JP2006329763A - Detection part of interaction between substances, sensor chip using it and bioassay method using electric field - Google Patents

Detection part of interaction between substances, sensor chip using it and bioassay method using electric field Download PDF

Info

Publication number
JP2006329763A
JP2006329763A JP2005152479A JP2005152479A JP2006329763A JP 2006329763 A JP2006329763 A JP 2006329763A JP 2005152479 A JP2005152479 A JP 2005152479A JP 2005152479 A JP2005152479 A JP 2005152479A JP 2006329763 A JP2006329763 A JP 2006329763A
Authority
JP
Japan
Prior art keywords
interaction
electric field
insulating layer
electrode
reaction region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005152479A
Other languages
Japanese (ja)
Other versions
JP4631543B2 (en
Inventor
Yoichi Katsumoto
洋一 勝本
Takayoshi Mamine
隆義 眞峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005152479A priority Critical patent/JP4631543B2/en
Publication of JP2006329763A publication Critical patent/JP2006329763A/en
Application granted granted Critical
Publication of JP4631543B2 publication Critical patent/JP4631543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and effectively apply an electric field to a reaction region by a simple configuration and to especially concentrate the electric field to the specific region of the electrode fronted to the reaction region. <P>SOLUTION: In the detection part having the reaction region R becoming the field of the interaction between substances, electrode layers 12 and 13 used when the electric field E is applied to the reaction field R and the insulating layers 14 for covering the surfaces of electrodes. Specific insulating parts 141 high in dielectric constant are provided to the insulating layers 14 to concentrate the electric field to the specific insulating parts 141. For example, the specific insulating parts 141 are set to a region formed of a material of which the dielectric constant is higher than that of a peripheral insulating layer 142. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物質間の相互作用を検出するときに有用な技術に関する。より詳しくは、電気力学的作用を有効に利用して、プローブ物質の固定化や相互作用の促進を達成するときに有用な技術に関する。   The present invention relates to a technique useful when detecting an interaction between substances. More specifically, the present invention relates to a technique useful for achieving immobilization of a probe substance and promotion of interaction by effectively using an electrodynamic action.

近年、マイクロアレイ技術によって所定のDNAが微細配列された、いわゆるDNAチップ又はDNAマイクロアレイ(以下、本願では「DNAチップ」と総称。)と呼ばれるバイオアッセイ用の集積基板が、遺伝子の変異解析、SNPs(一塩基多型)分析、遺伝子発現頻度解析等に利用されるようになり、創薬、臨床診断、薬理ジェノミクス、進化の研究、法医学その他の分野において広範囲に活用され始めている。   In recent years, an integrated substrate for bioassay called a so-called DNA chip or DNA microarray (hereinafter collectively referred to as “DNA chip” in the present application), in which predetermined DNA is finely arranged by microarray technology, is used for gene mutation analysis, Single nucleotide polymorphism) analysis, gene expression frequency analysis, etc., have begun to be widely used in fields such as drug discovery, clinical diagnosis, pharmacogenomics, evolutionary research, forensic medicine and others.

この「DNAチップ」は、ガラス基板やシリコン基板上に多種・多数のDNAオリゴ鎖やcDNA(complementary DNA)等のヌクレオチド鎖が集積されていることから、ハイブリダイゼーションの網羅的解析が可能となる点が特徴とされている。その他、核酸分子以外の生体分子間の相互作用を検出するセンサーチップ(例えば、プロテインチップ)や検出装置が種々開発されている。   Since this “DNA chip” has a large number of nucleotide chains such as DNA oligo strands and cDNA (complementary DNA) accumulated on a glass substrate or silicon substrate, comprehensive analysis of hybridization is possible. Is characterized. In addition, various sensor chips (for example, protein chips) and detection devices that detect interactions between biomolecules other than nucleic acid molecules have been developed.

ここで、所定の反応領域において、物質間の相互作用を進行させてこれを検出するアッセイ系において、電気泳動や誘電泳動などの電気的力学的効果を利用する技術が近年提案され始めている。以下、当該技術を例示する。   Here, in recent years, a technique using an electrodynamic effect such as electrophoresis or dielectrophoresis has begun to be proposed in an assay system that detects and detects an interaction between substances in a predetermined reaction region. Hereinafter, this technique will be exemplified.

まず、特許文献1には、鋳型基板上に固定された核酸プローブ鋳型鎖を用い、該鋳型鎖に沿って核酸プローブ鎖を合成し、この合成されたプローブを、電界を利用して別のアレイ基板上に固定することにより、簡易かつ低コストで核酸鎖固定化アレイを製造する技術が開示されている。   First, in Patent Document 1, a nucleic acid probe template strand fixed on a template substrate is used, a nucleic acid probe strand is synthesized along the template strand, and the synthesized probe is separated into another array using an electric field. A technique for producing a nucleic acid chain-immobilized array simply and at low cost by fixing on a substrate is disclosed.

特許文献2には、互いに着脱可能な本体部とフレームとから構成され、本体部の内側にはマトリックス状に多数のピン電極が突出され、このピン電極には異なる遺伝子配列から成るオリゴヌクレオチドを固定し、このピン電極と接触しないようにフレームの窪みに共通電極が配設し、共通電極とピン電極間に電圧を印加し、電流を検出して前記オリゴヌクレオチドのハイブリダイゼーションにより得られた二本鎖DNAを検出する技術が開示されている。   Patent Document 2 is composed of a body part and a frame that can be attached to and detached from each other. Inside the body part, a large number of pin electrodes protrude in a matrix, and oligonucleotides having different gene sequences are fixed to the pin electrodes. In addition, a common electrode is disposed in the recess of the frame so as not to contact the pin electrode, a voltage is applied between the common electrode and the pin electrode, current is detected, and the two obtained by hybridization of the oligonucleotide Techniques for detecting strand DNA have been disclosed.

