JP2006332411A - Light emitting device, light receiving device and equipment provided with them - Google Patents

Light emitting device, light receiving device and equipment provided with them Download PDF

Info

Publication number
JP2006332411A
JP2006332411A JP2005155095A JP2005155095A JP2006332411A JP 2006332411 A JP2006332411 A JP 2006332411A JP 2005155095 A JP2005155095 A JP 2005155095A JP 2005155095 A JP2005155095 A JP 2005155095A JP 2006332411 A JP2006332411 A JP 2006332411A
Authority
JP
Japan
Prior art keywords
light
incident
light emitting
optical axis
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005155095A
Other languages
Japanese (ja)
Other versions
JP2006332411A5 (en
Inventor
Nobuhisa Kojima
信久 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005155095A priority Critical patent/JP2006332411A/en
Publication of JP2006332411A publication Critical patent/JP2006332411A/en
Publication of JP2006332411A5 publication Critical patent/JP2006332411A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized light emitting device capable of uniformly emitting light from the emission of an optical member. <P>SOLUTION: The light emitting device is provided with a light emitting element 1 and the optical member 9. The optical member is provided with a first emitting surface 6 for emitting light emitted from the light emitting element to an irradiation light axis AXL at an angle smaller than a prescribed angle, a reflecting surface 7 for reflecting light emitted from the light emitting element to the irradiation light axis at an angle larger than the prescribed angle, and a second emitting surface 8 formed around the first emitting surface for emitting the light reflected on the reflecting surface. The second emitting surface has a shape that a part most separated from the irradiation light axis is projected in the opposite direction of the light emitting element in an irradiation light axis direction more than a part closest to the irradiation light axis. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光ダイオード(LED)や半導体レーザ(LD)などの発光素子から射出する光や、フォトダイオードや光電変換素子などの受光素子へ入射する光を、効率良く利用できるようにした発光装置および受光装置に関するものである。   The present invention provides a light emitting device that can efficiently use light emitted from a light emitting element such as a light emitting diode (LED) or a semiconductor laser (LD) or light incident on a light receiving element such as a photodiode or a photoelectric conversion element. And a light receiving device.

LEDやLDなどの発光素子チップをモールド樹脂で封止した発光装置が従来用いられている。このような発光装置においては、発光素子から前方へ射出された光はそのまま樹脂部から射出されるが、発光素子から斜め方向へ射出された光が樹脂部の界面で全反射されたりケースの内面で散乱されたりすることによって光量ロスが発生し、光の利用効率が低くなる。   A light emitting device in which a light emitting element chip such as an LED or LD is sealed with a mold resin has been used. In such a light emitting device, the light emitted forward from the light emitting element is emitted as it is from the resin portion, but the light emitted from the light emitting element in the oblique direction is totally reflected at the interface of the resin portion or the inner surface of the case The amount of light is lost due to scattering by the light, and the light utilization efficiency is lowered.

そこで、発光素子から斜め方向に射出された光を効率良く利用できるようにした発光装置として、特許文献1に開示されたものがある。この発光装置の断面を図9に示す。   In view of this, a light emitting device that can efficiently use light emitted in an oblique direction from a light emitting element is disclosed in Patent Document 1. A cross section of this light emitting device is shown in FIG.

図9に示す発光装置は、発光素子61と、該発光素子61を保持部62に搭載してダイボンドされた第1のリードフレーム63と、ボンディングワイヤ64で発光素子61と接続された第2のリードフレーム65と、その周囲に設けられた反射部材66と、発光素子61および反射部材66を封止したモールド樹脂により形成された光学部材69とを有する。光学部材69の光射出側において、中央部には凸レンズ形状を有する直接射出領域67が、該直接射出領域67の周囲には照射光軸AXLに対して直交する方向に延びる平面状の面68が形成されている。面68のうち直接射出領域67に近い部分70は全反射領域として用いられ、該全反射領域70は発光素子61からの光を反射部材66に向けて全反射する。さらに全反射領域70の周囲の部分は、反射部材66で反射した光の射出領域として用いられる。   The light-emitting device shown in FIG. 9 includes a light-emitting element 61, a first lead frame 63 that is die-bonded by mounting the light-emitting element 61 on a holding portion 62, and a second lead that is connected to the light-emitting element 61 by a bonding wire 64. The lead frame 65 includes a reflection member 66 provided around the lead frame 65 and an optical member 69 formed of a mold resin that seals the light emitting element 61 and the reflection member 66. On the light emission side of the optical member 69, a direct emission region 67 having a convex lens shape is formed at the center, and a planar surface 68 extending around the direct emission region 67 in a direction orthogonal to the irradiation optical axis AXL. Is formed. A portion 70 of the surface 68 close to the direct emission region 67 is used as a total reflection region, and the total reflection region 70 totally reflects light from the light emitting element 61 toward the reflection member 66. Further, a portion around the total reflection region 70 is used as an emission region of light reflected by the reflection member 66.

また、上記特許文献1には、フォトダイオードや光電変換素子などの受光素子をモールド樹脂により封止した受光装置も開示されている。この受光装置は、図10に示すように、反射部材76と、受光素子71と、第1および第2のリードフレーム72,73と、反射部材76および受光素子71を封止するモールド樹脂で形成された光学部材79とを有する。光学部材79の入射側において、中央部には凸レンズ形状を有する直接入射領域77が形成され、その周囲には、入射光軸AXLに対して直交する方向に延びる平面状の面78が形成されている。面78のうち直接入射領域77に近い部分80は、さらにその周囲の部分である入射領域から入射して反射部材76で反射した光を受光素子71に向けて全反射する全反射領域として用いられている。   Patent Document 1 also discloses a light receiving device in which a light receiving element such as a photodiode or a photoelectric conversion element is sealed with a mold resin. As shown in FIG. 10, the light receiving device is formed of a reflecting member 76, a light receiving element 71, first and second lead frames 72 and 73, and a mold resin that seals the reflecting member 76 and the light receiving element 71. And an optical member 79. On the incident side of the optical member 79, a direct incident region 77 having a convex lens shape is formed at the center, and a planar surface 78 extending in a direction orthogonal to the incident optical axis AXL is formed around the center. Yes. A portion 80 of the surface 78 close to the direct incident region 77 is further used as a total reflection region that totally reflects toward the light receiving element 71 light incident from the incident region that is a surrounding portion thereof and reflected by the reflecting member 76. ing.

ここで、図9に示した発光装置においては、発光素子61から直接射出領域67と面68との境界に延びる方向Lの照射光軸AXLに対してなす角度が、光学部材69と空気との界面での全反射臨界角に等しいか又はそれよりも大きく設定されている。このため、図9の発光装置においては、全反射領域70からは光が射出せず、被照射面にはドーナツ状の光が照射されることになる。つまり、被照射面の中央に暗い部分が生じ、発光ムラがあるように見えてしまう。   Here, in the light emitting device shown in FIG. 9, the angle formed with respect to the irradiation optical axis AXL in the direction L extending directly from the light emitting element 61 to the boundary between the emission region 67 and the surface 68 is between the optical member 69 and the air. It is set equal to or greater than the critical angle for total reflection at the interface. For this reason, in the light emitting device of FIG. 9, no light is emitted from the total reflection region 70, and the irradiated surface is irradiated with donut-shaped light. That is, a dark portion is generated at the center of the irradiated surface, and it appears that there is uneven light emission.

また、図10に示した受光装置においても、直接入射領域77と面78との境界に延びる方向Lの入射光軸AXLとのなす角度が、光学部材79と空気との界面での全反射臨界角と等しいか又はそれよりも大きく設定されている。このため、図10の受光装置においては、反射部材76から全反射領域80に入射した光が受光素子71に入射せず、受光装置外に射出される。つまり、受光光量が低下してしまう。   In the light receiving device shown in FIG. 10 as well, the angle formed by the incident optical axis AXL in the direction L extending to the boundary between the direct incident region 77 and the surface 78 is the total reflection critical at the interface between the optical member 79 and air. It is set equal to or larger than the angle. For this reason, in the light receiving device of FIG. 10, the light that has entered the total reflection region 80 from the reflecting member 76 does not enter the light receiving element 71 and is emitted outside the light receiving device. That is, the amount of received light decreases.

さらに、図9に示した発光装置や図10に示した受光装置において、発光効率又は受光効率を向上させるために、発光素子から斜め方向へ射出された光又は受光素子に斜め方向から入射する光の光軸AXLとなす角度を大きくすると、全反射領域を極端に大きくしなければならず、装置が大型化してしまう。   Further, in the light emitting device shown in FIG. 9 or the light receiving device shown in FIG. 10, in order to improve the light emission efficiency or the light receiving efficiency, light emitted from the light emitting element in an oblique direction or light incident on the light receiving element from an oblique direction If the angle formed with the optical axis AXL is increased, the total reflection area must be extremely increased, and the apparatus becomes larger.

そこで、特許文献2には、全反射領域を形成する樹脂と空気との界面を、レンズ面の外周よりも光軸に近い位置(内側)まで延長した発光装置が開示されている。この発光装置では、全反射領域のうち光軸に最も近い位置で反射した光は、反射部材で反射されて前方に射出する際にレンズ面の外周近傍を通過する。これにより、前面視において光が射出しない領域(受光装置においては光が入射しない領域)をなくし、同時に装置の小型化も図ることができる。
特開2002−94129号公報(段落0057〜0063、0112〜0118、図3,31等) 特開2002−134794号公報(段落0023〜0027、図1等)
Therefore, Patent Document 2 discloses a light emitting device in which the interface between the resin and the air forming the total reflection region is extended to a position closer to the optical axis (inside) than the outer periphery of the lens surface. In this light emitting device, the light reflected at the position closest to the optical axis in the total reflection region passes through the vicinity of the outer periphery of the lens surface when being reflected by the reflecting member and emitted forward. This eliminates a region where light is not emitted in front view (a region where light is not incident in the light receiving device), and at the same time, the device can be downsized.
JP 2002-94129 A (paragraphs 0057 to 0063, 0112 to 0118, FIGS. 3, 31 and the like) JP 2002-134794 A (paragraphs 0023 to 0027, FIG. 1, etc.)

