JP2006331755A - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery Download PDF

Info

Publication number
JP2006331755A
JP2006331755A JP2005151758A JP2005151758A JP2006331755A JP 2006331755 A JP2006331755 A JP 2006331755A JP 2005151758 A JP2005151758 A JP 2005151758A JP 2005151758 A JP2005151758 A JP 2005151758A JP 2006331755 A JP2006331755 A JP 2006331755A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
negative electrode
positive electrode
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005151758A
Other languages
Japanese (ja)
Other versions
JP4675156B2 (en
Inventor
Hideaki Yoshida
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005151758A priority Critical patent/JP4675156B2/en
Publication of JP2006331755A publication Critical patent/JP2006331755A/en
Application granted granted Critical
Publication of JP4675156B2 publication Critical patent/JP4675156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead-acid battery retaining a larger quantity of electrolyte than a conventional one, thereby extending its service life, and preventing trouble of electrolyte leakage in injection work of the electrolyte from easily occurring. <P>SOLUTION: This control valve type lead-acid battery is composed by composing an electrode plate group formed by stacking a positive electrode plate and a negative electrode plate with a separator interposed therebetween to be stored in a battery case, and by injecting an electrolyte therein. The separator contains a fiber having acid resistance as a main constituent; its porosity is set at 90-93%; the pressureless volume of a surplus separator in a part of the separator without facing the positive electrode plate or the negative electrode occupies 30% or more with respect to the volume in application of pressure of the separator facing and contacting the positive electrode plate and the negative electrode plate; and, when it is assumed that an inter-electrode-plate distance between the positive electrode plate and the negative electrode plate adjacent to each other, and the height of positive electrode plate or the negative electrode plate are X and Y, respectively, the ratio Y/X thereof is set not greater than 110. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解液の保持量の向上による寿命改善および液漏れの起こりにくい制御弁式鉛蓄電池に関するものである。 The present invention relates to a control valve type lead-acid battery that is improved in life due to an increase in the amount of electrolytic solution retained and hardly leaks.

制御弁式鉛蓄電池は、正極板と負極板を微細ガラス繊維を主体としたマット状セパレータを介して交互に積層し極板群とした後、同極性同士の極板の耳部を溶接によって接続することにより極板群とし、これを電槽に収納し、この電槽に注液や排気用の開口部を有する蓋を溶着あるいは接着剤で接着し、この開口部から電解液を電解液量が極板群に含浸する程度とし、注液を行い、注液や排気用の開口部にゴム弁(制御弁)を覆い被せ製造されるものである。 Control valve type lead-acid batteries are made by alternately laminating positive and negative electrodes through mat-like separators mainly composed of fine glass fibers to form a group of electrode plates, and then connecting the ears of the electrode plates of the same polarity to each other by welding The electrode plate group is stored in a battery case, and a lid having an opening for pouring and exhausting is welded or adhered to the battery case with an adhesive or an adhesive, and the amount of electrolyte is supplied from the opening. The electrode plate group is impregnated and injected, and a rubber valve (control valve) is covered with an opening for injection or exhaust.

近年、制御弁式鉛蓄電池が比較的安価であり信頼性が高いことから、通信・電力・防災等のバックアップ電源用や電力貯蔵用をはじめ様々な分野で使用されている。これら制御弁式鉛蓄電池においては10年を超える長寿命性能や容積エネルギー密度の向上などが要求されている。 In recent years, control valve-type lead-acid batteries are relatively inexpensive and highly reliable, so they are used in various fields including backup power supplies and power storage for communication, electric power, disaster prevention and the like. These control valve type lead-acid batteries are required to have a long life performance exceeding 10 years and an improvement in volumetric energy density.

