNTP [2.5 mM] 1.6 ml
・ 10 × buffer (accessory) 2 ml
・ DdH 2 O 15ml
・ EX Taq (TAKARA; enzyme) 0.1ml
20 ml
After capping the PCR tube, the genome was amplified by PCR. PCR conditions were 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 30 cycles. The PCR product was subjected to agarose gel electrophoresis, and the presence or absence of a band at a position of about 300 bp was confirmed.

c) genomic PCRによってアクセプトベクターが挿入されたことを確認するため、以下の操作を行った。   c) The following operation was performed to confirm that the accept vector was inserted by genomic PCR.

下記成分をPCRチューブへ入れて混合した。
・それぞれのクローンのgenomic DNA 1 ml
・Ori-S1 (5'-CTACACCGAACTGAGATAC-3':配列番号11)[10 mM] 0.2ml
・lox71-zeo (5'-CCGCATAACTTCGTATAATG-3':配列番号12) [10 mM] 0.2ml
・dNTP [2.5 mM] 1.6 ml
・10×buffer (付属品) 2 ml
・ddH2O 15ml
・EX Taq (TAKARA社製;酵素) 0.1ml
20 ml
PCRチューブに蓋をした後、PCRによりゲノムの増幅を行った。PCR条件は、95℃-30秒、55℃-30秒、72℃-30秒を30サイクルとした。PCR産物をアガロースゲル電気泳動に供し、約400bpの位置のバンドの有無を確認した。
The following components were placed in a PCR tube and mixed.
Genomic DNA 1 ml of each clone
・ Ori-S1 (5'-CTACACCGAACTGAGATAC-3 ': SEQ ID NO: 11) [10 mM] 0.2 ml
・ Lox71-zeo (5'-CCGCATAACTTCGTATAATG-3 ': SEQ ID NO: 12) [10 mM] 0.2 ml
・ DNTP [2.5 mM] 1.6 ml
・ 10 × buffer (accessory) 2 ml
・ DdH 2 O 15ml
・ EX Taq (TAKARA; enzyme) 0.1ml
20 ml
After capping the PCR tube, the genome was amplified by PCR. PCR conditions were 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 30 cycles. The PCR product was subjected to agarose gel electrophoresis, and the presence or absence of a band at a position of about 400 bp was confirmed.

d) サザンブロットによってアクセプトベクターが挿入されたことを確認するため、以下の操作を行った。   d) In order to confirm that the accept vector was inserted by Southern blotting, the following operation was performed.

genomicDNAをEcoRIとBglIIで消化し、サザンブロッテイングした。NcoIプローブで検出し、約1.5Kbの位置のバンドの有無を確認した。   Genomic DNA was digested with EcoRI and BglII and Southern blotted. Detection with an NcoI probe confirmed the presence or absence of a band at a position of about 1.5 Kb.

e) サザンブロットによってアクセプトベクターが挿入されたことを確認するため、以下の操作を行った。   e) In order to confirm that the accept vector was inserted by Southern blotting, the following operation was performed.

genomicDNAをBglIIで消化し、サザンブロッテイングした。HinfIプローブで検出し、単一のバンドが出るかどうかを確認した。   Genomic DNA was digested with BglII and Southern blotted. Detection with a HinfI probe confirmed whether a single band appeared.

f) 当りクローンについて、以下の手順によりアクセプトベクター挿入部位近傍のゲノム配列をクローニングした。   f) For each clone, the genomic sequence near the accept vector insertion site was cloned according to the following procedure.

b)、c)で行ったPCR解析とd)、e)で行ったサザンブロットで結果が確認されたクローン(No.55)のgenomicDNAをBglIIで消化した。リガーゼでセルフライゲーションさせ、大腸菌stbl4へ形質転換した。30℃で1時間培養した後、アンピシリンを含むプレートに播き、30℃で培養した。出現したコロニーを培養し、シーケンサー(ベックマン社製)によってアクセプトベクター挿入部位の5’上流側の配列を読んだ。その結果、得られたゲノム配列をデータベース上で検索し、ヒト9番染色体上の一部の配列であることを確認した。   The genomic DNA of the clone (No. 55) whose results were confirmed by the PCR analysis performed in b) and c) and the Southern blot performed in d) and e) was digested with BglII. Self-ligation with ligase and transformation into E. coli stbl4. After culturing at 30 ° C. for 1 hour, the cells were plated on a plate containing ampicillin and cultured at 30 ° C. The appearing colonies were cultured, and the sequence 5 'upstream side of the accept vector insertion site was read by a sequencer (manufactured by Beckman). As a result, the obtained genome sequence was searched on the database and confirmed to be a partial sequence on human chromosome 9.