特許文献3には、検出用ヌクレオチド鎖と該検出用ヌクレオチド鎖と相補性のある塩基配列を備える標的ヌクレオチド鎖との間のハイブリダイゼーションの場となる反応領域が、前記検出用ヌクレオチド鎖を電界により伸長させながら、誘電泳動の作用によって走査電極の端部に固定できる構成とされたハイブリダイゼーション検出部が開示されている。
特開2001−330608号公報。 特開2001−242135号公報。 特開2004−135512号公報。
In Patent Document 3, a reaction region serving as a hybridization field between a detection nucleotide chain and a target nucleotide chain having a base sequence complementary to the detection nucleotide chain is formed by applying an electric field to the detection nucleotide chain. A hybridization detection unit is disclosed that is configured to be fixed to the end of a scan electrode by the action of dielectrophoresis while being elongated.
JP 2001-330608 A. Japanese Patent Application Laid-Open No. 2001-242135. Japanese Patent Application Laid-Open No. 2004-135512.

上掲した先行技術では、いずれも反応領域に対向配置された電極又は電極群を利用するものであるが、このような技術では、反応領域中に貯留される場合があるイオン溶液による電気化学的な反応を防止する必要性があり、また、電極と溶媒との間の電子授受を防いで電極の腐食を防止する必要もあるため、反応領域に臨む電極面を絶縁層(絶縁膜)で覆うことが望ましい。さらには、絶縁層は、電気分解による気泡の発生によって起こり得る電極の剥離を防止することもできる。   In the above-mentioned prior art, all use an electrode or a group of electrodes arranged opposite to the reaction region. However, in such a technology, an electrochemical solution using an ionic solution that may be stored in the reaction region is used. The electrode surface facing the reaction region is covered with an insulating layer (insulating film) because it is necessary to prevent unwanted reactions, and it is also necessary to prevent corrosion of the electrode by preventing electron transfer between the electrode and the solvent. It is desirable. Furthermore, the insulating layer can also prevent peeling of the electrode that may occur due to generation of bubbles due to electrolysis.

しかし、電極に絶縁層を設けると、該絶縁層の蓄電作用(キャパシタとしての作用)により、反応領域に実投入できる電界強度が低下してしまうので、この実電圧ロスを予め見込んで投入電圧を高くしておく必要がある。このため、エネルギー効率が悪化し、高電圧投入のための装置的工夫が必要になってしまうという技術的課題があった。また、反応領域において、例えば、物質の双極子に対する不均一電場の駆動力を利用する誘電泳動という電気力学的効果を用いる場合を想定すると、電極近傍に不均一電界を形成するために電極形状に電界が集中し易いエッジ部分を形成する方法が有効であるが、このような電極の微細加工は煩雑である。   However, if an insulating layer is provided on the electrode, the electric field strength that can actually be applied to the reaction region is reduced due to the electric storage function (capacitor function) of the insulating layer. It needs to be high. For this reason, there has been a technical problem that the energy efficiency is deteriorated and a device-like device for applying a high voltage is required. Also, in the reaction region, for example, assuming the case of using an electrodynamic effect called dielectrophoresis that uses the driving force of a non-uniform electric field with respect to a dipole of a substance, an electrode shape is formed in order to form a non-uniform electric field in the vicinity of the electrode. A method of forming an edge portion where the electric field tends to concentrate is effective, but such fine processing of the electrode is complicated.

そこで、本発明は、簡易な構成により反応領域に対する電界印加を効率的、効果的に行うことができる相互作用検出部、特に、反応領域に臨む電極の特定部位に電界を効果的に集中させることができる相互作用検出部などを提供することを主な目的とする。   Therefore, the present invention provides an interaction detector that can efficiently and effectively apply an electric field to the reaction region with a simple configuration, and in particular, concentrates the electric field effectively on a specific portion of the electrode facing the reaction region. The main object is to provide an interaction detection unit capable of

本発明は、まず、物質間の相互作用の場となる反応領域と、該反応領域に対する電界印加に用いられる電極と、該電極の表面を覆う絶縁層と、を備え、前記絶縁層に、誘電率(比誘電率)の高い特定絶縁部を設けた相互作用検出部、並びに該相互作用検出部が設けられたセンサーチップを提供する。なお、本発明において「特定絶縁部」とは、周囲に比して電界強度を高めたり、電界を集中させたりする目的で形成した絶縁層の所定部位を意味する。   The present invention first comprises a reaction region serving as an interaction field between substances, an electrode used for applying an electric field to the reaction region, and an insulating layer covering the surface of the electrode. Provided are an interaction detector provided with a specific insulating part having a high dielectric constant (relative dielectric constant), and a sensor chip provided with the interaction detector. In the present invention, the “specific insulating portion” means a predetermined portion of an insulating layer formed for the purpose of increasing the electric field strength or concentrating the electric field as compared with the surroundings.

ここで、特定絶縁部は、周囲の絶縁層よりも誘電率の高い材料で形成した部位や周囲の絶縁層よりも薄膜に形成した部位が好適である。この特定絶縁部には、周囲の絶縁層領域よりも電界強度を高めたり、あるいは電界を集中させて不均一電場を局所的に形成したりできる。   Here, the specific insulating portion is preferably a portion formed of a material having a dielectric constant higher than that of the surrounding insulating layer or a portion formed of a thinner film than the surrounding insulating layer. In this specific insulating portion, the electric field strength can be increased as compared with the surrounding insulating layer region, or the non-uniform electric field can be locally formed by concentrating the electric field.

そこで、本発明では、物質間の相互作用の場となる反応領域と、該反応領域に対する電界印加に用いられる電極と、該電極の表面を覆う絶縁層と、を備える検出部を用いて、前記絶縁層に設けた誘電率の高い特定絶縁部に電界を集中させて、プローブ物質の固定化促進又は前記相互作用の促進を行うバイオアッセイ方法を提供する。   Therefore, in the present invention, by using a detection unit including a reaction region serving as an interaction field between substances, an electrode used for applying an electric field to the reaction region, and an insulating layer covering the surface of the electrode, Provided is a bioassay method for concentrating an electric field on a specific insulating portion having a high dielectric constant provided in an insulating layer to promote the immobilization of a probe substance or the interaction.

この方法によれば、電界が集中し易い特定絶縁部には、電気力学的に、電荷や双極子を形成するプローブ物質を周辺から泳動させて引き寄せたり、当該プローブ物質が存在する場所にターゲット物質を泳動させて引き寄せて濃度を高めたりすることができる。あるいは、物質の高次構造や配向(トランスフォーメーション)を、電気力学的作用を利用して調整できる。   According to this method, the specific insulating portion where the electric field is likely to concentrate is electrodynamically attracted by the migration of the probe material that forms charges and dipoles from the periphery, or the target material is present where the probe material exists. It is possible to increase the concentration by attracting and pulling. Alternatively, the higher-order structure and orientation (transformation) of the substance can be adjusted using electrodynamic action.