ところが、フロート用途で使用される制御弁式鉛蓄電池では、電解液の液枯れによって早期容量低下(寿命)に至る場合がある。これは、使用中に電解液の水分が減少して電解液の体積が少なくなるものである。電解液が減少していく要因として、正極格子の腐食作用に水分が使用されること、長期間使用中の水蒸気圧差により電槽から水分が透過していくこと、電解液の水分解によるガスがゴム弁から出て行くことが挙げられる。これら水分の減少により制御弁式鉛蓄電池の内部抵抗が増加し、放電特性が低下する。 However, in a control valve type lead-acid battery used in a float application, there is a case where an early capacity decrease (lifetime) is reached due to the electrolyte withering. This is because the water content of the electrolytic solution decreases during use and the volume of the electrolytic solution decreases. The factors that cause the electrolyte to decrease are that moisture is used for the corrosive action of the positive grid, that moisture permeates from the battery case due to the difference in water vapor pressure during long-term use, and that the gas generated by water decomposition of the electrolyte One way is to go out of the rubber valve. These moisture decreases increase the internal resistance of the control valve type lead-acid battery, and deteriorate the discharge characteristics.

また、早期容量低下の防止や長寿命化を目的とした極板群の高圧迫化や容積エネルギー密度を向上させるため、電槽の上部や側部の内部空間を可能な限りに小さくすることにより、電解液を注液する際に極板群に電解液が浸透しづらく、液口栓からの電解液の漏れという不具合が起こる。 In addition, by reducing the internal space of the upper part and side part of the battery case as much as possible in order to improve the high pressure and volume energy density of the electrode plate group for the purpose of preventing early capacity reduction and prolonging the service life. When the electrolytic solution is injected, the electrolytic solution is difficult to penetrate into the electrode plate group, and there is a problem that the electrolytic solution leaks from the liquid plug.

これらの問題を解決するために、鉛蓄電池のセル室内で隣り合った正極板と負極板の間隔を、その部分に装着されるマット状のセパレータの厚さ方向に20kg/dmの荷重をかけた時の厚さの40%以上、75%未満とし、さらに正極板と負極板の幅方向或いは高さ方向において極板からはみ出ている部分のセパレータに含まれる電解液量の15%以上、40%未満とし、またセル内の極板或いはマット状セパレータの装着される部分の厚さ方向の寸法和の占める割合を35%以上45未満とする方法(特許文献1)が行われている。 In order to solve these problems, a load of 20 kg / dm 2 is applied in the thickness direction of the mat-like separator attached to the space between the positive electrode plate and the negative electrode plate adjacent in the cell chamber of the lead storage battery. 40% or more and less than 75% of the thickness, and 15% or more of the amount of electrolyte contained in the separator in the portion protruding from the electrode plate in the width direction or height direction of the positive electrode plate and the negative electrode plate, 40 In addition, a method (Patent Document 1) is used in which the proportion of the dimensional sum in the thickness direction of the portion of the cell where the electrode plate or matte separator is mounted is 35% or more and less than 45.

特開平7−320772号公報JP 7-320772 A

上記した特許文献1の方法では、極板とセパレータの密着性を長期間維持することや電解液保持量を多くできるので、使用中の電解液の減少による容量劣化を遅延することについては一応の成果を収めたが、電解液の注液作業時の液漏れの不具合を防止する等の現在の市場要求を満たすには更なる改良が必要である。 In the method of Patent Document 1 described above, the adhesion between the electrode plate and the separator can be maintained for a long period of time, and the amount of electrolyte solution retained can be increased. Although successful, further improvements are needed to meet current market demands such as preventing liquid leakage during electrolyte injection.

この様な背景の下、電解液量を保持できることで寿命延長ができ、且つ、電解液の注液作業時の液漏れの不具合を起こり難くすることが可能である制御弁式鉛蓄電池の改良が望まれている。 Under such a background, the improvement of the control valve type lead-acid battery that can extend the lifespan by being able to maintain the amount of the electrolytic solution and can be less likely to cause a liquid leakage problem during the injection of the electrolytic solution. It is desired.

