JP4779468B2 - Interaction detecting unit, bioassay substrate, and method related thereto - Google Patents

Interaction detecting unit, bioassay substrate, and method related thereto Download PDF

Info

Publication number
JP4779468B2
JP4779468B2 JP2005194021A JP2005194021A JP4779468B2 JP 4779468 B2 JP4779468 B2 JP 4779468B2 JP 2005194021 A JP2005194021 A JP 2005194021A JP 2005194021 A JP2005194021 A JP 2005194021A JP 4779468 B2 JP4779468 B2 JP 4779468B2
Authority
JP
Japan
Prior art keywords
working electrode
electrode
interaction
substance
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005194021A
Other languages
Japanese (ja)
Other versions
JP2007010566A (en
Inventor
真二 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005194021A priority Critical patent/JP4779468B2/en
Publication of JP2007010566A publication Critical patent/JP2007010566A/en
Application granted granted Critical
Publication of JP4779468B2 publication Critical patent/JP4779468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、作用電極がエッジフリーに形成された相互作用検出部に関する。即ち、DNAチップ(DNAマイクロアレイ)などのバイオアッセイ用基板に関連する技術分野に属し、特に、物質間の相互作用(ハイブリダイゼーションなど)を、電気力学的効果を利用して検出などする技術に関連する。   The present invention relates to an interaction detection unit in which a working electrode is formed edge-free. That is, it belongs to a technical field related to a substrate for bioassay such as a DNA chip (DNA microarray), and particularly relates to a technique for detecting an interaction between substances (hybridization, etc.) using an electrodynamic effect. To do.

近年、DNAチップ若しくはDNAマイクロアレイ(以下、本願では「DNAチップ」とする。)の実用化が進んでいる。DNAチップは、多種・多数のDNAプローブを、検出用核酸として基板表面に集積して固定したものである。DNAチップを用いて、DNAチップ基板表面の検出用核酸と細胞・組織などより採取した標的核酸とのハイブリダイゼーションを測定することにより、細胞・組織などにおける遺伝子発現などを網羅的に解析することができる。   In recent years, DNA chips or DNA microarrays (hereinafter referred to as “DNA chips” in the present application) have been put into practical use. A DNA chip is obtained by collecting and fixing various and many DNA probes as nucleic acids for detection on a substrate surface. Using a DNA chip, it is possible to comprehensively analyze gene expression in cells / tissues by measuring the hybridization between nucleic acids for detection on the surface of the DNA chip substrate and target nucleic acids collected from cells / tissues. it can.

核酸分子は、液相中において電界の作用を受けると伸張又は移動することが知られている。
その原理は、以下の通りであると推測されている。核酸溶液では、核酸分子中のリン酸イオン(陰電荷)と水分子中の水素イオン(陽電荷)とがイオン雲を形成し、その陰電荷と陽電荷により分極ベクトル(双極子)を生じる。そして、高周波高電圧を印加した場合、分極ベクトルが全体として一方向を向き、その結果として核酸分子が伸張する。
また、不均一電界が印加され、電気力線が一部に集中した場合、核酸分子が、電気力線が集中する部位に向かって移動することが知られている(非特許文献1)。
Nucleic acid molecules are known to stretch or move when subjected to the action of an electric field in the liquid phase.
The principle is estimated as follows. In the nucleic acid solution, phosphate ions (negative charge) in the nucleic acid molecule and hydrogen ions (positive charge) in the water molecule form an ion cloud, and a polarization vector (dipole) is generated by the negative charge and positive charge. When a high frequency high voltage is applied, the polarization vector is directed in one direction as a whole, and as a result, the nucleic acid molecule is expanded.
In addition, it is known that when a non-uniform electric field is applied and electric lines of force concentrate on a part, the nucleic acid molecules move toward a site where electric lines of force concentrate (Non-patent Document 1).

加えて、核酸分子に関して、「誘電泳動」と呼ばれる電気力学的作用が知られている。概要は、次の通りである。
作用電極と参照電極とのギャップ(間隔)を数十から数百μmにし、DNA溶液に、1MV/m、1MHz程度の高周波電界を印加すると、DNAに誘電分極が生じ、その結果、DNA分子が電界と平行に直線状に引き伸ばされる。この「誘電泳動」により、DNAは電極端へと引き寄せられ、一端が電極に接した形で固定される(非特許文献2)。
In addition, an electrodynamic action called “dielectrophoresis” is known for nucleic acid molecules. The outline is as follows.
When the gap (interval) between the working electrode and the reference electrode is set to several tens to several hundreds of μm and a high frequency electric field of about 1 MV / m or 1 MHz is applied to the DNA solution, dielectric polarization occurs in the DNA. It is stretched linearly parallel to the electric field. By this “dielectrophoresis”, DNA is attracted to the end of the electrode and fixed in a form in which one end is in contact with the electrode (Non-patent Document 2).

上述のような核酸の電気力学的特性について、DNAチップへの応用が検討されている。例えば、特許文献1には、電極にDNAプローブを固定し、電極間に直流電圧を印加することにより、相補鎖DNAと非相補鎖DNAを分離する技術が記載されている。
特開2002−168864号公報 Seiichi Suzuki, et al: “Quantitative analysis on electrostatic orientation of DNA in stationary AC electric field using fluorescence anisotropy”, IEEE transaction on Industrial Applications, Vol.34, No.1, P75-83 (1998) 鷲津正夫、「見ながら行うDNAハンドリング」、可視化情報Vol.20 No.76 (2000)
Regarding the electrodynamic characteristics of nucleic acids as described above, application to DNA chips is being studied. For example, Patent Document 1 describes a technique for separating complementary strand DNA and non-complementary strand DNA by fixing a DNA probe to electrodes and applying a DC voltage between the electrodes.
JP 2002-168864 A Seiichi Suzuki, et al: “Quantitative analysis on electrostatic orientation of DNA in stationary AC electric field using fluorescence anisotropy”, IEEE transaction on Industrial Applications, Vol.34, No.1, P75-83 (1998) Masao Awazu, “DNA Handling while Watching”, Visualization Information Vol.20 No.76 (2000)

DNAチップの各ウエル内(反応場)に形成された作用電極にエッジ部分(角部分)が存在する場合、その部分に、電気力線が集中する。そのため、電界を形成した際、検出用核酸や標的核酸などが、作用電極のエッジ部分に集中してしまうという課題、即ち、それらの物質を、作用電極全体に均一に分布させることが難しいという課題があった。   When an edge portion (corner portion) exists in the working electrode formed in each well (reaction field) of the DNA chip, electric lines of force concentrate on that portion. Therefore, when an electric field is formed, the problem that detection nucleic acids, target nucleic acids, and the like are concentrated on the edge portion of the working electrode, that is, it is difficult to uniformly distribute these substances throughout the working electrode. was there.

そこで、本発明は、検出用物質と標的物質との間の相互作用の反応場に、均一性の高い電場を形成する手段を提供することを主な目的とする。   Therefore, the main object of the present invention is to provide means for forming a highly uniform electric field in the reaction field of the interaction between the detection substance and the target substance.