しかしながら、上記特許文献2にて開示された発光装置又は受光装置においては、発光素子から斜め方向へ射出された光又は受光素子に斜め方向から入射する光が反射部材によって反射されるため、光量損失が大きいという問題がある。   However, in the light emitting device or the light receiving device disclosed in Patent Document 2, light emitted from the light emitting element in the oblique direction or light incident on the light receiving element from the oblique direction is reflected by the reflecting member, and thus the light amount loss. There is a problem that is large.

また、全反射領域をレンズ面の外周よりも内側まで延長することで、光学部材の形状が複雑化して製造が難しくなったり、部品点数が増加したりするという問題もある。   In addition, by extending the total reflection region to the inner side of the outer periphery of the lens surface, there is a problem that the shape of the optical member becomes complicated and manufacturing becomes difficult and the number of parts increases.

本発明は、光学部材の射出部から均一に光を射出したり発光ロスや受光ロスを極力少なくしたりすることができる小型の発光装置および受光装置を提供することを目的の1つとしている。   An object of the present invention is to provide a small light-emitting device and light-receiving device that can uniformly emit light from an emission part of an optical member and reduce light emission loss and light reception loss as much as possible.

本発明の一側面としての発光装置は、発光素子と光学部材とを有する。該光学部材は、発光素子から照射光軸に対して所定角度より小さい角度で発せられた光を射出する第1の射出面と、発光素子から照射光軸に対して所定角度より大きい角度で発せられた光を反射する反射面と、第1の射出面の周囲に形成され、反射面で反射した光を射出する第2の射出面とを有する。そして、第2の射出面は、照射光軸から最も離れた部分が、該照射光軸に最も近い部分よりも照射光軸方向における発光素子とは反対方向に突出した形状を有する。   A light emitting device according to one aspect of the present invention includes a light emitting element and an optical member. The optical member emits light emitted from the light emitting element at an angle smaller than a predetermined angle with respect to the irradiation optical axis and emitted from the light emitting element at an angle larger than the predetermined angle with respect to the irradiation optical axis. A reflection surface that reflects the emitted light, and a second emission surface that is formed around the first emission surface and emits the light reflected by the reflection surface. The second emission surface has a shape in which a portion farthest from the irradiation optical axis protrudes in a direction opposite to the light emitting element in the irradiation optical axis direction than a portion closest to the irradiation optical axis.

また、本発明の一側面としての受光装置は、受光素子と光学部材とを有する。該光学部材は、入射光軸が通るように形成され、入射した光を受光素子に向かわせる第1の入射面と、該第1の入射面の周囲に形成された第2の入射面と、第2の入射面から入射した光を受光素子に向けて反射する反射面とを有する。そして、第2の入射面は、入射光軸から最も離れた部分が、該入射光軸に最も近い部分よりも入射光軸方向における受光素子とは反対方向に突出した形状を有する。   A light receiving device according to one aspect of the present invention includes a light receiving element and an optical member. The optical member is formed so that the incident optical axis passes, and a first incident surface that directs incident light to the light receiving element; a second incident surface formed around the first incident surface; And a reflecting surface that reflects light incident from the second incident surface toward the light receiving element. The second incident surface has a shape in which the portion farthest from the incident optical axis protrudes in the direction opposite to the light receiving element in the incident optical axis direction than the portion closest to the incident optical axis.

これらの発光装置および受光装置は、発光機能や受光機能を必要とする各種機器に搭載され、機器の小型化に寄与する。   These light emitting devices and light receiving devices are mounted on various devices that require a light emitting function and a light receiving function, and contribute to downsizing of the devices.

本発明の発光装置によれば、発光素子から発せられた光のうち第1の射出面よりも周辺部に向かった光のほとんどを反射面で反射し、第1の射出面の周囲に設けられた第2の射出面に導くので、小型でありながらも、発光むらが少なく、発光素子からの光を効率良く射出することができる。   According to the light emitting device of the present invention, most of the light emitted from the light emitting element is directed to the peripheral portion from the first emission surface is reflected by the reflection surface, and is provided around the first emission surface. In addition, since the light is guided to the second emission surface, the light emission from the light emitting element can be efficiently emitted with little unevenness in light emission even though it is small.

また、本発明の受光装置によれば、光学部材のうち第1の入射面の周囲に設けられた第2の入射面から入射した光のほとんどを反射面で反射して受光素子に導くので、小型でありながらも、入射光を効率良く受光することができる。     Further, according to the light receiving device of the present invention, most of the light incident from the second incident surface provided around the first incident surface of the optical member is reflected by the reflecting surface and guided to the light receiving element. Although it is small, incident light can be received efficiently.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明の実施例1である発光装置の外観を示している。また、図2には、該発光装置を射出光軸AXLを含む平面で切断したときの断面を示している。さらに、図2には、発光素子から発せられた光線のトレース図も併記している。   FIG. 1 shows the appearance of a light emitting device that is Embodiment 1 of the present invention. FIG. 2 shows a cross section when the light emitting device is cut along a plane including the emission optical axis AXL. Further, FIG. 2 also shows a trace diagram of light rays emitted from the light emitting element.

図1および図2において、1はLEDやLD等の発光素子、3は発光素子1を搭載した状態でダイボンドされる保持部2を有する第1のリードフレーム、4は発光素子1と第2のリードフレーム5を結ぶボンディングワイヤである。   1 and 2, reference numeral 1 denotes a light emitting element such as an LED or LD, 3 denotes a first lead frame having a holding portion 2 which is die-bonded in a state where the light emitting element 1 is mounted, and 4 denotes a light emitting element 1 and a second lead frame. A bonding wire that connects the lead frames 5.

9はその内部に発光素子1およびリードフレーム3,5の発光素子1側の部分を封止するように光学樹脂材料によりモールド成形された光学部材である。光学樹脂材料としては、エポキシ樹脂やシリコン等、熱に強い材料が好ましい。   Reference numeral 9 denotes an optical member molded with an optical resin material so as to seal the light emitting element 1 and the portions of the lead frames 3 and 5 on the light emitting element 1 side. The optical resin material is preferably a heat resistant material such as epoxy resin or silicon.

光学部材9において、6はその中心を照射光軸AXLが通るように形成された、発光素子1からの入射光に対して正の屈折力を有する第1の射出面としてのレンズ面である。レンズ面6は、球面レンズ形状、非球面レンズ形状および放物面形状などの凸レンズ形状に形成されている。このレンズ面6には、発光素子1から発せられた光のうち照射光軸AXLに対して所定角度よりも小さい角度θ1をなす光(以下、第1の光という)が直接入射し、集光されながら射出される。7は発光素子1から発せられた光のうち照射光軸AXLに対して上記所定角度以上の角度θ2をなす光(以下、第2の光という)が入射し、これを全反射する反射面(内面反射面)である。   In the optical member 9, reference numeral 6 denotes a lens surface as a first exit surface that has a positive refractive power with respect to incident light from the light emitting element 1 and is formed so that the irradiation optical axis AXL passes through the center thereof. The lens surface 6 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, or a paraboloid shape. Of the light emitted from the light emitting element 1, light having an angle θ1 smaller than a predetermined angle with respect to the irradiation optical axis AXL (hereinafter referred to as first light) is directly incident on the lens surface 6 to collect the light. It is injected while being done. Reference numeral 7 denotes a reflection surface (hereinafter referred to as second light) that is incident on an angle θ2 that is equal to or larger than the predetermined angle with respect to the irradiation optical axis AXL among the light emitted from the light emitting element 1 and that totally reflects the incident light. Internal reflection surface).

8は反射面7で全反射された光が入射し、これを屈折させて前方(照射光軸方向、つまりは図2の右側)に射出する第2の射出面である。ここで、図2に示すように、第2の射出面8は、発光素子1の略中心から照射光軸AXLに対して傾斜して延びる線Lを含む円錐台形状を有する面として形成されている。言い換えれば、第2の射出面8は、照射光軸AXLから最も離れた部分(外周部分)が、該照射光軸AXLに最も近い部分(内周部分)よりも照射光軸方向における発光素子1とは反対方向(照射方向)に突出した形状を有する。また、第2の射出面8の内周は、レンズ面6の外周に接している。   Reference numeral 8 denotes a second emission surface on which the light totally reflected by the reflection surface 7 is incident, refracted and emitted forward (in the irradiation optical axis direction, that is, the right side in FIG. 2). Here, as shown in FIG. 2, the second emission surface 8 is formed as a surface having a truncated cone shape including a line L that is inclined from the approximate center of the light emitting element 1 with respect to the irradiation optical axis AXL. Yes. In other words, the second emission surface 8 has the light emitting element 1 in the irradiation optical axis direction in which the portion (outer peripheral portion) farthest from the irradiation optical axis AXL is closer than the portion (inner peripheral portion) closest to the irradiation optical axis AXL. It has a shape protruding in the opposite direction (irradiation direction). Further, the inner periphery of the second exit surface 8 is in contact with the outer periphery of the lens surface 6.

本実施例の発光装置において、発光素子1から発せられた光のうち照射光軸AXLに対する角度が小さい第1の光は、発光素子1がレンズ面6の焦点又はその近傍に配置されているため、光学部材9と空気との界面を形成するレンズ面6で屈折して照射光軸AXLに対してほぼ平行な光となってレンズ面6から射出される。また、発光素子1から発せられた光のうち照射光軸AXLに対する角度が第1の光より大きい第2の光は、光学部材9と空気との界面を形成する反射面7でほとんどが全反射され、さらに第2の射出面8で屈折されて照射光軸AXLに対してほぼ平行な光となり、第2の射出面8から射出する。   In the light emitting device of the present embodiment, the first light having a small angle with respect to the irradiation optical axis AXL among the light emitted from the light emitting element 1 is disposed at or near the focal point of the lens surface 6. The light is refracted by the lens surface 6 that forms the interface between the optical member 9 and air, and is emitted from the lens surface 6 as light substantially parallel to the irradiation optical axis AXL. In addition, the second light whose angle with respect to the irradiation optical axis AXL is larger than the first light among the light emitted from the light emitting element 1 is almost totally reflected at the reflecting surface 7 that forms the interface between the optical member 9 and air. Further, the light is refracted by the second exit surface 8 to become light substantially parallel to the irradiation optical axis AXL, and exits from the second exit surface 8.

このとき、第2の射出面8におけるレンズ面6との境界に近接した内周端部には、反射面7で全反射された第2の光のうち、射出光軸AXLに対して最も大きい角度で発光素子1から発せられた光線が入射する。また、レンズ面6における第2の射出面8との境界に近接した外周端部には、第1の光のうち照射光軸AXLに対して最も大きな角度をなす光線が入射する。これにより、光学部材9の射出部(レンズ面6および第2の射出面8)の全体から光が射出する。すなわち、図9に符号70で示したような光が射出しない領域がなくなる。   At this time, the inner peripheral end portion of the second exit surface 8 that is close to the boundary with the lens surface 6 is the largest of the second light totally reflected by the reflection surface 7 with respect to the exit optical axis AXL. A light ray emitted from the light emitting element 1 is incident at an angle. In addition, a light ray having the largest angle with respect to the irradiation optical axis AXL is incident on the outer peripheral end portion of the lens surface 6 near the boundary with the second exit surface 8. Accordingly, light is emitted from the entire emission portion (lens surface 6 and second emission surface 8) of the optical member 9. That is, there is no region where light is not emitted as indicated by reference numeral 70 in FIG.

このため、図1に示した発光装置を射出光軸方向の前方から見たときに、射出部に発光むらがなく、均一な発光状態が得られる。また、発光素子1から射出した光をほぼ平行化して射出するため、狭い範囲に光を照射することができる。つまり、照射光に高い指向性を持たせることができる。   For this reason, when the light emitting device shown in FIG. 1 is viewed from the front in the emission optical axis direction, there is no uneven light emission in the emission part, and a uniform light emission state is obtained. In addition, since the light emitted from the light emitting element 1 is emitted in a substantially parallel state, the light can be irradiated in a narrow range. That is, high directivity can be given to irradiation light.

ここで、本実施例では、発光装置から略平行光を射出する場合について説明したが、本発明はこのような場合に限定されない。例えば、発光素子1の位置とレンズ面6の焦点位置との関係や、レンズ面6、反射面7および第2の射出面8の面形状などを適宜変更し、様々な配光特性や指向性を得るようにしてもよい。   Here, although the case where substantially parallel light is emitted from the light emitting device has been described in this embodiment, the present invention is not limited to such a case. For example, the relationship between the position of the light emitting element 1 and the focal position of the lens surface 6 and the surface shapes of the lens surface 6, the reflecting surface 7 and the second exit surface 8 are appropriately changed to provide various light distribution characteristics and directivities. May be obtained.

また、本実施例では、レンズ面6を凸レンズ形状とした場合について説明したが、これ以外の形状、例えばフレネルレンズ形状に形成してもよい。   In the present embodiment, the case where the lens surface 6 has a convex lens shape has been described. However, the lens surface 6 may be formed in a shape other than this, for example, a Fresnel lens shape.

次に、本実施例の発光装置の設計例について説明する。ここでは、光学部材9の材質をエポキシ樹脂とする。その屈折率は約1.55である。また、レンズ面6の直径を3mmとし、発光素子1を該レンズ面6の焦点位置に配置する。   Next, a design example of the light emitting device of this embodiment will be described. Here, the material of the optical member 9 is an epoxy resin. Its refractive index is about 1.55. Further, the diameter of the lens surface 6 is set to 3 mm, and the light emitting element 1 is disposed at the focal position of the lens surface 6.

また、発光素子1から発せられ、レンズ面6で屈折して照射光軸AXLに対して略平行になる光線の射出光軸AXLに対してなす最大角度を45°とする。したがって、第2の射出面8とレンズ面6との境界と発光素子1の略中心とを結ぶ線Lが射出光軸AXLに対してなす角は45°となる。   Further, the maximum angle formed with respect to the emission optical axis AXL of the light emitted from the light emitting element 1 and refracted by the lens surface 6 and substantially parallel to the irradiation optical axis AXL is set to 45 °. Therefore, the angle formed by the line L connecting the boundary between the second exit surface 8 and the lens surface 6 and the approximate center of the light emitting element 1 with respect to the exit optical axis AXL is 45 °.

このとき、反射面7で全反射した光が第2の射出面8で屈折して射出光軸AXLに対してほぼ平行な光となるためには、反射面7で全反射した光が射出光軸AXLに対して約17.86°以下の角度で照射光軸AXLに近づくように第2の射出面8に向かわなければなければならない。光学部材9の材料の屈折率は約1.55であるので、反射面7で全反射して射出光軸AXLに対して約17.86°以下の角度で進む光線は、発光素子1から射出光軸AXLに対して約81°以下の角度(射出角度)で射出する光線である。   At this time, in order for the light totally reflected by the reflecting surface 7 to be refracted by the second exit surface 8 and become light substantially parallel to the exit optical axis AXL, the light totally reflected by the reflecting surface 7 is emitted light. It must be directed to the second exit surface 8 so as to approach the irradiation optical axis AXL at an angle of about 17.86 ° or less with respect to the axis AXL. Since the refractive index of the material of the optical member 9 is about 1.55, a light beam totally reflected by the reflecting surface 7 and traveling at an angle of about 17.86 ° or less with respect to the emission optical axis AXL is emitted from the light emitting element 1. The light beam is emitted at an angle (emission angle) of about 81 ° or less with respect to the optical axis AXL.

このことから、本設計例では、発光素子1から射出角度80°で射出した光線が、反射面7で全反射されて射出光軸AXLに対して最も大きい角度をなす光線として射出面8に向かい、第2の射出面8の内周端部で屈折して射出光軸AXLとほぼ平行な光線として射出するように設計する。この場合、第2の射出面8の外径(つまりは発光装置の外径)は約5.7mmとなる。   Therefore, in the present design example, the light beam emitted from the light emitting element 1 at an emission angle of 80 ° is totally reflected by the reflection surface 7 and travels toward the emission surface 8 as a light beam having the largest angle with respect to the emission optical axis AXL. The second light exit surface 8 is designed to be refracted at the inner peripheral end portion and to be emitted as a light beam substantially parallel to the light emission optical axis AXL. In this case, the outer diameter of the second emission surface 8 (that is, the outer diameter of the light emitting device) is about 5.7 mm.

図3には、特許文献2に開示された発光装置であって、上記設計条件、つまり発光素子からの射出角度が80°の光線が全反射領域で全反射した後、反射部材で反射されて照射光軸と略平行に射出されるように設計したものを示している。   FIG. 3 shows a light emitting device disclosed in Patent Document 2, in which a light beam having the above design condition, that is, an emission angle of 80 ° from the light emitting element, is totally reflected in the total reflection region and then reflected by the reflecting member. It is designed to be emitted substantially parallel to the irradiation optical axis.

図3において、11は発光素子、12は発光素子11を搭載してダイボンドされる保持部、13は第1のリードフレーム、14は発光素子11と第2のリードフレーム15とを結ぶボンディングワイヤ、16は反射部材、19は発光素子11やリードフレーム13,15の一部を封止するよう樹脂によりモールド成形された光学部材である。   In FIG. 3, 11 is a light emitting element, 12 is a holding part to which the light emitting element 11 is mounted and die-bonded, 13 is a first lead frame, 14 is a bonding wire connecting the light emitting element 11 and the second lead frame 15, Reference numeral 16 denotes a reflecting member, and 19 denotes an optical member molded by resin so as to seal a part of the light emitting element 11 and the lead frames 13 and 15.

17は該光学部材19のうち発光素子11からの光が直接入射し射出される直接射出領域、18は直接射出領域17の周囲に形成された面であり、直接射出領域側から、全反射領域と該全反射領域で全反射した後、反射部材16で反射された光が射出する射出領域とを含む。直接射出領域17は、球面レンズ形状、非球面レンズ形状、放物面形状などの凸レンズ形状に形成されている。また、直接射出領域17は、図9に示した光の射出しない領域70を覆う大きさに形成した。20は直接出射領域17のレンズ面外周よりも照射光軸AXLに近い位置まで形成した凹部である。   Reference numeral 17 denotes a direct emission area in which light from the light emitting element 11 is directly incident and emitted from the optical member 19, and 18 denotes a surface formed around the direct emission area 17, from the direct emission area side to the total reflection area. And an exit area where the light reflected by the reflecting member 16 exits after being totally reflected by the total reflection area. The direct emission region 17 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, or a paraboloid shape. Further, the direct emission region 17 is formed to have a size that covers the region 70 where light is not emitted shown in FIG. Reference numeral 20 denotes a recess formed up to a position closer to the irradiation optical axis AXL than the outer periphery of the lens surface of the direct emission region 17.

ここで、光学部材19の材料の屈折率を1.55とすると、反射部材16の外径(つまりは発光装置の外径)は約6.1mmとなる。したがって、同じ設計条件下では、本実施例の発光装置の直径が、特許文献2に開示された発光装置の直径よりも小さくなることが分かる。   Here, when the refractive index of the material of the optical member 19 is 1.55, the outer diameter of the reflecting member 16 (that is, the outer diameter of the light emitting device) is about 6.1 mm. Therefore, under the same design conditions, it can be seen that the diameter of the light emitting device of this example is smaller than the diameter of the light emitting device disclosed in Patent Document 2.

上記特許文献2に開示された発光装置では、理論的には発光素子からの最大射出角度を90°に近づけることができるが、この場合、凹部20の深さが大きくなりすぎるために物理的に光学部材19を製作できなくなる。また、発光素子は実際には点光源ではなく、ある発光面積を持った素子であるので、凹部20が深くなると、発光素子の外周部から射出された光が凹部20に入りやすくなり、光の利用効率が悪化する。上記例において、凹部20の内径は約1.1mmである。   In the light emitting device disclosed in Patent Document 2, the maximum emission angle from the light emitting element can theoretically be close to 90 °. However, in this case, the depth of the recess 20 becomes too large, so The optical member 19 cannot be manufactured. In addition, since the light emitting element is not actually a point light source but an element having a certain light emitting area, when the concave portion 20 becomes deep, light emitted from the outer peripheral portion of the light emitting element easily enters the concave portion 20, Usage efficiency deteriorates. In the above example, the inner diameter of the recess 20 is about 1.1 mm.

図4には、本発明の実施例2である発光装置を射出光軸AXLを含む面で切断したときの断面を示している。実施例1において、発光素子からほぼ90°の射出角度で射出した光線は反射面7に対して全反射臨界角よりも小さい入射角度で入射するため、全反射せず、反射面7から射出してしまう。本実施例では、このような光線も有効に利用するために、実施例1の反射面7では全反射できない光、すなわち反射面に対して全反射臨界角よりも小さい入射角度をなすような大きな射出角度で発光素子から発せられた光線を第2の射出面に向けて反射する反射部材を設けている。なお、図4には、光線トレース図も併記している。   FIG. 4 shows a cross section when the light emitting device according to the second embodiment of the present invention is cut along a plane including the emission optical axis AXL. In Example 1, since the light beam emitted from the light emitting element at an emission angle of approximately 90 ° is incident on the reflection surface 7 at an incident angle smaller than the total reflection critical angle, it is not totally reflected and is emitted from the reflection surface 7. End up. In this embodiment, in order to effectively use such light rays, light that cannot be totally reflected by the reflecting surface 7 of Embodiment 1, that is, a large incident angle smaller than the total reflection critical angle with respect to the reflecting surface. A reflection member is provided that reflects the light emitted from the light emitting element at the emission angle toward the second emission surface. In FIG. 4, a ray tracing diagram is also shown.

図4において、21はLEDやLD等の発光素子、23は発光素子21を搭載した状態でダイボンドされる保持部22を有する第1のリードフレーム、24は発光素子21と第2のリードフレーム25を結ぶボンディングワイヤである。   In FIG. 4, 21 is a light emitting element such as an LED or LD, 23 is a first lead frame having a holding portion 22 that is die-bonded with the light emitting element 21 mounted, and 24 is a light emitting element 21 and a second lead frame 25. Bonding wire that connects

29はその内部に発光素子21およびリードフレーム23,25の発光素子21側の部分を封止するように光学樹脂材料によりモールド成形された光学部材である。光学樹脂材料としては、エポキシ樹脂やシリコン等、熱に強い材料が好ましい。   Reference numeral 29 denotes an optical member molded with an optical resin material so as to seal the light emitting element 21 and the portions of the lead frames 23 and 25 on the light emitting element 21 side. The optical resin material is preferably a heat resistant material such as epoxy resin or silicon.

光学部材29において、26はその中心を照射光軸AXLが通るように形成された、発光素子21からの入射光に対して正の屈折力を有する第1の射出面としてのレンズ面である。レンズ面26は、球面レンズ形状、非球面レンズ形状および放物面形状などの凸レンズ形状に形成されている。このレンズ面26には、発光素子21から発せられた光のうち照射光軸AXLに対して第1の所定角度よりも小さい角度θ1をなす光(以下、第1の光という)が直接入射し、集光されながら射出される。27は発光素子21から発せられた光のうち照射光軸AXLに対して第1の所定角度以上、第2の所定角度以下の角度θ2をなす光(以下、第2の光という)が入射し、これを全反射する反射面(内面反射面)である。   In the optical member 29, reference numeral 26 denotes a lens surface as a first exit surface that has a positive refractive power with respect to incident light from the light emitting element 21 and is formed so that the irradiation optical axis AXL passes through the center thereof. The lens surface 26 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, and a paraboloid shape. Of the light emitted from the light emitting element 21, light having an angle θ1 smaller than the first predetermined angle with respect to the irradiation optical axis AXL (hereinafter referred to as first light) is directly incident on the lens surface 26. And it is ejected while being condensed. Reference numeral 27 denotes light emitted from the light emitting element 21 and having an angle θ2 that is not less than a first predetermined angle and not more than a second predetermined angle with respect to the irradiation optical axis AXL (hereinafter referred to as second light). This is a reflection surface (internal reflection surface) that totally reflects this.

28は反射面27で全反射された光が入射し、これを屈折させて前方(照射光軸方向、つまりは図4の右側)に射出する第2の射出面である。ここで、図4に示すように、第2の射出面28は、発光素子21の略中心から照射光軸AXLに対して傾斜して延びる線Lを含む円錐台形状を有する面として形成されている。言い換えれば、第2の射出面28は、照射光軸AXLから最も離れた部分(外周部分)が、該照射光軸AXLに最も近い部分(内周部分)よりも照射光軸方向における発光素子21とは反対方向(照射方向)に突出した形状を有する。また、第2の射出面28の内周は、レンズ面26の外周に接している。   Reference numeral 28 denotes a second emission surface on which the light totally reflected by the reflection surface 27 is incident, refracted and emitted forward (in the irradiation optical axis direction, that is, the right side in FIG. 4). Here, as shown in FIG. 4, the second emission surface 28 is formed as a surface having a truncated cone shape including a line L that is inclined with respect to the irradiation optical axis AXL from the approximate center of the light emitting element 21. Yes. In other words, the light emitting element 21 in the irradiation optical axis direction of the second emission surface 28 is a portion (outer peripheral portion) farthest from the irradiation optical axis AXL than a portion (inner peripheral portion) closest to the irradiation optical axis AXL. It has a shape protruding in the opposite direction (irradiation direction). The inner periphery of the second exit surface 28 is in contact with the outer periphery of the lens surface 26.

30は反射面27で全反射できない光、すなわち発光素子21から照射光軸AXLに対して第2の所定角度より大きな角度θ3で射出された光(以下、第3の光という)を第2の射出面28へ導く反射部材である。反射部材30は、その内面が高反射率を有する光輝アルミ等の金属材料で形成されている。   Reference numeral 30 denotes light that cannot be totally reflected by the reflecting surface 27, that is, light emitted from the light emitting element 21 at an angle θ3 larger than the second predetermined angle with respect to the irradiation optical axis AXL (hereinafter referred to as third light). It is a reflecting member that leads to the exit surface 28. The reflecting member 30 is formed of a metallic material such as bright aluminum whose inner surface has a high reflectance.

本実施例の発光装置において、発光素子21から発せられた光のうち照射光軸AXLに対する角度が小さい第1の光は、発光素子21がレンズ面26の焦点又はその近傍に配置されているため、光学部材29と空気との界面を形成するレンズ面26で屈折して照射光軸AXLに対してほぼ平行な光となってレンズ面26から射出される。また、発光素子21から発せられた光のうち照射光軸AXLに対する角度が第1の光より大きい第2の光は、光学部材29と空気との界面を形成する反射面27でほとんどが全反射され、さらに第2の射出面28で屈折されて照射光軸AXLに対してほぼ平行な光となり、第2の射出面28から射出する。   In the light emitting device of this embodiment, the first light having a small angle with respect to the irradiation optical axis AXL among the light emitted from the light emitting element 21 is disposed at the focal point of the lens surface 26 or in the vicinity thereof. The light is refracted by the lens surface 26 that forms the interface between the optical member 29 and air, and is emitted from the lens surface 26 as light substantially parallel to the irradiation optical axis AXL. In addition, the second light whose angle with respect to the irradiation optical axis AXL is larger than the first light among the light emitted from the light emitting element 21 is almost totally reflected at the reflection surface 27 that forms the interface between the optical member 29 and the air. Further, the light is refracted by the second exit surface 28 to become light substantially parallel to the irradiation optical axis AXL, and exits from the second exit surface 28.

さらに、発光素子21から発せられた光のうち照射光軸AXLに対する角度が第2の光より大きい第3の光は、反射部材30で反射されて第2の射出面28へと導かれ、該第2の射出面28で屈折されて照射光軸AXLに対してほぼ平行な光となって第2の射出面28から射出する。   Further, of the light emitted from the light emitting element 21, the third light whose angle with respect to the irradiation optical axis AXL is larger than the second light is reflected by the reflecting member 30 and guided to the second emission surface 28. The light is refracted by the second exit surface 28 and becomes substantially parallel to the irradiation optical axis AXL, and exits from the second exit surface 28.

このとき、第2の射出面28におけるレンズ面26との境界に近接した内周端部には、反射部材30で反射された第3の光のうち、射出光軸AXLに対して最も大きい角度で発光素子21から発せられた光線が入射する。また、レンズ面26における第2の射出面28との境界に近接した外周端部には、第1の光のうち照射光軸AXLに対して最も大きな角度をなす光線が入射する。さらに、第3の光のうち射出光軸AXLに対して最も小さい角度で発光素子21から発せられて反射部材30で反射された光線と、第2の光のうち射出光軸AXLに対して最も大きい角度で発光素子21から発せられて反射面27で反射された光線の第2の射出面28への入射位置は互いに近接している。   At this time, the largest angle with respect to the emission optical axis AXL among the third light reflected by the reflecting member 30 at the inner peripheral end portion of the second emission surface 28 close to the boundary with the lens surface 26. The light emitted from the light emitting element 21 enters. In addition, a light ray having the largest angle with respect to the irradiation optical axis AXL is incident on the outer peripheral end portion of the lens surface 26 that is close to the boundary with the second exit surface 28. Further, among the third light, the light beam emitted from the light emitting element 21 at the smallest angle with respect to the emission optical axis AXL and reflected by the reflecting member 30, and the second light with respect to the emission optical axis AXL most. The incident positions of the light beams emitted from the light emitting element 21 at a large angle and reflected by the reflecting surface 27 on the second exit surface 28 are close to each other.

これにより、光学部材29の射出部(レンズ面26および第2の射出面28)の全体から光が射出する。すなわち、図9に符号70で示したような光が射出しない領域がなくなる。   As a result, light is emitted from the entire emission portion (lens surface 26 and second emission surface 28) of the optical member 29. That is, there is no region where light is not emitted as indicated by reference numeral 70 in FIG.

このため、図4に示した発光装置を射出光軸方向の前方から見たときに、射出部に発光むらがなく、均一な発光状態が得られる。また、発光素子21から射出した光をほぼ平行化して射出するため、狭い範囲に光を照射することができる。つまり、照射光に高い指向性を持たせることができる。   For this reason, when the light emitting device shown in FIG. 4 is viewed from the front in the emission optical axis direction, there is no light emission unevenness in the emission part, and a uniform light emission state is obtained. In addition, since the light emitted from the light emitting element 21 is emitted substantially in parallel, the light can be irradiated in a narrow range. That is, high directivity can be given to irradiation light.

ここで、本実施例では、発光装置から略平行光を射出する場合について説明したが、本発明はこのような場合に限定されない。例えば、発光素子21の位置とレンズ面26の焦点位置との関係や、レンズ面26、反射面27、反射部材30および第2の射出面28の面形状などを適宜変更し、様々な配光特性や指向性を得るようにしてもよい。   Here, although the case where substantially parallel light is emitted from the light emitting device has been described in this embodiment, the present invention is not limited to such a case. For example, the relationship between the position of the light emitting element 21 and the focal position of the lens surface 26, and the surface shapes of the lens surface 26, the reflecting surface 27, the reflecting member 30, and the second exit surface 28 are appropriately changed to provide various light distributions. You may make it acquire a characteristic and directivity.

また、本実施例では、レンズ面26を凸レンズ形状とした場合について説明したが、これ以外の形状、例えばフレネルレンズ形状に形成してもよい。   In the present embodiment, the case where the lens surface 26 has a convex lens shape has been described. However, the lens surface 26 may be formed in a shape other than this, for example, a Fresnel lens shape.

図5には、本発明の実施例3である受光装置を入射光軸AXLを含む面で切断したときの断面を示している。また、図5には、光線トレース図も併記している。   FIG. 5 shows a cross section when the light receiving device according to the third embodiment of the present invention is cut along a plane including the incident optical axis AXL. FIG. 5 also shows a ray tracing diagram.

図5において、31はフォトダイオードや光電変換素子等の受光素子、33は受光素子31を搭載した状態でダイボンドされる保持部32を有する第1のリードフレーム、34は受光素子31と第2のリードフレーム35を結ぶボンディングワイヤである。   In FIG. 5, 31 is a light receiving element such as a photodiode or a photoelectric conversion element, 33 is a first lead frame having a holding portion 32 that is die-bonded in a state where the light receiving element 31 is mounted, and 34 is a light receiving element 31 and a second light receiving element. A bonding wire that connects the lead frames 35.

39はその内部に受光素子31およびリードフレーム33,35の受光素子31側の部分を封止するように光学樹脂材料によりモールド成形された光学部材である。光学樹脂材料としては、エポキシ樹脂やシリコン等が好ましい。   Reference numeral 39 denotes an optical member molded with an optical resin material so as to seal the light receiving element 31 and the portions of the lead frames 33 and 35 on the light receiving element 31 side. As the optical resin material, epoxy resin, silicon or the like is preferable.

光学部材39において、36はその中心を入射光軸AXLが通るように形成された、外部からの入射光に対して正の屈折力を有する第1の入射面としてのレンズ面である。レンズ面36は、球面レンズ形状、非球面レンズ形状および放物面形状などの凸レンズ形状に形成されている。外部からこのレンズ面36に入射した光(入射光軸AXLに略平行な光)は、正の屈折力により受光素子31上に集光される。   In the optical member 39, reference numeral 36 denotes a lens surface as a first incident surface having a positive refractive power with respect to incident light from the outside, which is formed so that the incident optical axis AXL passes through the center. The lens surface 36 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, and a paraboloid shape. Light incident on the lens surface 36 from the outside (light substantially parallel to the incident optical axis AXL) is condensed on the light receiving element 31 by a positive refractive power.

38はレンズ面36の周囲に形成された第2の入射面である。ここで、図5に示すように、第2の入射面38は、受光素子31の略中心から入射光軸AXLに対して傾斜して延びる線Lを含む円錐台形状を有する面として形成されている。言い換えれば、第2の入射面38は、入射光軸AXLから最も離れた部分(外周部分)が、該照射光軸AXLに最も近い部分(内周部分)よりも入射光軸方向における受光素子31とは反対方向(光の発光元方向)に突出した形状を有する。また、第2の入射面38の内周は、レンズ面36の外周に接している。   Reference numeral 38 denotes a second incident surface formed around the lens surface 36. Here, as shown in FIG. 5, the second incident surface 38 is formed as a surface having a truncated cone shape including a line L extending obliquely from the approximate center of the light receiving element 31 with respect to the incident optical axis AXL. Yes. In other words, the light receiving element 31 in the direction of the incident optical axis of the second incident surface 38 is a portion (outer peripheral portion) farthest from the incident optical axis AXL than a portion (inner peripheral portion) closest to the irradiation optical axis AXL. It has a shape protruding in the opposite direction (light emitting source direction). Further, the inner periphery of the second incident surface 38 is in contact with the outer periphery of the lens surface 36.

37は第2の入射面38から光学部材39内に入射した光を受光素子31に向けて全反射するとともに集光する反射面(内面反射面)である。   Reference numeral 37 denotes a reflecting surface (inner surface reflecting surface) that totally reflects and collects the light incident into the optical member 39 from the second incident surface 38 toward the light receiving element 31.

本実施例の受光装置によれば、前方(図中の右側)からレンズ面36に入射した光は、受光素子31がレンズ面36の焦点位置又はその近傍に配置されているため、受光素子31上に効率良く集光される。そして、このレンズ面36に入射した光とこれに接する第2の入射面38に入射した光、つまりは光学部材39の入射部のほぼ全体に入射した光を受光素子31へ導くことができる。したがって、図10に示した受光装置のように外部からの光が入射する面のうち全反射領域に入射した光を受光素子に導くことができないという不都合を生じることなく、光学部材39の入射部に入射した光を無駄なく受光素子31に受光させることができる。   According to the light receiving device of the present embodiment, the light incident on the lens surface 36 from the front (right side in the drawing) is disposed at the focal position of the lens surface 36 or in the vicinity thereof. It is efficiently collected on top. Then, the light incident on the lens surface 36 and the light incident on the second incident surface 38 in contact therewith, that is, the light incident on almost the entire incident portion of the optical member 39 can be guided to the light receiving element 31. Therefore, the incident portion of the optical member 39 does not cause the disadvantage that the light incident on the total reflection region of the surface on which light from the outside is incident cannot be guided to the light receiving element as in the light receiving device shown in FIG. Can be received by the light receiving element 31 without waste.

ここで、フォトダイオードや光電変換素子などの受光素子は、例えばセンシング用であれば、受光量が大きくなることによって感度が向上する。また、光電変換素子では、受光量が大きくなることによって発生する電気エネルギが増加する。したがって、これらの受光素子では、できるだけ受光面積を大きくすることが望まれる。しかし、受光素子の受光面積を大きくすると、一枚の単結晶ウェハから得られる受光素子チップ数が少なくなるため、コストアップにつながる。また、受光素子の前方にレンズを配置し、該レンズに入射した光を受光素子上に集光する方法もあるが、この方法では、大きなレンズが必要になり、しかも受光素子とレンズの距離の分だけ入射光軸方向の厚みが増加するので、受光装置全体が大型化する。   Here, if a light receiving element such as a photodiode or a photoelectric conversion element is used for sensing, for example, the sensitivity is improved by increasing the amount of received light. In the photoelectric conversion element, the electric energy generated by the increase in the amount of received light increases. Therefore, in these light receiving elements, it is desired to increase the light receiving area as much as possible. However, when the light receiving area of the light receiving element is increased, the number of light receiving element chips obtained from one single crystal wafer is reduced, leading to an increase in cost. There is also a method in which a lens is arranged in front of the light receiving element and the light incident on the lens is collected on the light receiving element. However, this method requires a large lens, and the distance between the light receiving element and the lens is large. Since the thickness in the direction of the incident optical axis increases by the amount, the entire light receiving device is increased in size.

これに対し、本実施例の受光装置を用いれば、入射光軸AXL近傍に入射した光をレンズ面36で受光素子31上に集光し、入射光軸AXLから離れた位置に入射した光を第2の入射面38の屈折作用と反射面37の全反射作用とによって受光素子31上に集光するので、受光素子31の受光面積を大きくしたり、発光装置を大型化したりすることなく、入射部からの光を効率良く受光素子31に導いて十分な受光量を得ることができる。   On the other hand, if the light receiving device of this embodiment is used, the light incident in the vicinity of the incident optical axis AXL is condensed on the light receiving element 31 by the lens surface 36, and the light incident on the position away from the incident optical axis AXL is converted. Since the light is condensed on the light receiving element 31 by the refracting action of the second incident surface 38 and the total reflecting action of the reflecting face 37, without increasing the light receiving area of the light receiving element 31 or increasing the size of the light emitting device, A sufficient amount of received light can be obtained by efficiently guiding the light from the incident portion to the light receiving element 31.

図6には、本発明の実施例4である受光装置を入射光軸AXLを含む面で切断したときの断面を示している。また、図6には、光線トレース図も併記している。   FIG. 6 shows a cross section of the light receiving device that is Embodiment 4 of the present invention cut along a plane including the incident optical axis AXL. FIG. 6 also shows a ray tracing diagram.

図6において、41はフォトダイオードや光電変換素子等の受光素子、43は受光素子41を搭載した状態でダイボンドされる保持部42を有する第1のリードフレーム、44は受光素子41と第2のリードフレーム45を結ぶボンディングワイヤである。   In FIG. 6, reference numeral 41 denotes a light receiving element such as a photodiode or a photoelectric conversion element, 43 denotes a first lead frame having a holding portion 42 which is die-bonded in a state where the light receiving element 41 is mounted, and 44 denotes a light receiving element 41 and a second light receiving element. A bonding wire that connects the lead frames 45.

49はその内部に受光素子41およびリードフレーム43,45の受光素子41側の部分を封止するように光学樹脂材料によりモールド成形された光学部材である。光学樹脂材料としては、エポキシ樹脂やシリコン等が好ましい。   Reference numeral 49 denotes an optical member molded with an optical resin material so as to seal the light receiving element 41 and the portions of the lead frames 43 and 45 on the light receiving element 41 side. As the optical resin material, epoxy resin, silicon or the like is preferable.

光学部材49において、46はその中心を入射光軸AXLが通るように形成された、外部からの入射光に対して正の屈折力を有する第1の入射面としてのレンズ面である。レンズ面46は、球面レンズ形状、非球面レンズ形状および放物面形状などの凸レンズ形状に形成されている。外部からこのレンズ面46に入射した光(入射光軸AXLに略平行な光)は、正の屈折力により受光素子41上に集光される。   In the optical member 49, reference numeral 46 denotes a lens surface as a first incident surface having a positive refractive power with respect to incident light from the outside, which is formed so that the incident optical axis AXL passes through the center. The lens surface 46 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, or a paraboloid shape. Light incident on the lens surface 46 from the outside (light substantially parallel to the incident optical axis AXL) is collected on the light receiving element 41 by a positive refractive power.

48はレンズ面46の周囲に形成された第2の入射面である。ここで、図6に示すように、第2の入射面48は、受光素子41の略中心から入射光軸AXLに対して傾斜して延びる線Lを含む円錐台形状を有する面として形成されている。言い換えれば、第2の入射面48は、入射光軸AXLから最も離れた部分(外周部分)が、該照射光軸AXLに最も近い部分(内周部分)よりも入射光軸方向における受光素子41とは反対方向(光の発光元方向)に突出した形状を有する。また、第2の入射面48の内周は、レンズ面46の外周に接している。   Reference numeral 48 denotes a second incident surface formed around the lens surface 46. Here, as shown in FIG. 6, the second incident surface 48 is formed as a surface having a truncated cone shape including a line L extending obliquely from the approximate center of the light receiving element 41 with respect to the incident optical axis AXL. Yes. In other words, the second incident surface 48 has a light receiving element 41 in the direction of the incident optical axis where the portion (outer peripheral portion) farthest from the incident optical axis AXL is closer than the portion (inner peripheral portion) closest to the irradiation optical axis AXL. It has a shape protruding in the opposite direction (light emitting source direction). The inner periphery of the second incident surface 48 is in contact with the outer periphery of the lens surface 46.

47は第2の入射面48から光学部材49内に入射した光を受光素子41に向けて全反射するとともに集光する反射面(内面反射面)である。   Reference numeral 47 denotes a reflecting surface (inner surface reflecting surface) that totally reflects and collects the light incident into the optical member 49 from the second incident surface 48 toward the light receiving element 41.

さらに、50は第2の入射面48から光学部材49内に入射した光のうち、反射面47に対して全反射臨界角より小さな角度で入射する光を受光素子41に向けて反射するとともに集光する反射部材である。   Further, 50 reflects the light incident on the reflection surface 47 at an angle smaller than the total reflection critical angle from the second incident surface 48 into the optical member 49 toward the light receiving element 41 and collects the light. It is a reflective member that shines.

本実施例の受光装置によれば、前方(図中の右側)からレンズ面46に入射した光は、受光素子41がレンズ面46の焦点位置又はその近傍に配置されているため、受光素子41上に効率良く集光される。そして、このレンズ面46に入射した光とこれに接する第2の入射面48に入射した光、つまりは光学部材49の入射部のほぼ全体に入射した光を受光素子41へ導くことができる。したがって、実施例3と同様に、光学部材49の入射部に入射した光を無駄なく受光素子41に受光させることができる。   According to the light receiving device of the present embodiment, the light incident on the lens surface 46 from the front (right side in the drawing) is disposed at the focal position of the lens surface 46 or in the vicinity thereof. It is efficiently collected on top. The light incident on the lens surface 46 and the light incident on the second incident surface 48 in contact therewith, that is, the light incident on almost the entire incident portion of the optical member 49 can be guided to the light receiving element 41. Therefore, similarly to the third embodiment, the light incident on the incident portion of the optical member 49 can be received by the light receiving element 41 without waste.

さらに言えば、入射光軸AXL近傍に入射した光をレンズ面46で受光素子41上に集光し、入射光軸AXLから離れた位置に入射した光を第2の入射面48の屈折作用と反射面47の全反射作用および反射部材50の反射作用とによって受光素子41上に集光するので、受光素子41の受光面積を大きくしたり、発光装置を大型化したりすることなく、入射部からの光を効率良く受光素子41に導いて十分な受光量を得ることができる。   Furthermore, the light incident near the incident optical axis AXL is condensed on the light receiving element 41 by the lens surface 46, and the light incident on the position away from the incident optical axis AXL is refracted by the second incident surface 48. Since the light is condensed on the light receiving element 41 by the total reflection action of the reflection surface 47 and the reflection action of the reflection member 50, the light receiving area of the light receiving element 41 is not increased and the light emitting device is not enlarged. Can be efficiently guided to the light receiving element 41 to obtain a sufficient amount of received light.

上記各実施例では、発光素子又は受光素子をモールド樹脂である光学部材によって封止する場合について説明したが、本発明はこのように発光素子又は受光素子と光学部材とを一体型とする場合だけでなく、光学部材の外部に発光素子又は受光素子を配置する場合にも適用することができる。   In each of the above-described embodiments, the case where the light emitting element or the light receiving element is sealed with the optical member that is a mold resin has been described. However, the present invention is only in the case where the light emitting element or the light receiving element and the optical member are integrated as described above. In addition, the present invention can be applied to a case where a light emitting element or a light receiving element is disposed outside the optical member.

図7には、本発明の実施例5である受光装置を入射光軸AXLを含む面で切断したときの断面を示している。また、図7には、光線トレース図も併記している。本実施例では、表面実装タイプの発光素子の前方に実施例1の光学部材と同様の光学作用を有する光学部材を配置した例について説明する。   FIG. 7 shows a cross section of the light receiving device that is Embodiment 5 of the present invention cut along a plane including the incident optical axis AXL. FIG. 7 also shows a ray tracing diagram. In this example, an example in which an optical member having the same optical action as that of the optical member of Example 1 is arranged in front of a surface-mount type light emitting element will be described.

図7において、51は表面実装タイプのLEDやLD等の発光素子である。59は光学樹脂材料により形成された光学部材である。光学樹脂材料としては、エポキシ樹脂やシリコン等、熱に強い材料が好ましい。   In FIG. 7, reference numeral 51 denotes a light emitting element such as a surface mount type LED or LD. Reference numeral 59 denotes an optical member made of an optical resin material. The optical resin material is preferably a heat resistant material such as epoxy resin or silicon.

光学部材59において、60はその中心を照射光軸AXLが通るように形成され、発光素子51から発せられた光が入射する入射面である。この入射面60は、発光素子51の略中心を中心とする球面形状を有する。   In the optical member 59, reference numeral 60 denotes an incident surface formed so that the irradiation optical axis AXL passes through the center thereof, and the light emitted from the light emitting element 51 enters. The incident surface 60 has a spherical shape with the approximate center of the light emitting element 51 as the center.

56はその中心を照射光軸AXLが通るように形成された、発光素子51からの入射光に対して正の屈折力を有する第1の射出面としてのレンズ面である。レンズ面56は、球面レンズ形状、非球面レンズ形状および放物面形状などの凸レンズ形状に形成されている。このレンズ面56には、発光素子51から発せられ、入射面60から光学部材59内に入射した光のうち照射光軸AXLに対して所定角度よりも小さい角度θ1をなす光(以下、第1の光という)が直接入射し、集光されながら射出される。57は発光素子51から発せられ、入射面60から光学部材59内に入射した光のうち照射光軸AXLに対して所定角度以上の角度θ2をなす光(以下、第2の光という)が入射し、これを全反射する反射面(内面反射面)である。   Reference numeral 56 denotes a lens surface as a first exit surface that has a positive refractive power with respect to incident light from the light emitting element 51 and is formed so that the irradiation optical axis AXL passes through the center. The lens surface 56 is formed in a convex lens shape such as a spherical lens shape, an aspheric lens shape, and a paraboloid shape. On the lens surface 56, light emitted from the light emitting element 51 and entering the optical member 59 from the incident surface 60 and having an angle θ1 smaller than a predetermined angle with respect to the irradiation optical axis AXL (hereinafter referred to as a first lens). Light) is directly incident and emitted while being collected. Reference numeral 57 denotes a light emitted from the light emitting element 51, and light (which will be referred to as second light hereinafter) having an angle θ <b> 2 greater than or equal to a predetermined angle with respect to the irradiation optical axis AXL among the light incident from the incident surface 60 into the optical member 59. And this is a reflection surface (internal reflection surface) that totally reflects this.

58は反射面57で全反射された光が入射し、これを屈折させて前方(照射光軸方向、つまりは図7の右側)に射出する第2の射出面である。ここで、図7に示すように、第2の射出面58は、発光素子51の略中心から照射光軸AXLに対して傾斜して延びる線Lを含む円錐台形状を有する面として形成されている。言い換えれば、第2の射出面58は、照射光軸AXLから最も離れた部分(外周部分)が、該照射光軸AXLに最も近い部分(内周部分)よりも照射光軸方向における発光素子51とは反対方向(照射方向)に突出した形状を有する。また、第2の射出面58の内周は、レンズ面56の外周に接している。   Reference numeral 58 denotes a second emission surface on which the light totally reflected by the reflection surface 57 is incident, refracted and emitted forward (in the irradiation optical axis direction, that is, the right side in FIG. 7). Here, as shown in FIG. 7, the second emission surface 58 is formed as a surface having a truncated cone shape including a line L that is inclined from the approximate center of the light emitting element 51 and extends with respect to the irradiation optical axis AXL. Yes. In other words, the light emitting element 51 in the irradiation optical axis direction of the second emission surface 58 is a portion (outer peripheral portion) farthest from the irradiation optical axis AXL than a portion (inner peripheral portion) closest to the irradiation optical axis AXL. It has a shape protruding in the opposite direction (irradiation direction). The inner periphery of the second exit surface 58 is in contact with the outer periphery of the lens surface 56.

本実施例の発光装置において、発光素子51から発せられた光のうち照射光軸AXLに対する角度が小さい第1の光は、発光素子51がレンズ面56の焦点又はその近傍に配置されているため、光学部材59と空気との界面を形成するレンズ面56で屈折して照射光軸AXLに対してほぼ平行な光となってレンズ面56から射出される。また、発光素子51から発せられた光のうち照射光軸AXLに対する角度が第1の光より大きい第2の光は、光学部材59と空気との界面を形成する反射面57でほとんどが全反射され、さらに第2の射出面58で屈折されて照射光軸AXLに対してほぼ平行な光となり、第2の射出面58から射出する。   In the light emitting device of this embodiment, the first light having a small angle with respect to the irradiation optical axis AXL among the light emitted from the light emitting element 51 is disposed at the focal point of the lens surface 56 or in the vicinity thereof. The light is refracted by the lens surface 56 that forms the interface between the optical member 59 and air, and is emitted from the lens surface 56 as light substantially parallel to the irradiation optical axis AXL. In addition, the second light whose angle with respect to the irradiation optical axis AXL is larger than the first light among the light emitted from the light emitting element 51 is almost totally reflected by the reflection surface 57 that forms the interface between the optical member 59 and the air. Further, the light is refracted by the second exit surface 58 to become light substantially parallel to the irradiation optical axis AXL, and exits from the second exit surface 58.

このとき、第2の射出面58におけるレンズ面56との境界に近接した内周端部には、反射面57で全反射された第2の光のうち、射出光軸AXLに対して最も大きい角度で発光素子51から発せられた光線が入射する。また、レンズ面56における第2の射出面58との境界に近接した外周端部には、第1の光のうち照射光軸AXLに対して最も大きな角度をなす光線が入射する。これにより、光学部材59の射出部(レンズ面56および第2の射出面58)の全体から光が射出する。すなわち、図9に符号70で示したような光が射出しない領域がなくなる。   At this time, at the inner peripheral end portion of the second exit surface 58 close to the boundary with the lens surface 56, the second light totally reflected by the reflection surface 57 is the largest with respect to the exit optical axis AXL. A light beam emitted from the light emitting element 51 is incident at an angle. In addition, a light ray having the largest angle with respect to the irradiation optical axis AXL is incident on the outer peripheral end portion of the lens surface 56 that is close to the boundary with the second emission surface 58. As a result, light is emitted from the entire emission portion (lens surface 56 and second emission surface 58) of the optical member 59. That is, there is no region where light is not emitted as indicated by reference numeral 70 in FIG.

このため、図7に示した発光装置を射出光軸方向の前方から見たときに、射出部に発光むらがなく、均一な発光状態が得られる。また、発光素子51から射出した光をほぼ平行化して射出するため、狭い範囲に光を照射することができる。つまり、照射光に高い指向性を持たせることができる。   For this reason, when the light emitting device shown in FIG. 7 is viewed from the front in the emission optical axis direction, there is no light emission unevenness in the emission part, and a uniform light emission state is obtained. In addition, since the light emitted from the light emitting element 51 is emitted in a substantially parallel state, the light can be irradiated in a narrow range. That is, high directivity can be given to irradiation light.

ここで、本実施例では、発光装置から略平行光を射出する場合について説明したが、本発明はこのような場合に限定されない。例えば、発光素子51の位置とレンズ面56の焦点位置との関係や、レンズ面56、反射面57および第2の射出面58の面形状などを適宜変更し、様々な配光特性や指向性を得るようにしてもよい。   Here, although the case where substantially parallel light is emitted from the light emitting device has been described in this embodiment, the present invention is not limited to such a case. For example, the relationship between the position of the light emitting element 51 and the focal position of the lens surface 56, and the surface shapes of the lens surface 56, the reflecting surface 57, and the second exit surface 58 are appropriately changed to provide various light distribution characteristics and directivities. May be obtained.

また、本実施例では、レンズ面56を凸レンズ形状とした場合について説明したが、これ以外の形状、例えばフレネルレンズ形状に形成してもよい。さらに、入射面60が凸レンズ形状やフレネルレンズ形状を有していてもよい。   In the present embodiment, the case where the lens surface 56 has a convex lens shape has been described. However, the lens surface 56 may have a shape other than this, for example, a Fresnel lens shape. Furthermore, the incident surface 60 may have a convex lens shape or a Fresnel lens shape.

なお、本実施例では、表面実装タイプの発光素子から発せられた光をレンズ面と反射面を有する光学部材のみで照射方向に導く場合について説明したが、実施例2のように、表面実装タイプの発光素子から発せられた光を、該発光素子とは別体として設けられた、レンズ面と反射面を有する光学部材と反射部材とで照射方向に導くようにしてもよい。   In addition, although the present Example demonstrated the case where the light emitted from the surface mount type light emitting element was guide | induced to an irradiation direction only with the optical member which has a lens surface and a reflective surface, surface mount type like Example 2 The light emitted from the light emitting element may be guided in the irradiation direction by an optical member having a lens surface and a reflecting surface and a reflecting member provided separately from the light emitting element.

また、発光素子としても、砲弾タイプの発光デバイスやベアチップタイプの発光デバイス、放熱タイプの発光デバイス、フラットパッケージタイプの発光デバイスなど、種々のものを用いることができる。   Various light emitting elements such as a shell type light emitting device, a bare chip type light emitting device, a heat radiation type light emitting device, and a flat package type light emitting device can be used.

さらに、以上説明した各実施例にて説明した構成部品の寸法、材質、形状、配置関係などは例にすぎず、本発明を限定するものではない。例えば、上記各実施例では、第2の射出面および第2の入射面を平面状に形成した場合について説明したが、これらを曲面状(球面形状や非球面形状等)に形成してもよい。     Furthermore, the dimensions, materials, shapes, arrangement relationships, and the like of the components described in the embodiments described above are merely examples, and do not limit the present invention. For example, in each of the embodiments described above, the case where the second exit surface and the second entrance surface are formed in a planar shape has been described, but these may be formed in a curved surface shape (spherical shape, aspherical shape, etc.). .

図8Aおよび図8Bにはそれぞれ、上記各実施例で説明した発光装置や受光装置を備えた機器の具体例を示している。   FIG. 8A and FIG. 8B show specific examples of devices provided with the light-emitting device and the light-receiving device described in the above embodiments, respectively.

図8Aには、実施例1,2および5に示した発光装置100を複数個マトリクス状に配置した機器200を示している。この機器200は、個々の発光装置100が小型であり、照射光軸方向から見て均一に発光し、さらに高い指向性を有することにより、ディスプレイユニットや車両用ランプユニット等として好適である。   FIG. 8A shows a device 200 in which a plurality of light emitting devices 100 shown in Examples 1, 2, and 5 are arranged in a matrix. This device 200 is suitable as a display unit, a vehicle lamp unit, or the like because the individual light emitting devices 100 are small in size, emit light uniformly when viewed from the irradiation optical axis direction, and have higher directivity.

また、図8Bには、実施例3および4に示した受光装置300を複数個配置した機器400を示している。この機器400は、個々の受光装置300が小型でありながらも大きな受光光量が得られることから、光電センサユニットや太陽電池ユニット等として好適である。   FIG. 8B shows a device 400 in which a plurality of light receiving devices 300 shown in the third and fourth embodiments are arranged. This device 400 is suitable as a photoelectric sensor unit, a solar cell unit, or the like because a large amount of received light can be obtained even though each light receiving device 300 is small.

本発明の実施例1である発光装置の外観斜視図。1 is an external perspective view of a light emitting device that is Embodiment 1 of the present invention. FIG. 実施例1の発光装置の断面図。FIG. 3 is a cross-sectional view of the light emitting device of Example 1. 従来の発光装置の断面図。Sectional drawing of the conventional light-emitting device. 本発明の実施例2である発光装置の断面図。Sectional drawing of the light-emitting device which is Example 2 of this invention. 本発明の実施例3である受光装置の断面図。Sectional drawing of the light-receiving device which is Example 3 of this invention. 本発明の実施例4である受光装置の断面図。Sectional drawing of the light-receiving device which is Example 4 of this invention. 本発明の実施例5である発光装置の断面図。Sectional drawing of the light-emitting device which is Example 5 of this invention. 各実施例の発光装置を備えた機器の外観図。The external view of the apparatus provided with the light-emitting device of each Example. 各実施例の受光装置を備えた機器の外観図。The external view of the apparatus provided with the light-receiving device of each Example. 従来の発光装置又は受光装置の断面図。Sectional drawing of the conventional light-emitting device or light-receiving device. 従来の発光装置又は受光装置の断面図。Sectional drawing of the conventional light-emitting device or light-receiving device.

符号の説明Explanation of symbols

1,21,51 発光素子
6,26,36,46,56 レンズ面(第1の射出面又は第1の入射面)
7,27,37,47,57 反射面
8,28,58 第2の射出面
9,29,39,49,59 光学部材
30,50 反射部材
60 入射面
31,41 受光素子
1, 21, 51 Light-emitting element 6, 26, 36, 46, 56 Lens surface (first exit surface or first entrance surface)
7, 27, 37, 47, 57 Reflective surface 8, 28, 58 Second exit surface 9, 29, 39, 49, 59 Optical member 30, 50 Reflective member 60 Incident surface 31, 41 Light receiving element

Claims (11)

発光素子と、
該発光素子から照射光軸に対して所定角度より小さい角度で発せられた光を射出する第1の射出面、前記発光素子から前記照射光軸に対して前記所定角度より大きい角度で発せられた光を反射する反射面、および前記第1の射出面の周囲に形成され、前記反射面で反射した光を射出する第2の射出面を有する光学部材とを有し、
前記第2の射出面は、前記照射光軸から最も離れた部分が、該照射光軸に最も近い部分よりも照射光軸方向における前記発光素子とは反対方向に突出した形状を有することを特徴とする発光装置。
A light emitting element;
A first emission surface for emitting light emitted from the light emitting element at an angle smaller than a predetermined angle with respect to the irradiation optical axis, and emitted from the light emitting element at an angle larger than the predetermined angle with respect to the irradiation optical axis A reflection surface that reflects light, and an optical member that is formed around the first emission surface and has a second emission surface that emits light reflected by the reflection surface;
The second emission surface has a shape in which a portion farthest from the irradiation optical axis protrudes in a direction opposite to the light emitting element in the irradiation optical axis direction than a portion closest to the irradiation optical axis. A light emitting device.
前記第2の射出面は、前記発光素子の略中心から前記照射光軸に対して傾斜して延びる線を含む面形状を有することを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the second emission surface has a surface shape including a line extending obliquely with respect to the irradiation optical axis from a substantial center of the light emitting element. 前記第2の射出面は、前記第1の射出面に接することを特徴とする請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the second emission surface is in contact with the first emission surface. 前記反射面で全反射する光よりも前記照射光軸に対して大きい角度で前記発光素子から射出された光を前記第2の射出面に向けて反射する反射部材を有することを特徴とする請求項1から3のいずれか1つに記載の発光装置。   The light emitting device includes a reflecting member that reflects light emitted from the light emitting element toward the second emitting surface at a larger angle with respect to the irradiation optical axis than light that is totally reflected by the reflecting surface. Item 4. The light emitting device according to any one of Items 1 to 3. 前記光学部材の内部に前記発光素子が配置されていることを特徴とする請求項1から4のいずれか1つに記載の発光装置。   The light-emitting device according to claim 1, wherein the light-emitting element is disposed inside the optical member. 受光素子と、
入射光軸が通るように形成され、入射した光を前記受光素子に向かわせる第1の入射面、該第1の入射面の周囲に形成された第2の入射面、および前記第2の入射面から入射した光を前記受光素子に向けて反射する反射面を有する光学部材とを有し、
前記第2の入射面は、前記入射光軸から最も離れた部分が、該入射光軸に最も近い部分よりも入射光軸方向における前記受光素子とは反対方向に突出した形状を有することを特徴とする受光装置。
A light receiving element;
A first incident surface formed so as to pass an incident optical axis and directing incident light to the light receiving element; a second incident surface formed around the first incident surface; and the second incident surface An optical member having a reflective surface that reflects light incident from the surface toward the light receiving element;
The second incident surface has a shape in which a portion farthest from the incident optical axis protrudes in a direction opposite to the light receiving element in the incident optical axis direction than a portion closest to the incident optical axis. The light receiving device.
前記第2の入射面は、前記受光素子の略中心から前記入射光軸に対して傾斜して延びる線を含む面形状を有することを特徴とする請求項6に記載の受光装置。   The light receiving device according to claim 6, wherein the second incident surface has a surface shape including a line extending obliquely from the approximate center of the light receiving element with respect to the incident optical axis. 前記第2の入射面は、前記第1の入射面に接することを特徴とする請求項6又は7に記載の受光装置。   The light receiving device according to claim 6, wherein the second incident surface is in contact with the first incident surface. 前記第2の入射面からの光のうち前記反射面で全反射しない光を前記受光素子に向けて反射する反射部材を有することを特徴とする請求項6から8のいずれか1つに記載の受光装置。   9. The reflecting member according to claim 6, further comprising a reflecting member that reflects light that is not totally reflected by the reflecting surface out of light from the second incident surface toward the light receiving element. Light receiving device. 前記光学部材の内部に前記受光素子が配置されていることを特徴とする請求項6から9のいずれか1つに記載の受光装置。   The light receiving device according to any one of claims 6 to 9, wherein the light receiving element is disposed inside the optical member. 請求項1から5のいずれか1つに記載の発光装置および請求項6から10のいずれか1つに記載の受光装置のうち少なくとも一方を備えたことを特徴とする機器。
An apparatus comprising at least one of the light emitting device according to any one of claims 1 to 5 and the light receiving device according to any one of claims 6 to 10.
JP2005155095A 2005-05-27 2005-05-27 Light emitting device, light receiving device and equipment provided with them Pending JP2006332411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155095A JP2006332411A (en) 2005-05-27 2005-05-27 Light emitting device, light receiving device and equipment provided with them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155095A JP2006332411A (en) 2005-05-27 2005-05-27 Light emitting device, light receiving device and equipment provided with them

Publications (2)

Publication Number Publication Date
JP2006332411A true JP2006332411A (en) 2006-12-07
JP2006332411A5 JP2006332411A5 (en) 2008-02-21

Family

ID=37553772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155095A Pending JP2006332411A (en) 2005-05-27 2005-05-27 Light emitting device, light receiving device and equipment provided with them

Country Status (1)

Country Link
JP (1) JP2006332411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028049A (en) * 2008-07-24 2010-02-04 Kyocera Corp Light-emitting device and lighting system
JP2013531347A (en) * 2010-07-16 2013-08-01 ツヴァイブリューダー・オプトエレクトロニクス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト Pocket lamp with rotationally symmetric adapter optics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028049A (en) * 2008-07-24 2010-02-04 Kyocera Corp Light-emitting device and lighting system
JP2013531347A (en) * 2010-07-16 2013-08-01 ツヴァイブリューダー・オプトエレクトロニクス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト Pocket lamp with rotationally symmetric adapter optics

Similar Documents

Publication Publication Date Title
US8449128B2 (en) System and method for a lens and phosphor layer
US6674096B2 (en) Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
US9574743B2 (en) Separate optical device for directing light from an LED
US7433134B2 (en) Lens for sideward light emission
TW541726B (en) Side emitting LED
US7102123B2 (en) Reflective imaging encoder
JP5078419B2 (en) Light emitting module and light receiving module
JP5150335B2 (en) Light guiding lens
US8721128B2 (en) Lens and semiconductor light-emitting element module using same
EP3627037B1 (en) Vehicular lamp
JP3791323B2 (en) Optical device for optical elements
JP2002204021A (en) Laser beam radiation device, and optical reader having the device and protection package for light beam radiation source
JPH09212303A (en) Photoconductor and optical position detector
JP2006332411A (en) Light emitting device, light receiving device and equipment provided with them
JP2556821Y2 (en) Light emitting device
JPH0750797B2 (en) Light emitting diode
JP2013201226A (en) Light-emitting device
JP3926808B2 (en) Light guide and optical position detection device
KR20070065733A (en) Side emitting light emitting diode package
US20090189170A1 (en) Light emitting diode
JP4404658B2 (en) Semiconductor light emitting device
KR101478336B1 (en) Led package using total internal reflection
RU2055420C1 (en) Light-emitting diode
KR101128284B1 (en) A condensing lens for led
JP3235092U (en) Reflective light sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207