本発明は、正極板と負極板をセパレータを介して積層した極板群を構成し電槽内に収納し、電解液を注液して成る制御弁式鉛蓄電池において、該セパレータは耐酸性を有する繊維を主体とし、その空隙率を90〜93%とし、セパレータの正極板および負極板と相対向しない部分の余剰セパレータの無加圧体積が、正極板と負極板と相対向し接触するセパレータの加圧時の体積に対して30%以上占め、また隣り合った正極板と負極板との極板間距離をXとし、正極板または負極板の極板高さをYとしたとき、その比率Y/Xが110以下であることを特徴としたものである。 The present invention provides a control valve type lead-acid battery comprising an electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a separator, housed in a battery case, and injected with an electrolytic solution. A separator in which the non-pressurized volume of a portion of the separator not facing the positive electrode plate and the negative electrode plate is in contact with the positive electrode plate and the negative electrode plate, with a porosity of 90 to 93%. Occupying 30% or more of the volume when pressed, and when the distance between the electrode plates of the adjacent positive electrode plate and negative electrode plate is X and the electrode plate height of the positive electrode plate or negative electrode plate is Y, The ratio Y / X is 110 or less.

本発明は、空隙率の高いセパレータを用い、また正極板および負極板と相対向しない部分のセパレータ、即ち、余剰セパレータの体積を大きくすることにより、多くの電解液量を保持することが可能で、制御弁式鉛蓄電池の寿命に至る要因の1つである液枯れを防止し、長寿命や早期容量低下を改善することができる。該セパレータは空隙率が90〜93%のものを用いると効果的であり、セパレータの空隙率が90%未満ではその吸水性に乏しく、所望の電解液量を保持できない恐れがある。また、94%以上の空隙率を有するセパレータの場合、セパレータ自体の強度不足となり短絡等の不具合が起こり易く、セパレータの圧縮に対する反復復元性低下によりセパレータと正極板および負極板の群圧迫力が低下し密着性が悪くなり早期容量低下の原因となる。   In the present invention, it is possible to maintain a large amount of electrolyte by using a separator having a high porosity and by increasing the volume of the separator that is not opposed to the positive electrode plate and the negative electrode plate, that is, the excess separator. In addition, it is possible to prevent liquid drainage, which is one of the factors leading to the life of the control valve type lead-acid battery, and to improve the long life and early capacity reduction. It is effective to use a separator having a porosity of 90 to 93%. If the separator has a porosity of less than 90%, its water absorption is poor and a desired amount of electrolyte may not be maintained. Also, in the case of a separator having a porosity of 94% or more, the strength of the separator itself is insufficient, and short-circuiting and other problems are likely to occur, and the group compression force between the separator, the positive electrode plate, and the negative electrode plate is reduced due to a decrease in repeated resilience to the compression of the separator. However, the adhesiveness deteriorates and causes an early capacity drop.

また、セパレータの正極板および負極板と相対向しない部分、即ち、余剰セパレータの体積が正極板と負極板と相対向し接触するセパレータの極板群を電槽に収納したときの加圧時の体積に対して30%以上とすることも電解液保持に効果的である。30%未満であると、電解液保持量に乏しく寿命改善効果が得られない。好ましくは30%以上である。しかし、この余剰セパレータの体積を大きくすることは極板寸法に比しセパレータの大きさを大きくすることを意味し、結果、製造される蓄電池が必要以上に大きくなり容積エネルギーの高密度化の点からは45%未満の範囲が好ましい。45%以上の場合、容積エネルギー密度を考慮した電池形式で電槽内の余剰電槽寸法は異なるが、極板群を電槽に挿入する際、極板から側方にはみ出た余剰セパレータが破れ等の不具合を起こす恐れがある。 Further, the portion of the separator that does not face the positive electrode plate and the negative electrode plate, that is, the volume of the surplus separator is opposite to the positive electrode plate and the negative electrode plate. Setting it to 30% or more with respect to the volume is also effective for holding the electrolytic solution. If it is less than 30%, the electrolyte solution retention amount is poor, and the life improvement effect cannot be obtained. Preferably it is 30% or more. However, increasing the volume of the surplus separator means increasing the size of the separator as compared with the electrode plate size. As a result, the produced storage battery becomes larger than necessary, and the volume energy is increased in density. Is preferably less than 45%. In the case of 45% or more, the size of the surplus cell in the battery case is different in the battery type considering the volume energy density, but when the electrode plate group is inserted into the cell case, the surplus separator that protrudes laterally from the electrode plate is torn. There is a risk of malfunction.

また、電解液の注液作業時に極板群の高圧迫化や容積エネルギー高密度化により、極板群と電槽内壁間に隙間はなく、電解液の注液性やセパレータ等への浸透性が悪くなり液溢れ等の不具合を時々起こすが、セル室内で隣り合った正極板と負極板の間隔をX、極板高さをYとしたとき、その比率Y/Xにおいて110以下とすることにより、セパレータ等の浸透性の悪さを緩和し、液溢れを防止できる。一般に、同容量の制御弁式鉛蓄電池では電槽の総高さが低い、即ち極板群の高さが低い方が注液時の気液置換がスムーズになりセパレータ等への液の浸透性が良く、液漏れし難い。110超過では極板群が高くなり気液置換が悪くなり電解液の浸透性に乏しく、注液作業時に電解液溢れ等の不具合が生じる。注液作業時間を長くすることで液溢れを防止することが可能であるが、工業上好ましくない。好ましくはY/Xの比率を30〜110とする範囲いが良い。Y/Xの比率が30よりも低い場合、限られた電槽寸法内に極板群を挿入するため、極板群の寸法上、無理が生じてくる。 In addition, there is no gap between the electrode plate group and the inner wall of the battery case due to the high pressure and volumetric energy density of the electrode plate group during the injection of the electrolyte solution. However, when the distance between the positive and negative electrode plates adjacent to each other in the cell chamber is X and the height of the electrode plate is Y, the ratio Y / X should be 110 or less. Thus, the poor permeability of the separator or the like can be alleviated and liquid overflow can be prevented. In general, for control valve type lead storage batteries with the same capacity, the total height of the battery case is lower, that is, the lower the electrode plate group, the smoother the gas-liquid replacement during injection, and the liquid permeability to the separator, etc. Is good and does not leak easily. If it exceeds 110, the electrode plate group becomes high, the gas-liquid substitution becomes worse, the electrolyte permeability is poor, and problems such as electrolyte overflow occur during the pouring operation. Although it is possible to prevent liquid overflow by lengthening the liquid injection work time, it is not industrially preferable. The Y / X ratio is preferably in the range of 30 to 110. When the ratio of Y / X is lower than 30, the electrode plate group is inserted into the limited battery case size, so that the size of the electrode plate group becomes unreasonable.

本発明のように、セパレータの空隙率を90〜93%以上とし、セパレータの正極板および負極板と相対向しない部分の余剰セパレータの無加圧体積が、正極板と負極板と相対向し接触するセパレータの加圧時の体積に対して30%以上占め、また隣り合った正極板と負極板との極板間距離をXとし、正極板または負極板の極板高さをYとしたとき、その比率Y/Xが110以下とすることで、電解液量を従来より多く保持でき、これにより寿命延長ができ、且つ、電解液の注液作業時の液漏れの不具合を起こり難くすることが可能である制御弁式鉛蓄電池を提供することができる。 As in the present invention, the porosity of the separator is 90 to 93% or more, and the non-pressurized volume of the surplus separator in the portion that does not face the positive electrode plate and the negative electrode plate of the separator is opposed to the positive electrode plate and the negative electrode plate. Occupies 30% or more of the volume of the separator when pressed, and the distance between the electrode plates of the adjacent positive electrode plate and negative electrode plate is X, and the electrode plate height of the positive electrode plate or negative electrode plate is Y By setting the ratio Y / X to 110 or less, the amount of the electrolyte can be maintained more than before, thereby extending the life, and making it difficult to cause a problem of liquid leakage during the injection of the electrolyte. It is possible to provide a control valve type lead-acid battery that is possible.

本発明の実施の形態を、図1により説明する。   An embodiment of the present invention will be described with reference to FIG.

図1は、制御弁式鉛蓄電池を電槽に収納する極板群1を示した斜形図である。1は極板群であり、2は正極板、3は負極板、4aは極板からはみ出した部分の余剰セパレータ、5は極板耳であり、6はストラップ部である。 FIG. 1 is an oblique view showing an electrode plate group 1 for housing a control valve type lead storage battery in a battery case. Reference numeral 1 denotes an electrode plate group, 2 denotes a positive electrode plate, 3 denotes a negative electrode plate, 4a denotes an excess separator protruding from the electrode plate, 5 denotes an electrode plate ear, and 6 denotes a strap portion.

図1に示す本発明の極板群1は、正極板2と負極板3を微細ガラス繊維を主体としたセパレータ4で正極板をその下端部も包む様に覆うことで正極板2と負極板3間にセパレータを介して交互に積層し、同極性同士の極板耳5を溶接によってストラップ部6と接合している。該セパレータ4の正極板2および負極板3と相対向しない部分、即ち、余剰セパレータ4aは、極板から幅方向および高さ方向にはみ出しており、極板耳5にかかる部分も含めて余剰セパレータと称する。但し、正極板の下端を包む部分は除く。 The electrode plate group 1 of the present invention shown in FIG. 1 includes a positive electrode plate 2 and a negative electrode plate by covering the positive electrode plate 2 and the negative electrode plate 3 with a separator 4 mainly composed of fine glass fibers so as to wrap the lower end portion thereof. The electrode plates 5 having the same polarity are joined to the strap portion 6 by welding. The portion of the separator 4 that does not oppose the positive electrode plate 2 and the negative electrode plate 3, that is, the surplus separator 4 a protrudes from the electrode plate in the width direction and the height direction, and includes the portion that covers the electrode plate ear 5. Called. However, the portion surrounding the lower end of the positive electrode plate is excluded.

本発明の好ましい形態としては、セパレータの空隙率が90〜93%とする。このようにすることで電解液の吸水性が高くなり、極板間に多量の電解液を保つことができる。 In a preferred embodiment of the present invention, the porosity of the separator is 90 to 93%. By doing in this way, the water absorption of electrolyte solution becomes high and a large amount of electrolyte solution can be kept between electrode plates.

また、セパレータの正極板および負極板と相対向しない部分、即ち、余剰セパレータの体積が正極板と負極板と相対向し接触するセパレータの加圧時の体積に対して30%以上とすることで、セパレータ自体の面積を従来より大きくしているので、電解液の保持に効果的となり、電解液の液枯れによる早期容量低下を防ぐことができる。30%未満であるとその電解液の保持に乏しく、寿命改善効果が得られない。   In addition, the portion of the separator that does not face the positive electrode plate and the negative electrode plate, that is, the volume of the excess separator is 30% or more with respect to the pressurized volume of the separator that faces the positive electrode plate and the negative electrode plate. Since the area of the separator itself is made larger than before, it is effective for holding the electrolytic solution, and it is possible to prevent an early capacity drop due to the electrolytic solution draining. If it is less than 30%, the electrolyte solution is poorly retained, and the life improvement effect cannot be obtained.

さらに、隣り合った正極板と負極板との極板間距離をXとし、正極板または負極板の極板高さをYとしたとき、その比率Y/Xが110以下とすることで、セパレータの浸透性悪さを緩和し、液溢れを防止できる。110超過では電解液の浸透性能力に乏しく、注液作業時において電解液溢れ等の不具合が生じる。   Furthermore, when the distance between the electrode plates of the adjacent positive electrode plate and negative electrode plate is X, and the electrode plate height of the positive electrode plate or the negative electrode plate is Y, the ratio Y / X is 110 or less. Can alleviate the poor permeability and prevent liquid overflow. If it exceeds 110, the electrolyte permeability is poor, and problems such as electrolyte overflow occur during the pouring operation.

公知の方法によって作製された12V−5.5Ahの制御弁式鉛蓄電池において、セパレータの空隙率およびセパレータの余剰セパレータ体積を種々変化せて、電解液を注液して制御弁式鉛蓄電池を種々作製した。なお、セパレータは19.6kPa加圧時において同厚みのものを使用し、正・負極板間の厚みを揃えた。また、電解液量は初充電後、電解液が余剰液として1.0cc残る程度とした。 12V-5.5Ah control valve type lead acid battery produced by a known method, variously changing the porosity of the separator and the surplus separator volume of the separator, and injecting the electrolyte, Produced. In addition, the separator used the same thickness at the time of 19.6 kPa pressurization, and equalized the thickness between positive / negative electrode plates. Further, the amount of the electrolytic solution was such that 1.0 cc of the electrolytic solution remained as an excess liquid after the initial charge.

表1には、上記方法で作製した種々の制御弁式鉛蓄電池のセパレータの空隙率、セパレータの余剰セパレータ体積比、電池寿命を示す。なお、電池寿命試験は60℃の気相中において定電圧でフロート充電を行う加速寿命試験を行った。寿命判定は、1ヶ月毎に10時間率放電を行い、初期容量の70%を下回った時点で寿命とした。 Table 1 shows the porosity of separators of various control valve-type lead-acid batteries produced by the above method, the excess separator volume ratio of the separators, and the battery life. The battery life test was an accelerated life test in which float charging was performed at a constant voltage in a gas phase at 60 ° C. The life was determined by discharging at a rate of 10 hours every month, and when the life was less than 70% of the initial capacity.

表1から明らかな通り、比較例1〜13に比し実施例1〜6は制御弁式鉛蓄電池を長寿命化できることが分かる。しかし、比較例7の制御弁式鉛蓄電池では長寿命化は達成できたが、余剰セパレータ体積が45%と大きいため、極板群を電槽に挿入する際困難さがあったと共に、セパレータに小さな破れが発生しており、短絡等の恐れのあるものであった。また、セパレータの空隙率が95%の比較例10〜13において、セパレータの圧縮に対する反復復元性低下によりセパレータと極板の群圧迫力が低下し密着性が悪くなるため、寿命が低下した。また、セパレータの強度不足により短絡等の不具合を起こす恐れがある。   As is apparent from Table 1, it can be seen that Examples 1-6 can extend the life of the control valve type lead-acid battery as compared with Comparative Examples 1-13. However, the control valve type lead-acid battery of Comparative Example 7 achieved a long life, but because the surplus separator volume was as large as 45%, it was difficult to insert the electrode plate group into the battery case. A small tear occurred and there was a possibility of short circuit. Further, in Comparative Examples 10 to 13 where the porosity of the separator was 95%, the group compression force between the separator and the electrode plate was reduced due to the repeated reduction of the resilience against the compression of the separator, and the adhesion was deteriorated. Further, there is a risk of causing a short circuit or the like due to insufficient strength of the separator.

次に、公知の方法によって作製された12V−5.5Ahの制御弁式鉛蓄電池において、セパレータの空隙率を90%、セパレータの余剰セパレータ体積を30%で同厚みのものを用い制御弁式鉛蓄電池を作製した。なお、正・負極板の極板面積は同一のものを使用した。そして、電解液の注液性は液漏れを目視で確認することにより行った。注液性の確認は、正・負極板間隔をX、極板高さをYとしたときの比率Y/Xを変化させて行った。表2は極板間隔を一定とし、極板高さYを可変させY/X比を種々変化させたもの、表3は正・負極板間隔Xを可変させ、極板高さYを一定としY/X比を種々変化させたときの注液性をそれぞれ示したものである。○は液漏れなく良好、×は液漏れがあったものである。なお、注液量および注液速度は同じとした。 Next, in a 12V-5.5Ah control valve type lead-acid battery produced by a known method, a separator with a porosity of 90%, a separator separator with an excess separator volume of 30% and the same thickness is used. A storage battery was produced. The positive and negative electrode plates used the same area. And the pouring property of electrolyte solution was performed by confirming a liquid leak visually. The liquid injection property was confirmed by changing the ratio Y / X when the positive / negative electrode plate interval was X and the electrode plate height was Y. Table 2 shows constant electrode plate spacing, variable electrode plate height Y and various Y / X ratio changes, and Table 3 shows variable positive / negative electrode plate spacing X and constant electrode plate height Y. The liquid injection properties when the Y / X ratio is variously changed are respectively shown. ○ indicates that there is no leakage, and x indicates that there is leakage. The injection volume and the injection speed were the same.

表2から明らかな通り、極板高さYを可変させY/X比を110以下とした実施例7〜9では注液作業時において全く液漏れが起こらなかった。逆に、Y/X比が110超過である比較例14、15の場合は液漏れを起こした。 As is apparent from Table 2, in Examples 7 to 9 in which the electrode plate height Y was varied and the Y / X ratio was 110 or less, no liquid leakage occurred during the liquid injection operation. Conversely, in the case of Comparative Examples 14 and 15 where the Y / X ratio exceeded 110, liquid leakage occurred.

また表3から明らかな通り、正・負極板間距離Xを可変させY/X比を110以下とした実施例7および10、11では注液作業時において全く液漏れが起こらなかった。逆に、Y/X比が110超過である比較例16の場合は液漏れを起こした。なお、極板高さYを可変させた場合や正・負極板間距離Xを可変させた場合において、当然のことながらY/X比が100以下の場合は液漏れを起こすことは無かった。 Further, as apparent from Table 3, in Examples 7 and 10 and 11 in which the distance X between the positive and negative electrodes was varied and the Y / X ratio was 110 or less, no liquid leakage occurred during the liquid injection operation. On the contrary, in the case of the comparative example 16 whose Y / X ratio is more than 110, liquid leakage occurred. In the case where the electrode plate height Y was varied or the distance X between the positive and negative electrodes was varied, naturally, when the Y / X ratio was 100 or less, no liquid leakage occurred.

以上の結果より、セパレータの空隙率を90〜93%とし、セパレータの正極板および負極板と相対向しない部分の余剰セパレータの無加圧体積が、正極板と負極板と相対向し接触するセパレータの加圧時の体積に対して30%以上占め、また隣り合った正極板と負極板との極板間距離をXとし、正極板または負極板の極板高さをYとしたとき、その比率Y/Xが110以下とすることで、電解液量を多く保持できことで寿命延長ができ、且つ、電解液の注液作業時の液漏れの不具合を起こり難くすることができる制御弁式鉛蓄電池を提供することができる。 From the above results, the separator has a porosity of 90 to 93%, and the non-pressurized volume of the surplus separator in a portion that does not face the positive electrode plate and the negative electrode plate of the separator faces and comes into contact with the positive electrode plate and the negative electrode plate. Occupying 30% or more of the volume when pressed, and when the distance between the electrode plates of the adjacent positive electrode plate and negative electrode plate is X and the electrode plate height of the positive electrode plate or negative electrode plate is Y, A control valve type in which the ratio Y / X is 110 or less, so that it is possible to maintain a large amount of the electrolyte solution, thereby extending the lifespan, and making it difficult to cause a problem of liquid leakage at the time of injecting the electrolyte solution. A lead acid battery can be provided.

本発明の実施形態を示す制御弁式鉛蓄電池の極板群の斜形図。The diagonal view of the electrode group of the control valve type lead acid battery which shows embodiment of this invention.

符号の説明Explanation of symbols

1 極板群
2 正極板
3 負極板
4 セパレータ
4a 余剰セパレータ
5 極板耳
6 ストラップ部
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode plate 3 Negative electrode plate 4 Separator 4a Surplus separator 5 Electrode plate ear 6 Strap part

Claims (1)

正極板と負極板をセパレータを介して積層した極板群を構成し電槽内に収納し、電解液を注液して成る制御弁式鉛蓄電池において、該セパレータは耐酸性を有する繊維を主体とし、その空隙率を90〜93%とし、セパレータの正極板および負極板と相対向しない部分の余剰セパレータの無加圧体積が、正極板と負極板と相対向し接触するセパレータの加圧時の体積に対して30%以上占め、また隣り合った正極板と負極板との極板間距離をXとし、正極板または負極板の極板高さをYとしたとき、その比率Y/Xが110以下であることを特徴とする制御弁式鉛蓄電池。
In a control valve type lead-acid battery comprising a group of electrode plates in which a positive electrode plate and a negative electrode plate are laminated via a separator, housed in a battery case, and injected with an electrolyte, the separator is mainly composed of acid-resistant fibers. And the void ratio is 90 to 93%, and the non-pressurized volume of the surplus separator in a portion not facing the positive electrode plate and the negative electrode plate of the separator is in contact with the positive electrode plate and the negative electrode plate at the time of pressurization of the separator When the distance between electrode plates between adjacent positive and negative electrode plates is X and the electrode plate height of the positive or negative electrode plate is Y, the ratio Y / X Is a control valve type lead-acid battery, characterized by being 110 or less.
JP2005151758A 2005-05-25 2005-05-25 Control valve type lead acid battery Active JP4675156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151758A JP4675156B2 (en) 2005-05-25 2005-05-25 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151758A JP4675156B2 (en) 2005-05-25 2005-05-25 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2006331755A true JP2006331755A (en) 2006-12-07
JP4675156B2 JP4675156B2 (en) 2011-04-20

Family

ID=37553240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151758A Active JP4675156B2 (en) 2005-05-25 2005-05-25 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4675156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077640A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Valve-regulated lead acid battery
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPH0535579Y2 (en) * 1983-10-08 1993-09-09
JPH06349471A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH07320772A (en) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10188999A (en) * 1996-12-20 1998-07-21 Matsushita Electric Ind Co Ltd Sealed lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535579Y2 (en) * 1983-10-08 1993-09-09
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPH06349471A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH07320772A (en) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10188999A (en) * 1996-12-20 1998-07-21 Matsushita Electric Ind Co Ltd Sealed lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077640A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Valve-regulated lead acid battery
CN102246344A (en) * 2009-12-25 2011-11-16 松下电器产业株式会社 Valve-regulated lead acid battery
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle
JP5106712B2 (en) * 2011-03-31 2012-12-26 パナソニック株式会社 Lead-acid battery and electric vehicle

Also Published As

Publication number Publication date
JP4675156B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US7006346B2 (en) Positive electrode of an electric double layer capacitor
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
US9972874B2 (en) Battery with extractible air electrode
CN115764001A (en) Lead-acid battery
JP4675156B2 (en) Control valve type lead acid battery
JP5089176B2 (en) Control valve type lead storage battery manufacturing method
CN111279543A (en) Lead-acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP2011171112A (en) Alkaline zinc storage battery
JP2014075288A (en) Lead-acid battery
JPH08329975A (en) Sealed lead-acid battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JPH04206468A (en) Sealed alkali-zinc storage battery
US20160093871A1 (en) A lithium-ion secondary battery with replaceable electrodes
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP6205811B2 (en) Lead acid battery
WO2012105190A1 (en) Lead storage battery
CN208835184U (en) Novel environment-friendly alkaline 6V battery
RU2344519C1 (en) Sealed nickel-zinc accumulator
JP3511858B2 (en) Lead storage battery
EP0820112B1 (en) Enclosed lead storage battery
JP2001500314A (en) Electrochemical storage battery in which electrolyte is stored
JPH09237636A (en) Sealed type lead-acid battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2005149916A (en) Control valve type lead storage battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150