ここで、本発明に関連する主たる技術用語について説明する。   Here, main technical terms related to the present invention will be described.

「相互作用」とは、物質間の非共有結合、共有結合、水素結合を含む化学的結合あるいは解離を広く意味し、例えば、核酸分子間のハイブリダイゼーション、タンパク質間の相互作用、抗原抗体反応などの物質間の化学的結合あるいは解離を広く含む。なお、「ハイブリダイゼーション」は、相補的な塩基配列構造を備える間の相補鎖(二本鎖)形成反応を意味する。   “Interaction” broadly means non-covalent bonds, covalent bonds, chemical bonds or dissociations including hydrogen bonds, such as hybridization between nucleic acid molecules, interaction between proteins, antigen-antibody reaction, etc. Widely includes chemical bonds or dissociation between these substances. “Hybridization” means a complementary strand (double strand) formation reaction between complementary base sequence structures.

「核酸鎖」とは、プリンまたはピリミジン塩基と糖がグリコシド結合したヌクレオシドのリン酸エステルの重合体(ヌクレオチド鎖)を意味し、プローブDNAを含むオリゴヌクレオチド、ポリヌクレオチド、プリンヌクレオチドとピリミジンヌクレオチオドが重合したDNA(全長あるいはその断片)、逆転写により得られるcDNA(cプローブDNA)、RNA、ポリアミドヌクレオチド誘導体(PNA)等を広く含む。   “Nucleic acid chain” means a polymer (nucleotide chain) of a phosphate ester of a nucleoside in which a purine or pyrimidine base and a sugar are glycosidically linked. The oligonucleotide, polynucleotide, purine nucleotide and pyrimidine nucleotide containing probe DNA Polymerized DNA (full length or a fragment thereof), cDNA obtained by reverse transcription (c probe DNA), RNA, polyamide nucleotide derivative (PNA) and the like are widely included.

「反応領域」は、ハイブリダイゼーションなどの相互作用の場を提供できる領域であり、一例を挙げるなら、液相やゲルなどを貯留できるウエル形状を有する反応場である。   The “reaction region” is a region that can provide an interaction field such as hybridization, and, for example, a reaction field having a well shape that can store a liquid phase, a gel, or the like.

「誘電泳動」は、電界が一様でない場において、分子が電界の強い方へ駆動する現象である。交流電圧をかけた場合も、かけた電圧の極性の反転につれて分極の極性も反転するので、直流の場合と同様に駆動効果が得られる(監修・林 輝、「マイクロマシンと材料技術(シーエムシー発行)」、P37〜P46・第5章・細胞およびDNAのマニピュレーション参照)。特に、高周波交流電界中においては、時間的平均電場の自乗の勾配に比例して双極子に力が働き、泳動する。   “Dielectrophoresis” is a phenomenon in which molecules are driven toward a stronger electric field in a field where the electric field is not uniform. When an AC voltage is applied, the polarity of the polarization is also reversed as the polarity of the applied voltage is reversed, so that the driving effect can be obtained in the same way as in the case of direct current (supervised by Teru Hayashi, “Micromachine and Material Technology (issued by CMC) ) ", P37-P46, Chapter 5, Cell and DNA manipulation). In particular, in a high-frequency alternating electric field, force acts on the dipole in proportion to the gradient of the square of the temporal average electric field, causing migration.

例えば、核酸分子は、液相中において電界の作用を受けると伸長又は移動することが知られている。その原理は、骨格をなすリン酸イオン(陰電荷)とその周囲にある水がイオン化した水素原子(陽電荷)とによってイオン曇を作っていると考えられ、これらの陰電荷及び陽電荷により生じる分極ベクトル(双極子)が、高周波高電圧の印加により全体として一方向を向き、その結果として伸長し、加えて、不均一電界が印加された場合、電気力線が集中する部位に向かって移動する(Seiichi Suzuki,Takeshi Yamanashi,Shin-ichi Tazawa,Osamu Kurosawa and Masao Washizu:“Quantitative analysis on electrostatic orientation of DNA in stationary AC electric field using fluorescence anisotropy”,IEEE Transaction on Industrial Applications,Vol.34,No.1,P75-83(1998))。   For example, nucleic acid molecules are known to stretch or move when subjected to the action of an electric field in the liquid phase. The principle is thought to be that ion turbidity is formed by phosphate ions (negative charge) forming the skeleton and hydrogen atoms (positive charge) formed by ionization of water around them, and are generated by these negative charges and positive charges. The polarization vector (dipole) is oriented in one direction as a whole by the application of a high frequency high voltage, and as a result, expands. In addition, when a non-uniform electric field is applied, it moves toward the part where the electric lines of force are concentrated. (Seiichi Suzuki, Takeshi Yamanashi, Shin-ichi Tazawa, Osamu Kurosawa and Masao Washizu: “Quantitative analysis on electrostatic orientation of DNA in stationary AC electric field using fluorescence anisotropy”, IEEE Transaction on Industrial Applications, Vol. 34, No. 1 , P75-83 (1998)).

「センサーチップ」は、基板上の所定の反応領域において、物質間の相互作用を進行させ、該相互作用を検出するための基板を意味し、前記物質の種類に関係なく広く包含し、前記相互作用の検出原理は問わない。このセンサーチップには、DNAプローブなどの核酸鎖が固定化されて微細配列された状態とされたDNAチップ(DNAマイクロアレイ)やタンパク質間の相互作用や抗原抗体反応などの検出に適するたんぱくチップなどを少なくとも含む。   “Sensor chip” means a substrate for detecting the interaction by causing an interaction between substances in a predetermined reaction region on the substrate, and widely includes regardless of the type of the substance. The detection principle of action does not matter. This sensor chip includes a DNA chip (DNA microarray) in which nucleic acid chains such as DNA probes are immobilized and in a finely arranged state, a protein chip suitable for detecting interactions between proteins, antigen-antibody reactions, and the like. Including at least.