次に、アクセプトベクター挿入部位を挟んで、3'側下流のゲノム側に4種類のプライマー(5'-gtcttgttctgtagcccaagc-3'(配列番号13)、5'-cagcttgttgagagaacttgc-3'(配列番号14)、5'-catctgtctggagcctcaactttc-3'(配列番号15)、5'-gactcctcccacagtcaccactg-3'(配列番号16))を設定し、PCR反応を行った。
・genomic DNA(クローンNo.55) 1 ml
・Zeo-S2 (5'-GAGGAGCAGGACTGA-3':配列番号17)[10 mM] 0.2ml
・ゲノム側プライマー各種 [10 mM] 0.2ml
・dNTP [2.5 mM] 1.6 ml
・10×buffer (付属品) 2 ml
・ddH2O 15ml
・Platinum Taq (Invitrogen社製;酵素) 0.1ml
20 ml
上記成分を混合し、PCRチューブへ入れて蓋をした後、PCRによりゲノムの増幅を行った。PCR条件は、95℃-30秒、55℃-30秒、72℃-30秒を30サイクルとした。
Next, across the accept vector insertion site, 4 types of primers (5′-gtcttgttctgtagcccaagc-3 ′ (SEQ ID NO: 13), 5′-cagcttgttgagagaacttgc-3 ′ (SEQ ID NO: 14), on the 3 ′ downstream genome side, 5'-catctgtctggagcctcaactttc-3 '(SEQ ID NO: 15) and 5'-gactcctcccacagtcaccactg-3' (SEQ ID NO: 16)) were set, and PCR was performed.
・ Genomic DNA (Clone No. 55) 1 ml
・ Zeo-S2 (5'-GAGGAGCAGGACTGA-3 ': SEQ ID NO: 17) [10 mM] 0.2 ml
・ Genome side primers [10 mM] 0.2 ml
・ DNTP [2.5 mM] 1.6 ml
・ 10 × buffer (accessory) 2 ml
・ DdH 2 O 15ml
・ Platinum Taq (Invitrogen; enzyme) 0.1ml
20 ml
The above components were mixed, put into a PCR tube and capped, and then the genome was amplified by PCR. PCR conditions were 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 30 cycles.

PCR産物をアガロースゲル電気泳動に供し、出現したバンドを切り出してGel Extraction Kit(QIAGEN社)を用いて精製した後、シーケンサー(ベックマン社製)によってアクセプトベクター挿入部位の3'下流側の配列を読んだ。その結果、得られたゲノム配列をデータベース上で検索し、ヒト9番染色体上の一部の配列であることを確認した。ゲノム上へのアクセプトベクターの挿入マップを図4に示す。   The PCR product was subjected to agarose gel electrophoresis, the band that appeared was excised and purified using the Gel Extraction Kit (QIAGEN), and the sequence 3 'downstream of the accept vector insertion site was read using a sequencer (Beckman). It is. As a result, the obtained genome sequence was searched on the database and confirmed to be a partial sequence on human chromosome 9. An insertion map of the accept vector on the genome is shown in FIG.

製造例3(ドナーベクター(p66CMVBsdP)の作製)
(1) lox66断片の増幅
下記成分をPCRチューブに入れて混合した。
・pDNR-1r (Clontech社製) 1 ml
・5'Xho-lox66[10mM] (5'-TAGCTCgaGAAAGATCCATAACTTCGTATAGCATACATTATACGAAc
ggtaGCG-3':配列番号18) 1 ml
・3'Xho-lox71 (5'-cgcCTCgagTCACTAAATAATAG-3':配列番号19) [10 mM] 1 ml
・dNTP [2 mM] 10 ml
・Mg2+[10 mM] 6 ml
・10×buffer (付属品) 10 ml
・ddH2O 69 ml
・KOD plus (TOYOBO社製;酵素) 2 ml
100 ml
PCRチューブに蓋をした後、pDNR-1rを鋳型として、PCRにより両端にXhoIサイトを付加してあるlox66断片の増幅を行った。PCR条件は、95℃-30秒、53℃-30秒、68℃-30秒を30サイクルとした。
Production Example 3 (Preparation of donor vector (p66CMVBsdP))
(1) Amplification of lox66 fragment The following components were placed in a PCR tube and mixed.
・ PDNR-1r (Clontech) 1 ml
・ 5'Xho-lox66 [10mM] (5'-TAGCTCgaGAAAGATCCATAACTTCGTATAGCATACATTATACGAAc
ggtaGCG-3 ': SEQ ID NO: 18) 1 ml
・ 3'Xho-lox71 (5'-cgcCTCgagTCACTAAATAATAG-3 ': SEQ ID NO: 19) [10 mM] 1 ml
・ DNTP [2 mM] 10 ml
・ Mg 2+ [10 mM] 6 ml
・ 10 × buffer (accessory) 10 ml
・ DdH 2 O 69 ml
・ KOD plus (TOYOBO; enzyme) 2 ml
100 ml
After the PCR tube was capped, the lox66 fragment with the XhoI site added at both ends was amplified by PCR using pDNR-1r as a template. PCR conditions were 95 ° C. for 30 seconds, 53 ° C. for 30 seconds, and 68 ° C. for 30 seconds for 30 cycles.

(2)ベクターへのlox66断片の導入
(1)で得られたPCR産物(約110bp)をPCR Purification Kit(QIAGEN社)により精製した後、XhoIで消化した。更に、pCMVBsd (Invitrogen社)についてもXhoIで消化した。XhoI消化したPCR精製産物(約110bp)とpCMVBsdをリガーゼでつなぎ合わせ、p66CMVBsdを作製した。
(2) Introduction of lox66 fragment into vector
The PCR product (about 110 bp) obtained in (1) was purified by PCR Purification Kit (QIAGEN) and then digested with XhoI. Furthermore, pCMVBsd (Invitrogen) was also digested with XhoI. The purified PCR product (about 110 bp) digested with XhoI and pCMVBsd were joined with ligase to prepare p66CMVBsd.

(3)loxP断片の増幅
下記成分をPCRチューブに入れて混合した。
・pDNR-1r (Clontech社) 1 ml
・5'Nar-loxP (5'-TTAGgcgCCTTAGCTCCTGAA-3':配列番号20)[10 mM] 1 ml
・3'Nar-loxP (5'-CATggCgCcAAATAATAGTGAACG-3':配列番号21) [10 mM] 1 ml
・dNTP [2 mM] 10 ml
・Mg2+[10 mM] 6 ml
・10×buffer (付属品) 10 ml
・ddH2O 69 ml
・KOD plus (TOYOBO社製;酵素) 2 ml
100 ml
PCRチューブに蓋をした後、pDNR-1rを鋳型として、PCRにより両端にNarIサイトを付加してあるloxP断片の増幅を行った。PCR条件は、95℃-30秒、53℃-30秒、68℃-30秒を30サイクルとした。
(3) Amplification of loxP fragment The following components were placed in a PCR tube and mixed.
・ PDNR-1r (Clontech) 1 ml
・ 5'Nar-loxP (5'-TTAGgcgCCTTAGCTCCTGAA-3 ': SEQ ID NO: 20) [10 mM] 1 ml
・ 3'Nar-loxP (5'-CATggCgCcAAATAATAGTGAACG-3 ': SEQ ID NO: 21) [10 mM] 1 ml
・ DNTP [2 mM] 10 ml
・ Mg 2+ [10 mM] 6 ml
・ 10 × buffer (accessory) 10 ml
・ DdH 2 O 69 ml
・ KOD plus (TOYOBO; enzyme) 2 ml
100 ml
After the PCR tube was capped, the loxP fragment with the NarI site added to both ends was amplified by PCR using pDNR-1r as a template. PCR conditions were 95 ° C. for 30 seconds, 53 ° C. for 30 seconds, and 68 ° C. for 30 seconds for 30 cycles.

(4)ベクターへのloxP断片の導入
(1)で得られたPCR産物(約110bp)をPCR Purification Kit(QIAGEN社)により精製し、XhoIで消化した。更に、pCMVBsd (Invitrogen社)についてもXhoIで消化した。XhoI消化したPCR精製産物(約110bp)とpCMVBsdをリガーゼでつなぎ合わせ、p66CMVBsdを作製した。
(4) Introduction of loxP fragment into vector
The PCR product (about 110 bp) obtained in (1) was purified by PCR Purification Kit (QIAGEN) and digested with XhoI. Furthermore, pCMVBsd (Invitrogen) was also digested with XhoI. The PCR purified product (about 110 bp) digested with XhoI and pCMVBsd were joined with ligase to prepare p66CMVBsd.

(3)で得られたPCR産物(約110bp)をPCR Purification Kit(QIAGEN社)により精製し、NarI消化した。更に、(2)で得たp66CMVBsdをNarIで消化した。XbaI消化したPCR精製産物(約110bp)とp66CMVBsdをリガーゼでつなぎ合わせ、p66CMVBsdP(約3.8Kbp)を作製し、これをドナーベクターとした。得られたドナーベクターの構成図を図5に示す。   The PCR product (about 110 bp) obtained in (3) was purified by PCR Purification Kit (QIAGEN) and digested with NarI. Furthermore, p66CMVBsd obtained in (2) was digested with NarI. The XbaI-digested PCR purified product (about 110 bp) and p66CMVBsd were joined with ligase to prepare p66CMVBsdP (about 3.8 Kbp), which was used as a donor vector. A block diagram of the obtained donor vector is shown in FIG.

なお、ドナーベクターに挿入されたlox66配列とloxP配列はシーケンサー(ベックマン社)によって配列と挿入の向きが正しいことを確認した。   The lox66 and loxP sequences inserted into the donor vector were confirmed to be correct in sequence and orientation by a sequencer (Beckman).

製造例4(ドナーベクター (p66BsdP/Green)の作製)
製造例3で作製したp66CMVBsdPの3581bpのNarIサイトを部位特異的変異法により、G→Aに置換し、p66CMVBsdP mutを得た。更に、p66CMVBsdP mutをNarIで消化し、Klenow酵素でブラント(平滑末端)化した。得られた産物をアガロースゲル電気泳動に供し、出現したバンドを切り出してGel Extraction Kit(QIAGEN社)を用いて精製した。
Production Example 4 (Preparation of donor vector (p66BsdP / Green))
The 3581 bp NarI site of p66CMVBsdP prepared in Production Example 3 was replaced with G → A by site-directed mutagenesis to obtain p66CMVBsdP mut. Furthermore, p66CMVBsdPmut was digested with NarI and blunted (blunted) with Klenow enzyme. The obtained product was subjected to agarose gel electrophoresis, and the appearing band was cut out and purified using Gel Extraction Kit (QIAGEN).

pZsGreen1(Clontech社)をBspLUll Iで消化後、Klenow酵素+dNTPによりブラント化し、リン酸化した後、更ににSspIで消化した。得られた産物をアガロースゲル電気泳動に供し、出現したバンド(CMV-ZsGreen-pAフラグメント;約1.6Kb)を切り出し、Gel Extraction Kit(QIAGEN社)を用いて精製した。   pZsGreen1 (Clontech) was digested with BspLUll I, blunted with Klenow enzyme + dNTP, phosphorylated, and further digested with SspI. The obtained product was subjected to agarose gel electrophoresis, and the appearing band (CMV-ZsGreen-pA fragment; about 1.6 Kb) was cut out and purified using Gel Extraction Kit (QIAGEN).

ニックの入ったp66CMVBsdP mutと約1.6KbのCMV-ZsGreen-pAフラグメントをリガーゼでつなぎ合わせ、ドナーベクターp66BsdP/Greenを作製した。得られたp66BsdP/Greenの構成図を図6に示す。   The nicked p66CMVBsdP mut and the approximately 1.6 Kb CMV-ZsGreen-pA fragment were ligated together with a ligase to create a donor vector p66BsdP / Green. The block diagram of the obtained p66BsdP / Green is shown in FIG.

製造例5(ドナーベクター(p66Bsd/TNFR RNAi)の作製)
TNFR (Tumor Necrosis Factor Receptor;Acc No., NM 001065.2)をターゲットにセンス鎖(5'-caccGGAGCTTACTTGTATGATGATgtgtgctgtccGTCATTGTACAAGTAGGTTCCttttt-3':配列番号22)とアンチセンス鎖(5'-gcataaaaaGGAACCTACTTGTACAATGACggacagcacacATCA-3':配列番号23)をデザインし、等量をアニーリングバッファー(annealing buffer:10 mM Tris-HCl, pH 7.5/ 1 mM EDTA/ 100mM NaCl)に溶解した。99℃で2分間反応させた後、2時間かけて4℃まで冷却した。BfuIで消化した後、pUC-hU6とリガーゼでつなぎ合わせ、pU6/TNFRを得た。
Production Example 5 (Preparation of donor vector (p66Bsd / TNFR RNAi))
TNFR (Tumor Necrosis Factor Receptor; Acc No., NM 001065.2) is targeted to the sense strand (5'-caccGGAGCTTACTTGTATGATGATgtgtgctgtccGTCATTGTACAAGTAGGTTCCttttt-3 'and SEQ. Designed and an equal volume was dissolved in an annealing buffer (10 mM Tris-HCl, pH 7.5 / 1 mM EDTA / 100 mM NaCl). After reacting at 99 ° C. for 2 minutes, the mixture was cooled to 4 ° C. over 2 hours. After digestion with BfuI, pUC6 / TNFR was obtained by ligation with pUC-hU6 and ligase.

PU6/TNFRをEcoRI - HindIIIで消化し、アガロースゲル電気泳動し、pU6-TNFRshRNA-pTフラグメント(約1.4kb)を切り出した後、Gel Extraction Kit(QIAGEN社)を用いて精製した。   PU6 / TNFR was digested with EcoRI-HindIII, subjected to agarose gel electrophoresis, and a pU6-TNFRshRNA-pT fragment (about 1.4 kb) was excised and purified using Gel Extraction Kit (QIAGEN).

p66CMVBsdPをEcoRI - HindIIIで消化し、pU6-TNFRshRNA-pTフラグメントとリガーゼでつなぎ合わせ、ドナーベクターp66BsdP/TNFR RNAiを作製した。得られたp66BsdP/TNFR RNAiの構成図を図7に示す。   p66CMVBsdP was digested with EcoRI-HindIII and ligated with the pU6-TNFRshRNA-pT fragment to generate the donor vector p66BsdP / TNFR RNAi. FIG. 7 shows a structural diagram of the obtained p66BsdP / TNFR RNAi.

実施例1
製造例2で作製した細胞(親株)500〜1000個を直径10cmの細胞培養用ディッシュに播種した。製造例4で作製した緑色蛍光タンパク質(GFP:Green Fluorescent Protein)発現ドナーベクター(p66BsdP/Green、環状)と、Cre酵素発現ベクター(環状、東京大学 齋藤泉教授より提供)をリポフェクションにより親株へ導入した。24時間後に10μg/mlブラストシジンを含む培地(DMEM)に交換し、1日置きに培地を交換しながら10日間培養した。培地に生じたコロニーを顕微鏡下で単離し、48wellプレートへ移し、直径6cmのディッシュにいっぱいになるまで10〜20日間培養した。その後、得られた細胞(子株)を蛍光顕微鏡下で観察し、緑色蛍光の有無について確認したところ、2/6クローン(33.3%)がGFP陽性細胞であった。GFP発現ドナーベクターが導入された細胞は、4週間経過後も緑色蛍光が確認できた。
Example 1
500 to 1000 cells (parent strain) prepared in Production Example 2 were seeded in a cell culture dish having a diameter of 10 cm. The green fluorescent protein (GFP) expression donor vector (p66BsdP / Green, circular) prepared in Production Example 4 and the Cre enzyme expression vector (circular, provided by Prof. Izumi Saito, University of Tokyo) were introduced into the parent strain by lipofection. . After 24 hours, the medium was changed to a medium (DMEM) containing 10 μg / ml blasticidin, and cultured for 10 days while changing the medium every other day. Colonies produced in the medium were isolated under a microscope, transferred to a 48-well plate, and cultured for 10 to 20 days until filled in a 6 cm diameter dish. Then, when the obtained cells (child strains) were observed under a fluorescence microscope and checked for the presence or absence of green fluorescence, 2/6 clones (33.3%) were GFP positive cells. The cells into which the GFP-expressing donor vector was introduced were confirmed to have green fluorescence even after 4 weeks.

実施例2
製造例2で作製した細胞(親株)500〜1000個を直径10cmの細胞培養用ディッシュに播種した。製造例5で作製した腫瘍壊死因子受容体I(TNFRI:Tumor necrosis Factor Receptor I)発現ドナーベクター(p66Bsd/TNFR RNAi、環状)と、Cre酵素発現ベクター(環状)をリポフェクションにより親株へ導入した。24時間後に10μg/mlブラストシジンを含む培地(DMEM)に交換し、1日おきに培地を交換しながら10日間培養した。培地に生じたコロニーから21クローンを顕微鏡下で単離して、48wellプレートへ移し、直径6cmのディッシュいっぱいになるまで10〜20日間培養した。培養した細胞からtotal RNAを抽出し、cDNAを合成した。18クローンについて定量的RT-PCRによりTNFRI mRNAの発現量を測定した。18クローンのうち、最もTNFRIの発現量が抑制されていたクローンをTNFRI RNAi安定細胞株とした。この安定細胞株を10代目まで培養を続けたところ(約2ヶ月)、10代目のTNFRI RNAi安定細胞株の遺伝子発現抑制効果は保持されていた。
Example 2
500 to 1000 cells (parent strain) prepared in Production Example 2 were seeded in a cell culture dish having a diameter of 10 cm. Tumor necrosis factor receptor I (TNFRI) expression donor vector (p66Bsd / TNFR RNAi, circular) prepared in Production Example 5 and Cre enzyme expression vector (circular) were introduced into the parent strain by lipofection. After 24 hours, the medium was changed to a medium (DMEM) containing 10 μg / ml blasticidin, and cultured for 10 days while changing the medium every other day. Twenty-one clones were isolated from the colonies generated in the medium under a microscope, transferred to a 48-well plate, and cultured for 10 to 20 days until the dish was 6 cm in diameter. Total RNA was extracted from the cultured cells, and cDNA was synthesized. For 18 clones, the expression level of TNFRI mRNA was measured by quantitative RT-PCR. Among 18 clones, the clone in which the expression level of TNFRI was most suppressed was designated as a TNFRI RNAi stable cell line. When this stable cell line was cultured until the 10th generation (about 2 months), the gene expression inhibitory effect of the 10th generation TNFRI RNAi stable cell line was retained.

試験例1
TNFRIのリガンドであるTNF-α刺激が、実施例2で製造したTNFRI RNAi細胞の生存に与える影響について調べるため、以下の試験を行った。
5000個/wellのTNFRI RNAi細胞を6wellに播種し、24時間経過した後0.24〜1,000ng/mlのTNF-αと1ug/mlのCHXとを共暴露した。暴露時間は、24時間とし、暴露後にMTT分析(同仁化学社製、Cell Counting Kit-8を使用)を行った。
TNFRI RNAi細胞(TNFRIの発現を抑制した安定細胞株)は、TNRFI発現株に比べて、TNF-α暴露後の生存率が高かった(24時間暴露時;Hela55(親株)約20%、TNFRI RNAi株;80%)。
Test example 1
In order to examine the effect of TNF-α stimulation, which is a ligand of TNFRI, on the survival of TNFRI RNAi cells produced in Example 2, the following test was performed.
5000 cells / well of TNFRI RNAi cells were seeded in 6 wells, and after 24 hours, 0.24-1,000 ng / ml TNF-α and 1 ug / ml CHX were co-exposed. The exposure time was 24 hours, and MTT analysis (using Cell Counting Kit-8, manufactured by Dojindo) was performed after exposure.
TNFRI RNAi cells (stable cell lines that suppressed TNFRI expression) had a higher survival rate after TNF-α exposure than TNRFI-expressing strains (24 hours exposure; Hela55 (parent strain) approximately 20%, TNFRI RNAi Strain; 80%).

本発明のDNA導入方法を示す説明図である。It is explanatory drawing which shows the DNA introduction | transduction method of this invention. loxP配列と、loxP配列のCre酵素による切断位置を示す説明図である。It is explanatory drawing which shows the cutting | disconnection position by the Cre enzyme of loxP arrangement | sequence and loxP arrangement | sequence. 製造例1で作製したアクセプトベクターの構成図である。3 is a configuration diagram of an accept vector prepared in Production Example 1. FIG. 製造例2で作製した細胞におけるアクセプトベクターの挿入位置を示す挿入マップである。10 is an insertion map showing an insertion position of an accept vector in a cell produced in Production Example 2. 製造例3で作製したドナーベクターの構成図である。It is a block diagram of the donor vector produced in Production Example 3. 製造例4で作製したドナーベクターの構成図である。It is a block diagram of the donor vector produced in the manufacture example 4. 製造例5で作製したドナーベクターの構成図である。6 is a configuration diagram of a donor vector prepared in Production Example 5. FIG.

符号の説明Explanation of symbols

1、17 細胞
3、5、11、13、19、21、23 配列
7 アクセプトベクター
9 ドナーベクター
15 挿入DNA
25、31 プロモータ
27、28、33 マーカー遺伝子
29、35 転写終結シグナル
1, 17 cells 3, 5, 11, 13, 19, 21, 23 Sequence 7 Accept vector 9 Donor vector 15 Inserted DNA
25, 31 Promoter 27, 28, 33 Marker gene 29, 35 Transcription termination signal

〔配列番号1〜4及び24〜32について〕
バクテリオファージP1由来の人工配列
[About SEQ ID NOs: 1-4 and 24-32]
Artificial sequence from bacteriophage P1

Claims (8)

配列番号1で示されるlox66配列又は配列番号2で示されるlox71配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞。 An accept vector having the lox66 sequence shown in SEQ ID NO: 1 or the lox71 sequence shown in SEQ ID NO: 2 and the loxP sequence shown in SEQ ID NO: 3 was stably inserted into an exon and intron-free region on the genome. cell. 配列番号4で示されるlox71/66配列と、配列番号3で示されるloxP配列と、挿入DNAとが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞であって、挿入DNAがlox71/66配列とloxP配列との間に安定に挿入された細胞。 A cell in which the lox71 / 66 sequence represented by SEQ ID NO: 4, the loxP sequence represented by SEQ ID NO: 3, and the inserted DNA are stably inserted into a region not containing exons and introns on the genome, Are stably inserted between the lox71 / 66 and loxP sequences. lox71/66配列とloxP配列との間に、マーカー遺伝子と、前記マーカー遺伝子発現のためのプロモータと、前記マーカー遺伝子の転写終結シグナルとを有する請求項2に記載の細胞。 The cell according to claim 2, which has a marker gene, a promoter for expression of the marker gene, and a transcription termination signal of the marker gene between the lox71 / 66 sequence and the loxP sequence. 配列番号1で示されるlox66配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、配列番号2で示されるlox71配列と、loxP配列と、前記lox71配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。 A cell in which an accept vector having a lox66 sequence represented by SEQ ID NO: 1 and a loxP sequence represented by SEQ ID NO: 3 is stably inserted into an exon and intron-free region on the genome, and lox71 represented by SEQ ID NO: 2 To a cell that stably introduces the inserted DNA of the donor vector into the cell by causing Cre enzyme to act on the donor vector having the sequence, the loxP sequence, and the inserted DNA inserted between the lox71 sequence and the loxP sequence DNA introduction method. 配列番号2で示されるlox71配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、配列番号1で示されるlox66配列と、loxP配列と、前記lox66配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。 A cell in which an accept vector having a lox71 sequence represented by SEQ ID NO: 2 and a loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome, and lox66 represented by SEQ ID NO: 1 To a cell that stably introduces the inserted DNA of the donor vector into the cell by causing the Cre enzyme to act on the donor vector having the sequence, the loxP sequence, and the inserted DNA inserted between the lox66 sequence and the loxP sequence DNA introduction method. 3’側変異loxP配列又は5’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターが、ゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞。 A cell in which an accept vector having a 3'-mutated loxP sequence or a 5'-mutated loxP sequence and a loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome. 3’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、5’側変異loxP配列と、loxP配列と、前記5’側変異loxP配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。 A cell in which an accept vector having a 3 ′ mutant loxP sequence and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome, a 5 ′ mutant loxP sequence, and loxP To a cell that stably introduces the inserted DNA of the donor vector into the cell by causing Cre enzyme to act on the donor vector having the sequence and the inserted DNA inserted between the 5 ′ mutant loxP sequence and the loxP sequence DNA introduction method. 5’側変異loxP配列と、配列番号3で示されるloxP配列とを有するアクセプトベクターがゲノム上のエキソンとイントロンを含まない領域に安定に挿入された細胞と、3’側変異loxP配列と、loxP配列と、前記3’側変異loxP配列とloxP配列との間に挿入された挿入DNAとを有するドナーベクターにCre酵素を作用させて、ドナーベクターの挿入DNAを前記細胞に安定に導入する細胞へのDNA導入方法。
A cell in which an accept vector having a 5 ′ mutant loxP sequence and the loxP sequence represented by SEQ ID NO: 3 is stably inserted into a region not containing exons and introns on the genome, 3 ′ mutant loxP sequence, and loxP To a cell in which the inserted DNA of the donor vector is stably introduced into the cell by causing Cre enzyme to act on the donor vector having the sequence and the inserted DNA inserted between the 3 ′ mutant loxP sequence and the loxP sequence. DNA introduction method.
JP2005160013A 2005-05-31 2005-05-31 Cell and method for transducing dna into cell Pending JP2006333742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160013A JP2006333742A (en) 2005-05-31 2005-05-31 Cell and method for transducing dna into cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160013A JP2006333742A (en) 2005-05-31 2005-05-31 Cell and method for transducing dna into cell

Publications (1)

Publication Number Publication Date
JP2006333742A true JP2006333742A (en) 2006-12-14

Family

ID=37554825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160013A Pending JP2006333742A (en) 2005-05-31 2005-05-31 Cell and method for transducing dna into cell

Country Status (1)

Country Link
JP (1) JP2006333742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047423A1 (en) 2008-10-23 2010-04-29 学校法人福岡大学 Method for introducing mutated gene, gene having mutation introduced therein, cassette for introducing mutation, vector for introducing mutation, and knock-in non-human mammal
WO2021068779A1 (en) * 2019-10-08 2021-04-15 黄菁 Method for site-directed integration of large-fragment foreign dna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196880A (en) * 1997-11-13 1999-07-27 Sumitomo Pharmaceut Co Ltd Mutant lox p sequence and its application
US20040137624A1 (en) * 2002-12-27 2004-07-15 Lowe Brenda A. Methods of site-directed transformation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196880A (en) * 1997-11-13 1999-07-27 Sumitomo Pharmaceut Co Ltd Mutant lox p sequence and its application
US20040137624A1 (en) * 2002-12-27 2004-07-15 Lowe Brenda A. Methods of site-directed transformation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047423A1 (en) 2008-10-23 2010-04-29 学校法人福岡大学 Method for introducing mutated gene, gene having mutation introduced therein, cassette for introducing mutation, vector for introducing mutation, and knock-in non-human mammal
JP2010099006A (en) * 2008-10-23 2010-05-06 Fukuoka Univ Mutation-introduced gene and knock-in non-human animal introduced with the same
WO2021068779A1 (en) * 2019-10-08 2021-04-15 黄菁 Method for site-directed integration of large-fragment foreign dna

Similar Documents

Publication Publication Date Title
Giuliano et al. Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9
US11884917B2 (en) Conditional CRISPR sgRNA expression
US9051566B2 (en) Post-transcriptional gene silencing using expressed double stranded RNA
Wang et al. The EF‐1α promoter maintains high‐level transgene expression from episomal vectors in transfected CHO‐K1 cells
Mozgová et al. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana
Boussadia et al. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus
JP4747245B2 (en) Enzymatic construction method of RNAi library
CN108285905B (en) Method for inhibiting gene expression level in eukaryotic cell based on CRISPR-Cas13a and application thereof
Lemp et al. Cryptic transcripts from a ubiquitous plasmid origin of replication confound tests for cis-regulatory function
CN107142247A (en) Derivable CRISPRon or CRISPRi mouse embryo stem cells and its application
BRPI0711207A2 (en) target site for site-specific intregation, site-specific method that integrates a polynucleotide encoding a protein of interest in a eukaryotic cell genome, isolated eukaryotic cell, kit for use in site-specific that integrates a polynucleotide within a genome of an in vitro cell and kit for use in producing a cell protein
Kulkarni et al. Effect of telomere proximity on telomere position effect, chromosome healing, and sensitivity to DNA double-strand breaks in a human tumor cell line
JP4908631B2 (en) Allosteric trans-splicing group I ribozyme whose target-specific RNA replacement activity is regulated by theophylline
Weuts et al. Telomere length homeostasis and telomere position effect on a linear human artificial chromosome are dictated by the genetic background
Song et al. Effective expression-independent gene trapping and mutagenesis mediated by Sleeping Beauty transposon
JP2006333742A (en) Cell and method for transducing dna into cell
Melquist et al. An internal rearrangement in an Arabidopsis inverted repeat locus impairs DNA methylation triggered by the locus
Lu et al. Use of forward genetics to discover novel regulators of NF-κB
ES2610655T3 (en) Cold-inducible promoter sequences
KR102576635B1 (en) A cell line which is knock out LAMP2C gene and a method of producing target genes of interests using the same
AU2007203335B2 (en) Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
US7504492B2 (en) RNA polymerase III promoter, process for producing the same and method of using the same
Herzog Generation of microRNA sponge library
Buccheri et al. Genetic activation of canonical RNA interference in mice
Li et al. Engineering transposon-associated TnpB-1 ωRNA system for efficient gene editing and disease treatment in mouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115