本発明では、検出用物質と標的物質との間の相互作用の反応場に臨む基板面の所定領域に、少なくとも、作用電極がエッジフリーに形成された相互作用検出部を提供する。   In the present invention, there is provided an interaction detection unit in which at least a working electrode is formed in an edge-free manner in a predetermined region of a substrate surface facing a reaction field of an interaction between a detection substance and a target substance.

前記基板面の所定領域に、作用電極をエッジフリーに形成することにより、作用電極と参照電極とを用いて電界を形成する際に、前記反応場に均一性の高い電場を形成させることができるため、検出用核酸や標的核酸などを、作用電極全体にほぼ均一に分布させることができる。   By forming the working electrode in an edge-free manner in a predetermined region of the substrate surface, it is possible to form a highly uniform electric field in the reaction field when forming an electric field using the working electrode and the reference electrode. Therefore, the nucleic acid for detection, the target nucleic acid, etc. can be distributed almost uniformly throughout the working electrode.

即ち、(1)検出用物質を作用電極に固定する手順、及び、(2)作用電極に固定された検出用物質と、標的物質とを相互作用させる手順、の両方において、検出用物質又は標的物質をほぼ均一に、作用電極に向かって誘電泳動させることができる。   That is, in both (1) the procedure for fixing the detection substance to the working electrode and (2) the procedure for causing the detection substance fixed on the working electrode and the target substance to interact, the detection substance or the target The substance can be dielectrophoresed substantially uniformly toward the working electrode.

従って、作用電極に検出用物質を固定する段階では、作用電極全体に、検出用物質を、ほぼ均一に固定することができ、相互作用(ハイブリダイゼーションなど)させる段階では、標的物質の分布ムラを少なくでき、相互作用の精度を高くできる。   Therefore, at the stage of fixing the detection substance to the working electrode, the detection substance can be fixed almost uniformly to the entire working electrode, and at the stage of interaction (hybridization etc.), uneven distribution of the target substance is caused. It can be reduced and the accuracy of the interaction can be increased.

以下、本発明に係る技術用語の定義づけを行う。   Hereinafter, technical terms according to the present invention will be defined.

「エッジフリー」とは、電極のエッジ(角)部分が、周囲の基板面よりも突出していないことをいう。   “Edge-free” means that the edge (corner) portion of the electrode does not protrude from the surrounding substrate surface.

「検出用物質」とは、反応場に貯留又は保持された媒質中に存在し、該物質と特異的に相互作用する物質を検出するための検出子として機能する生体関連物質などの物質であり、反応場に臨む基板面に固定又は遊離して存在する。代表例は、DNAプローブなどの核酸(ヌクレオチド鎖)である。   A “detection substance” is a substance such as a biological substance that exists in a medium stored or held in a reaction field and functions as a detector for detecting a substance that specifically interacts with the substance. It is fixed or released on the substrate surface facing the reaction field. A typical example is a nucleic acid (nucleotide chain) such as a DNA probe.

「標的物質」とは、前記検出用物質と特異的に相互作用を示す生体関連物質などの物質である。代表例は、DNAプローブなどの検出用核酸と相補的な塩基配列を有して、ハイブリダイゼーションを示す核酸(ヌクレオチド鎖)である。   The “target substance” is a substance such as a biological substance that specifically interacts with the detection substance. A typical example is a nucleic acid (nucleotide chain) having a base sequence complementary to a detection nucleic acid such as a DNA probe and exhibiting hybridization.

「相互作用」は、物質間の非共有結合、共有結合、水素結合を含む化学的結合あるいは解離を広く意味し、例えば、核酸(ヌクレオチド鎖)間の相補結合であるハイブリダイゼーション、高分子−高分子、高分子−低分子、低分子−低分子の特異的な結合又は会合を広く含む。   “Interaction” broadly means non-covalent bonds, covalent bonds, chemical bonds or dissociations including hydrogen bonds between substances, for example, hybridization that is a complementary bond between nucleic acids (nucleotide strands), polymer-high Widely includes molecules, macromolecule-small molecules, small molecule-small molecule specific bonds or associations.

「バイオアッセイ用基板」は、基板上の所定の反応領域において、物質間の相互作用を進行させ、該相互作用を検出するための基板を意味し、前記物質の種類に関係なく広く包含し、前記相互作用の検出原理は問わない。   “Bioassay substrate” means a substrate for detecting the interaction by causing an interaction between substances to proceed in a predetermined reaction region on the substrate, and widely includes regardless of the type of the substance, The detection principle of the interaction is not limited.

「誘電泳動」は、電界が一様でない場において、分子が電界の強い方へ駆動する現象である。交流電圧をかけた場合も、かけた電圧の極性の反転につれて分極の極性も反転するので、直流の場合と同様に駆動効果が得られる(監修・林 輝、「マイクロマシンと材料技術(シーエムシー発行)」、P37〜P46・第5章・細胞およびDNAのマニピュレーション参照)。特に、高周波交流電界中においては、時間的平均電場の自乗の勾配に比例して双極子に力が働き、泳動する。   “Dielectrophoresis” is a phenomenon in which molecules are driven toward a stronger electric field in a field where the electric field is not uniform. When an AC voltage is applied, the polarity of the polarity is also reversed as the polarity of the applied voltage is reversed, so that the driving effect can be obtained in the same way as in the case of DC (supervised by Teru Hayashi, “Micromachine and Material Technology (CMC Publishing ) ", P37-P46, Chapter 5, Cell and DNA manipulation). In particular, in a high-frequency alternating electric field, force acts on the dipole in proportion to the gradient of the square of the temporal average electric field, causing migration.

本発明により、検出用物質と標的物質との間の相互作用の反応場に、均一性の高い電場を形成できる。従って、検出用物質又は標的物質をほぼ均一に、作用電極に向かって誘電泳動させることができる。   According to the present invention, a highly uniform electric field can be formed in the reaction field of the interaction between the detection substance and the target substance. Therefore, the detection substance or the target substance can be dielectrophoresed substantially uniformly toward the working electrode.

以下、本発明について、添付図面を参照にしながら説明する。   The present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る相互作用検出部Aの例を示す断面模式図である。   FIG. 1 is a schematic cross-sectional view showing an example of an interaction detection unit A according to the present invention.

図1では、基板1上に、検出用物質と標的物質との間の相互作用の反応場2が、ウエル形状(凹状)に形成され、反応場2に臨む基板面11の所定領域に、作用電極Wがエッジフリーに形成されている。そして、作用電極Wと参照電極Rとを用いて、反応場2に電界Fを形成し、検出用物質3、標的物質(図示せず、以下同じ)を作用電極Wに向かって誘電泳動させる。なお、符号Vは、誘電泳動を行う際の電源を、符号Sはそのスイッチを示す。   In FIG. 1, a reaction field 2 of interaction between a detection substance and a target substance is formed on a substrate 1 in a well shape (concave shape), and acts on a predetermined region of a substrate surface 11 facing the reaction field 2. The electrode W is formed edge-free. Then, an electric field F is formed in the reaction field 2 using the working electrode W and the reference electrode R, and the detection substance 3 and the target substance (not shown, the same applies hereinafter) are dielectrophoresed toward the working electrode W. Reference sign V indicates a power source for performing dielectrophoresis, and reference sign S indicates a switch thereof.

上述の通り、作用電極Wを基板面11にエッジフリーに形成することにより、反応場2に均一性の高い電場を形成させることができるため、検出用物質3又は標的物質を、作用電極W全体にほぼ均一に分布させることができる。
従って、作用電極に検出用物質を固定する段階では、検出用物質(符号3)を作用電極Wへ向かって誘電泳動させることにより、検出用物質3を、作用電極W全体にほぼ均一に固定することができる。
また、相互作用(ハイブリダイゼーションなど)を検出する段階では、標的物質を作用電極W(検出用物質3が固定されている)に向かって誘電泳動させることにより、標的物質を作用電極W近傍にほぼ均一に分布させることができるため、検出ムラを少なくでき、相互作用の検出精度を高くできる。
As described above, by forming the working electrode W on the substrate surface 11 in an edge-free manner, a highly uniform electric field can be formed in the reaction field 2, so that the detection substance 3 or the target substance can be used as the entire working electrode W. Can be distributed almost uniformly.
Therefore, at the stage of fixing the detection substance to the working electrode, the detection substance 3 (reference numeral 3) is dielectrophoresed toward the working electrode W, thereby fixing the detection substance 3 to the entire working electrode W almost uniformly. be able to.
Further, at the stage of detecting the interaction (hybridization etc.), the target substance is dielectrophoresed toward the working electrode W (the detection substance 3 is fixed), so that the target substance is almost near the working electrode W. Since it can be uniformly distributed, detection unevenness can be reduced and the detection accuracy of the interaction can be increased.

基板1の材質などは特に限定されないが、所定波長の励起光(例えば、蛍光励起光)を透過可能な材質の方が、相互作用検出時などに基板側から励起できるなどの観点から、好ましい。
即ち、例えば、CD(compact disc)、DVD(degital versatile disc)、MD(mini disc)など、公知の光情報記録媒体と同様の基材を用いることができ、石英などのガラス、ポリカーボネート、ポリスチレンなどの材料が好適である。
The material of the substrate 1 is not particularly limited, but a material that can transmit excitation light (for example, fluorescence excitation light) having a predetermined wavelength is preferable from the viewpoint of being able to excite from the substrate side when detecting an interaction.
That is, for example, a substrate similar to a known optical information recording medium such as CD (compact disc), DVD (digital versatile disc), MD (mini disc) can be used, and glass such as quartz, polycarbonate, polystyrene, etc. These materials are preferred.

反応場2は、前記の通り、検出用物質と標的物質との間の相互作用の場である。反応場2には、目的に応じて、媒質(核酸溶液、タンパク溶液、緩衝液など)を貯留する。   As described above, the reaction field 2 is an interaction field between the detection substance and the target substance. A medium (nucleic acid solution, protein solution, buffer solution, etc.) is stored in the reaction field 2 according to the purpose.

作用電極Wは、参照電極Rと電界Fを形成する電極であり、基板面11の所定領域にエッジフリーに形成する。
誘電泳動を行う場合、作用電極Wを、参照電極Rよりも小さく形成する必要があるため、作用電極Wは、基板面11の全面ではなく、所定領域に限定して形成する必要がある。その際、作用電極Wのエッジ部分を基板面11から突出させないようにすることにより(即ち、作用電極Wをエッジフリーに形成することにより)、電界の均一性を高めることができる。
The working electrode W is an electrode that forms an electric field F with the reference electrode R, and is formed edge-free in a predetermined region of the substrate surface 11.
When performing dielectrophoresis, since the working electrode W needs to be formed smaller than the reference electrode R, the working electrode W needs to be formed not on the entire surface of the substrate 11 but on a predetermined region. At that time, by preventing the edge portion of the working electrode W from protruding from the substrate surface 11 (that is, by forming the working electrode W in an edge-free manner), the uniformity of the electric field can be improved.

作用電極Wをエッジフリーに形成する方法については、特に限定されないが、例えば、基板面11をエッチングなどで掘り込み、そこに電極材料を埋め込む方法を用いることができる。なお、電極材料を埋め込む方法としては、例えば、一定量の金属を成膜(スパッタリング、CVD、めっきなど)してからエッチバックする方法、一定量の金属を成膜してから研磨する方法、などを適用できる。   The method of forming the working electrode W in an edge-free manner is not particularly limited. For example, a method of digging the substrate surface 11 by etching or the like and embedding an electrode material therein can be used. In addition, as a method of embedding the electrode material, for example, a method of etching back after forming a certain amount of metal (sputtering, CVD, plating, etc.), a method of polishing after forming a certain amount of metal, etc. Can be applied.

作用電極W及び参照電極Rの電極材料は、公知のものを用いることができ、特に限定されない。例えば、アルミニウム、金、白金などの金属、ITO(インジウム−スズ−オキサイド)などの酸化物、高濃度ドーピングにより導電性を増したシリコン、などを適用できる。なお、作用電極Wを、ITOなどの透明な材質で形成することは、相互作用検出時などに基板側から励起できるなどの観点から、好適である。   Known electrode materials can be used for the working electrode W and the reference electrode R, and are not particularly limited. For example, metals such as aluminum, gold, and platinum, oxides such as ITO (indium-tin-oxide), silicon whose conductivity is increased by high concentration doping, and the like can be applied. It is preferable to form the working electrode W from a transparent material such as ITO from the viewpoint of being able to excite from the substrate side when detecting an interaction.

作用電極W及び/又は参照電極Rの表面には、薄膜状の絶縁層(図示せず)を設けてもよい。絶縁層の材質としては、例えば、SiO2、SiC、SiN、SiOC、SiOF、TiO2などが好適である。各電極表面に絶縁層を設けることにより、反応場2に貯留するイオン溶液による電気化学的な反応を防止できる。また、電極と溶媒との間の電子授受を防ぐことにより、電極の腐食を防止できる。   A thin insulating layer (not shown) may be provided on the surface of the working electrode W and / or the reference electrode R. As the material of the insulating layer, for example, SiO2, SiC, SiN, SiOC, SiOF, TiO2 and the like are suitable. By providing an insulating layer on the surface of each electrode, an electrochemical reaction due to an ionic solution stored in the reaction field 2 can be prevented. Moreover, corrosion of the electrode can be prevented by preventing electron transfer between the electrode and the solvent.

作用電極Wには、検出用物質(符号3)を化学的結合によって固定できるように、表面処理を施してもよい。
作用電極Wの表面処理手段として、例えば、作用電極Wを、予め、アミノ基含有シランカップリング剤溶液、ポリリシン溶液などで表面処理しておく方法がある。合成樹脂製基板に対して表面処理を施す場合は、その表面をプラズマ処理及びDUV(DeepUV、遠赤外)照射処理後、アミノ基含有シランカップリング剤溶液で処理してもよい。
また、作用電極Wの表面に、アミノ基、チオール基、カルバボキシル基などの官能基を有する物質、システアミン、ストレプトアビジンなどをコートしてもよい。ストレプトアビジンによって表面処理された場合、ビオチン化されたDNAプローブ末端の固定に適している。チオール基(SH)基によって表面処理された場合、チオール基が末端に修飾されたプローブDNAなどの検出用物質Dのジスルフィド結合(−S−S−結合)による固定に適している。
The working electrode W may be subjected to a surface treatment so that the detection substance (reference numeral 3) can be fixed by chemical bonding.
As a surface treatment means for the working electrode W, for example, there is a method in which the working electrode W is previously surface treated with an amino group-containing silane coupling agent solution, a polylysine solution, or the like. When surface treatment is performed on a synthetic resin substrate, the surface may be treated with an amino group-containing silane coupling agent solution after plasma treatment and DUV (Deep UV, far infrared) irradiation treatment.
The surface of the working electrode W may be coated with a substance having a functional group such as an amino group, a thiol group, or a carbaxyl group, cysteamine, streptavidin, or the like. When surface-treated with streptavidin, it is suitable for immobilizing biotinylated DNA probe ends. When the surface is treated with a thiol group (SH) group, it is suitable for immobilization of a detection substance D such as a probe DNA having a thiol group modified at the terminal by a disulfide bond (-SS-bond).

なお、本発明は、作用電極Wがエッジフリーに形成されていればよく、作用電極W及び参照電極Rの位置、構成などによって狭く限定されない。
例えば、参照電極Rがウエル形状の側壁面12に形成される場合(図2参照)、参照電極Rが作用電極と同一の基板面11に並設されている場合(図3参照)なども、本発明に包含される。その場合、図2又は図3のように、作用電極Wだけでなく、参照電極Rもエッジフリーに形成する方が、均一性の高い電場を形成するという観点から、より好適である。
In the present invention, it is only necessary that the working electrode W is formed in an edge-free manner, and the working electrode W and the reference electrode R are not limited by the position and configuration.
For example, when the reference electrode R is formed on the well-shaped side wall surface 12 (see FIG. 2), the reference electrode R is arranged on the same substrate surface 11 as the working electrode (see FIG. 3), etc. Included in the present invention. In this case, as shown in FIG. 2 or 3, it is more preferable to form not only the working electrode W but also the reference electrode R in an edge-free manner from the viewpoint of forming a highly uniform electric field.

図4は、本発明に係る相互作用検出部Aの別の例を示す断面及び上方視模式図である。   FIG. 4 is a cross-sectional view and an upper schematic view showing another example of the interaction detection unit A according to the present invention.

図4も、図1などと同様、基板1上に、検出用物質と標的物質との間の相互作用の反応場2が、ウエル形状(凹状)に形成され、反応場2に臨む基板面11に、作用電極Wがエッジフリーに形成されている。そして、作用電極Wと参照電極Rを用いて、反応場2に電界を形成し、検出用物質3、標的物質などを作用電極Wに向かって誘電泳動させる。なお、符号Vは、図1などと同様、誘電泳動を行う際の電源を、符号Sはそのスイッチを示す。   In FIG. 4 as well as FIG. 1 and the like, the reaction field 2 of the interaction between the detection substance and the target substance is formed in a well shape (concave shape) on the substrate 1, and the substrate surface 11 facing the reaction field 2. In addition, the working electrode W is formed edge-free. Then, an electric field is formed in the reaction field 2 using the working electrode W and the reference electrode R, and the detection substance 3 and the target substance are dielectrophoresed toward the working electrode W. In addition, the code | symbol V shows the power supply at the time of performing dielectrophoresis similarly to FIG. 1 etc., and the code | symbol S shows the switch.

図4では、図3と同様、作用電極Wと参照電極Rが同一の基板面11に並設されている。
例えば、図1のように作用電極Wと参照電極Rを上下に対向させる場合、反応場2の容量を大きくするためには、電極間の距離を大きくする必要がある。従って、反応場2の容量を大きくすると、電極形成が難しくなる。
一方、反応場の容量を小さくすると、反応場2が乾燥しやすくなり、また、反応場2内の溶液の濃度を比較的高くする必要があるため、ミスマッチ相補鎖形成の割合が高くなる。
それに対し、作用電極Wと参照電極Rを同一の基板面11に並設することにより、反応場2の容量を大きくすることができ、また、作用電極Wと参照電極Rの距離を大きくする必要がない。
従って、反応場2内の溶媒量を増やすことにより、ミスマッチ相補鎖形成を抑制でき、また、基板の乾燥を防止できる。加えて、電極形成が容易になり、基板構成を簡易化できるため、製造コストを抑制できるという利点がある。
In FIG. 4, as in FIG. 3, the working electrode W and the reference electrode R are arranged side by side on the same substrate surface 11.
For example, when the working electrode W and the reference electrode R are vertically opposed as shown in FIG. 1, in order to increase the capacity of the reaction field 2, it is necessary to increase the distance between the electrodes. Therefore, when the capacity of the reaction field 2 is increased, electrode formation becomes difficult.
On the other hand, when the capacity of the reaction field is reduced, the reaction field 2 is easily dried and the concentration of the solution in the reaction field 2 needs to be relatively high, so that the rate of mismatch complementary strand formation increases.
On the other hand, by arranging the working electrode W and the reference electrode R on the same substrate surface 11, the capacity of the reaction field 2 can be increased, and the distance between the working electrode W and the reference electrode R needs to be increased. There is no.
Therefore, increasing the amount of the solvent in the reaction field 2 can suppress mismatched complementary strand formation, and can prevent the substrate from drying. In addition, since electrode formation becomes easy and the substrate configuration can be simplified, there is an advantage that manufacturing costs can be suppressed.

また、図4では、参照電極Rが、作用電極Wを取り囲む位置に、略リング形状に形成されている。これにより、反応場2における電場の均一性を確保できる。   In FIG. 4, the reference electrode R is formed in a substantially ring shape at a position surrounding the working electrode W. Thereby, the uniformity of the electric field in the reaction field 2 is securable.

加えて、図4では、参照電極Rの略リング形状の一部に非連続部分R1を設け、該部分に、作用電極Wに連結する配線4を敷設している。これにより、配線4を基板表面11に形成できるため、基板製造を簡易化でき、製造コストを低減できる。また、特に、励起光などを用いた相互作用検出時などにおいて、基板の下側から励起した場合でも、基板の配線4が光路を妨害しないため、基板構成を簡易化できるという利点もある。   In addition, in FIG. 4, a discontinuous portion R <b> 1 is provided in a part of the substantially ring shape of the reference electrode R, and the wiring 4 connected to the working electrode W is laid in this portion. Thereby, since the wiring 4 can be formed in the board | substrate surface 11, board | substrate manufacture can be simplified and manufacturing cost can be reduced. In particular, there is also an advantage that the substrate configuration can be simplified because the wiring 4 of the substrate does not interfere with the optical path even when excited from the lower side of the substrate, for example, when detecting an interaction using excitation light.

実施例1では、作用電極をエッジフリーに形成した場合の電位分布について、有限要素法(FEM)によるシミュレーションを行った。   In Example 1, the potential distribution when the working electrode was formed edge-free was simulated by the finite element method (FEM).

図5は、このシミュレーションに用いた電極構造を示す図である。   FIG. 5 is a diagram showing an electrode structure used in this simulation.

図中、左側の模式図は、実際の電極構造の一例を示した図である。この図では、上述の図4などと同様、作用電極が中心位置に、参照電極が作用電極を取り囲む位置に、それぞれ、形成されている。そして、参照電極の略リング形状の一部に非連続部分が設けられ、該部分に作用電極に連結する配線が敷設されている。また、参照電極にも、外部電線に接続する配線が敷設されている。   In the drawing, the schematic diagram on the left is an example of an actual electrode structure. In this figure, the working electrode is formed at the center position and the reference electrode is formed at a position surrounding the working electrode, as in FIG. A discontinuous portion is provided in a part of the substantially ring shape of the reference electrode, and a wiring connected to the working electrode is laid in the portion. Moreover, the reference electrode is also provided with a wiring connected to the external electric wire.

一方、図中、右側の模式図は、シミュレーションに用いた電極構造を示すも式図である。
例えば、実際の電極構造において、左側の模式図のように電極を配置する場合、配線の幅は両電極の幅よりも充分に小さく、かつ、配線近傍の電場も電極構造全体と比較すれば充分に小さいため、配線を無視しても、電位分布にほとんど影響はないと推測できる。
そこで、本実施例では、シミュレーションを単純化するため、配線を無視し、電極構造が図5の右側の模式図のような構造であると仮定して、シミュレーションを行った。
On the other hand, the schematic diagram on the right side of the figure is a schematic diagram showing the electrode structure used in the simulation.
For example, in the actual electrode structure, when the electrodes are arranged as shown in the schematic diagram on the left side, the width of the wiring is sufficiently smaller than the width of both electrodes, and the electric field in the vicinity of the wiring is sufficient as compared with the entire electrode structure. Therefore, even if the wiring is ignored, it can be estimated that there is almost no influence on the potential distribution.
Therefore, in this example, in order to simplify the simulation, the wiring was ignored and the simulation was performed on the assumption that the electrode structure is a structure as shown in the schematic diagram on the right side of FIG.

図6は、シミュレーションに用いたパラメータについて示す図である。   FIG. 6 is a diagram illustrating parameters used in the simulation.

図中、左側の図は、相互作用検出部の構成を模式的に示しており、右側の図は、各パラメータを示している。また、左側の図は、従来の相互作用検出部(電極にエッジ部分があるもの)を模式的に示し、右側の図は、本発明に係る相互作用検出部(電極がエッジフリーに形成されたもの)を模式的に示す。   In the drawing, the diagram on the left schematically shows the configuration of the interaction detection unit, and the diagram on the right shows each parameter. Also, the left figure schematically shows a conventional interaction detector (the electrode has an edge part), and the right figure shows the interaction detector according to the present invention (the electrode is formed edge-free). Schematically).

両図において、符号1に相当する部分は電解質溶液を、符号2に相当する部分は作用電極を、符号3に相当する部分は参照電極を、符号4に相当する部分は基板を、符号5に相当する部分は相互作用検出部の外壁を、それぞれ示す。
そして、両図とも、Z軸を中心に360°回転させると、図4に例示した相互作用検出部と、ほぼ同様の構成になる。
In both figures, the part corresponding to the reference numeral 1 is the electrolyte solution, the part corresponding to the reference numeral 2 is the working electrode, the part corresponding to the reference numeral 3 is the reference electrode, the part corresponding to the reference numeral 4 is the substrate, and the reference numeral 5 is the reference numeral. Corresponding portions respectively indicate the outer walls of the interaction detection unit.
In both figures, when 360 ° is rotated about the Z axis, the configuration is almost the same as that of the interaction detection unit illustrated in FIG.

また、両図において、パラメータ「a」は作用電極の直径を、パラメータ「d」は電極の厚みを、パラメータ「g」は電極間のギャップ(両電極間の距離)を、パラメータ「w」は参照電極の幅を、それぞれ示す。   In both figures, parameter “a” is the working electrode diameter, parameter “d” is the electrode thickness, parameter “g” is the gap between electrodes (distance between both electrodes), and parameter “w” is The widths of the reference electrodes are shown respectively.

図5の右側の模式図に示す電極構造モデルについて、その回転対象性を用いて、三次元のシミュレーションを、同径方向Rと垂直方向Zとの二次元平面内のシミュレーションに落とし込み、有限要素法によるシミュレーションを行った。
このシミュレーションでは、相互作用検出部の外径の値を100μm(半径50μm)に、作用電極の直径aの値を10μm(半径5μm)に、それぞれ固定し、電極の厚みd、電極間のギャップg、参照電極の幅wの三つの値を振って、有限要素法モデルを作成した。
このシミュレーションは、基板(SiO基板、誘電率ε=3.9)上に、作用電極及び参照電極が金(Au、導電率σ=4.5×10S/m)で形成され、その上部に電解質溶液としてNaCl溶液(誘電率ε=80、導電率σ=0.981S/m)が満たされている状態を想定して行った。
また、印加する交流電圧は振幅2V、周波数1MHzとした。なお、水の電界は、1.23Vの電位差で起こる可能性があり、かつ、金の酸化還元電位は、1.83Vであるため、この交流電圧の振幅の場合、理論上、電極反応が生じる可能性があるが、交流電圧の周波数が高いため、その影響は、ほとんど無視できる。
With respect to the electrode structure model shown in the schematic diagram on the right side of FIG. 5, the three-dimensional simulation is dropped into the simulation in the two-dimensional plane of the same radial direction R and the vertical direction Z using the rotation target property, and the finite element method is used. A simulation was performed.
In this simulation, the value of the outer diameter of the interaction detection unit is fixed to 100 μm (radius 50 μm), the value of the working electrode diameter a is fixed to 10 μm (radius 5 μm), the electrode thickness d, and the gap g between the electrodes A finite element method model was created by varying three values of the width w of the reference electrode.
In this simulation, a working electrode and a reference electrode are formed of gold (Au, conductivity σ = 4.5 × 10 7 S / m) on a substrate (SiO 2 substrate, dielectric constant ε = 3.9), It was carried out on the assumption that a NaCl solution (dielectric constant ε = 80, conductivity σ = 0.981 S / m) as an electrolyte solution was filled in the upper part.
The applied AC voltage was 2 V in amplitude and 1 MHz in frequency. In addition, since the electric field of water may occur with a potential difference of 1.23V and the redox potential of gold is 1.83V, in the case of this AC voltage amplitude, an electrode reaction theoretically occurs. There is a possibility, but since the frequency of the AC voltage is high, the influence is almost negligible.

シミュレーションの結果を図7から図10に示す。   The simulation results are shown in FIGS.

図7は、電場分布のシミュレーション結果を示す図である。
なお、このシミュレーションは、作用電極の直径aを10μm(半径5μm)、電極間のギャップgを10μm、参照電極の幅wを50μm、電極の厚みdを1μm、と想定して行った。
FIG. 7 is a diagram illustrating a simulation result of the electric field distribution.
This simulation was performed assuming that the working electrode diameter a was 10 μm (radius 5 μm), the gap g between the electrodes was 10 μm, the reference electrode width w was 50 μm, and the electrode thickness d was 1 μm.

図中、上側の二つの図は、電極構造を示す模式図である。これらの図では、相互作用検出部の断面を、縦向きに向きを変えて記載している。また、このシミュレーションモデルは回転対象性であるため、これらの図では、相互作用検出部の半分のみを記載している。
左の図(「(a)従来法」と記載された方の図)は、従来どおり、電極に角部分が存在する場合の電極構造を、右の図(「(b)本発明(エッジレス)」と記載された方の図)は、エッジフリーの電極構造を、それぞれ、模式的に示す。
即ち、左の図では、基板(SiO)に作用電極と参照電極が角部分を有した状態で設けられ、その上側(図中右方向)を電解質溶液が満たしている状態を示し、右の図では、両電極の間の領域にも基板(SiO)が存在し、エッジフリーになっている状態(基板に両電極が埋め込まれている状態)を示す。
In the figure, the upper two figures are schematic views showing the electrode structure. In these drawings, the cross section of the interaction detection unit is described with the orientation changed in the vertical direction. Further, since this simulation model is subject to rotation, only half of the interaction detection unit is shown in these drawings.
The figure on the left (the figure described as “(a) the conventional method”) shows the electrode structure in the case where the corner portion is present in the electrode as in the conventional case, and the figure on the right (“(b) the invention (edgeless)” ) Schematically shows an edge-free electrode structure.
That is, in the left figure, the working electrode and the reference electrode are provided on the substrate (SiO 2 ) with corner portions, and the upper side (right direction in the figure) is filled with the electrolyte solution. In the figure, the substrate (SiO 2 ) is also present in the region between the two electrodes and is in an edge-free state (a state in which both electrodes are embedded in the substrate).

一方、図中、下側の二つの図は、電場分布のシミュレーション結果を示す。上側の図と同様、左の図(「(a)従来法」と記載された方の図)は、電極に角部分が存在する場合の電極構造を、右の図(「(b)本発明(エッジレス)」と記載された方の図)は、エッジフリーの電極構造を、それぞれ、模式的に示す。また、両図中の各領域は、上側の二つの図面と対応している。   On the other hand, the lower two figures show the simulation results of the electric field distribution. Similar to the upper figure, the left figure (the figure described as “(a) conventional method”) shows the electrode structure when the electrode has a corner portion, and the right figure (“(b) the present invention”). (Edge-less drawing) schematically shows an edge-free electrode structure. Each region in both figures corresponds to the upper two drawings.

下側の左の図では、作用電極と参照電極の角部分に、電界が集中しているのに対し、下側の右の図では、作用電極と参照電極を基板に埋め込み、エッジフリーに形成することにより、電界の集中を緩和できている。
従って、このシミュレーション結果は、両電極をエッジフリーに形成することにより、電界の集中を防ぎ、電界を均一に分布させることができることを示唆する。
In the lower left figure, the electric field is concentrated at the corners of the working electrode and the reference electrode, whereas in the lower right figure, the working electrode and the reference electrode are embedded in the substrate and formed edge-free. By doing so, the concentration of the electric field can be relaxed.
Therefore, this simulation result suggests that the concentration of the electric field can be prevented and the electric field can be uniformly distributed by forming both electrodes in an edge-free manner.

図8は、電極に角部分が存在する場合における電場分布を同径方向と垂直方向に分けて数値化したシミュレーション結果である。
図中、横軸(「Position」)は所定位置からの距離(単位:μm)を、縦軸(「Electric Field」)は電場(単位:V/m)を、それぞれ示す。
FIG. 8 is a simulation result in which the electric field distribution in the case where the electrode has a corner portion is numerically divided into the same diameter direction and the vertical direction.
In the figure, the horizontal axis (“Position”) indicates a distance (unit: μm) from a predetermined position, and the vertical axis (“Electric Field”) indicates an electric field (unit: V / m).

このシミュレーションは、作用電極の直径aを10μm(半径5μm)、電極間のギャップgを10μm、参照電極の幅wを50μm、電極の厚みdを5μm、と想定し、同径方向の電場E及び垂直方向の電場Eをプロットして、行った。 The simulation of the diameter a of the working electrode 10 [mu] m (radius 5 [mu] m), 10 [mu] m gaps g between the electrodes, 50 [mu] m width w of the reference electrode, the thickness of the electrode d assuming 5 [mu] m, and, in the same radial electric field E r And by plotting the electric field E z in the vertical direction.

同径方向の電場Eのプロットの場合、横軸は、相互作用検出部の中心からの距離を示す。即ち、横軸の0〜5μmの部分は作用電極の部分を、5〜15μmの部分は電極間のギャップ部分を、15μm以上の部分は参照電極の部分を、それぞれ示す。 In the case of a plot of the electric field Er in the same radial direction, the horizontal axis indicates the distance from the center of the interaction detection unit. That is, the portion of 0 to 5 μm on the horizontal axis represents the working electrode portion, the portion of 5 to 15 μm represents the gap portion between the electrodes, and the portion of 15 μm or more represents the reference electrode portion.

一方、垂直方向の電場Eの場合、横軸は、基板表面からの距離(高さ)を示す。即ち、このシミュレーションでは電極の厚みは5μmに設定されているため、横軸の5μm以下の部分は作用電極と参照電極に挟まれた領域を、5μm以上の部分はその上部の領域を、それぞれ示す。 On the other hand, when the vertical direction of the electric field E z, the horizontal axis shows the distance from the substrate surface (height). That is, in this simulation, the thickness of the electrode is set to 5 μm, so that the portion below 5 μm on the horizontal axis shows the region sandwiched between the working electrode and the reference electrode, and the portion above 5 μm shows the region above it. .

図8では、同径方向の電場Eが大きな値となり、かつ、作用電極付近で極大となっている。このことは、電極に角部分が存在する場合、両電極間に水平方向の強い電場が発生することを示唆する。従って、このことは、例えば、核酸などの生体高分子を誘電泳動させる場合、水平方向の強い電場により、生体高分子が、作用電極の角部分に集中することを示唆する。 In FIG. 8, the electric field Er in the same diameter direction has a large value, and has a maximum near the working electrode. This suggests that a strong horizontal electric field is generated between the electrodes when there is a corner portion in the electrodes. Therefore, this suggests that, for example, when biopolymers such as nucleic acids are subjected to dielectrophoresis, the biopolymers are concentrated on the corners of the working electrode due to a strong horizontal electric field.

それに対し、例えば、電極を基板に埋め込み、作用電極をエッジフリーに形成する場合、水平方向の電場は、核酸などの生体高分子にほとんど作用しないと想定できる。従って、電場の角部分への集中は低減できるため、均一性の高い電場を形成できると推測できる。   On the other hand, for example, when the electrode is embedded in the substrate and the working electrode is formed in an edge-free manner, it can be assumed that the horizontal electric field hardly acts on a biopolymer such as a nucleic acid. Therefore, since the concentration of the electric field at the corner portion can be reduced, it can be estimated that a highly uniform electric field can be formed.

図9は、垂直方向の電位分布のシミュレーション結果である。
図中、横軸(「Position」)は基板表面を基準とした場合の高さ(単位:μm)を、縦軸(「Potential」)は電位(単位:V)を、それぞれ示す。
また、図中、「Conventional electrodes」のプロットは角部分を有する電極をシミュレーションした場合の電位分布を、「Embedded electrodes」のプロットは、エッジフリーな電極をシミュレーションした場合の電位分布を、それぞれ示す。
FIG. 9 shows the simulation result of the potential distribution in the vertical direction.
In the figure, the horizontal axis (“Position”) indicates the height (unit: μm) with respect to the substrate surface, and the vertical axis (“Potential”) indicates the potential (unit: V).
In the figure, the plot of “Conventional electrodes” indicates the potential distribution when the electrode having a corner portion is simulated, and the plot of “Embedded electrodes” indicates the potential distribution when the edge-free electrode is simulated.

図9では、電極間に挟まれた領域(高さ0〜5μm)では、電位は、印加電圧2Vに等しく、その上部の電解質溶液中(高さ5μm以上)では、電位が徐々に低下している。そして、角部分を有する電極の場合も、エッジフリーな電極の場合も、両電極間に挟まれた領域から離れた領域(高さ5μm以上)では、電位分布がほぼ等しい。
このことは、電極をエッジフリーに形成した場合も、角部分を有する電極を用いる場合とほぼ同様の電位分布を発生することを示唆する。
従って、このシミュレーション結果は、電極をエッジフリーに形成した場合、従来と同様に電場を形成でき、かつ、角部分への電場の集中を抑制できることを示唆する。
なお、図9のシミュレーション結果では、電位が作用電極から約15μmの地点でほぼ0Vになるため、垂直方向の電場は、2V/15μm=1.3×10V/mである。この値は、誘電泳動を行うのに充分な値である。
In FIG. 9, in the region sandwiched between the electrodes (height 0 to 5 μm), the potential is equal to the applied voltage 2 V, and in the upper electrolyte solution (height 5 μm or more), the potential gradually decreases. Yes. In addition, in the case of an electrode having a corner portion and the case of an edge-free electrode, the potential distribution is almost equal in a region (height of 5 μm or more) away from the region sandwiched between both electrodes.
This suggests that even when the electrodes are formed in an edge-free manner, a potential distribution almost similar to that in the case of using the electrodes having corner portions is generated.
Therefore, this simulation result suggests that when the electrode is formed in an edge-free manner, an electric field can be formed as in the conventional case, and the concentration of the electric field on the corner portion can be suppressed.
In the simulation result of FIG. 9, since the potential is approximately 0 V at a point of about 15 μm from the working electrode, the vertical electric field is 2 V / 15 μm = 1.3 × 10 6 V / m. This value is sufficient for performing dielectrophoresis.

図10は、電極の厚みd、電極間のギャップg、参照電極の幅wの三つの値を振った場合における、垂直方向の電位分布のシミュレーション結果である。
図中、横軸(「Position」)は基板表面を基準とした場合の高さ(単位:μm)を、縦軸(「Potential」)は電位(単位:V)を、それぞれ示す。
FIG. 10 shows a simulation result of the potential distribution in the vertical direction when three values of the electrode thickness d, the gap g between the electrodes, and the width w of the reference electrode are varied.
In the figure, the horizontal axis (“Position”) indicates the height (unit: μm) with respect to the substrate surface, and the vertical axis (“Potential”) indicates the potential (unit: V).

このシミュレーションは、次の表1に示す値を各パラメータとして想定し、行った。
This simulation was performed assuming values shown in the following Table 1 as parameters.

その結果、図10では、図9と同様、電極間に挟まれた領域(高さ0〜0.1μm、又は、0〜1μm)では、電位は、印加電圧2Vに等しく、その上部の電解質溶液中(高さ0.1μm又は1μm以上)では、電位が徐々に低下している。そして、どのシミュレーション結果も、両電極間に挟まれた領域から離れた領域(高さ0.1μm又は1μm以上)では、電位分布がほぼ等しい。
このことは、各構造パラメータを適宜変更した場合も、従来と同様に電場を形成でき、かつ、角部分への電場の集中を抑制できることを示唆する。従って、本実験結果は、電極をエッジフリーに形成することにより、電極設計の自由度を高くできることを示唆する。
なお、図10のシミュレーション結果では、電位が作用電極から約15μmの地点でほぼ0Vになるため、垂直方向の電場は、2V/15μm=1.3×10V/mである。この値は、誘電泳動を行うのに充分な値である。
As a result, in FIG. 10, as in FIG. 9, in the region sandwiched between the electrodes (height 0 to 0.1 μm or 0 to 1 μm), the potential is equal to the applied voltage 2 V, and the electrolyte solution above it In the middle (the height is 0.1 μm or 1 μm or more), the potential gradually decreases. In any simulation result, the potential distribution is almost equal in the region (height of 0.1 μm or 1 μm or more) away from the region sandwiched between both electrodes.
This suggests that even when each structural parameter is appropriately changed, an electric field can be formed as in the conventional case, and concentration of the electric field on the corner portion can be suppressed. Therefore, this experimental result suggests that the degree of freedom in electrode design can be increased by forming the electrode in an edge-free manner.
In the simulation result of FIG. 10, since the electric potential becomes approximately 0 V at a point of about 15 μm from the working electrode, the electric field in the vertical direction is 2 V / 15 μm = 1.3 × 10 6 V / m. This value is sufficient for performing dielectrophoresis.

本発明は、DNAチップなどのバイオアッセイ用基板に適用でき、バイオアッセイ用基板の製造段階(検出用物質を固定する段階)、及び、相互作用検出・測定段階、の双方において有用である。   The present invention can be applied to a bioassay substrate such as a DNA chip, and is useful in both the manufacturing stage of the bioassay substrate (stage of immobilizing a detection substance) and the interaction detection / measurement stage.

本発明に係る相互作用検出部Aの例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the interaction detection part A which concerns on this invention. 本発明に係る相互作用検出部Aの別の例を示す断面模式図。The cross-sectional schematic diagram which shows another example of the interaction detection part A which concerns on this invention. 本発明に係る相互作用検出部Aの別の例を示す断面模式図。The cross-sectional schematic diagram which shows another example of the interaction detection part A which concerns on this invention. 本発明に係る相互作用検出部Aの別の例を示す断面及び上方視模式図。The cross section and upper view schematic diagram which show another example of the interaction detection part A which concerns on this invention. シミュレーションに用いた電極構造を示す図。The figure which shows the electrode structure used for simulation. シミュレーションに用いたパラメータについて示す図。The figure shown about the parameter used for simulation. 電場分布のシミュレーション結果を示す図。The figure which shows the simulation result of electric field distribution. 電極に角部分が存在する場合における電場分布を同径方向と垂直方向に分けて数値化したシミュレーション結果を示す図。The figure which shows the simulation result which divided and divided the electric field distribution in the case where a corner | angular part exists in an electrode into the same-diameter direction and a perpendicular direction. 垂直方向の電位分布のシミュレーション結果を示す図。The figure which shows the simulation result of the electric potential distribution of a perpendicular direction. 電極の厚みd、電極間のギャップg、参照電極の幅wの三つの値を振った場合における、垂直方向の電位分布のシミュレーション結果を示す図。The figure which shows the simulation result of the electric potential distribution of the orthogonal | vertical direction at the time of shaking three values, the thickness d of an electrode, the gap g between electrodes, and the width w of a reference electrode.

符号の説明Explanation of symbols

1 基板
11 基板表面
2 反応場
3 検出用物質
4 配線
A 相互作用検出部
F 電界
R 参照電極
W 作用電極
DESCRIPTION OF SYMBOLS 1 Substrate 11 Substrate surface 2 Reaction field 3 Detection substance 4 Wiring A Interaction detection part F Electric field R Reference electrode W Working electrode

Claims (5)

検出用物質と標的物質との間の相互作用の反応場に臨む基板面の中心部領域にエッジフリーに形成された作用電極と前記作用電極を取り囲む位置に、略リング形状に形成され、前記作用電極と同一の基板面にフリーエッジで並設された参照電極を設ける相互作用検出部。 A working electrode formed in an edge-free region in the central region of the substrate surface facing the reaction field of the interaction between the detection substance and the target substance, and formed in a substantially ring shape at a position surrounding the working electrode, An interaction detecting unit that provides a reference electrode arranged in parallel with a free edge on the same substrate surface as the working electrode . 前記作用電極に、前記検出用物質が固定されたことを特徴とする請求項1記載の相互作用検出部。   The interaction detection unit according to claim 1, wherein the detection substance is fixed to the working electrode. 前記略リング形状の一部に非連続部分を設け、該部分に、前記作用電極に連結する配線を延設することを特徴とする請求項1又は2記載の相互作用検出部。 The discontinuous portion provided in a part of the substantially ring-shaped, the partial interaction detector according to claim 1 or 2, characterized in that extending the wiring connected to the working electrode. 検出用物質と標的物質との間の相互作用の反応場に臨む基板面の中心部領域にエッジフリーに形成された作用電極と、前記作用電極を取り囲む位置に、略リング形状に形成され、前記作用電極と同一の基板面にフリーエッジで並設された参照電極を設ける相互作用検出部を備えるバイオアッセイ用基板。 A working electrode formed in an edge-free region in the central region of the substrate surface facing the reaction field of the interaction between the detection substance and the target substance, and formed in a substantially ring shape at a position surrounding the working electrode, A bioassay substrate comprising an interaction detector provided with a reference electrode arranged in parallel with a free edge on the same substrate surface as the working electrode . 下記(1)又は(2)の手順において、
検出用物質と標的物質との間の相互作用の反応場に臨む基板面の中心部領域にエッジフリーに形成された作用電極と、前記作用電極を取り囲む位置に、略リング形状に形成され、前記作用電極と同一の基板面にフリーエッジで並設された参照電極を設ける相互作用検出部に、作用電極と参照電極とを用いて反応場に均一性の高い電場を形成し、検出用物質又は標的物質を作用電極に向かって誘電泳動させる方法。
(1)検出用物質を作用電極に固定する手順。
(2)作用電極に固定された検出用物質と、標的物質とを相互作用させる手順。
In the following procedure (1) or (2),
A working electrode formed in an edge-free region in the central region of the substrate surface facing the reaction field of the interaction between the detection substance and the target substance, and formed in a substantially ring shape at a position surrounding the working electrode, A highly uniform electric field is formed in the reaction field by using the working electrode and the reference electrode in the interaction detection unit provided with the reference electrode arranged in parallel with the free edge on the same substrate surface as the working electrode, and the detection substance or A method of dielectrophoresis of a target substance toward a working electrode.
(1) Procedure for immobilizing the detection substance on the working electrode.
(2) A procedure for causing the detection substance fixed on the working electrode to interact with the target substance.
JP2005194021A 2005-07-01 2005-07-01 Interaction detecting unit, bioassay substrate, and method related thereto Expired - Fee Related JP4779468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194021A JP4779468B2 (en) 2005-07-01 2005-07-01 Interaction detecting unit, bioassay substrate, and method related thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194021A JP4779468B2 (en) 2005-07-01 2005-07-01 Interaction detecting unit, bioassay substrate, and method related thereto

Publications (2)

Publication Number Publication Date
JP2007010566A JP2007010566A (en) 2007-01-18
JP4779468B2 true JP4779468B2 (en) 2011-09-28

Family

ID=37749269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194021A Expired - Fee Related JP4779468B2 (en) 2005-07-01 2005-07-01 Interaction detecting unit, bioassay substrate, and method related thereto

Country Status (1)

Country Link
JP (1) JP4779468B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1272672A2 (en) * 2000-03-30 2003-01-08 Infineon Technologies AG Method for detecting macromolecular biopolymers by means of an electrode arrangement
JP2002281967A (en) * 2001-03-26 2002-10-02 Olympus Optical Co Ltd Biochemical analyzing device equipped with capturing means capable of controlling its capturing function by impression, and method for biochemical analysis using the same device
JP3848226B2 (en) * 2001-08-31 2006-11-22 株式会社東芝 Biological substance detection device and biological substance detection element
DE10211358B4 (en) * 2002-03-14 2006-10-26 Siemens Ag Vertical impedance sensor assembly and method of fabricating a vertical impedance sensor assembly
US7282329B2 (en) * 2002-08-22 2007-10-16 Massachusetts Institute Of Technology Suspended microchannel detectors
JP4328168B2 (en) * 2003-10-02 2009-09-09 ソニー株式会社 Detection unit for interaction between substances using capillary phenomenon, method using the detection unit, and substrate for bioassay
JP4328167B2 (en) * 2003-10-02 2009-09-09 ソニー株式会社 A part for detecting an interaction between substances using a protruding counter electrode and a substrate for bioassay provided with the part

Also Published As

Publication number Publication date
JP2007010566A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
EP1605063B1 (en) Hybridization detecting unit and DNA chip including the detecting unit
Nakano et al. Protein dielectrophoresis: advances, challenges, and applications
Tuukkanen et al. Carbon nanotubes as electrodes for dielectrophoresis of DNA
Green et al. Dielectrophoresis of submicrometer latex spheres. 1. Experimental results
Asokan et al. Two-dimensional manipulation and orientation of actin− myosin systems with dielectrophoresis
JP4328168B2 (en) Detection unit for interaction between substances using capillary phenomenon, method using the detection unit, and substrate for bioassay
Lumsdon et al. Assembly of colloidal particles into microwires using an alternating electric field
Zhang et al. Size-dependent programming of the dynamic range of graphene oxide–DNA interaction-based ion sensors
Swami et al. Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis
Yilmaz et al. Three-dimensional crystalline and homogeneous metallic nanostructures using directed assembly of nanoparticles
Cao et al. Measuring nanoparticle polarizability using fluorescence microscopy
Choi et al. Detection of silver ions using dielectrophoretic tweezers-based force spectroscopy
Cheng et al. Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format
US20050112645A1 (en) Detecting unit for detecting hybridization and other interactions and DNA chip and other bioassay substrates having the detecting unit
Mir et al. Electrokinetic techniques applied to electrochemical DNA biosensors
JP2006337273A (en) Interaction detecting part comprising electrode with the same potential, sensor chip using detecting part thereof, and interaction detector
JP4779468B2 (en) Interaction detecting unit, bioassay substrate, and method related thereto
JP2006177725A (en) Detection part of interaction between substances, bioassay substrate using it, bioassay device and bioassay method
WO2005033703A1 (en) Method for producing bioassay substrate by superposing two substrates one on another and bioassay substrate
JP4631543B2 (en) Substance-interaction detection unit, sensor chip using the detection unit, and bioassay method using an electric field
Lee et al. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications
JP4328167B2 (en) A part for detecting an interaction between substances using a protruding counter electrode and a substrate for bioassay provided with the part
JP4411931B2 (en) Method for detecting interaction between substances
US8197655B2 (en) System and method for detecting interaction between substances by superimposingly applying sinusoidal voltage
Laux et al. AC electrokinetic immobilization of organic dye molecules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees