JP2006329491A - Solar heat collecting system - Google Patents

Solar heat collecting system Download PDF

Info

Publication number
JP2006329491A
JP2006329491A JP2005151837A JP2005151837A JP2006329491A JP 2006329491 A JP2006329491 A JP 2006329491A JP 2005151837 A JP2005151837 A JP 2005151837A JP 2005151837 A JP2005151837 A JP 2005151837A JP 2006329491 A JP2006329491 A JP 2006329491A
Authority
JP
Japan
Prior art keywords
heat
tank
solar
circulation path
heat collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151837A
Other languages
Japanese (ja)
Inventor
Takashi Kaneda
孝 金田
Kenjiro Konishi
健二郎 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NRI KK
Original Assignee
NRI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NRI KK filed Critical NRI KK
Priority to JP2005151837A priority Critical patent/JP2006329491A/en
Publication of JP2006329491A publication Critical patent/JP2006329491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • F24S90/10Solar heat systems not otherwise provided for using thermosiphonic circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar heat collecting system capable of collecting high temperature heat available for power generation including for domestic purpose. <P>SOLUTION: Circulation paths 22 and 24 are formed to connect a tank 12 and a plurality of solar collectors 14 irradiated with sunlight having passed a Fresnel lens 18 by a connecting pipe 20, and a heat medium is put in the circulation paths 22 and 24. By applying heat from the sunlight to the heat medium in each solar collector 14, and generating a temperature difference in the heat medium in the circulation paths 22 and 24, the heat medium naturally circulates within the circulation paths 22 and 24. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽光を熱エネルギとして集めるための太陽熱集熱装置に関する。   The present invention relates to a solar heat collecting apparatus for collecting sunlight as heat energy.

従来から太陽光を集めて熱エネルギとして取出すための太陽熱収熱装置が特許文献1に知られている。この特許文献1は、光収束装置から太陽光を焦点に集めて、その焦点で集めた太陽光を光ファイバーを経由して吸光発熱板に導き、この吸光発熱板を熱源として、例えば貯湯槽内の水を加温するものである。   Conventionally, a solar heat collecting apparatus for collecting sunlight and taking it out as heat energy is known in Patent Document 1. This Patent Document 1 collects sunlight from a light converging device at a focal point, guides the sunlight collected at the focal point to an absorption heating plate via an optical fiber, and uses the absorption heating plate as a heat source, for example, in a hot water tank. It warms water.

特開昭61−3953号JP 61-3953 A

光ファイバーを使用するものでは、1個の光収束装置毎に1本の光ファイバーを必要とするため、コストが高くなるという欠点がある。光ファイバーのコストが高いことから、光ファイバーに代えて熱媒が内部を通過して熱を伝達する収熱器が使用されている。従来既知の収熱器では、特に、150℃を越える高温域での集熱量や、集熱効率(集熱量/入射エネルギ)が低いという欠点があった。この欠点の原因は、太陽光がもともと希薄なエネルギ密度(晴天時で1平方メートルあたり最大約1kW)しかないことと、技術的な問題とがあった。技術的な問題としては、太陽を吸収するための広い平面を有する容器状の集熱器を用いた場合に、吸収できるエネルギ密度が低く、せっかく吸収した熱も、広い平面を有する集熱器からそのまま赤外線や対流熱伝達等によってその熱の多くが失われてしまうという欠点があった。特に、高温になるほど熱損失率が増加し、熱効率が低くなるという欠点があった。   In the case of using an optical fiber, since one optical fiber is required for each light converging device, there is a disadvantage that the cost is increased. Since the cost of the optical fiber is high, a heat collector in which a heat medium passes through the inside and transfers heat is used instead of the optical fiber. Conventionally known heat collectors have the disadvantage that the amount of heat collected in a high temperature region exceeding 150 ° C. and the heat collection efficiency (the amount of heat collected / incident energy) are low. The cause of this drawback was that the sun had originally only a low energy density (up to about 1 kW per square meter in sunny weather) and a technical problem. As a technical problem, when a container-shaped collector having a wide plane for absorbing the sun is used, the energy density that can be absorbed is low, and the absorbed heat is also absorbed from the collector having a wide plane. There is a drawback that much of the heat is lost as it is by infrared rays or convective heat transfer. In particular, the higher the temperature, the higher the heat loss rate and the lower the thermal efficiency.

従来の集熱器の欠点である150℃を越える高温域での集熱量や集熱効率の低さの対策として、反射鏡やレンズ等の集光器を利用して、エネルギ密度を上昇させることが一般に知られている。しかし、この反射鏡やレンズ等の集光器を発電等に利用する場合、高温の熱媒(例えば、加圧水)のタンクを集熱器と分離して配置し、ポンプを使って熱媒の圧送を行っている。高温の熱媒ほど周囲との温度差が大きくなるため、長い強制循環経路での熱損失が大きく、しかも使用するポンプも耐熱性の高価なものとなり、ポンプ駆動のランニングコストも増加するため、日本国内では太陽熱利用の発電は経済的に成り立たないと一般に考えられるに至っている。   Increasing the energy density by using a collector such as a reflector or lens as a countermeasure for the low heat collection efficiency and low heat collection efficiency in the high temperature range exceeding 150 ° C, which is a disadvantage of the conventional heat collector. Generally known. However, when using a collector such as a reflector or lens for power generation, place a tank of high-temperature heat medium (for example, pressurized water) separately from the heat collector, and pump the heat medium using a pump. It is carried out. The higher the temperature of the heat medium, the greater the temperature difference from the surroundings, and the greater the heat loss in the long forced circulation path, the more expensive the heat pump used, and the higher the running cost of the pump drive. In Japan, it is generally considered that solar power generation is not economically viable.

日本以外でも、太陽熱発電は、大規模な施設で、太陽追尾制御システムが完備した高級なシステムで、小型、安価を目的とした家庭用のシステムが存在しなかった。   Outside of Japan, solar thermal power generation is a large-scale facility with a high-end system complete with a solar tracking control system, and there was no home system for small size and low cost.

本発明は上記の点について鑑みてなされたものであり、家庭用も含めた発電に利用可能高温の集熱を可能とする太陽熱集熱装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a solar heat collecting apparatus capable of collecting high-temperature heat that can be used for power generation including home use.

本発明の太陽熱集熱装置は、太陽光を一箇所に集中させるための光収束手段と、その光収束手段によって集められた太陽光の光を受光するための集熱器と、タンクと、前記集熱器と前記タンクとを連結する連結パイプと、前記集熱器と前記タンクと前記パイプとの内部を熱媒が循環移動する循環経路と、前記循環経路内を移動する熱媒の各位置での温度差によって熱媒が前記循環経路内を自然循環移動するようにしたものである。   The solar heat collecting apparatus of the present invention is a light converging means for concentrating sunlight in one place, a heat collector for receiving sunlight light collected by the light converging means, a tank, A connection pipe that connects the heat collector and the tank, a circulation path through which the heat medium circulates inside the heat collector, the tank, and the pipe, and each position of the heat medium that moves through the circulation path The heat medium naturally circulates and moves in the circulation path due to the temperature difference.

本発明は、前記集熱器を複数個とし、前記循環経路内の熱媒が前記複数の集熱器と前記タンクとを順に循環するようにしたものである。本発明は、前記光収束手段をフレネルレンズとしたものである。本発明は、光収束手段の周囲と前記集熱器の周囲とを筒状に連絡する反射部材で覆い、その反射部材の反射面を筒状の内側に配置するようにしたものである。本発明は、前記反射部材を4枚の板状のものから形成するようにしたものである。本発明は、前記集熱器の前記光収束手段と反対側に反射面を前記集熱器側に対面させた赤外線反射部材を備えるようにしたものである。本発明は、前記連結パイプの少なくとも一部をフレキシブル管としたものである。本発明は、前記熱交換器を前記タンク内に備えるようにしたものである。本発明は、前記タンクを内部空間と外部空間の二重構造とし、内部空間に前記熱媒を通過させ、外部空間を真空空間としたものである。本発明は、前記集熱器と前記タンクと前記連結パイプと前記反射部材とを内部に収容するためのケースを備えるようにしたものである。本発明は、前記反射部材の反射面の裏面側であって前記ケースの内部側に前記タンクと前記連結パイプとを配置し、かつ前記反射部材の反射面の裏面側であって前記ケースの内部側に断熱材を充填するようにしたものである。本発明は、前記ケースを太陽追尾駆動装置に取付け、前記光収束手段に垂直に太陽光を照射させるように前記太陽追尾駆動装置で前記ケースを移動させるようにしたものである。本発明は、前記タンク内の熱媒循環経路において、前記太陽追尾駆動装置による変位によっても常に上位となる箇所に外部と連絡するガス抜きパイプを連絡したものである。本発明は、前記タンク内の循環経路において、前記太陽追尾駆動装置による変位によっても常に下位となる箇所に、前記集熱器と連絡する連結パイプを連絡したものである。本発明は、前記タンクの循環経路内に150℃を越える温度を融点とすると共に固体と液体との間の変化時に大きな潜熱を有する熱保持材を真空封入した保護容器を備えるようにしたものである。   In the present invention, a plurality of the heat collectors are provided, and a heat medium in the circulation path circulates in order through the plurality of heat collectors and the tank. In the present invention, the light converging means is a Fresnel lens. In the present invention, the periphery of the light converging means and the periphery of the heat collector are covered with a reflecting member that communicates in a cylindrical shape, and the reflecting surface of the reflecting member is disposed inside the cylindrical shape. In the present invention, the reflecting member is formed from four plate-shaped members. In the present invention, an infrared reflecting member having a reflecting surface facing the heat collector side is provided on the side opposite to the light converging means of the heat collector. In the present invention, at least a part of the connecting pipe is a flexible pipe. In the present invention, the heat exchanger is provided in the tank. In the present invention, the tank has a double structure of an internal space and an external space, the heat medium is passed through the internal space, and the external space is a vacuum space. The present invention includes a case for housing the heat collector, the tank, the connecting pipe, and the reflecting member therein. In the present invention, the tank and the connecting pipe are disposed on the back surface side of the reflecting surface of the reflecting member and on the inner side of the case, and on the back surface side of the reflecting surface of the reflecting member and inside the case. The side is filled with a heat insulating material. In the present invention, the case is attached to a sun tracking drive device, and the case is moved by the sun tracking drive device so that the light converging means irradiates sunlight vertically. According to the present invention, in the heat medium circulation path in the tank, a degassing pipe that communicates with the outside is always connected to a location that is always higher even by displacement by the solar tracking drive device. According to the present invention, a connecting pipe that communicates with the heat collector is always connected to a lower position in the circulation path in the tank even when the displacement is caused by the solar tracking drive device. The present invention is provided with a protective container in which a heat retaining material having a large latent heat at the time of change between a solid and a liquid is vacuum-sealed in the circulation path of the tank with a melting point of a temperature exceeding 150 ° C. is there.

本発明によれば、光収束手段によって集光比を大きく取ることが可能になり、集熱器を小さくすることができる。また、小さい集熱器とタンクとを連絡する循環経路を小さくできるので、放熱を小さくして集熱器で得た熱を効率良く利用することができる。特に、集熱温度150℃での高い集熱効率を長時間確保することができる。本発明では更に、循環経路における集熱器には太陽熱が照射されるが、それ以外の循環経路の箇所には太陽熱が照射されないので、傾斜状態にある循環経路内の熱媒に温度差が発生し、その温度差によって循環経路内の熱媒が循環移動し、動力なしに熱媒を移動させることができる。   According to the present invention, it is possible to increase the light collection ratio by the light converging means, and the heat collector can be made small. Moreover, since the circulation path which connects a small heat collector and a tank can be made small, heat radiation can be made small and the heat obtained by the heat collector can be used efficiently. In particular, high heat collection efficiency at a heat collection temperature of 150 ° C. can be secured for a long time. In the present invention, the heat collector in the circulation path is irradiated with solar heat, but the solar heat is not irradiated on the other circulation path, so that a temperature difference occurs in the heat medium in the circulation path in the inclined state. However, the heat medium in the circulation path circulates and moves due to the temperature difference, and the heat medium can be moved without power.

本発明では、集熱器を複数個とすることにより、集光効果を更に高めて循環経路内の熱媒の温度差を更に高め、集熱効率を高めることができる。本発明では、光収束手段をフレネルレンズとすることで、集光効率が高く、軽量でコンパクトで安価とすることができる。光収束手段の周囲と集熱器の周囲とを筒状に連絡する反射部材で覆うことで、集熱器への集光効率を高めることができる。反射部材を4枚の板状のものから構成することで、集熱器の周囲への反射部材の取付けが容易であり、平面全域を反射部材で覆うことが容易となる。タンクを内部空間と外部空間の二重構造とし、内部空間に熱媒を通過させ、外部空間を真空空間とすることで、熱媒からの放熱を抑えることができる。集熱器とタンクと連結パイプとをケース内に入れて反射部材で覆い、ケースの内部で反射部材の裏側に断熱材を充填することで、循環経路を流れる熱媒からの放熱を抑えることができる。ケースを太陽追尾駆動装置に取付けて光収束手段に太陽光を直角方向に照射させることで集光効率を高めることができる。タンクの常に上位となる箇所に外部と連絡するガス抜きパイプを連絡することで、高温の熱媒にガスが発生した場合に、熱媒から発生したガスを外部に排出することができる。タンク内常に下位となる箇所に、集熱器と連絡する連結パイプを連絡することで、タンク内の一番低い温度の熱媒を集熱器に向けて移動させることができる。タンクの循環経路内に150℃を越える温度で溶融する熱保持材を真空封入した容器を備えることで、その熱保持材によってタンク内の熱媒の温度を所定の温度以上に保持して、熱交換器に安定的に熱量を与えることができる。   In the present invention, by using a plurality of heat collectors, the light collecting effect can be further enhanced, the temperature difference of the heat medium in the circulation path can be further increased, and the heat collection efficiency can be increased. In the present invention, the light converging means is a Fresnel lens, so that the light collection efficiency is high, and it is lightweight, compact and inexpensive. By covering the periphery of the light converging means and the periphery of the heat collector with a reflecting member that communicates in a cylindrical shape, the light collection efficiency to the heat collector can be increased. By configuring the reflecting member from four plate-shaped members, it is easy to attach the reflecting member around the heat collector, and it is easy to cover the entire plane with the reflecting member. By making the tank a double structure of the internal space and the external space, allowing the heat medium to pass through the internal space, and making the external space a vacuum space, heat dissipation from the heat medium can be suppressed. The heat collector, tank, and connecting pipe are put in the case, covered with a reflective member, and the back side of the reflective member is filled with heat insulation inside the case, thereby suppressing heat dissipation from the heat medium flowing through the circulation path. it can. Condensing efficiency can be improved by attaching the case to the sun tracking drive device and irradiating the light converging means with sunlight in a perpendicular direction. By connecting a degassing pipe that communicates with the outside to a location that is always higher in the tank, when gas is generated in the high-temperature heat medium, the gas generated from the heat medium can be discharged to the outside. By connecting a connecting pipe that communicates with the heat collector to a location that is always lower in the tank, the heat medium having the lowest temperature in the tank can be moved toward the heat collector. By providing a container in which a heat retaining material that melts at a temperature exceeding 150 ° C. is vacuum-sealed in the circulation path of the tank, the heat retaining material keeps the temperature of the heat medium in the tank at a predetermined temperature or higher. Heat can be stably given to the exchanger.

次に、本発明を図面に基づいて説明する。図1は本発明に係る太陽熱集熱装置の一実施例を示す断面図、図2は図1の太陽熱集熱装置が傾斜状態にあるA−A線断面図、図3は図1の太陽熱集熱装置の上部に備えた光収束手段を除去した状態の図1の平面図、図4は本発明の要部構成部品の連結状態を示す構成図である。本発明の太陽熱集熱装置は、上部を開口したケース10の内部に蓄熱槽としての1個のタンク12と、受光手段としての複数個の容器状の集熱器14とを備えている。複数個の集熱器14は、図1に示すように、ケース10の底部16に近い位置に配置されている。ケース10の上部開口部には、そこに照射される太陽光を集熱器14に向けて集中照射させる光収束手段としてのフレネルレンズ18が備えられており、そのフレネルレンズ18によってケース10の内部が閉鎖される。それぞれの集熱器14に対応して、それぞれのフレネルレンズ18が用いられる。光収束手段は集熱器14に太陽光を集中させるものであれば、フレネルレンズに限るものではない。しかし、フレネルレンズ18は、例えば100平方センチメートルの面積のフレネルレンズに照射した太陽光を1平方センチメートルの面積の集熱器14に照射させることができるもので、集光効率が高くかつ軽量でコンパクトで安価なことから、光収束手段にフレネルレンズを使用することが望ましい。   Next, the present invention will be described with reference to the drawings. 1 is a cross-sectional view showing an embodiment of the solar heat collecting apparatus according to the present invention, FIG. 2 is a cross-sectional view taken along line AA in which the solar heat collecting apparatus of FIG. 1 is in an inclined state, and FIG. The top view of FIG. 1 of the state which removed the light converging means with which the upper part of the heat apparatus was removed, FIG. 4 is a block diagram which shows the connection state of the principal part component of this invention. The solar heat collecting apparatus of the present invention includes one tank 12 as a heat storage tank and a plurality of container-like heat collectors 14 as light receiving means inside a case 10 having an upper opening. As shown in FIG. 1, the plurality of heat collectors 14 are arranged at positions close to the bottom 16 of the case 10. The upper opening of the case 10 is provided with a Fresnel lens 18 as light converging means for irradiating the sunlight irradiated thereto toward the heat collector 14, and the inside of the case 10 is provided by the Fresnel lens 18. Is closed. Corresponding to each heat collector 14, each Fresnel lens 18 is used. The light converging means is not limited to the Fresnel lens as long as it concentrates sunlight on the heat collector 14. However, the Fresnel lens 18 can irradiate, for example, sunlight irradiated to a Fresnel lens having an area of 100 square centimeters onto the heat collector 14 having an area of 1 square centimeter, and has high light collection efficiency, is lightweight, compact and inexpensive. For this reason, it is desirable to use a Fresnel lens as the light focusing means.

図3に示すように、この実施例では6個の集熱器14を備えており、それら6個の集熱器14を複数個の集熱器14,14b,14c,14d,14e,14fとする。図4に示すように、タンク12と3個の集熱器14a,14b,14cとを4個の連結パイプ20で連絡して第一循環経路22を形成し、タンク12と3個の集熱器14d,14e,14fとを4個の連結パイプ20で連絡して第二循環経路24を形成する。即ち、タンク12と集熱器14aとを連結パイプ20pで連絡し、集熱器14aと集熱器14bとを連結パイプ20aで連絡し、集熱器14bと集熱器14cとを連結パイプ20bで連絡し、集熱器14cとタンク12とを連結パイプ20Cで連絡することで、第一循環経路22を形成する。この第一循環経路22内には、油等の熱媒が循環流通するよう収容されている。タンク12と集熱器14dとを連結パイプ20qで連絡し、集熱器14dと集熱器14eとを連結パイプ20dで連絡し、集熱器14eと集熱器14fとを連結パイプ20fで連絡し、集熱器14fとタンク12とを連結パイプ20fで連絡することで、第二循環経路24を形する。この第二循環経路24内には、油等の熱媒が循環流通するよう設定される。第一循環経路22内と第二循環経路24内には熱媒はそれ自体の温度差によって自動的に移動する。即ち、温度が高い熱媒は第一循環経路22内と第二循環経路24内の高位置へ移動し、温度が低い熱媒は第一循環経路22内と第二循環経路24内の低位置へ移動する。   As shown in FIG. 3, in this embodiment, six heat collectors 14 are provided, and the six heat collectors 14 are connected to a plurality of heat collectors 14, 14b, 14c, 14d, 14e, and 14f. To do. As shown in FIG. 4, the tank 12 and the three heat collectors 14a, 14b, 14c are connected by four connecting pipes 20 to form a first circulation path 22, and the tank 12 and the three heat collectors are connected. The containers 14d, 14e, and 14f are connected by four connecting pipes 20 to form a second circulation path 24. That is, the tank 12 and the heat collector 14a are connected by the connecting pipe 20p, the heat collector 14a and the heat collector 14b are connected by the connecting pipe 20a, and the heat collector 14b and the heat collector 14c are connected by the connecting pipe 20b. Then, the first circulation path 22 is formed by connecting the heat collector 14c and the tank 12 with the connecting pipe 20C. A heat medium such as oil is accommodated in the first circulation path 22 so as to circulate. The tank 12 and the collector 14d are connected by a connecting pipe 20q, the collector 14d and the collector 14e are connected by a connecting pipe 20d, and the collector 14e and the collector 14f are connected by a connecting pipe 20f. Then, the second circulation path 24 is formed by connecting the heat collector 14f and the tank 12 by the connecting pipe 20f. A heat medium such as oil is set to circulate in the second circulation path 24. The heat medium automatically moves in the first circulation path 22 and the second circulation path 24 due to its own temperature difference. That is, the heat medium having a high temperature moves to a high position in the first circulation path 22 and the second circulation path 24, and the heat medium having a low temperature is a low position in the first circulation path 22 and the second circulation path 24. Move to.

この実施例においては、第一循環経路22と第二循環経路24は、3個の集熱器14を経由するように設定してあるが、集熱器14の数は3個に限るものではない。また、第一循環経路22と第二循環経路24との2個の循環経路を備えたものとなっているが、循環経路24の数は1個または3個以上であってもよい。タンク12と集熱器14とを連結したり集熱器14同士を連結したりする連結パイプ20(20p,20q,20a,20b,20c,20d,20e,20f)は、氷点から200℃超にもなる熱媒の温度変化を勘案して、それらの一部または全部を蛇腹等のフレキシブルなパイプとするのが望ましい。連結パイプ20をフレキシブルなパイプとすることで、熱応力の集中による連結パイプ20のタンク12や集熱器14との接続部の破損を防止することができる。   In this embodiment, the first circulation path 22 and the second circulation path 24 are set so as to pass through the three heat collectors 14, but the number of the heat collectors 14 is not limited to three. Absent. Moreover, although the two circulation paths of the first circulation path 22 and the second circulation path 24 are provided, the number of the circulation paths 24 may be one or three or more. The connecting pipe 20 (20p, 20q, 20a, 20b, 20c, 20d, 20e, 20f) for connecting the tank 12 and the heat collector 14 or connecting the heat collectors 14 is more than 200 ° C. from the freezing point. In consideration of the temperature change of the other heat medium, it is desirable that part or all of them be flexible pipes such as bellows. By making the connecting pipe 20 a flexible pipe, it is possible to prevent damage to the connecting portion of the connecting pipe 20 to the tank 12 and the heat collector 14 due to concentration of thermal stress.

集熱器14とフレネルレンズ18との間を、集熱器14の周辺とフレネルレンズ18の周辺とを、例えばアルミ箔や反射鏡等から成る反射部材26で連絡するように筒状に覆うようにする(図1及び図3)。集熱器14とフレネルレンズ18と反射部材26とで空間28が形成され、反射部材26の反射面は空間28に向けて配置される。集熱器14とフレネルレンズ18とを平面から見て四角形とすることで、反射部材26を4枚の板状とすることができ、反射部材26を安価に作ることができる。また、図3に示すように、平面から見て集熱器14以外の箇所を反射部材26で容易に敷き詰めることができる。この反射部材26は、フレネルレンズ18から集熱器14への照射する太陽光の方向が集熱器14から外れた場合に、照射方向の外れた太陽光を集熱器14へ向かわせる働きをするものである。反射部材26の下側(空間28とは反対側)に、前記タンク12が配置される。   Covering between the heat collector 14 and the Fresnel lens 18 in a cylindrical shape so as to connect the periphery of the heat collector 14 and the periphery of the Fresnel lens 18 with a reflecting member 26 made of, for example, an aluminum foil or a reflecting mirror. (FIGS. 1 and 3). A space 28 is formed by the heat collector 14, the Fresnel lens 18, and the reflection member 26, and the reflection surface of the reflection member 26 is disposed toward the space 28. By making the heat collector 14 and the Fresnel lens 18 into a quadrangle when viewed from above, the reflecting member 26 can be formed into four plates, and the reflecting member 26 can be made at low cost. Further, as shown in FIG. 3, it is possible to easily spread portions other than the heat collector 14 with the reflecting member 26 when viewed from above. The reflecting member 26 has a function of directing sunlight out of the irradiation direction to the heat collector 14 when the direction of sunlight irradiated from the Fresnel lens 18 to the heat collector 14 deviates from the heat collector 14. To do. The tank 12 is disposed below the reflecting member 26 (on the side opposite to the space 28).

図1に示すように、集熱器14の下面より下側(ケース10の底部16に近い側)には、間隔(空間)30を開けて例えばアルミ箔や反射鏡等の赤外線用反射部材32を備える。この赤外線用反射部材32は、集熱器14の下側に出る赤外線を上方に反射して赤外線を集熱器14に戻し、集熱器14への集熱効率を高めるようにするためのものである。なお、集熱器14の下側と赤外線用反射部材32との間には間隔30を設けると説明したが、間隔30を設けなくても良い。   As shown in FIG. 1, an infrared reflecting member 32 such as an aluminum foil or a reflecting mirror is provided below the lower surface of the heat collector 14 (side closer to the bottom 16 of the case 10) with an interval (space) 30. Is provided. The infrared reflecting member 32 is for reflecting the infrared rays emitted to the lower side of the heat collector 14 upward and returning the infrared rays to the heat collector 14 to increase the heat collecting efficiency to the heat collector 14. is there. In addition, although it demonstrated that the space | interval 30 was provided between the lower side of the heat collector 14, and the reflection member 32 for infrared rays, the space | interval 30 does not need to be provided.

集熱器14(14a)の水平断面を図5に示し、図5のB−B線断面図を図6に示す。集熱器14は、例えばSUS等を素材とする薄板を用い、縦横の比がほぼ上部レンズの縦横の比に近く、高さの低い直方体の容器形状とするのが望ましい。集熱器14の内部は、例えば2つの区画壁34によって3つの通路36が形成されている。集熱器14aは入口に連結パイプ20pから熱媒が入り、その後、熱媒が3箇所の通路36をほぼ均等に通過して出口から連結パイプ20a至るものである。集熱器14においては、その集熱器14を通過する熱媒が、フレネルレンズ18によって集中させられた太陽光によって加熱されるものである。集熱器14における太陽光が当たる上面37には、太陽光スペクトルの吸収率は100%に近く、赤外線スペクトルの輻射率がゼロに近い選択吸収処理が施されている。   FIG. 5 shows a horizontal cross section of the heat collector 14 (14a), and FIG. 6 shows a cross section taken along the line BB of FIG. It is desirable that the heat collector 14 is made of a thin plate made of, for example, SUS, and has a rectangular parallelepiped container shape in which the aspect ratio is close to the aspect ratio of the upper lens and is low. Inside the heat collector 14, for example, three passages 36 are formed by two partition walls 34. In the heat collector 14a, a heat medium enters the inlet from the connection pipe 20p, and then the heat medium passes through the three passages 36 almost evenly to reach the connection pipe 20a from the outlet. In the heat collector 14, the heat medium passing through the heat collector 14 is heated by sunlight concentrated by the Fresnel lens 18. The top surface 37 on which the sunlight in the heat collector 14 hits is subjected to a selective absorption process in which the absorption rate of the solar spectrum is close to 100% and the emissivity of the infrared spectrum is close to zero.

集熱器14は太陽光からの熱を吸収する役割を果たすものであるのに対し、タンク12は蓄熱槽として役割を果たすものである。図1及び図2に示すように、タンク12は、空間38を有する両端閉鎖筒状の内側槽40と、その内側槽40の殆どを覆う筒状の外側槽42との二重の槽から成る。内側槽40の空間38は循環経路22,24の一部であり、その空間38には大量の熱媒が収容されている。内側槽40と外側槽42の間の空間44は真空となって、内側槽40の空間38に収容さる熱媒の断熱効果の役割を果たしている。なお、図4においては、内側槽40の両端は外側槽42に覆われていない構造に示してあるが、内側槽40の全部を外側槽42で覆うようにしても良い。   The heat collector 14 serves to absorb heat from sunlight, whereas the tank 12 serves as a heat storage tank. As shown in FIGS. 1 and 2, the tank 12 is composed of a double tank including a cylindrical closed inner tank 40 having a space 38 and a cylindrical outer tank 42 covering most of the inner tank 40. . A space 38 of the inner tank 40 is a part of the circulation paths 22 and 24, and a large amount of heat medium is accommodated in the space 38. A space 44 between the inner tub 40 and the outer tub 42 is evacuated and plays a role of a heat insulating effect of the heat medium accommodated in the space 38 of the inner tub 40. In FIG. 4, both ends of the inner tub 40 are shown as being not covered with the outer tub 42, but the entire inner tub 40 may be covered with the outer tub 42.

タンク12の内側槽40の空間38の内部には、熱媒からの熱を受け取って発電機(図示せず)等に熱を供給するための熱交換器46が備えられている。内側槽40の空間38の内部には更に、錫鉛共晶半田等の熱保持材48を内部に真空封入した石英ガラス等の保護容器(容器)50を備えるのが望ましい。熱保持材48は、例えば150℃を越える温度を融点として液体と固体との間で相を変えるもので、相を変える際に大きな潜熱(大量の熱を放出したり吸収したりする)を有するものである。熱保持材48としての錫鉛共晶半田は、約183℃で相を変えるものである。熱保持材48は、相変化温度が180℃〜200℃程度が望ましいが、その温度に限るものではない。なお、保護容器50の素材を石英ガラスとしたのは、錫鉛共晶半田と石英とが高温で反応しないからである。但し、石英ガラスは衝撃に弱く破損し易いため、その外部を強固なカバー等で保護することが望ましい。   A heat exchanger 46 for receiving heat from the heat medium and supplying heat to a generator (not shown) or the like is provided in the space 38 of the inner tank 40 of the tank 12. It is desirable to further include a protective container (container) 50 such as quartz glass in which a heat holding material 48 such as tin-lead eutectic solder is vacuum sealed inside the space 38 of the inner tank 40. The heat retaining material 48 changes a phase between a liquid and a solid with a temperature exceeding 150 ° C. as a melting point, for example, and has a large latent heat (a large amount of heat is released or absorbed) when the phase is changed. Is. The tin-lead eutectic solder as the heat retaining material 48 changes phase at about 183 ° C. The heat retaining material 48 preferably has a phase change temperature of about 180 ° C. to 200 ° C., but is not limited to that temperature. The reason why the protective container 50 is made of quartz glass is that the tin-lead eutectic solder and quartz do not react at a high temperature. However, since quartz glass is vulnerable to impact and easily damaged, it is desirable to protect the outside with a strong cover or the like.

熱保持材48としては、錫鉛共晶半田以外に、例えば鉛フリーの錫鉛共晶半田や三元系の半田も利用できる。また、硫化水素ナトリウム等の塩や、ショウノウ等の有機物等であって、相変化温度が180℃〜200℃程度のものを使用しても良い。この場合には、保護容器50の素材をSUSにする。半田は金属のため熱伝導性が良いが、塩や有機物を材料とする場合には熱伝導性が悪いため、その熱伝導性の悪さを補うように、それらの材料の表面積を増すために材料を多数本の筒に分けて収納する。   As the heat retaining material 48, for example, lead-free tin-lead eutectic solder or ternary solder can be used in addition to tin-lead eutectic solder. Further, a salt such as sodium hydrogen sulfide, an organic substance such as camphor, etc. having a phase change temperature of about 180 ° C. to 200 ° C. may be used. In this case, the material of the protective container 50 is SUS. Solder has good thermal conductivity because it is a metal, but when it is made of salt or organic matter, it has poor thermal conductivity. Therefore, it is necessary to increase the surface area of these materials to compensate for the poor thermal conductivity. Is stored in multiple tubes.

タンク12の斜視図を図7に示す。タンク12の内側槽40の一端側には、本発明の太陽熱集熱装置の使用時に常に内側槽40の空間38の最下位に位置するような下方伸張部52が形成される。この下方伸張部52に、第一循環経路22の連結パイプ20pと第二循環経路24の連結パイプ20qとが接続される。即ち、タンク12の空間38の最下位に位置する熱媒が、第一循環経路22の連結パイプ20pと第二循環経路24の連結パイプ20qに向けて流出するように設定されている。また、タンク12の内側槽40の他端側には、本発明の太陽熱集熱装置の使用時に常に内側槽40の空間38の最上位に位置する箇所と連絡するガス抜きパイプ54が接続されている。第一循環経路22と第二循環経路24を循環する熱媒は、高温になると200℃を越えることもあり、その熱媒からは高温時に溶存ガスが発生することもある。熱媒から発生したガスをガス抜きパイプ54を介して、タンク12から大気に排出する。   A perspective view of the tank 12 is shown in FIG. On one end side of the inner tank 40 of the tank 12, a downward extension 52 is formed so as to be always located at the lowest position of the space 38 of the inner tank 40 when the solar heat collecting apparatus of the present invention is used. The downward extension 52 is connected to the connection pipe 20p of the first circulation path 22 and the connection pipe 20q of the second circulation path 24. That is, the heat medium located at the lowest position of the space 38 of the tank 12 is set to flow out toward the connection pipe 20p of the first circulation path 22 and the connection pipe 20q of the second circulation path 24. Further, the other end side of the inner tank 40 of the tank 12 is connected with a degassing pipe 54 that communicates with a location that is always located at the uppermost position of the space 38 of the inner tank 40 when the solar heat collecting apparatus of the present invention is used. Yes. The heating medium circulating through the first circulation path 22 and the second circulation path 24 may exceed 200 ° C. when the temperature is high, and dissolved gas may be generated from the heating medium at a high temperature. The gas generated from the heat medium is discharged from the tank 12 to the atmosphere via the gas vent pipe 54.

図1や図2に示すように、反射部材26の裏面(空間28に対面している反対側の面)とケース10の内部との間に、ロックウールやグラスウール等の断熱材56を充填する。断熱材56は、タンク12と、連結パイプ20と、集熱器14の下側と赤外線用反射部材24との間の間隔30(間隔を開ける場合)を除いて、反射部材26の裏面とケース10の内部との間の空間の全域を埋めつくすのが望ましい。この断熱材56によって第一循環経路22と第二循環経路24は覆われるので、第一循環経路22と第二循環経路24を流れる熱媒は断熱材56によって熱損失が防止される。ケース10の内部と大気との間を連絡するエア抜きホース58が、ケース10に取り付けられる。このエア抜きホース58によって、ケース10内の温度上昇等によるケース10の膨張変形を防止し、フレネルレンズ18と集熱器14との位置関係のズレを防止する。   As shown in FIGS. 1 and 2, a heat insulating material 56 such as rock wool or glass wool is filled between the back surface of the reflecting member 26 (the surface on the opposite side facing the space 28) and the inside of the case 10. . The heat insulating material 56 is formed on the back surface of the reflecting member 26 and the case except for the tank 12, the connecting pipe 20, the space 30 between the lower side of the heat collector 14 and the infrared reflecting member 24 (when the space is opened). It is desirable to fill the entire space between the interior of the ten. Since the first circulation path 22 and the second circulation path 24 are covered by the heat insulating material 56, heat loss of the heat medium flowing through the first circulation path 22 and the second circulation path 24 is prevented by the heat insulating material 56. An air bleeding hose 58 that communicates between the inside of the case 10 and the atmosphere is attached to the case 10. The air vent hose 58 prevents the case 10 from expanding and deforming due to a temperature rise in the case 10 and prevents the positional relationship between the Fresnel lens 18 and the heat collector 14 from shifting.

ケース10は、太陽追尾装置60(図1,図2)に取り付けられる。太陽追尾装置60は、ケース10の底部16と固定する支持部材62と、その支持部材62を図1でC−C方向に揺動可能とすると共に図2で傾斜角度θを変化可能とする駆動手段64とから成る。即ち、駆動手段64は、太陽光がフレネルレンズ18(集熱器14の上面37)に対して直角に照射するように、ケース10を移動させるためのものである。太陽追尾装置60はフレネルレンズ18に対して太陽光を直角に照射するためにケース10を移動させるが、ケース10の移動はコンピュータ制御で行っても手動で行ってもどちらでも良い。   Case 10 is attached to solar tracking device 60 (FIGS. 1 and 2). The sun tracking device 60 has a support member 62 that is fixed to the bottom 16 of the case 10, and a drive that enables the support member 62 to swing in the CC direction in FIG. 1 and to change the inclination angle θ in FIG. Means 64. That is, the drive means 64 is for moving the case 10 so that sunlight irradiates the Fresnel lens 18 (the upper surface 37 of the heat collector 14) at a right angle. The sun tracking device 60 moves the case 10 in order to irradiate the Fresnel lens 18 with sunlight at right angles, but the case 10 may be moved by computer control or manually.

次に、本発明の太陽熱集熱装置の動作について説明する。太陽は季節と時刻によって地上への入射角が異なる。このため、太陽追尾装置60の駆動手段64は季節と時刻に応じて図2におけるケース10の仰角θ(図2におけるH−H線は水平線と平行とする)を調整すると共に、図1のC−C方向に回転移動させる。フレネルレンズ18(集熱器14の上面37)に対して直角に太陽光が照射するように、ケース10を時間の経過と共に移動させる。太陽追尾装置60の作動時間は太陽が出ている時間帯とし、例えば東京では全ての季節を通して例えば午前8時から午後4時までを基本作動時間とし、夏至に近いほど作動時間を延長する。   Next, the operation of the solar heat collecting apparatus of the present invention will be described. The angle of incidence on the sun varies depending on the season and time. Therefore, the driving means 64 of the solar tracking device 60 adjusts the elevation angle θ of the case 10 in FIG. 2 (the HH line in FIG. 2 is parallel to the horizontal line) according to the season and time, and C in FIG. -Rotate in the C direction. The case 10 is moved over time so that sunlight irradiates at right angles to the Fresnel lens 18 (the upper surface 37 of the heat collector 14). The operating time of the sun tracking device 60 is a time zone in which the sun goes out. For example, in Tokyo, the basic operating time is, for example, from 8 am to 4 pm throughout all seasons, and the operating time is extended toward the summer solstice.

ここで、図1及び図2において太陽光が、フレネルレンズ18及び集熱器14に対して直角に照射するものと仮定して説明する。図2の状態における第一循環経路22の傾斜状態を図8に示す。図8におけるH−H線も水平線と平行とする。赤道付近以外では、フレネルレンズ18に太陽光が直角に照射する場合に、必ず仰角θ(θ>0度)が発生する。なお、赤道付近では、θ=0度となる場合があるが、この場合には、θ=5〜10度程度とし、仰角θが0度にならないようにする。この場合には、フレネルレンズ18に太陽光が直角に照射しなくても良いものとする。   Here, in FIG. 1 and FIG. 2, description will be made on the assumption that sunlight irradiates the Fresnel lens 18 and the heat collector 14 at a right angle. FIG. 8 shows an inclined state of the first circulation path 22 in the state of FIG. The HH line in FIG. 8 is also parallel to the horizontal line. Outside the vicinity of the equator, the elevation angle θ (θ> 0 degrees) is always generated when the Fresnel lens 18 is irradiated with sunlight at a right angle. In the vicinity of the equator, θ may be 0 degrees. In this case, θ is set to about 5 to 10 degrees so that the elevation angle θ does not become 0 degrees. In this case, it is not necessary to irradiate the Fresnel lens 18 with sunlight at a right angle.

太陽光がフレネルレンズ18を照射すると、フレネルレンズ18を通過した太陽光は、図8に示す第一循環経路22における3個の集熱器14a,14b,14cに集中し、3個の集熱器14a,14b,14c内の熱媒が熱せられる。3個の集熱器14において、集熱器14aが相対的な最下位に位置し、集熱器14bが相対的な中位に位置し、集熱器14aが相対的な最上位に位置する。熱媒は熱せられると上方に向けて移動する。最下位の集熱器14aに位置する熱媒はそこで熱せられることにより、連結パイプ20a内を上昇して集熱器14bに至り、集熱器14bで更に熱せられて、連結パイプ20b内を上昇して集熱器14cに至り、集熱器14cで更に熱せられて、連結パイプ20c内を上昇してタンク12内に至る。即ち、熱媒は低い位置の集熱器14aから中位の集熱器14bを経由して高い位置の集熱器14cに向けて順に熱せられて移動して、タンク12内に入る。   When sunlight irradiates the Fresnel lens 18, the sunlight that has passed through the Fresnel lens 18 is concentrated on the three heat collectors 14a, 14b, and 14c in the first circulation path 22 shown in FIG. The heating medium in the containers 14a, 14b, 14c is heated. In the three heat collectors 14, the heat collector 14a is located at the relative lowest position, the heat collector 14b is located at the relatively middle position, and the heat collector 14a is located at the relatively highest position. . When the heating medium is heated, it moves upward. The heating medium located in the lowest heat collector 14a is heated there, and ascends in the connection pipe 20a to reach the heat collector 14b, and is further heated in the heat collector 14b and rises in the connection pipe 20b. Then, it reaches the heat collector 14c, and is further heated by the heat collector 14c, and rises in the connection pipe 20c to reach the tank 12. In other words, the heat medium is heated and moved in order from the heat collector 14 a at the lower position to the heat collector 14 c at the higher position via the middle heat collector 14 b and enters the tank 12.

タンク12内に入った熱媒は、熱交換器46(図1,図2)や熱保持体48(図1,図2)との接触によって熱を奪われる。その結果、タンク12内の熱媒の温度が低下し、温度が低下した熱媒はタンク12内を高位から低位に向けて移動し下方伸張部52に至る。下方伸張部52に至った熱媒は、連結パイプ20pを経由して集熱器14aに至る。このように、第一循環経路22内の熱媒は、低位の集熱器14aから中位の集熱器14bと高い位置の集熱器14cを順に経由してタンク12に至り、その後タンク12から再び低位の集熱器14aに至る流れとなる。第二循環経路24内の熱媒の流れも第一循環経路22の流れと同様に、低位の集熱器14dから中位の集熱器14eと高い位置の集熱器14fを順に経由してタンク12に至り、その後タンク12から再び低位の集熱器14dに至る流れとなる。第一循環経路22内の熱媒も第二循環経路24内の熱媒も、それぞれの途中位置で加熱されて温度差を生じるため、その温度差によって第一循環経路22内や第二循環経路24内を自動的に循環流通するものである。   The heat medium entering the tank 12 is deprived of heat by contact with the heat exchanger 46 (FIGS. 1 and 2) and the heat holding body 48 (FIGS. 1 and 2). As a result, the temperature of the heat medium in the tank 12 decreases, and the heat medium whose temperature has decreased moves from the high level to the low level in the tank 12 and reaches the downward extending portion 52. The heat medium that has reached the downward extending portion 52 reaches the heat collector 14a via the connecting pipe 20p. As described above, the heat medium in the first circulation path 22 reaches the tank 12 through the lower heat collector 14a, the middle heat collector 14b, and the higher heat collector 14c in this order, and then the tank 12 To the lower heat collector 14a again. Similarly to the flow in the first circulation path 22, the flow of the heat medium in the second circulation path 24 goes from the lower heat collector 14d to the middle heat collector 14e and the higher heat collector 14f in order. The flow reaches the tank 12 and then flows again from the tank 12 to the lower heat collector 14d. Since the heating medium in the first circulation path 22 and the heating medium in the second circulation path 24 are heated at their respective intermediate positions to cause a temperature difference, the temperature difference causes the first circulation path 22 and the second circulation path to be heated. 24 is automatically circulated in the circulation.

タンク12内には、融点が183℃の錫鉛共晶半田の熱保持材48を内部に真空封入した保護容器50を備えているので、タンク12内に導入される熱媒の温度が183℃に到達すると、半田はその温度を保ったまま融け始める。熱媒の温度は半田が溶け終わるまで、この融点温度を原則として越えることは無い。この反対に、タンク12内に導入される熱媒の温度が183℃以下に下降すると半田の凝固が始まり、半田が全て凝固するまでは、タンク12内の熱媒は183℃に保たれ、その温度が熱交換器46に与えられる。   The tank 12 includes a protective container 50 in which a tin-lead eutectic solder heat retaining material 48 having a melting point of 183 ° C. is vacuum-sealed, so that the temperature of the heat medium introduced into the tank 12 is 183 ° C. The solder starts to melt while maintaining its temperature. In principle, the temperature of the heat medium does not exceed this melting point temperature until the solder is completely melted. On the other hand, when the temperature of the heat medium introduced into the tank 12 falls below 183 ° C., the solidification of the solder starts, and the heat medium in the tank 12 is kept at 183 ° C. until the solder is completely solidified. A temperature is provided to the heat exchanger 46.

半田が全部凝固すると、タンク12内の熱媒の温度も半田の温度も低下してゆく。第一循環経路22並びに第二循環経路24内の全ての箇所での熱媒の温度が等しくなって熱媒の循環が停止する。夕方や夜になって熱媒の循環が停止すると、太陽追尾装置60が作動してケース10を回転させ、午前8時ごろに太陽光がフレネルレンズ18に直角方向に照射する位置に向きを変える。   When the solder is completely solidified, both the temperature of the heat medium in the tank 12 and the temperature of the solder are lowered. The temperature of the heat medium at all locations in the first circulation path 22 and the second circulation path 24 becomes equal, and the circulation of the heat medium stops. When the circulation of the heat medium stops in the evening or at night, the solar tracking device 60 operates to rotate the case 10 and change the direction to a position where the sunlight irradiates the Fresnel lens 18 at a right angle around 8 am. .

太陽追尾装置60が作動しているどの間においても、タンク12とガス抜きパイプ54との連絡箇所はタンク12の最上位となるように設定してあるので、高熱になった熱媒から空気が発生しても、その空気を外部に排出することができる。なお、このガス抜きパイプ54から雨水や虫等がタンク12内に入り込まないような形状や構造とする。また、ケース10の内部が高温になった場合に、エア抜きホース58によってケース10内の高温空気を外部に排出して、ケース10の膨張変形を防止し、フレネルレンズ18と集熱器14との位置関係のズレを防止する。   While the solar tracking device 60 is in operation, the connection point between the tank 12 and the gas vent pipe 54 is set so as to be at the top of the tank 12, so that air is heated from the heat medium that has become hot. Even if it occurs, the air can be discharged to the outside. It should be noted that the shape and structure are such that rainwater, insects and the like do not enter the tank 12 from the gas vent pipe 54. Further, when the inside of the case 10 becomes high temperature, the hot air in the case 10 is discharged to the outside by the air vent hose 58 to prevent the case 10 from expanding and deforming, and the Fresnel lens 18, the heat collector 14, Prevents the positional relationship from being shifted.

以上のように、従来の太陽熱集熱装置では、気温25℃の環境で集熱温度150℃での集熱効率は50%に達することが困難であったが、本発明では集熱温度150℃での集熱効率60%超を1日5時間以上維持することができた。   As described above, in the conventional solar heat collector, the heat collection efficiency at the heat collection temperature of 150 ° C. in the environment of the air temperature of 25 ° C. was difficult to reach 50%, but in the present invention, the heat collection temperature is 150 ° C. The heat collection efficiency of more than 60% could be maintained for 5 hours or more per day.

本発明に係る太陽熱集熱装置を示す断面図である。It is sectional drawing which shows the solar heat collecting device which concerns on this invention. 本発明に係る太陽熱集熱装置が傾斜状態にある図1のA−A線断面である。It is the AA line cross section of FIG. 1 in which the solar heat collecting device which concerns on this invention exists in an inclined state. 図1の太陽熱集熱装置の上部に備えた光収束手段を除去した状態の図1の平面図である。It is a top view of FIG. 1 of the state which removed the light converging means with which the upper part of the solar heat collecting apparatus of FIG. 1 was removed. 本発明の要部構成部品の連結状態を示す構成図である。It is a block diagram which shows the connection state of the principal part component of this invention. 集熱器の水平断面である。It is a horizontal cross section of a heat collector. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line B-B in FIG. 5. 本発明のタンクの斜視図である。It is a perspective view of the tank of the present invention. 本発明の要部構成部品を循環する熱媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the heat medium which circulates the principal part component of this invention.

符号の説明Explanation of symbols

10 ケース
12 タンク
14 集熱器
18 フレネルレンズ
20 連結パイプ
22 第一循環経路
24 第二循環経路
26 反射部材
32 赤外線反射部材
46 熱交換器
48 熱保持部材
50 保護容器
54 ガス抜きパイプ
56 断熱材
58 エア抜きホース
60 太陽追尾装置
DESCRIPTION OF SYMBOLS 10 Case 12 Tank 14 Heat collector 18 Fresnel lens 20 Connection pipe 22 1st circulation path 24 2nd circulation path 26 Reflective member 32 Infrared reflective member 46 Heat exchanger 48 Heat holding member 50 Protection container 54 Degassing pipe 56 Thermal insulation material 58 Air bleeding hose 60 Solar tracking device

Claims (15)

太陽光を一箇所に集中させるための光収束手段と、その光収束手段によって集められた太陽光の光を受光するためのものであって内部に通路を形成した集熱器と、タンクと、前記集熱器と前記タンクとを連結する連結パイプと、前記集熱器と前記タンクと前記パイプとを熱媒が循環移動する循環経路と、前記循環経路内を移動する熱媒の各位置での温度差によって熱媒が前記循環経路内を自然循環移動することを特徴とする太陽熱集熱装置。   A light converging means for concentrating sunlight in one place, a heat collector for receiving sunlight light collected by the light converging means and having a passage formed therein, a tank, At each position of a connection pipe that connects the heat collector and the tank, a circulation path through which the heat medium circulates between the heat collector, the tank, and the pipe, and a heat medium that moves through the circulation path A solar heat collecting apparatus, wherein the heat medium naturally circulates in the circulation path due to a temperature difference between the two. 前記集熱器を複数個とし、前記循環経路内の熱媒が前記複数の集熱器と前記タンクとを順に循環するものとしたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collector according to claim 1, wherein a plurality of the heat collectors are provided, and a heat medium in the circulation path circulates through the plurality of heat collectors and the tank in order. 前記光収束手段をフレネルレンズとしたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, wherein the light converging means is a Fresnel lens. 光収束手段の周囲と前記集熱器の周囲とを筒状に連絡する反射部材で覆い、その反射部材の反射面を筒状の内側に配置したことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collector according to claim 1, wherein the periphery of the light converging means and the periphery of the heat collector are covered with a reflecting member communicating in a cylindrical shape, and the reflecting surface of the reflecting member is disposed inside the cylindrical shape. Thermal device. 前記反射部材を4枚の板状のものから形成することを特徴とする請求項4記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 4, wherein the reflecting member is formed of four plate-like members. 前記集熱器の前記光収束手段と反対側に反射面を前記集熱器側に対面させた赤外線反射部材を備えたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, further comprising an infrared reflecting member having a reflecting surface facing the heat collector side on the opposite side of the light collecting means of the heat collector. 前記連結パイプの少なくとも一部をフレキシブル管としたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, wherein at least a part of the connection pipe is a flexible pipe. 前記熱交換器を前記タンク内に備えることを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, wherein the heat exchanger is provided in the tank. 前記タンクを内部空間と外部空間の二重構造とし、内部空間に前記熱媒を通過させ、外部空間を真空空間としたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, wherein the tank has a double structure of an internal space and an external space, the heat medium passes through the internal space, and the external space is a vacuum space. 前記集熱器と前記タンクと前記連結パイプと前記反射部材とを内部に収容するためのケースを備えたことを特徴とする請求項1記載の太陽熱集熱装置。   The solar heat collecting apparatus according to claim 1, further comprising a case for housing the heat collector, the tank, the connecting pipe, and the reflecting member therein. 前記反射部材の反射面の裏面側であって前記ケースの内部側に前記タンクと前記連結パイプとを配置し、かつ前記反射部材の反射面の裏面側であって前記ケースの内部側に断熱材を充填したことを特徴とする請求項10記載の太陽熱集熱装置。   The tank and the connecting pipe are disposed on the back surface side of the reflection surface of the reflection member and on the inner side of the case, and the heat insulating material is disposed on the back surface side of the reflection surface of the reflection member and on the inner side of the case. The solar heat collecting apparatus according to claim 10, wherein 前記ケースを太陽追尾駆動装置に取付け、前記光収束手段に垂直に太陽光を照射させるように前記太陽追尾駆動装置で前記ケースを移動させるようにしたことを特徴とする請求項10記載の太陽熱集熱装置。   11. The solar heat collector according to claim 10, wherein the case is attached to a solar tracking drive device, and the case is moved by the solar tracking drive device so as to irradiate sunlight vertically to the light converging means. Thermal device. 前記タンク内の熱媒循環経路において、前記太陽追尾駆動装置による変位によっても常に上位となる箇所に外部と連絡するガス抜きパイプを連絡したことを特徴とする請求項12記載の太陽熱集熱装置。   13. The solar heat collecting apparatus according to claim 12, wherein in the heat medium circulation path in the tank, a degassing pipe that communicates with the outside is always connected to an upper position even by displacement by the solar tracking drive device. 前記タンク内の循環経路において、前記太陽追尾駆動装置による変位によっても常に下位となる箇所に、前記集熱器と連絡する連結パイプを連絡したことを特徴とする請求項10記載の太陽熱集熱装置。   The solar heat collector according to claim 10, wherein a connecting pipe that communicates with the heat collector is connected to a position that is always lower than the displacement by the solar tracking drive device in the circulation path in the tank. . 前記タンクの循環経路内に150℃を越える温度を融点とすると共に固体と液体との間の変化時に大きな潜熱を有する熱保持材を真空封入した保護容器を備えたことを特徴とする請求項1記載の太陽熱集熱装置。   2. A protective container in which a heat retaining material having a large latent heat at the time of a change between a solid and a liquid is vacuum-sealed in the circulation path of the tank so as to have a temperature exceeding 150 ° C. as a melting point. The solar thermal collector described.
JP2005151837A 2005-05-25 2005-05-25 Solar heat collecting system Pending JP2006329491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151837A JP2006329491A (en) 2005-05-25 2005-05-25 Solar heat collecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151837A JP2006329491A (en) 2005-05-25 2005-05-25 Solar heat collecting system

Publications (1)

Publication Number Publication Date
JP2006329491A true JP2006329491A (en) 2006-12-07

Family

ID=37551360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151837A Pending JP2006329491A (en) 2005-05-25 2005-05-25 Solar heat collecting system

Country Status (1)

Country Link
JP (1) JP2006329491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20092051A1 (en) * 2009-11-23 2011-05-24 Air Control S R L PERFECTED SOLAR COLLECTOR AND PERFECTED THERMAL SOLAR SYSTEM
JP2017505416A (en) * 2014-01-24 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Piping system for solar power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20092051A1 (en) * 2009-11-23 2011-05-24 Air Control S R L PERFECTED SOLAR COLLECTOR AND PERFECTED THERMAL SOLAR SYSTEM
JP2017505416A (en) * 2014-01-24 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Piping system for solar power plant

Similar Documents

Publication Publication Date Title
US7856974B2 (en) Solar chimney with internal solar collector
US4505260A (en) Radiant energy device
US9989278B1 (en) Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same
US20100031991A1 (en) Concentrating photovoltaic generation system
WO2010074141A1 (en) Solar ray heat conversion device
JP2014511472A (en) Energy conversion / heat collection system
US7854224B2 (en) Solar chimney with internal and external solar collectors
AU2008200916B2 (en) Solar chimney
WO2012120016A1 (en) Receiver for a beam down power plant, system with the receiver and use of the system
US20080156317A1 (en) Solar chimney for daytime and nighttime use
JP2006329491A (en) Solar heat collecting system
WO2008012390A1 (en) Solar-powered boiler
JP5417091B2 (en) Solar heat converter
BRPI0719235A2 (en) SOLAR THERMAL POWER INSTALLATION.
JP2017200457A (en) Solar heating facility
US8960186B2 (en) Solar chimney with external solar collector
CN104236127B (en) The heat storage system of Dish solar thermal power system
ES2966702T3 (en) Heat receiver for urban concentrated solar energy
EP2058604B1 (en) Improved solar collector
KR101407079B1 (en) solar heat collecting system using cone shape reflector
RU2730188C1 (en) Solar power plant
RU2199704C2 (en) Heliopower plant
JP5011330B2 (en) Cooling device for concentrating power generation system
JPH03256580A (en) Solar generating system
US20210018223A1 (en) Method for collecting solar radiation and transforming it into heat energy