本発明では、反応領域における絶縁層において、周囲よりも誘電率の高い特定絶縁層を形成する簡易な基板構成によって、反応領域内に電界(電気力線)が特に集中する部位や領域を形成できるため、不均一電場の形成及びこの不均一電場を利用する誘電泳動などの電気力学的効果を簡単に得ることができる。   In the present invention, in the insulating layer in the reaction region, a portion or region in which the electric field (lines of electric force) is particularly concentrated can be formed in the reaction region by a simple substrate configuration in which a specific insulating layer having a higher dielectric constant than the surroundings is formed. Therefore, it is possible to easily obtain an electrodynamic effect such as formation of a non-uniform electric field and dielectrophoresis using the non-uniform electric field.

この効果によって、電界が特に集中し易い特定絶縁部に向けて、電荷や双極子を形成するプローブ物質を周辺から引き寄せて固定することができ、さらには、当該プローブ物質が存在する場所にターゲット物質を引き寄せて、ハイブリダイゼーションなどの相互作用効率を高めることができる。あるいは、物質の高次構造や配向を、電気力学的作用を利用して調整し、ハイブリダイゼーションなどの相互作用時の立体障害の影響を軽減することができる。ひいては、ハイブリダイゼーションなどの相互作用の精度向上も達成できる。   By this effect, the probe material that forms electric charges and dipoles can be attracted and fixed toward the specific insulating part where the electric field is particularly concentrated, and further, the target material is located where the probe material exists. To enhance interaction efficiency such as hybridization. Alternatively, the higher-order structure and orientation of the substance can be adjusted using electrodynamic action to reduce the influence of steric hindrance during interaction such as hybridization. As a result, the accuracy of interaction such as hybridization can be improved.

以下、本発明を実施するための好適な形態について、添付図面を参照しながら説明する。なお、添付図面に示された各実施形態は、本発明に係わる物や方法の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the accompanying drawings. Each embodiment shown in the attached drawings shows an example of a typical embodiment of the thing and method concerning the present invention, and, thereby, the scope of the present invention is not interpreted narrowly.

図1は、本発明に係る相互作用検出部(以下、「検出部」と略称。)として好適な第一実施形態の基本構成を説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a basic configuration of a first embodiment suitable as an interaction detection unit (hereinafter, abbreviated as “detection unit”) according to the present invention.

まず、この図1に示された符号1aは、本発明に係る検出部の好適な第一実施形態を示している。この検出部1aは、支持基板11と、この上に積層された導電材料からなる第1電極層12と、この第1電極層12に対向配置された導電材料からなる第2電極層13と、を備えており、第1電極層12と第2電極層13に挟まれた場所(領域)には、溶液やゲルなどの媒体を貯留又は保持できるウエル形状(凹部形状)の反応領域Rが設けられている。   First, reference numeral 1a shown in FIG. 1 represents a first preferred embodiment of the detection unit according to the present invention. The detection unit 1a includes a support substrate 11, a first electrode layer 12 made of a conductive material stacked on the support substrate 11, a second electrode layer 13 made of a conductive material disposed opposite to the first electrode layer 12, In a place (region) sandwiched between the first electrode layer 12 and the second electrode layer 13, a well-shaped (recessed shape) reaction region R capable of storing or holding a medium such as a solution or gel is provided. It has been.

この反応領域2は、ハイブリダイゼーション、タンパク質間の相互作用、抗原抗体反応等の種々の物質間の相互作用の場を提供する領域又は空間として機能する。この反応領域2には、該反応領域2に臨むように対向配置されている電極層12−13を介して、電界が印加される。なお、図1中の符号Gは電源(電圧発生源)、符号Gは電界印加のオンオフを操作するスイッチである(他の図でも同様)。   This reaction region 2 functions as a region or space that provides a field for interaction between various substances such as hybridization, protein-protein interaction, and antigen-antibody reaction. An electric field is applied to the reaction region 2 via the electrode layers 12-13 that are disposed so as to face the reaction region 2. 1 is a power source (voltage generation source), and G is a switch for operating on / off of electric field application (the same applies to other drawings).

ここで第1電極層12は、アルミニウムや金などの金属、あるいはITO(インジウム−スズ−オキサイド)等の透明な導体で形成されており、本実施形態の例では、ガラスや光透過性の合成樹脂材料で形成されている支持基板11の上に積層されている。   Here, the first electrode layer 12 is formed of a metal such as aluminum or gold, or a transparent conductor such as ITO (indium-tin-oxide). In the example of this embodiment, the first electrode layer 12 is made of glass or light-transmitting synthetic material. It is laminated on a support substrate 11 made of a resin material.

第1電極層12を光透過性のITOなどで形成すれば、支持基板11の下方から進行してくる所定波長の蛍光励起光Pを反応領域R内へ導くとともに、反応領域R内で励起されて発生した蛍光Fを支持基板11の下側へ導出させることができる(図1参照)。   If the first electrode layer 12 is made of light-transmitting ITO or the like, the fluorescence excitation light P having a predetermined wavelength traveling from below the support substrate 11 is guided into the reaction region R and excited in the reaction region R. The fluorescence F generated in this way can be led out to the lower side of the support substrate 11 (see FIG. 1).

なお、ここで言う蛍光励起光Pは、反応領域R内に存在する物質に標識された蛍光物質やハイブリダイゼーション(相互作用の一例)によって生成した相補鎖に挿入結合する蛍光インターカレーターを励起させるための光である。第2電極層13に反射層(図示せず。)をさらに形成することによって、蛍光Fを反射させて下方へ導出させることができるので、測定できる蛍光量を増加させることができる。   The fluorescence excitation light P referred to here excites a fluorescent substance labeled with a substance existing in the reaction region R or a fluorescent intercalator that is inserted and bonded to a complementary strand generated by hybridization (an example of interaction). The light. By further forming a reflective layer (not shown) on the second electrode layer 13, the fluorescence F can be reflected and led out downward, so that the amount of fluorescence that can be measured can be increased.

第1電極層12の反応領域Rに臨む電極表面12aは、SiO、SiC、SiN、SiOC、SiOF、TiO等から選択される材料によって形成された絶縁層14で覆われている。この絶縁層14は、反応領域R中に貯留される場合があるイオン溶液による電気化学的な反応を防止する役割や電極の腐食や剥離を防止する役割などを担っている。なお、特に図示しないが、第2電極層13の反応領域Rを臨む電極面にも絶縁層を設けた方が望ましい。 The electrode surface 12a facing the reaction region R of the first electrode layer 12 is covered with an insulating layer 14 formed of a material selected from SiO 2 , SiC, SiN, SiOC, SiOF, TiO 2 and the like. The insulating layer 14 plays a role of preventing an electrochemical reaction by an ionic solution that may be stored in the reaction region R, a role of preventing corrosion and peeling of the electrode, and the like. Although not particularly illustrated, it is desirable to provide an insulating layer on the electrode surface facing the reaction region R of the second electrode layer 13.

絶縁層14は、誘電率が周囲よりも高い絶縁部(「特定絶縁部」と称する)141とその周囲の絶縁部142が所定間隔で設けられている。特定絶縁部141の配置数、密度、形状、配置パターンは特に限定されず、また、一つの反応領域R内に複数形成するのも、単独で形成するのも、目的に応じて適宜決定すればよい(他の実施形態でも同様)。   The insulating layer 14 is provided with an insulating portion (referred to as a “specific insulating portion”) 141 having a dielectric constant higher than that of the surrounding area and an insulating portion 142 around the insulating portion 141 at a predetermined interval. The number, density, shape, and arrangement pattern of the specific insulating portions 141 are not particularly limited, and a plurality of specific insulating portions 141 may be formed in a single reaction region R or may be formed independently depending on the purpose. Good (the same applies to other embodiments).

一例を挙げると、図2に示すように、絶縁層14に上方視円形の特定絶縁部141aを所定間隔で整列配置する構成や、図3に示すように、絶縁層14に上方視四角形の特定絶縁部141bを所定間隔で整列配置する構成を採用するのも、目的に応じて自由である。   For example, as shown in FIG. 2, a specific insulating portion 141a having a circular shape when viewed from above is arranged in a predetermined interval on the insulating layer 14, and a specific shape having a rectangular shape when viewed from above is shown in the insulating layer 14 as shown in FIG. It is also free to adopt a configuration in which the insulating portions 141b are arranged at predetermined intervals according to the purpose.

特定絶縁部141(141a、141b)の材料は、例えば、誘電率(ε)が40である二酸化チタン(TiO)のように誘電率の高い材料で形成し、他の絶縁層142部分は、例えば、誘電率(ε)が4である二酸化ケイ素(SiO)で形成することができる。 The material of the specific insulating part 141 (141a, 141b) is formed of a material having a high dielectric constant such as titanium dioxide (TiO 2 ) having a dielectric constant (ε) of 40, and the other insulating layer 142 part is For example, it can be formed of silicon dioxide (SiO 2 ) having a dielectric constant (ε) of 4.

ここで、図1を再び参照すると、この図1には、符号Eによって示された電界が特定絶縁層141,141に集中して形成されている様子が模式的に示されている。また、特定絶縁層141,141には、オリゴDNAのようなプローブ物質Xが整列固定されている様子が示されている。   Here, referring to FIG. 1 again, FIG. 1 schematically shows a state in which the electric field indicated by the symbol E is concentrated on the specific insulating layers 141 and 141. In addition, the specific insulating layers 141 and 141 show a state in which the probe substance X such as oligo DNA is aligned and fixed.

これらのプローブ物質Xは、反応領域R内へ導入された直後は、ブラウン運動等によって反応領域Rに遊離散在しているが、高周波交流電界などの電界Eが印加されると、特定絶縁層141,141に向けて泳動して寄せ集められ、その末端部位が該特定絶縁層141,141の表面に化学結合して固定される。   Immediately after being introduced into the reaction region R, these probe substances X are scattered and scattered in the reaction region R due to Brownian motion or the like, but when an electric field E such as a high-frequency AC electric field is applied, the specific insulating layer 141 , 141 are migrated and gathered together, and the end portions thereof are chemically bonded and fixed to the surfaces of the specific insulating layers 141, 141.

なお、プローブ物質Xの固定は、例えば、特定絶縁層141,141に覆われた電極層12の表面とプローブ物質の末端をカップリング反応等の反応によって行うことができる。例えば、ストレプトアビジンによって絶縁層が表面処理されておる場合には、ビオチン化されたプローブ物質Xの末端の固定に適している。あるいは、チオール(SH)基によって表面処理されている場合には、チオール基が末端に修飾されたプローブ物質をジスルフィド結合(−S−S−結合)で固定することに適している。   The probe substance X can be fixed, for example, by a reaction such as a coupling reaction between the surface of the electrode layer 12 covered with the specific insulating layers 141 and 141 and the end of the probe substance. For example, when the insulating layer is surface-treated with streptavidin, it is suitable for fixing the end of the biotinylated probe substance X. Alternatively, when the surface is treated with a thiol (SH) group, it is suitable for immobilizing a probe substance having a thiol group modified at the terminal with a disulfide bond (-SS-bond).

図4は、本発明に係る相互作用検出部の第二実施形態の基本構成を説明する断面図である。   FIG. 4 is a cross-sectional view illustrating the basic configuration of the second embodiment of the interaction detection unit according to the present invention.

この図4に示された第二実施形態と図1に示された第一実施形態では、絶縁層14の構成が異なっているのみであって、この第二実施形態である検出部1bの絶縁層14には、膜厚が周囲の絶縁層144よりも薄い特定絶縁部143が設けられていることが特徴である。   In the second embodiment shown in FIG. 4 and the first embodiment shown in FIG. 1, only the configuration of the insulating layer 14 is different, and the insulation of the detector 1b according to the second embodiment is different. The layer 14 is characterized in that a specific insulating portion 143 having a thickness smaller than that of the surrounding insulating layer 144 is provided.

このような膜厚が薄い特定絶縁部143,143は、周囲の絶縁層144よりも誘電率が高くなるので、検出部1aの特定絶縁部141同様に電界Eが集中し、その表面近傍に不均一電場が形成され易い。このため、プローブ物質Xの固定箇所として適している。   Since the specific insulating portions 143 and 143 having such a small thickness have a higher dielectric constant than that of the surrounding insulating layer 144, the electric field E is concentrated similarly to the specific insulating portion 141 of the detecting portion 1a and is not present near the surface. A uniform electric field is easily formed. For this reason, it is suitable as a fixed location of the probe substance X.

反応領域R内へ、例えば核酸鎖のようなターゲット物質Yが導入された後、あるいは導入と同時に、電界Eが印加されると、既にプローブ物質Xが整列固定されている特定絶縁部143,143に向かって前記ターゲット物質Yが泳動し、該特定絶縁部143,143近傍でのターゲット物質Yの濃度が高まるので、この結果、相互作用効率が高まる(検出部1aの特定絶縁部141でも同様)。あるいは、プローブ物質Xやターゲット物質Yの高次構造が電界によって調整されて、相互作用時の立体障害が軽減される。例えば、ランダムコイル状に絡まっている核酸鎖は電界Eの作用によって伸張し、相補結合する塩基が露出し、ハイブリダイゼーションが促進される(検出部1aでも同様)。   When the electric field E is applied after or simultaneously with the introduction of the target substance Y such as a nucleic acid chain into the reaction region R, the specific insulating parts 143 and 143 in which the probe substance X is already aligned and fixed Since the target material Y migrates toward the surface and the concentration of the target material Y near the specific insulating portions 143 and 143 increases, the interaction efficiency increases as a result (the same applies to the specific insulating portion 141 of the detecting portion 1a). . Alternatively, the higher order structures of the probe substance X and the target substance Y are adjusted by an electric field, and steric hindrance during interaction is reduced. For example, the nucleic acid strands entangled in a random coil shape are extended by the action of the electric field E, and the bases that are complementarily bonded are exposed to promote hybridization (the same applies to the detection unit 1a).

続いて、図5は、本発明に係る検出部の第三実施形態を示す図である。   Next, FIG. 5 is a diagram showing a third embodiment of the detection unit according to the present invention.

図5に示された第三実施形態である検出部1cは、計二対の対向電極を有している。詳しくは、上下の対向電極12−13と、反応領域Rの図面向かって左右に振り分けられた対向電極15−16と、備え、対向電極12−13とへの電界印加手段としての電源GとスイッチS、対向電極15−16への電界印加手段としての電源GとスイッチSがそれぞれ設けられている。 The detection part 1c which is 3rd embodiment shown by FIG. 5 has a total of two pairs of counter electrodes. Specifically, the upper and lower counter electrodes 12-13, a counter electrode 15-16 distributed to the leftward right reaction regions R, includes a power supply G 1 as the electric field applying means to the counter electrode 12-13 Metropolitan A power source G 2 and a switch S 2 are provided as means for applying an electric field to the switch S 1 and the counter electrode 15-16.

電極層12を覆う絶縁層14の一部には、特定絶縁層141(又は143)が形成されており、プローブ物質Xの固定箇所や相互作用促進の場として機能している(図5参照)。一方の電極層15と16をそれぞれ覆う絶縁層17,18には、それぞれの一部に誘電率の高い特定絶縁層171,181が形成されている。   Part of the insulating layer 14 covering the electrode layer 12 is provided with a specific insulating layer 141 (or 143), which functions as a fixed portion of the probe substance X or a place for promoting interaction (see FIG. 5). . Specific insulating layers 171 and 181 having a high dielectric constant are formed in part of the insulating layers 17 and 18 that respectively cover the electrode layers 15 and 16.

ここで、対向電極12−13は、プローブ物質Xを特定絶縁層141(又は143)に覆われた電極部位へ固定したり、ターゲット物質Yを固定されたプローブ物質Xに向けて泳動させたりするために用いられる。   Here, the counter electrode 12-13 fixes the probe material X to the electrode part covered with the specific insulating layer 141 (or 143), or causes the target material Y to migrate toward the fixed probe material X. Used for.

一方の対向電極15−16は、反応領域R内に存在して、相互作用検出時の弊害となり得るような物質、例えば、相互作用することなく反応領域R内に遊離しているターゲット物質などをプローブ物質Xの固定箇所周辺から除去するときに用いることができる。   One counter electrode 15-16 is present in the reaction region R and can be a harmful substance when detecting the interaction, for example, a target material released in the reaction region R without interaction. It can be used when removing the probe substance X from the periphery of the fixed portion.

電極層15と16をそれぞれ覆う絶縁層17,18には、誘電率の高い前記特定絶縁層171,181が形成されており、この特定絶縁層171,181部分に電界を集中させて不均一な電場を形成し、誘電泳動などの電気力学的作用を利用して物質を移動させることができる。   The insulating layers 17 and 18 that respectively cover the electrode layers 15 and 16 are formed with the specific insulating layers 171 and 181 having a high dielectric constant, and an electric field is concentrated on the specific insulating layers 171 and 181 so as to be nonuniform. An electric field is formed, and a substance can be moved using an electrodynamic action such as dielectrophoresis.

ここで、図1に示すような検出部1aと同様の基板構成に設計し、反応領域Rの垂直方向(上下方向)に5μmの間隔を持って電極層12−13を配置させた検出部を想定し、1MHz,20Vppの交流電圧を印加した場合に、絶縁層14の誘電率(ε)が1.0,4.0(例えば、SiOの絶縁層),10.0,40.0(例えば、TiOの絶縁層)のそれぞれの上部電界強度をシュミュレーション計算した結果を図6に示す。この図6に示すように、絶縁層の誘電率が高くなるほど、絶縁層上部での電界強度が高まることがわかる。 Here, a detection unit having a substrate configuration similar to that of the detection unit 1a as shown in FIG. 1 and in which the electrode layers 12-13 are arranged with an interval of 5 μm in the vertical direction (vertical direction) of the reaction region R Assuming that an AC voltage of 1 MHz and 20 Vpp is applied, the dielectric constant (ε) of the insulating layer 14 is 1.0, 4.0 (for example, an insulating layer of SiO 2 ), 10.0, 40.0 ( For example, FIG. 6 shows the result of simulation calculation of the upper field strength of each of the TiO 2 insulating layers. As shown in FIG. 6, it can be seen that the higher the dielectric constant of the insulating layer, the higher the electric field strength at the upper portion of the insulating layer.

例えば、誘電率ε=40のTiOで形成された絶縁層(特定絶縁部)では、誘電率ε=4.0のSiOで形成された一般の絶縁層(特定絶縁部)の2倍弱の電界強度が得られている。誘電泳動時には電界の二乗の勾配に比例して対象物質に駆動力が発生するため、電界印加時には、核酸鎖などの物質は、TiOで形成された絶縁層(特定絶縁部)の近傍に集中的に移動することになる。 For example, an insulating layer (specific insulating portion) formed of TiO 2 having a dielectric constant ε = 40 is slightly less than twice that of a general insulating layer (specific insulating portion) formed of SiO 2 having a dielectric constant ε = 4.0. The electric field strength of is obtained. During dielectrophoresis, a driving force is generated in the target substance in proportion to the gradient of the square of the electric field. Therefore, when an electric field is applied, substances such as nucleic acid chains are concentrated in the vicinity of the insulating layer (specific insulating part) formed of TiO 2. Will move.

次に、図7は、膜厚が異なるSiOで形成した絶縁層で電極を覆ったときの電界強度を計算した結果を示す図(図面代用グラフ)である。絶縁層14の膜厚Wは、250nmと20nmの二種類を想定した。また、この計算シミュレーションでは、図8に示すように、特定絶縁部141の中心軸C上(D=0)と、この中心軸から水平方向に5μm離れた位置(D=5)において、絶縁層表面からの高さ(Z)方向に電界強度を計算した。 Next, FIG. 7 is a diagram (drawing substitute graph) showing the results of calculating the electric field strength when the electrodes are covered with insulating layers formed of SiO 2 having different film thicknesses. The film thickness W of the insulating layer 14 was assumed to be two types, 250 nm and 20 nm. Further, in this calculation simulation, as shown in FIG. 8, the insulating layer is formed on the central axis C (D = 0) of the specific insulating portion 141 and at a position (D = 5) 5 μm apart from the central axis in the horizontal direction. The electric field strength was calculated in the height (Z) direction from the surface.

この計算の結果、絶縁層の膜厚が薄い20nmの絶縁層の方が電界強度が大きいことが明らかになり、さらに、このような効果は、絶縁層表面からの高さや水平方向の距離によってあまり差がないことがわかった。これにより、絶縁層の膜厚を薄くすることによって、周囲よりも電界強度の大きい電極表面を形成できることを検証できた。また、膜厚の薄い絶縁層(特定異絶縁部)の近傍では、水平、垂直の方向にあまり関係なく一定の電界強度を得ることができることも検証できた。   As a result of this calculation, it is clear that the insulating layer having a thin film thickness of 20 nm has a larger electric field strength. Further, such an effect is not much depending on the height from the surface of the insulating layer and the distance in the horizontal direction. I found no difference. Thus, it was verified that an electrode surface having a larger electric field strength than the surroundings can be formed by reducing the thickness of the insulating layer. It was also verified that a constant electric field strength can be obtained in the vicinity of the thin insulating layer (specific different insulating portion) regardless of the horizontal and vertical directions.

本発明は、電気力学的作用を利用して、物質間の相互作用を効率良く、短時間で、高精度に検出するための技術として利用できる。例えば、DNAチップやたんぱくチップなどに代表されるセンサーチップ技術や前記相互作用を検出するための技術として利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a technique for detecting an interaction between substances efficiently and in a short time with high accuracy by utilizing an electrodynamic action. For example, it can be used as a sensor chip technique represented by a DNA chip or a protein chip, or a technique for detecting the interaction.

本発明に係る相互作用検出部の好適な第一実施形態の基本構成を説明するための断面図ある。It is sectional drawing for demonstrating the basic composition of suitable 1st embodiment of the interaction detection part which concerns on this invention. 絶縁層(14)における特定絶縁部(141a)の配置構成の一例を示す平面図である。It is a top view which shows an example of the arrangement configuration of the specific insulation part (141a) in an insulating layer (14). 絶縁層(14)における特定絶縁部(141a)の他の配置構成の一例を示す平面図である。It is a top view which shows an example of the other arrangement structure of the specific insulation part (141a) in an insulating layer (14). 本発明に係る相互作用検出部の好適な第二実施形態の基本構成を説明するための断面図ある。It is sectional drawing for demonstrating the basic composition of suitable 2nd embodiment of the interaction detection part which concerns on this invention. 本発明に係る相互作用検出部の好適な第三実施形態の基本構成を説明するための断面図ある。It is sectional drawing for demonstrating the basic composition of suitable 3rd embodiment of the interaction detection part which concerns on this invention. 本発明の効果を検証したシュミュレーション計算(誘電率の異なる材料で絶縁層を形成した場合)の結果を示す図面代用グラフであるIt is a drawing substitute graph which shows the result of the simulation calculation which verified the effect of the present invention (when an insulating layer is formed with materials with different dielectric constants). 本発明の効果を検証したシュミュレーション計算(膜厚の異なる絶縁層の場合)の結果を示す図面代用グラフである。It is a drawing substitute graph which shows the result of the simulation calculation (in the case of the insulating layer from which film thickness differs) which verified the effect of this invention. 図7のシュミュレーション計算の実施方法の補強説明図である。It is reinforcement explanatory drawing of the implementation method of the simulation calculation of FIG.

符号の説明Explanation of symbols

1a,1b,1c 相互作用検出部(検出部)
12,13,15,16 電極層
14,17,18,131 絶縁層
141(141a,141b),143 特定絶縁部
E 電界
G 電源
R 反応領域
S スイッチ
X プローブ物質
Y ターゲット物質
1a, 1b, 1c Interaction detector (detector)
12, 13, 15, 16 Electrode layers 14, 17, 18, 131 Insulating layer 141 (141a, 141b), 143 Specific insulating part E Electric field G Power supply R Reaction region S Switch X Probe material Y Target material

Claims (7)

物質間の相互作用の場となる反応領域と、該反応領域に対する電界印加に用いられる電極と、該電極の表面を覆う絶縁層と、を備え、
前記絶縁層には、誘電率の高い特定絶縁部が設けられている相互作用検出部。
A reaction region serving as a field of interaction between substances, an electrode used for applying an electric field to the reaction region, and an insulating layer covering the surface of the electrode,
The interaction detecting unit, wherein the insulating layer is provided with a specific insulating unit having a high dielectric constant.
前記特定絶縁部は、周囲の絶縁層よりも誘電率の高い材料で形成された部位であることを特徴とする請求項1記載の相互作用検出部。   The interaction detecting unit according to claim 1, wherein the specific insulating unit is a part formed of a material having a higher dielectric constant than a surrounding insulating layer. 前記特定絶縁部は、周囲の絶縁層よりも薄膜に形成された部位であることを特徴とする請求項1記載の相互作用検出部。   The interaction detecting unit according to claim 1, wherein the specific insulating unit is a portion formed in a thinner film than a surrounding insulating layer. 前記特定絶縁部には、プローブ物質が固定されていること特徴とする請求項1記載の相互作用検出部。   The interaction detecting unit according to claim 1, wherein a probe substance is fixed to the specific insulating unit. 前記相互作用は、核酸鎖間のハイブリダイゼーションであることを特徴とする請求項1記載の相互作用検出部。   The interaction detection unit according to claim 1, wherein the interaction is hybridization between nucleic acid strands. 請求項1記載の相互作用検出部が設けられたセンサーチップ。   A sensor chip provided with the interaction detection unit according to claim 1. 物質間の相互作用の場となる反応領域と、該反応領域に対する電界印加に用いられる電極と、該電極の表面を覆う絶縁層と、を備える検出部を用いて、
前記絶縁層に設けておいた誘電率の高い特定絶縁部に電界を集中させることによって、プローブ物質の固定化促進又は前記相互作用の促進を行うことを特徴とするバイオアッセイ方法。
Using a detection unit comprising a reaction region serving as an interaction field between substances, an electrode used for applying an electric field to the reaction region, and an insulating layer covering the surface of the electrode,
A bioassay method characterized by promoting the immobilization of a probe substance or the interaction by concentrating an electric field on a specific insulating part having a high dielectric constant provided in the insulating layer.
JP2005152479A 2005-05-25 2005-05-25 Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field Expired - Fee Related JP4631543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152479A JP4631543B2 (en) 2005-05-25 2005-05-25 Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152479A JP4631543B2 (en) 2005-05-25 2005-05-25 Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field

Publications (2)

Publication Number Publication Date
JP2006329763A true JP2006329763A (en) 2006-12-07
JP4631543B2 JP4631543B2 (en) 2011-02-16

Family

ID=37551603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152479A Expired - Fee Related JP4631543B2 (en) 2005-05-25 2005-05-25 Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field

Country Status (1)

Country Link
JP (1) JP4631543B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008096A (en) * 2008-06-24 2010-01-14 Kyoto Institute Of Technology Substrate for microarray and its manufacturing method
WO2013035252A1 (en) * 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017068A1 (en) * 2002-08-12 2004-02-26 Hitachi High-Technologies Corporation Method of detecting nucleic acid by using dna microarrays and nucleic acid detection apparatus
JP2004205340A (en) * 2002-12-25 2004-07-22 Casio Comput Co Ltd Optical dna sensor and dna reading device
JP2005114372A (en) * 2003-10-02 2005-04-28 Sony Corp Detection part for interaction between substances utilizing capillary phenomenon, method using same, and substrate for bioassay
JP2005114371A (en) * 2003-10-02 2005-04-28 Sony Corp Detection part for hybridization and other interaction, dna chip equipped therewith, and another substrate for bioassay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017068A1 (en) * 2002-08-12 2004-02-26 Hitachi High-Technologies Corporation Method of detecting nucleic acid by using dna microarrays and nucleic acid detection apparatus
JP2004205340A (en) * 2002-12-25 2004-07-22 Casio Comput Co Ltd Optical dna sensor and dna reading device
JP2005114372A (en) * 2003-10-02 2005-04-28 Sony Corp Detection part for interaction between substances utilizing capillary phenomenon, method using same, and substrate for bioassay
JP2005114371A (en) * 2003-10-02 2005-04-28 Sony Corp Detection part for hybridization and other interaction, dna chip equipped therewith, and another substrate for bioassay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008096A (en) * 2008-06-24 2010-01-14 Kyoto Institute Of Technology Substrate for microarray and its manufacturing method
WO2013035252A1 (en) * 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same
CN103857784A (en) * 2011-09-07 2014-06-11 松下健康医疗器械株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same

Also Published As

Publication number Publication date
JP4631543B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP1605063B1 (en) Hybridization detecting unit and DNA chip including the detecting unit
JP4328168B2 (en) Detection unit for interaction between substances using capillary phenomenon, method using the detection unit, and substrate for bioassay
CN106757376B (en) Biochip for biomolecule detection or sequencing and manufacturing method thereof
JP4645110B2 (en) Hybridization detection unit using dielectrophoresis, sensor chip including the detection unit, and hybridization detection method
JP4321854B2 (en) Hybridization and other interaction detection units and DNA chips and other bioassay substrates provided with the detection units
JP2006337273A (en) Interaction detecting part comprising electrode with the same potential, sensor chip using detecting part thereof, and interaction detector
JP4631543B2 (en) Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field
EP1677110A1 (en) Method for producing bioassay substrate by superposing two substrates one on another and bioassay substrate
JP2006177725A (en) Detection part of interaction between substances, bioassay substrate using it, bioassay device and bioassay method
JP4328167B2 (en) A part for detecting an interaction between substances using a protruding counter electrode and a substrate for bioassay provided with the part
JP4411931B2 (en) Method for detecting interaction between substances
JP4281479B2 (en) Bioassay substrate for detecting an interaction between an electrode unit and a substance using the electrode unit
JP2005345353A (en) Substrate for bioassay provided with light shielding layer of fluorescence excitation light
US8197655B2 (en) System and method for detecting interaction between substances by superimposingly applying sinusoidal voltage
JP2005351686A (en) Detection part for interaction between substances using electric field gradient and substrate for bioassay equipped with same detection part for interaction
JP4618007B2 (en) Bioassay substrate and interaction detector for interaction between substances
JP2004132720A (en) Hybridization detection part, sensor chip and hybridization method
JP4779468B2 (en) Interaction detecting unit, bioassay substrate, and method related thereto
JP2005345365A (en) Bioassay method for mixing target nucleic acid and mismatch nucleic acid and hybridization detecting method
WO2008020364A2 (en) Biochemical sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees