JP2006332250A - Line image sensor with two or more light receiving element rows - Google Patents

Line image sensor with two or more light receiving element rows Download PDF

Info

Publication number
JP2006332250A
JP2006332250A JP2005152466A JP2005152466A JP2006332250A JP 2006332250 A JP2006332250 A JP 2006332250A JP 2005152466 A JP2005152466 A JP 2005152466A JP 2005152466 A JP2005152466 A JP 2005152466A JP 2006332250 A JP2006332250 A JP 2006332250A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
scanning direction
area
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005152466A
Other languages
Japanese (ja)
Inventor
Komusan Kyaashai
コムサン キャアシャイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005152466A priority Critical patent/JP2006332250A/en
Publication of JP2006332250A publication Critical patent/JP2006332250A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly sensitive and low-cost line image sensor by enlarging a light receiving surface area by arranging a suitable light receiving element, without increasing the silicone area of a photoelectric conversion device. <P>SOLUTION: A line image sensor R formed on a common substrate comprises an R light receiving element rows 1 where R light receiving elements R1, R2 and the like are arranged in a line shape formed with R filters; a G light receiving element rows 2 where G light receiving elements G1, G2 and the like are arranged in a line shape formed with G filters; a B light receiving element rows 3 where B light receiving elements B1, B2 and the like are arranged in a line shape formed with B filters; a circuit 7 which processes and outputs signals from each light receiving element rows 1-3; and wiring parts 11, 21 and 31 which connects each light receiving elements of each light receiving element rows 1-3 and the circuit 7. Sequentially from a side near the circuit 7 of the subscanning direction; the B light receiving element rows 3, the G light receiving element rows 2, and the R light receiving element rows 1 are arranged one by one. For every light receiving element rows 1-3, the light receiving surface are of a light receiving element is varied by utilizing the regions other than the regions through which the wiring 11, 21 and 31 pass among empty regions between the light receiving. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の受光素子列を持つラインイメージセンサに係り、とくにラインイメージセンサの有効な受光素子の配置に関する。   The present invention relates to a line image sensor having a plurality of light receiving element arrays, and more particularly to an arrangement of effective light receiving elements of a line image sensor.

近年、光電変換装置の分野においては、縮小光学系を用いたCCDセンサ、複数の光電変換装置を実装した等倍系の密着型イメージセンサの開発が盛んに行われている(例えば、特許文献1参照)。図4は、特許文献1で提案されている従来例のカラーラインセンサにおける受光素子の配置図を示す。   In recent years, in the field of photoelectric conversion devices, CCD sensors using a reduction optical system and equal-magnification contact image sensors mounted with a plurality of photoelectric conversion devices have been actively developed (for example, Patent Document 1). reference). FIG. 4 is a layout view of the light receiving elements in the color line sensor of the conventional example proposed in Patent Document 1.

図4において、カラーラインセンサ2024はイメージスキャナ(画像読取装置)に適用されるもので、フォトダイオードからなる各受光素子上には、RGB三原色のカラーフィルタが形成されている。2024−1は、可視光の中で赤色の波長成分を透過するRフィルタが形成された受光素子R…Rを1ラインに配置した受光素子列である。また、2024−2、2024−3は、緑色光、青色光の波長成分を透過するGフィルタ、Bフィルタが形成された受光素子G…G、B…Bをそれぞれ1ラインに配置した受光素子列である。これら3つの受光素子列2024-1、2024-2、2024-3は、RGB3ラインの読取ラインを形成し、所定の蓄積時間に各受光素子に入射される光量に対応した電荷を発生する。   In FIG. 4, a color line sensor 2024 is applied to an image scanner (image reading device), and RGB primary color filters are formed on each light receiving element made of a photodiode. Reference numeral 2024-1 denotes a light receiving element array in which light receiving elements R... R on which an R filter that transmits a red wavelength component in visible light is formed are arranged in one line. Reference numerals 2024-2 and 2024-3 denote light-receiving element arrays in which light-receiving elements G... G, B... B formed with a G filter and a B filter that transmit wavelength components of green light and blue light are arranged in one line, respectively. It is. These three light receiving element arrays 2024-1, 2024-2, and 2024-3 form RGB 3 line reading lines and generate charges corresponding to the amount of light incident on each light receiving element during a predetermined accumulation time.

また、2024-4は、3つの受光素子列2024-1、2024-2、2024-3の各受光素子において蓄積された電荷を転送するための電荷転送部としてのCCDアナログシフトレジスタ、2024-5は、電荷信号を電圧に変換し、電圧出力信号として出力するための出力アンプ部である。   2024-4 is a CCD analog shift register 2024-5 as a charge transfer unit for transferring charges accumulated in the respective light receiving elements of the three light receiving element arrays 2024-1, 2024-2, and 2024-3. Is an output amplifier for converting a charge signal into a voltage and outputting it as a voltage output signal.

上記RGB3ラインの異なる光学特性を持つ受光素子列2024-1、2024-2、2024-3は、同一ラインを読み取るべく、互いに平行に配置される。また、CCDアナログシフトレジスタ2024-4は、3ラインの受光素子列2024-1、2024-2、2024-3の外側位置で、受光素子列2024-3に隣接して平行に配置される。各受光素子列2024-1、2024-2、2024-3、及びCCDシフトレジスタ2024-4は、同一のシリコンチップ上においてモノリシック構造をとる。   The light receiving element arrays 2024-1, 2024-2, and 2024-3 having different optical characteristics of the RGB3 lines are arranged in parallel to each other so as to read the same line. The CCD analog shift register 2024-4 is arranged in parallel with and adjacent to the light receiving element array 2024-3 at the outer position of the three lines of light receiving element arrays 2024-1, 2024-2, and 2024-3. Each of the light receiving element arrays 2024-1, 2024-2, and 2024-3 and the CCD shift register 2024-4 have a monolithic structure on the same silicon chip.

各ラインにおける主走査方向の画素ピッチは、1画素の開口部の主走査方向の大きさと等しい42μmになるように各受光素子が配置される。各ラインの間隔も、1画素の開口部の副走査方向の大きさと等しい42μmになるように各受光素子が配置される。上記の従来技術では、全受光素子が同等な受光面積を有している。
特開2003−32437号公報
The respective light receiving elements are arranged so that the pixel pitch in the main scanning direction in each line is 42 μm, which is equal to the size of the opening of one pixel in the main scanning direction. The light receiving elements are arranged so that the interval between the lines is 42 μm, which is equal to the size of the opening of one pixel in the sub-scanning direction. In the above prior art, all the light receiving elements have the same light receiving area.
Japanese Patent Laid-Open No. 2003-32437

上述した特許文献1の図4で示したような複数の受光素子列を持つラインイメージセンサにあっては、受光素子の受光面積を同等に作ることにしても受光素子の感度が同等にならない。その原因は、各光波長に対するフィルタの透過率を同等に作ることが困難であり、また光電変換素子材料として使われているシリコンは、それぞれの光波長に対する光電変換率が違うことにある。   In the line image sensor having a plurality of light receiving element rows as shown in FIG. 4 of Patent Document 1 described above, the sensitivity of the light receiving elements is not equal even if the light receiving areas of the light receiving elements are made equal. The cause is that it is difficult to make the transmittance of the filter equal to each light wavelength, and silicon used as a photoelectric conversion element material has different photoelectric conversion rates for each light wavelength.

従って、入力光の成分を赤、緑、青、3色に色分解する光電変換素子が同等の感度を持たせるため、アンプゲインを変える手段あるいは高感度を持つ受光素子の一部の受光領域をメタル層で遮光して、一番感度が低い受光素子に合わせる手段が一般に用いられている。   Therefore, a photoelectric conversion element that separates the input light components into red, green, blue, and three colors has the same sensitivity. Therefore, a means for changing the amplifier gain or a part of the light receiving area of the light receiving element having high sensitivity is provided. In general, a means for shielding light with a metal layer and matching the light receiving element with the lowest sensitivity is used.

図2は、一部の受光領域をメタルで遮光した受光素子列を有するカラーラインセンサの受光素子列配置イメージ図を示す。しかし、高感度を持つ受光素子の一部の受光領域をメタル層で遮光する手段(図2参照)は、無駄なスペースが発生し、設計上理想的な方法ではない。   FIG. 2 shows a light receiving element row arrangement image diagram of a color line sensor having a light receiving element row in which a part of the light receiving region is shielded with metal. However, the means (see FIG. 2) for shielding a part of the light receiving region of the light receiving element having high sensitivity with the metal layer generates a useless space and is not an ideal design method.

本発明は、このような従来の事情を考慮してなされたもので、光電変換装置のシリコン面積を増加せずに、適切な受光素子を配置することで受光面積を拡大し、高感度かつ安価なラインイメージセンサを提供することを目的とする。   The present invention has been made in consideration of such a conventional situation, and without increasing the silicon area of the photoelectric conversion device, by arranging an appropriate light receiving element, the light receiving area can be expanded, and high sensitivity and low cost. An object is to provide a simple line image sensor.

上記目的を達成するため、本発明に係る複数の受光素子列を持つラインイメージセンサは、ラインイメージセンサの主走査方向とその副走査方向とが規定される共通の基板上に、前記主走査方向に沿ってカラーフィルタが形成された複数の受光素子がライン状に所定間隔で配列されて成り且つ互いに前記カラーフィルタの透過率及び前記受光素子の光電変換率で決まる感度の異なる複数の受光素子列と、前記複数の受光素子列からの信号を処理して出力する回路部と、前記複数の受光素子列の各受光素子と前記回路部とを電気的に接続する複数の配線とを有し、前記複数の受光素子列が互いに平行して前記副走査方向に所定間隔で配列され、前記回路部が前記複数の受光素子列の前記副走査方向の外側の一方に配置され、前記複数の配線が前記複数の受光素子列内の各受光素子間の空き領域を通って配置されるラインイメージセンサにおいて、前記複数の受光素子列のうち感度の最も高い受光素子列が、前記空き領域のうち前記配線が通る領域の面積が最も大きくなるよう、前記副走査方向の前記回路部に最も近い側に配置され、前記複数の受光素子列のうち残りの受光素子列が、前記感度の高いものから低いものへ順番に、前記空き領域のうち前記配線が通る領域の面積が前記感度の最も高い受光素子列よりも順次小さくなるよう、前記感度の最も高い受光素子列と前記主走査方向に平行な状態で、前記副走査方向の前記回路部に近い側から遠い側へ順次配置され、前記空き領域のうち前記配線が通る領域以外を利用して、前記複数の受光素子列毎に前記受光素子の受光面積を異ならせていることを特徴とする。   In order to achieve the above object, a line image sensor having a plurality of light receiving element arrays according to the present invention is provided on a common substrate on which a main scanning direction and a sub-scanning direction of the line image sensor are defined. A plurality of light receiving element arrays in which color filters are formed along a line and arranged in a line at predetermined intervals and having different sensitivities determined by the transmittance of the color filter and the photoelectric conversion rate of the light receiving elements. And a circuit unit that processes and outputs signals from the plurality of light receiving element rows, and a plurality of wirings that electrically connect the light receiving elements of the plurality of light receiving element rows and the circuit unit, The plurality of light receiving element arrays are arranged in parallel with each other at a predetermined interval in the sub-scanning direction, the circuit unit is disposed on one outer side of the plurality of light receiving element arrays in the sub-scanning direction, and the plurality of wirings are arranged in front In the line image sensor arranged through the empty area between the respective light receiving elements in the plurality of light receiving element arrays, the light receiving element array having the highest sensitivity among the plurality of light receiving element arrays and the wiring in the empty area are arranged. From the high sensitivity to the low sensitivity, the remaining light receiving element rows are arranged on the side closest to the circuit portion in the sub-scanning direction so that the area of the passing region is the largest. In order, the area of the empty region through which the wiring passes sequentially becomes smaller than the light receiving element array having the highest sensitivity, in a state parallel to the light receiving element array having the highest sensitivity and the main scanning direction, The light receiving areas of the light receiving elements are arranged for each of the plurality of light receiving element rows by sequentially arranging the empty areas other than the area through which the wiring passes from the side closer to the circuit unit in the sub-scanning direction. Different Wherein the is caused al.

本発明において、前記感度の最も高い受光素子列は、前記受光素子の受光面積が最も小さく、前記残りの受光素子列は、前記感度の高いものから低いものへ順番に、前記空き領域のうち前記配線が通る領域以外を利用して前記感度の最も高い受光素子列よりも前記受光素子の受光面積が順次大きくなるよう構成されててもよい。   In the present invention, the light receiving element array having the highest sensitivity has the smallest light receiving area of the light receiving element, and the remaining light receiving element arrays are arranged in order from the highest sensitivity to the lowest in the empty area. The light receiving area of the light receiving element may be configured to be sequentially larger than the light receiving element array having the highest sensitivity using a region other than the region through which the wiring passes.

本発明において、前記複数の受光素子列は、可視光の中で赤色の成分波長を透過する第1のカラーフィルタが形成された複数の受光素子をライン状に配列した第1の受光素子列と、可視光の中で緑色の成分波長を透過する第2のカラーフィルタが形成された複数の受光素子をライン状に配列した第2の受光素子列と、可視光の中で青色の成分波長を透過する第3のカラーフィルタが形成された複数の受光素子をライン状に配列した第3の受光素子列とを有し、前記副走査方向の前記回路部に近い側から遠い側へ順に、前記第3の受光素子列、前記第2の受光素子列、及び前記第1の受光素子列が順次配置されてもよい。   In the present invention, the plurality of light receiving element arrays include a first light receiving element array in which a plurality of light receiving elements on which a first color filter that transmits a red component wavelength in visible light is formed are arranged in a line. A second light receiving element array in which a plurality of light receiving elements formed with a second color filter that transmits a green component wavelength in visible light are arranged in a line, and a blue component wavelength in visible light A plurality of light receiving elements in which a third color filter that transmits light is arranged in a line, and sequentially from the side closer to the circuit unit in the sub-scanning direction to the side farther from the side. A third light receiving element array, the second light receiving element array, and the first light receiving element array may be sequentially arranged.

本発明によれば、複数の受光素子列の受光素子間に形成される空き領域を受光素子の受光面積にすることで、副走査方向の受光素子列のピッチを変更せず、従って光電変換装置のシリコン面積を増加せずに受光面積を拡大させることができ、これにより従来技術よりも高感度なラインイメージセンサを安価に提供することができる。   According to the present invention, the empty area formed between the light receiving elements of the plurality of light receiving element arrays is made the light receiving area of the light receiving elements, so that the pitch of the light receiving element arrays in the sub-scanning direction is not changed, and thus the photoelectric conversion device Therefore, it is possible to increase the light receiving area without increasing the silicon area, and to provide a line image sensor with higher sensitivity than the conventional technique at a low cost.

以下、本発明に係る複数の受光素子列を持つラインイメージセンサを実施するための最良の形態について、図面を参照して詳細に説明する。   The best mode for carrying out a line image sensor having a plurality of light receiving element arrays according to the present invention will be described below in detail with reference to the drawings.

本実施形態によるラインイメージセンサは、複数の受光素子列内のライン状に並んでいる受光素子間に生じた空き領域と、受光素子の光電変換率及びカラーフィルタの透過率の関係に基づいて、各列の受光素子を適切な位置に配置することで高い感度を実現するものである。以下の説明では、受光素子の「感度」とは、受光素子の光電変換率及びカラーフィルタの透過率で決まるものを言う。   The line image sensor according to the present embodiment is based on the relationship between the empty area generated between the light receiving elements arranged in a line in the plurality of light receiving element rows, the photoelectric conversion rate of the light receiving element, and the transmittance of the color filter. High sensitivity is realized by arranging the light receiving elements in each row at appropriate positions. In the following description, the “sensitivity” of the light receiving element is determined by the photoelectric conversion rate of the light receiving element and the transmittance of the color filter.

具体的には、本実施形態は、共通の基板上に、複数の受光素子列が互いに平行して副走査方向に配列され、複数の受光素子列からの信号を処理して出力する回路部を有するラインイメージセンサを適用している。この構成において、感度の最も高い受光素子列が、副走査方向の回路部の最も近い側(直上あるいは直下)に配置され、残りの受光素子列が感度の高い順番に、配置された感度の最も高い受光素子列と平行に、副走査方向の回路部から遠ざかる方向に配置される。これにより、受光素子列の受光素子間に形成される空き領域を受光素子の受光面積にする。こうすることで、副走査方向方向の受光素子列のピッチを変更せず、かつ従来技術より高感度なラインイメージセンサを実現している。   Specifically, this embodiment includes a circuit unit in which a plurality of light receiving element arrays are arranged in parallel in the sub-scanning direction on a common substrate, and processes and outputs signals from the plurality of light receiving element arrays. The line image sensor which has is applied. In this configuration, the light receiving element array having the highest sensitivity is arranged on the closest side (directly above or directly below) of the circuit unit in the sub-scanning direction, and the remaining light receiving element arrays are arranged in the order of the highest sensitivity. In parallel with the high light receiving element array, it is arranged in a direction away from the circuit section in the sub-scanning direction. Thereby, the empty area formed between the light receiving elements in the light receiving element array is made the light receiving area of the light receiving elements. In this way, a line image sensor that does not change the pitch of the light receiving element rows in the sub-scanning direction and has higher sensitivity than the prior art is realized.

図1は、複数の受光素子列を有するカラーラインセンサの受光素子配置イメージ図を示す。   FIG. 1 shows a light receiving element arrangement image diagram of a color line sensor having a plurality of light receiving element rows.

図1に示すカラーラインセンサ100には、共通の基板上に形成される複数の受光素子列として、受光素子列1(以下、「R受光素子列」と呼ぶ)、受光素子列2(以下、「G受光素子列」と呼ぶ)、及び受光素子列3(以下、「B受光素子列」と呼ぶ)が配置される。   The color line sensor 100 shown in FIG. 1 includes a light receiving element array 1 (hereinafter referred to as “R light receiving element array”), a light receiving element array 2 (hereinafter referred to as “R light receiving element array”) as a plurality of light receiving element arrays formed on a common substrate. “G light receiving element array”) and light receiving element array 3 (hereinafter referred to as “B light receiving element array”) are arranged.

R受光素子列1は、可視光の中で赤色の波長成分を透過するカラーフィルタ(Rフィルタ)が形成された受光素子R1、R2、R3、…(以下、「R受光素子」と呼ぶ)をライン状に配置したものである。G受光素子列2は、可視光の中で緑色の波長成分を透過するカラーフィルタ(Gフィルタ)が形成された受光素子G1、G2、G3、…(以下、「G受光素子」と呼ぶ)をライン状に配置したものである。B受光素子列3は、可視光の中で青色の波長成分を透過するカラーフィルタ(Bフィルタ)が形成された受光素子B1、B2、B3、…(以下、「B受光素子」と呼ぶ)をライン状に配置したものである。   The R light receiving element array 1 includes light receiving elements R1, R2, R3,... (Hereinafter referred to as “R light receiving elements”) in which a color filter (R filter) that transmits a red wavelength component in visible light is formed. They are arranged in a line. The G light receiving element array 2 includes light receiving elements G1, G2, G3,... (Hereinafter referred to as “G light receiving elements”) in which color filters (G filters) that transmit green wavelength components in visible light are formed. They are arranged in a line. The B light receiving element array 3 includes light receiving elements B1, B2, B3,... (Hereinafter referred to as “B light receiving elements”) in which color filters (B filters) that transmit blue wavelength components in visible light are formed. They are arranged in a line.

このうち、受光素子の感度については、後述するように、R受光素子列1、G受光素子列2、B受光素子列3の順に高くなる。なお、図1において、aはR、G、B受光素子の受光面積における主走査方向の寸法、dはR、G、B受光素子の主走査方向の配列間隔(ピッチ)、fはR、G、B受光素子の副走査方向の配列間隔(ピッチ)をそれぞれ示す。   Among these, the sensitivity of the light receiving elements increases in the order of the R light receiving element array 1, the G light receiving element array 2, and the B light receiving element array 3, as will be described later. In FIG. 1, a is a dimension in the main scanning direction of the light receiving area of the R, G, B light receiving elements, d is an arrangement interval (pitch) in the main scanning direction of the R, G, B light receiving elements, and f is R, G. , B shows the arrangement interval (pitch) in the sub-scanning direction of the light receiving elements.

また、このカラーラインセンサ100は、複数の受光素子列と共通の基板上に形成される回路として、R受光素子列1内の各R受光素子R1、R2、R3、…に個別に接続されるR受光素子用の読み出し回路4と、G受光素子列2内の各G受光素子G1、G2、G3、…に個別に接続されるG受光素子用の読み出し回路5と、B受光素子列3内の各B受光素子B1、B2、B3、…に個別に接続されるB受光素子用の読み出し回路6とを有する。   The color line sensor 100 is individually connected to each R light receiving element R1, R2, R3,... In the R light receiving element array 1 as a circuit formed on a common substrate with a plurality of light receiving element arrays. Read circuit 4 for R light receiving element, read circuit 5 for G light receiving element individually connected to each G light receiving element G1, G2, G3,. , Each of the B light receiving elements B1, B2, B3,...

さらに、このカラーラインセンサ100は、複数の受光素子列と共通の基板上に形成される回路及び配線として、R、G、B受光素子列1、2、3からの信号を処理して出力する回路部7と、回路部7とR受光素子用の読み出し回路4との間に接続されるR受光素子用の出力読み出し配線11…11と、回路部7とB受光素子用の読み出し回路5との間に接続されるG受光素子用の出力読み出し配線21…21と、回路部7とB受光素子用の読み出し回路6との間に接続されるB受光素子用の出力読み出し配線31…31とを有する。   Further, the color line sensor 100 processes and outputs signals from the R, G, and B light receiving element arrays 1, 2, and 3 as circuits and wirings formed on a common substrate with a plurality of light receiving element arrays. The circuit unit 7, output readout wirings 11 ... 11 for the R light receiving element connected between the circuit unit 7 and the readout circuit 4 for the R light receiving element, the circuit unit 7 and the readout circuit 5 for the B light receiving element, Output readout wirings 21... 21 for the G light receiving elements connected between the B, and output readout wirings 31... 31 for the B light receiving elements connected between the circuit section 7 and the readout circuit 6 for the B light receiving elements. Have

図1において、101は、R受光素子列1内の主走査方向に隣接する2つの受光素子R、R間に形成される空き領域、102は、G受光素子列2内の主走査方向に隣接する2つの受光素子G、G間に形成される空き領域、103は、B受光素子列3内の主走査方向に隣接する2つの受光素子B、B間に形成される空き領域である。   In FIG. 1, 101 is an empty area formed between two light receiving elements R and R adjacent in the main scanning direction in the R light receiving element array 1, and 102 is adjacent in the main scanning direction in the G light receiving element array 2. An empty area 103 formed between the two light receiving elements G and G is an empty area formed between the two light receiving elements B and B adjacent in the main scanning direction in the B light receiving element array 3.

図1に示したように、R、G、B受光素子列1、2、3と回路部7との位置関係に応じて、自列を通過する他列の出力読み出し配線の数量が異なり、これにより各空き領域101、102、103の面積が異なっている。具体的には、R受光素子列1内の空き領域101には、G、B受光素子列2、3の出力読み出し配線21、31がいずれも通らず、G受光素子列2内の空き領域102には、R受光素子列1の出力読み出し配線11のみが通り、B受光素子列3内の空き領域103には、R、G受光素子列1、2の出力読み出し配線11、21のいずれもが通っている。この出力読み出し配線数が増える程、各空き領域101、102、103の面積が小さい。すなわち、副走査方向の回路部7に最も離れた側(図中の下側)に配置されたR受光素子列1におけるR受光素子間の空き領域101の面積は最も大きく、副走査方向の回路部7に最も近い側(図中の上側)に配置されたB受光素子列3におけるB受光素子間の空き領域103の面積は最も小さい。両者の中間に配置されたG受光素子列2におけるG受光素子間の空き領域102の面積は、R受光素子間の空き領域101の面積より小さく、B受光素子間の空き領域103の面積より大きい。   As shown in FIG. 1, depending on the positional relationship between the R, G, B light receiving element arrays 1, 2, 3 and the circuit unit 7, the number of output read wirings in other columns passing through the own column differs. Therefore, the areas of the empty areas 101, 102, and 103 are different. Specifically, none of the output read wirings 21 and 31 of the G and B light receiving element arrays 2 and 3 pass through the empty area 101 in the R light receiving element array 1, and the empty area 102 in the G light receiving element array 2. In this case, only the output readout wiring 11 of the R light receiving element array 1 passes, and the output readout wirings 11 and 21 of the R and G light receiving element arrays 1 and 2 pass through the empty area 103 in the B light receiving element array 3. Passing through. As the number of output read wirings increases, the areas of the empty regions 101, 102, and 103 are smaller. That is, the area of the empty area 101 between the R light receiving elements in the R light receiving element row 1 arranged on the side farthest from the circuit unit 7 in the sub scanning direction (the lower side in the drawing) is the largest, and the circuit in the sub scanning direction The area of the empty region 103 between the B light receiving elements in the B light receiving element row 3 arranged on the side closest to the portion 7 (upper side in the drawing) is the smallest. The area of the empty region 102 between the G light receiving elements in the G light receiving element array 2 arranged between the two is smaller than the area of the empty region 101 between the R light receiving elements and larger than the area of the empty region 103 between the B light receiving elements. .

従って、本実施形態では、これら面積の異なる各列の空き領域101、102、103をそれぞれ各列の受光素子の受光面積として有効に活用することによって、感度を向上させている。具体的な実現方法を、以下の例で説明する。   Therefore, in this embodiment, the sensitivity is improved by effectively utilizing the empty areas 101, 102, and 103 of the columns having different areas as the light receiving areas of the light receiving elements of the columns. A specific implementation method will be described in the following example.

ここで、受光素子の感度をS(Sensitive)で表し、R受光素子の感度をS_R、G受光素子の感度をS_G、B受光素子の感度をS_Bとすると、各受光素子の感度が、下記の式(1)のようにそれぞれ異なる場合は、B受光素子の感度が一番高く、R受光素子の感度が一番低く、B受光素子の感度はB受光素子の感度とG受光素子の感度の中間である。   Here, the sensitivity of the light receiving element is represented by S (Sensitive), the sensitivity of the R light receiving element is S_R, the sensitivity of the G light receiving element is S_G, and the sensitivity of the B light receiving element is S_B. When each is different as in the formula (1), the sensitivity of the B light receiving element is the highest, the sensitivity of the R light receiving element is the lowest, and the sensitivity of the B light receiving element is the sensitivity of the B light receiving element and the sensitivity of the G light receiving element. Intermediate.

S_B>S_G>S_R …(1)
図2は、各受光素子が同等の感度を持たせるため、高感度を持つB、R受光素子の一部の受光領域をメタル層(遮光層)111、112で遮光して、一番感度が低いR受光素子に合わせる場合のR、G、B受光素子列1、2、3の配置イメージ図を示す。
S_B>S_G> S_R (1)
In FIG. 2, since each light receiving element has the same sensitivity, a part of the light receiving regions of the B and R light receiving elements having high sensitivity are shielded by the metal layers (light shielding layers) 111 and 112, and the most sensitive is obtained. The arrangement | positioning image figure of R, G, B light receiving element row | line | column 1, 2, 3 at the time of matching with a low R light receiving element is shown.

図2において、R受光素子の受光面積における主走査方向の寸法をaとし、メタル層111で受光領域の一部が遮光されたG受光素子の受光面積における主走査方向の寸法をbとし、メタル層112で受光領域の一部が遮光されたB受光素子の受光面積における主走査方向の寸法をcとすると、a>b>cとなる。従って、図2に示すように、高感度を持つB、R受光素子の一部の受光領域をメタル層111、112で遮光する手段は、無駄なスペースが発生し、設計上理想的な方法ではない。このことは、前述した通りである。   In FIG. 2, the dimension in the main scanning direction in the light receiving area of the R light receiving element is a, and the dimension in the main scanning direction in the light receiving area of the G light receiving element where a part of the light receiving region is shielded by the metal layer 111 is b. When the dimension in the main scanning direction in the light receiving area of the B light receiving element in which a part of the light receiving region is shielded by the layer 112 is c, a> b> c. Therefore, as shown in FIG. 2, the means for shielding a part of the light receiving regions of the B and R light receiving elements having high sensitivity with the metal layers 111 and 112 generates useless space, and is an ideal design method. Absent. This is as described above.

これに対し、図3は、列毎に異なる受光面積を有する場合のR、G、B受光素子列1、2、3の配置イメージ図を示す。   On the other hand, FIG. 3 shows an arrangement image diagram of the R, G, and B light receiving element rows 1, 2, and 3 when the light receiving areas are different for each row.

ここで、受光素子の受光面積をA(Area)で表し、R受光素子の受光面積をA_R、G受光素子の受光面積をA_G、B受光素子の受光面積をA_Bとすると、各受光素子の感度が上記の式(1)のようにそれぞれ異なる場合は、下記の式(2)のような受光面積とすれば、容易に全列の受光素子の感度を同等とすることができる。   Here, the light receiving area of the light receiving element is represented by A (Area), the light receiving area of the R light receiving element is A_R, the light receiving area of the G light receiving element is A_G, and the light receiving area of the B light receiving element is A_B. Are different from each other as in the above formula (1), the sensitivity of the light receiving elements in all the rows can be easily made equal by setting the light receiving area as in the following formula (2).

A_B<A_G<A_R …(2)
図3において、感度が一番高いB受光素子は、受光面積を拡大しなくても感度が十分足りる場合は受光面積を拡大する必要がなくなる。感度が一番低いR受光素子は、空き領域101を使用して受光面積を拡大している。B受光素子の感度とG受光素子の感度の中間の感度であるB受光素子は、空き領域103を使用して受光面積を拡大している。すなわち、図3において、R受光素子の受光面積における主走査方向の寸法をaとし、G受光素子の受光面積における主走査方向の寸法をgとし、B受光素子の受光面積における主走査方向の寸法をhとすると、a<g<hとなる。
A_B <A_G <A_R (2)
In FIG. 3, the B light receiving element having the highest sensitivity does not need to expand the light receiving area when the sensitivity is sufficient even without increasing the light receiving area. The R light receiving element having the lowest sensitivity uses the empty area 101 to expand the light receiving area. The B light receiving element, which is an intermediate sensitivity between the sensitivity of the B light receiving element and the sensitivity of the G light receiving element, uses the empty area 103 to expand the light receiving area. That is, in FIG. 3, the dimension in the main scanning direction in the light receiving area of the R light receiving element is a, the dimension in the main scanning direction in the light receiving area of the G light receiving element is g, and the dimension in the main scanning direction in the light receiving area of the B light receiving element. Where h is a <g <h.

上記の図3に示す方法により、全受光素子の受光面積を有効に使用すると、以下の式(3)と同様に、全受光素子が同等な感度を実現することが容易にできる。   When the light receiving area of all the light receiving elements is effectively used by the method shown in FIG. 3, it is easy to realize the same sensitivity as all the light receiving elements as in the following formula (3).

S_B=S_G=S_R …(3)
従って、本実施形態によれば、感度の最も高いB受光素子列が、回路部の直上あるいは直下に配置され、残りのG、R受光素子列が感度の高い順番に、感度の高いB受光素子列と平行に、回路部から遠さがる方向に配置される。これにより、受光素子列の受光素子間に形成される空き領域を有効に活用して受光素子の受光面積にすることで、副走査方向の受光素子列のピッチを変更せず、かつ従来技術より高感度なラインイメージセンサを実現できる。これによれば、光電変換装置の短辺長を縮小しても従来技術の同等な感度を実現でき、かつ安価なカラーラインセンサを提供することができる。この効果は、将来的に要求されている低価格の複数ラインセンサに適用する場合に最大限に発揮させることができる。
S_B = S_G = S_R (3)
Therefore, according to the present embodiment, the B light receiving element row having the highest sensitivity is arranged immediately above or immediately below the circuit unit, and the remaining G and R light receiving element rows are arranged in descending order of sensitivity in order of high sensitivity. It is arranged in parallel to the columns in a direction away from the circuit unit. As a result, by effectively utilizing the empty area formed between the light receiving elements of the light receiving element array to make the light receiving area of the light receiving element, the pitch of the light receiving element array in the sub-scanning direction is not changed, and compared with the prior art A highly sensitive line image sensor can be realized. According to this, even if the short side length of the photoelectric conversion device is reduced, it is possible to provide an inexpensive color line sensor that can achieve the same sensitivity as that of the prior art. This effect can be maximized when applied to a low-cost multi-line sensor that will be required in the future.

本発明の実施形態によるカラーラインセンサの受光素子列内の空き領域を説明する受光素子配置図である。FIG. 4 is a light receiving element arrangement diagram for explaining an empty area in a light receiving element row of a color line sensor according to an embodiment of the present invention. 図1に示すカラーラインセンサの一部の受光領域をメタルで遮光した場合を説明する受光素子配置図である。FIG. 2 is a light receiving element arrangement diagram for explaining a case where a part of the light receiving region of the color line sensor shown in FIG. 1 is shielded by metal. 図1に示すカラーラインセンサの受光素子列内の空き領域を利用して列毎に受光面積を異ならせた場合を説明する受光素子配置図である。FIG. 2 is a light receiving element arrangement diagram for explaining a case where a light receiving area is changed for each column using an empty area in the light receiving element column of the color line sensor shown in FIG. 1. 従来技術(特許文献1)のカラーラインセンサの受光素子配置図である。It is a light receiving element arrangement | positioning figure of the color line sensor of a prior art (patent document 1).

符号の説明Explanation of symbols

1 R受光素子列
2 G受光素子列
3 B受光素子列
4 R受光素子用読み出し回路
5 G受光素子用読み出し回路
6 B受光素子用読み出し回路
7 回路部
11 R受光素子用出力読み出し配線
21 G受光素子用出力読み出し配線
31 B受光素子用出力読み出し配線
100 カラーラインセンサ
101 空き領域(R受光素子間)
102 空き領域(G受光素子間)
103 空き領域(B受光素子間)
111 G受光素子用メタル層(遮光層)
112 B受光素子用メタル層(遮光層)
DESCRIPTION OF SYMBOLS 1 R light receiving element row 2 G light receiving element row 3 B light receiving element row 4 R light receiving element read circuit 5 G light receiving element read circuit 6 B light receiving element read circuit 7 Circuit part 11 R light receiving element output read wiring 21 G light receiving Element output read wiring 31 B Light receiving element output read wiring 100 Color line sensor 101 Empty area (between R light receiving elements)
102 Free space (between G light receiving elements)
103 Free space (between B light receiving elements)
111 G light receiving element metal layer (light shielding layer)
112 B Light receiving element metal layer (light shielding layer)

Claims (3)

ラインイメージセンサの主走査方向とその副走査方向とが規定される共通の基板上に、前記主走査方向に沿ってカラーフィルタが形成された複数の受光素子がライン状に所定間隔で配列されて成り且つ互いに前記カラーフィルタの透過率及び前記受光素子の光電変換率で決まる感度の異なる複数の受光素子列と、前記複数の受光素子列からの信号を処理して出力する回路部と、前記複数の受光素子列の各受光素子と前記回路部とを電気的に接続する複数の配線とを有し、
前記複数の受光素子列が互いに平行して前記副走査方向に所定間隔で配列され、前記回路部が前記複数の受光素子列の前記副走査方向の外側の一方に配置され、前記複数の配線が前記複数の受光素子列内の各受光素子間の空き領域を通って配置されるラインイメージセンサにおいて、
前記複数の受光素子列のうち感度の最も高い受光素子列が、前記空き領域のうち前記配線が通る領域の面積が最も大きくなるよう、前記副走査方向の前記回路部に最も近い側に配置され、
前記複数の受光素子列のうち残りの受光素子列が、前記感度の高いものから低いものへ順番に、前記空き領域のうち前記配線が通る領域の面積が前記感度の最も高い受光素子列よりも順次小さくなるよう、前記感度の最も高い受光素子列と前記主走査方向に平行な状態で、前記副走査方向の前記回路部に近い側から遠い側へ順次配置され、
前記空き領域のうち前記配線が通る領域以外を利用して、前記複数の受光素子列毎に前記受光素子の受光面積を異ならせていることを特徴とする複数の受光素子列を持つラインイメージセンサ。
A plurality of light receiving elements in which color filters are formed along the main scanning direction are arranged in a line at predetermined intervals on a common substrate in which the main scanning direction and the sub scanning direction of the line image sensor are defined. A plurality of light receiving element arrays having different sensitivities determined by the transmittance of the color filter and the photoelectric conversion rate of the light receiving elements, a circuit unit for processing and outputting signals from the plurality of light receiving element arrays, and the plurality A plurality of wirings that electrically connect each light receiving element of the light receiving element row and the circuit unit,
The plurality of light receiving element arrays are arranged in parallel with each other at a predetermined interval in the sub-scanning direction, the circuit unit is disposed on one outer side of the plurality of light receiving element arrays in the sub-scanning direction, and the plurality of wirings are arranged In the line image sensor arranged through the empty area between the light receiving elements in the plurality of light receiving element rows,
The light receiving element row having the highest sensitivity among the plurality of light receiving element rows is arranged on the side closest to the circuit unit in the sub-scanning direction so that the area of the empty region through which the wiring passes is maximized. ,
Among the plurality of light receiving element rows, the remaining light receiving element rows are arranged in order from the high sensitivity to the low sensitivity, and the area of the region through which the wiring passes in the empty area is higher than the light receiving element row having the highest sensitivity. In order to sequentially decrease, the light receiving element array having the highest sensitivity and the main scanning direction in parallel with each other, are sequentially arranged from the side closer to the circuit unit in the sub scanning direction,
A line image sensor having a plurality of light receiving element rows, wherein a light receiving area of the light receiving element is made different for each of the plurality of light receiving element rows by utilizing a region other than the region through which the wiring passes among the empty regions. .
前記感度の最も高い受光素子列は、前記受光素子の受光面積が最も小さく、
前記残りの受光素子列は、前記感度の高いものから低いものへ順番に、前記空き領域のうち前記配線が通る領域以外を利用して前記感度の最も高い受光素子列よりも前記受光素子の受光面積が順次大きくなるよう構成されていることを特徴とする請求項1記載の複数の受光素子列を持つラインイメージセンサ。
The light receiving element array having the highest sensitivity has the smallest light receiving area of the light receiving element,
The remaining light receiving element arrays receive light of the light receiving elements in order from the highest sensitivity to the lower ones using the remaining areas other than the area through which the wiring passes, than the light receiving element array having the highest sensitivity. 2. A line image sensor having a plurality of light receiving element rows according to claim 1, wherein the line image sensor has a structure in which the area gradually increases.
前記複数の受光素子列は、
可視光の中で赤色の成分波長を透過する第1のカラーフィルタが形成された複数の受光素子をライン状に配列した第1の受光素子列と、
可視光の中で緑色の成分波長を透過する第2のカラーフィルタが形成された複数の受光素子をライン状に配列した第2の受光素子列と、
可視光の中で青色の成分波長を透過する第3のカラーフィルタが形成された複数の受光素子をライン状に配列した第3の受光素子列とを有し、
前記副走査方向の前記回路部に近い側から遠い側へ順に、前記第3の受光素子列、前記第2の受光素子列、及び前記第1の受光素子列が順次配置されることを特徴とする請求項1又は2記載の複数の受光素子列を持つラインイメージセンサ。
The plurality of light receiving element rows are:
A first light-receiving element array in which a plurality of light-receiving elements formed with a first color filter that transmits a red component wavelength in visible light are arranged in a line;
A second light receiving element array in which a plurality of light receiving elements in which a second color filter that transmits a green component wavelength in visible light is formed are arranged in a line;
A third light receiving element array in which a plurality of light receiving elements formed with a third color filter that transmits a blue component wavelength in visible light are arranged in a line;
The third light receiving element array, the second light receiving element array, and the first light receiving element array are sequentially arranged in this order from the side closer to the circuit unit in the sub-scanning direction to the side farther from the circuit unit. A line image sensor having a plurality of light receiving element rows according to claim 1.
JP2005152466A 2005-05-25 2005-05-25 Line image sensor with two or more light receiving element rows Withdrawn JP2006332250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152466A JP2006332250A (en) 2005-05-25 2005-05-25 Line image sensor with two or more light receiving element rows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152466A JP2006332250A (en) 2005-05-25 2005-05-25 Line image sensor with two or more light receiving element rows

Publications (1)

Publication Number Publication Date
JP2006332250A true JP2006332250A (en) 2006-12-07

Family

ID=37553640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152466A Withdrawn JP2006332250A (en) 2005-05-25 2005-05-25 Line image sensor with two or more light receiving element rows

Country Status (1)

Country Link
JP (1) JP2006332250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941898B2 (en) 2012-07-17 2015-01-27 Rohm Co., Ltd. Sensor IC, contact image sensor and image reading apparatus
JP2020072195A (en) * 2018-10-31 2020-05-07 浜松ホトニクス株式会社 Solid-state imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941898B2 (en) 2012-07-17 2015-01-27 Rohm Co., Ltd. Sensor IC, contact image sensor and image reading apparatus
JP2020072195A (en) * 2018-10-31 2020-05-07 浜松ホトニクス株式会社 Solid-state imaging device
CN113169195A (en) * 2018-10-31 2021-07-23 浜松光子学株式会社 Solid-state imaging device
JP7251946B2 (en) 2018-10-31 2023-04-04 浜松ホトニクス株式会社 Solid-state imaging device

Similar Documents

Publication Publication Date Title
EP2998995B1 (en) Photoelectric conversion element, image reading device, and image forming apparatus
JP5219348B2 (en) Image sensor including active pixel sensor array
US8582009B2 (en) Solid-state image sensor and image sensing apparatus
US7990440B2 (en) Image sensing apparatus and imaging system
KR102653538B1 (en) Semiconductor device and electronic apparatus
JP4457325B2 (en) Solid-state imaging device
US7541628B2 (en) Image sensors including active pixel sensor arrays
US10447976B2 (en) Solid state imaging device having a shared pixel structure and electronic apparatus
EP1331670B1 (en) Solid state image pickup device with two photosensitive fields per one pixel
KR100995617B1 (en) Solid state image sensing device
US5506430A (en) Solid state image pick-up device with differing capacitances
US20060249654A1 (en) Pixel with spatially varying sensor positions
JP2003037707A (en) Imaging apparatus having multiple linear photosensor arrays with different spatial resolutions
US10582142B2 (en) Photoelectric conversion device
JP6732043B2 (en) TDI linear image sensor
JP6704677B2 (en) Solid-state imaging device
US9854189B2 (en) Imaging element and electronic apparatus with improved wiring layer configuration
US20090135283A1 (en) Pixel array structure for cmos image sensor and method of the same
JP2006332250A (en) Line image sensor with two or more light receiving element rows
WO2007108129A1 (en) Solid-state image sensor
KR20220008620A (en) image sensing device
JP4587642B2 (en) Linear image sensor
JP6701772B2 (en) Photoelectric conversion element, image reading apparatus, and image forming apparatus
JP7447591B2 (en) Photoelectric conversion device, image reading device, image forming device, and imaging system
WO2009148055A1 (en) Solid-state image pickup device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805