JP2006328165A - Method for producing chlorinated polyvinyl chloride-based resin - Google Patents

Method for producing chlorinated polyvinyl chloride-based resin Download PDF

Info

Publication number
JP2006328165A
JP2006328165A JP2005151932A JP2005151932A JP2006328165A JP 2006328165 A JP2006328165 A JP 2006328165A JP 2005151932 A JP2005151932 A JP 2005151932A JP 2005151932 A JP2005151932 A JP 2005151932A JP 2006328165 A JP2006328165 A JP 2006328165A
Authority
JP
Japan
Prior art keywords
chlorine
vinyl chloride
chloride resin
pvc
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005151932A
Other languages
Japanese (ja)
Other versions
JP4728701B2 (en
Inventor
Toshifumi Sanji
敏文 三二
Hideaki Tanaka
秀明 田中
Masatoshi Harada
昌敏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokuyama Sekisui Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005151932A priority Critical patent/JP4728701B2/en
Publication of JP2006328165A publication Critical patent/JP2006328165A/en
Application granted granted Critical
Publication of JP4728701B2 publication Critical patent/JP4728701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing chlorinated polyvinyl chloride-based resin excellent in productivity and suppressed in generation of unstable structures to have excellent heat stability, especially for producing chlorinated polyvinyl chloride-based resin having ≥65 wt.% chlorine content. <P>SOLUTION: The method for producing chlorinated polyvinyl chloride-based resin comprises performing chlorination in the range of 0.010-0.020 kg/PVC-kg×5 min chlorine consumption rate (chlorine consumption amount per 1 kg raw material vinyl chloride-based resin during 5 min) at the time when chlorine content of the chlorinated polyvinyl chloride-based resin is by 5 wt.% lower than the final chlorine content, then gradually decreasing the chlorine consumption rate (chlorine consumption amount per 1 kg raw material vinyl chloride-based resin during 5 min) and performing chlorination in the range of 0.005-0.015 kg/PVC-kg×5 min chlorine consumption rate (chlorine consumption amount per 1 kg raw material vinyl chloride-based resin during 5 min) at the time when the chlorine content is by 3 wt.% lower than the final chlorine content. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩素化塩化ビニル系樹脂の製造方法に関するものであり、特に、高耐熱用途に用いられる塩素含有量65重量%以上の塩素化塩化ビニル系樹脂の製造において、生産性を維持しつつ、不安定構造の生成を極力抑制し、熱安定性に優れた樹脂を得るために反応を制御した塩素化塩化ビニル系樹脂の製造方法である。   The present invention relates to a method for producing a chlorinated vinyl chloride resin, and in particular, in the production of a chlorinated vinyl chloride resin having a chlorine content of 65% by weight or more used for high heat resistance applications, while maintaining productivity. This is a method for producing a chlorinated vinyl chloride resin in which the reaction is controlled in order to obtain a resin excellent in thermal stability while suppressing the generation of an unstable structure as much as possible.

従来、塩素化塩化ビニル系樹脂(以下、「CPVC」という。)は、塩化ビニル系樹脂(以下、「PVC」という。)を後塩素化して製造されている。CPVCはPVCの長所である難燃性、耐候性、耐薬品性などの特徴を有しつつ、且つ、PVCの欠点といわれる高温での機械的物性を向上させたものであり、有用な樹脂として多方面の用途に使用されている。   Conventionally, a chlorinated vinyl chloride resin (hereinafter referred to as “CPVC”) is produced by post-chlorination of a vinyl chloride resin (hereinafter referred to as “PVC”). CPVC has features such as flame resistance, weather resistance, and chemical resistance, which are the advantages of PVC, and has improved mechanical properties at high temperatures, which are said to be disadvantages of PVC, and is useful as a resin. It is used for various purposes.

即ち、CPVCはPVCの持つ、優れた難燃性、耐候性、耐薬品性などをそのまま有し、更に、PVCよりも熱変形温度が20〜40℃も高いので、PVCの使用可能な上限温度が60〜70℃付近であるのに対し、CPVCは100℃付近でも使用可能であり、耐熱パイプ、耐熱シート、耐熱工業板などに使用されている。   That is, CPVC has the excellent flame retardancy, weather resistance, chemical resistance, etc. of PVC as it is, and further, the heat deformation temperature is 20-40 ° C. higher than PVC, so the upper limit temperature at which PVC can be used Is around 60-70 ° C., CPVC can be used even near 100 ° C., and is used for heat-resistant pipes, heat-resistant sheets, heat-resistant industrial plates and the like.

CPVCの製造方法は、一般にPVCを水媒体中に懸濁させ、そこに光又は熱によるエネルギーを与え、塩素化する方法が用いられている。塩素化速度は、光エネルギー又は熱エネルギーを多く付与すると早くなるが、不安定構造の生成が促進され熱安定性に劣るという欠点があった。   As a method for producing CPVC, generally, a method is used in which PVC is suspended in an aqueous medium, and energy is applied by light or heat to chlorinate the PVC. The chlorination rate is increased when a large amount of light energy or heat energy is applied, but there is a disadvantage that the formation of an unstable structure is promoted and the thermal stability is poor.

上記欠点を解消する為に、過酸化水素を用いることで反応速度を制御する方法が提案されている。例えば、密閉可能な容器内でポリ塩化ビニルを水性媒体中に懸濁させ、上記容器内を減圧した後、塩素を容器内に導入して90〜140℃の温度でポリ塩化ビニルを塩素化する方法であって、塩素化の過程で、反応中のポリ塩化ビニルの塩素含有量が60重量%以上に至った時点で、ポリ塩化ビニルに対し5〜50ppm/hrの速度で過酸化水素の添加を開始する事を特徴とする塩素化塩化ビニル系樹脂の製造方法(例えば、特許文献1参照)が提案されている。
特開2001−151815号公報
In order to eliminate the above disadvantages, a method of controlling the reaction rate by using hydrogen peroxide has been proposed. For example, polyvinyl chloride is suspended in an aqueous medium in a sealable container, the inside of the container is decompressed, and then chlorine is introduced into the container to chlorinate polyvinyl chloride at a temperature of 90 to 140 ° C. A method in which hydrogen peroxide is added at a rate of 5 to 50 ppm / hr with respect to polyvinyl chloride when the chlorine content of the polyvinyl chloride during the reaction reaches 60% by weight or more during the chlorination process. There has been proposed a method for producing a chlorinated vinyl chloride resin characterized by starting the process (for example, see Patent Document 1).
JP 2001-151815 A

しかしながら、上記塩素化塩化ビニル系樹脂の製造方法は、製造するCPVCの塩素含有量に関係なく60重量%と一定の塩素含有量に達した時点で反応速度を制御しているため、より高耐熱用途に使用されるCPVC(例えば、塩素含有量が65重量%以上のCPVC)を製造する際には、塩素含有量が高くなるほど極端に反応速度が低下するため、生産性が著しく悪くなり熱安定性と生産性の両立が不充分であった。   However, the method for producing the chlorinated vinyl chloride resin controls the reaction rate when reaching a constant chlorine content of 60% by weight regardless of the chlorine content of the CPVC to be produced. When manufacturing CPVC used for applications (for example, CPVC with a chlorine content of 65% by weight or more), the reaction rate decreases drastically as the chlorine content increases. The balance between productivity and productivity was insufficient.

本発明は、上記従来技術の課題に鑑み、生産性に優れ、不安定構造の生成を抑制することによる熱安定性の優れた塩素化塩化ビニル系樹脂、特に、塩素含有量が65重量%以上の塩素化塩化ビニル系樹脂の製造方法を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is a chlorinated vinyl chloride resin excellent in productivity and excellent in thermal stability by suppressing the formation of unstable structures, in particular, the chlorine content is 65% by weight or more. An object of the present invention is to provide a method for producing a chlorinated vinyl chloride resin.

本発明の塩素化塩化ビニル系樹脂の製造方法は、密閉可能な反応容器内で塩化ビニル系樹脂を水性媒体中に分散させ、反応容器内を減圧した後、塩素を容器内に導入して塩化ビニル系樹脂を塩素化する塩素化塩化ビニル系樹脂の製造方法であって、塩素化塩化ビニル系樹脂の塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.010〜0.020kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.005〜0.015kg/PVC−Kg・5minの範囲で行うことを特徴とする.   In the method for producing a chlorinated vinyl chloride resin of the present invention, a vinyl chloride resin is dispersed in an aqueous medium in a sealable reaction vessel, the pressure in the reaction vessel is reduced, and then chlorine is introduced into the vessel for chlorination. A method for producing a chlorinated vinyl chloride resin for chlorinating a vinyl resin, wherein chlorination is performed when the chlorine content of the chlorinated vinyl chloride resin reaches 5% by weight from the final chlorine content, Chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is in the range of 0.010 to 0.020 kg / PVC-Kg · 5 min, then chlorine consumption rate (1 kg of raw vinyl chloride resin) Chlorine consumption for 5 minutes per 1 kg of raw material vinyl chloride resin. Chlorination at the time when the final chlorine content reached 3% by weight was gradually reduced. )But And carrying out a range of .005~0.015kg / PVC-Kg · 5min.

本発明で使用されるPVCは、塩化ビニル単重合体若しくは塩化ビニルを主体(50重量%以上含む)とする、塩化ビニルと共重合可能なビニルモノマーとの共重合体である。   The PVC used in the present invention is a vinyl chloride homopolymer or a copolymer of vinyl chloride as a main component (including 50% by weight or more) and a vinyl monomer copolymerizable with vinyl chloride.

上記塩化ビニルと共重合可能なビニルモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチル(メタ)アクリレート、エチル(メタ)アクリレートなどの(メタ)アクリレート類;エチレン、プロピレン等のオレフィン;(メタ)アクリル酸、無水マレイン酸、アクリロニトリル、スチレン、塩化ビニリデンなどが挙げられる。   Examples of vinyl monomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene and propylene (Meth) acrylic acid, maleic anhydride, acrylonitrile, styrene, vinylidene chloride, and the like.

上記PVCの平均粒子径は、小さくなると取扱が難しくなり、大きくなると塩素化反応に時間を要すため、100〜200μmが好ましい。又、PVCの平均重合度は、成型加工性に優れている500〜2000が好ましい。   When the average particle size of the PVC becomes small, handling becomes difficult, and when the average particle size becomes large, time is required for the chlorination reaction, so 100 to 200 μm is preferable. The average degree of polymerization of PVC is preferably 500 to 2000, which is excellent in moldability.

上記PVCの製造方法は、特に制限されず、例えば、懸濁重合法、乳化重合法、塊状重合法が挙げられる。   The method for producing the PVC is not particularly limited, and examples thereof include a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method.

上記懸濁重合は、例えば、重合器に塩化ビニル系モノマー、水性媒体、分散剤及び重合開始剤を投入し、所定の重合温度に昇温して重合反応を行い、塩化ビニル系モノマーの重合転化率が70〜90重量%の所定の割合に達した後、冷却、排ガス、脱モノマーの処理を行い、PVCを含むスラリーを得、このスラリーを脱水、乾燥することによりPVCを得る。   In the suspension polymerization, for example, a vinyl chloride monomer, an aqueous medium, a dispersing agent and a polymerization initiator are charged into a polymerization vessel, and the polymerization reaction is performed by raising the temperature to a predetermined polymerization temperature. After the rate reaches a predetermined ratio of 70 to 90% by weight, cooling, exhaust gas, and demonomer treatment are performed to obtain a slurry containing PVC, and the slurry is dehydrated and dried to obtain PVC.

上記分散剤としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性セルロース類;部分ケン化ポリビニルアルコール、ポリエチレンオキサイド、アクリル酸重合体、ゼラチン等の水溶性高分子;ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート等の水溶性乳化剤などが挙げられる。   Examples of the dispersant include water-soluble celluloses such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose; water-soluble polymers such as partially saponified polyvinyl alcohol, polyethylene oxide, acrylic acid polymer, and gelatin; sorbitan monolaur And water-soluble emulsifiers such as polyoxyethylene sorbitan monolaurate.

上記重合開始剤としては、例えば、ラウロイルパーオキサイド;ジイソプロピルパーオキシカーボネート、ジ−2−エチルヘキシルパーオキシカーボネート、ジエトキシエチルパーオキシカーボネート等のパーオキシカーボネート化合物;α−クミルパーオキシネオデカネート、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシネオデカネート等のパーオキシエステル化合物;2,2−アゾビスイソブチロニトリル、2,2−アゾビス−2,4−ジメチルバレロニトリル、2,2−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。   Examples of the polymerization initiator include lauroyl peroxide; peroxycarbonate compounds such as diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, diethoxyethyl peroxycarbonate; α-cumylperoxyneodecanate, t -Peroxy ester compounds such as butyl peroxyneodecanate, t-butyl peroxypivalate, t-hexyl peroxyneodecanate; 2,2-azobisisobutyronitrile, 2,2-azobis-2, Examples thereof include azo compounds such as 4-dimethylvaleronitrile and 2,2-azobis (4-methoxy-2,4-dimethylvaleronitrile).

更に、塩化ビニルの重合に通常使用されている重合調整剤、連鎖移動剤、PH調整剤、帯電防止剤、架橋剤、安定剤、充填剤、酸化防止剤、スケール防止剤等が添加されてもよい。   In addition, polymerization modifiers, chain transfer agents, PH regulators, antistatic agents, cross-linking agents, stabilizers, fillers, antioxidants, scale inhibitors, etc. that are commonly used for vinyl chloride polymerization may be added. Good.

本発明の塩素化塩化ビニル系樹脂の製造方法においては、密閉可能な反応容器内で塩化ビニル系樹脂を水性媒体中に分散させ、容器内を減圧した後、塩素を反応容器内に導入して塩化ビニル系樹脂を塩素化する。   In the method for producing a chlorinated vinyl chloride resin of the present invention, a vinyl chloride resin is dispersed in an aqueous medium in a sealable reaction vessel, the pressure inside the vessel is reduced, and then chlorine is introduced into the reaction vessel. Chlorinate vinyl chloride resin.

上記反応容器としては、例えば、攪拌装置、加熱装置、冷却装置、減圧装置、光照射装置等が装備された密閉可能な耐圧容器が好ましい。   As the reaction vessel, for example, a sealable pressure vessel equipped with a stirrer, a heating device, a cooling device, a decompression device, a light irradiation device and the like is preferable.

PVCを塩素化するには、まず、密閉可能な反応容器内に、PVCと水性媒体を供給し、攪拌してPVCを水性媒体中に分散する。次に、反応容器内を減圧して酸素を除去し、塩素を反応容器内に導入してPVCを塩素化する。   In order to chlorinate PVC, first, PVC and an aqueous medium are supplied into a sealable reaction vessel, and the PVC is dispersed in the aqueous medium by stirring. Next, the pressure in the reaction vessel is reduced to remove oxygen, and chlorine is introduced into the reaction vessel to chlorinate PVC.

上記減圧は、酸素が多く存在すると塩素化反応の制御が妨害されるので、反応容器内の酸素の量が100ppm以下になるように減圧されるのが好ましく、塩素の供給は、少量になると塩素化反応の進行速度が遅く、多くなると反応が終了しても未反応の塩素が多量に残り経済的ではないので、反応容器内の塩素分圧が0.03〜0.5MPaになるように供給されるのが好ましい。   The reduced pressure is preferably controlled so that the amount of oxygen in the reaction vessel is 100 ppm or less because the control of the chlorination reaction is hindered when a large amount of oxygen is present. Since the rate of progress of the chemical reaction is slow, if it increases, a large amount of unreacted chlorine remains even if the reaction is completed, so it is not economical, so supply the chlorine partial pressure in the reaction vessel to be 0.03 to 0.5 MPa. Preferably it is done.

塩素化は、光照射又は加熱することにより行われるが、加熱しながら光照射してもよい。光照射する場合の反応温度は40〜80℃が好ましく、加熱のみで塩素化する場合の反応温度は、反応温度が低くなると塩素化速度が低下し、高くなりすぎると塩素化反応と並行して脱塩酸反応が起こり、得られたCPVCが着色するようになるので、70〜140℃が好ましく、より好ましくは100〜135℃である。   Chlorination is performed by light irradiation or heating, but light irradiation may be performed while heating. The reaction temperature in the case of light irradiation is preferably 40 to 80 ° C. The reaction temperature in the case of chlorination only by heating decreases the chlorination rate when the reaction temperature is lowered, and in parallel with the chlorination reaction when it is too high. Since dehydrochlorination reaction occurs and the resulting CPVC comes to be colored, it is preferably 70 to 140 ° C, more preferably 100 to 135 ° C.

又、塩素化の際に、光照射する事無く、過酸化水素を添加してもよい。過酸化水素の添加量は、少なくなると塩素化の速度を向上させる効果が無くなり、多くなると得られたCPVCの耐熱性が低下するので、PVCに対して1時間当たり5〜500ppm添加されるのが好ましい。又、過酸化水素を添加した場合の反応温度は、過酸化水素を添加することにより塩素化速度が向上するので60〜140℃が好ましく、より好ましくは65〜110℃である。   Further, hydrogen peroxide may be added without irradiating light during chlorination. If the amount of hydrogen peroxide is reduced, the effect of improving the chlorination rate is lost, and if the amount is increased, the heat resistance of the obtained CPVC is lowered. Therefore, 5 to 500 ppm per hour is added to PVC. preferable. The reaction temperature when hydrogen peroxide is added is preferably 60 to 140 ° C., more preferably 65 to 110 ° C., because the chlorination rate is improved by adding hydrogen peroxide.

上記塩素化の速度は、光の照射量、反応温度及び過酸化水素の添加量により制御することができるが、遅くなると生産性が低下し、早くなると脱塩酸反応が起こり、得られたCPVCが着色し、耐熱性も低下するので、平均塩素消費速度(原料の塩化ビニル系樹脂1kg当たりの5分間の塩素消費量)が0.005〜0.05kg・PVC−kg・minになるように設定されるのが好ましい。   The rate of chlorination can be controlled by the amount of light irradiation, the reaction temperature, and the amount of hydrogen peroxide added. However, the productivity decreases when the rate is slow, and the dehydrochlorination reaction occurs when the rate is fast. Colored and heat resistance is reduced, so the average chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is set to 0.005-0.05 kg · PVC-kg · min. Preferably it is done.

そして、本発明の塩素化塩化ビニル系樹脂の製造方法においては、塩素化塩化ビニル系樹脂の塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.010〜0.020kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.005〜0.015kg/PVC−Kg・5minの範囲で行う。   And in the manufacturing method of the chlorinated vinyl chloride resin of the present invention, the chlorination at the time when the chlorine content of the chlorinated vinyl chloride resin reaches 5% by weight from the final chlorine content, the chlorine consumption rate (Chlorine consumption for 5 minutes per 1 kg of raw material vinyl chloride resin) is in the range of 0.010 to 0.020 kg / PVC-Kg · 5 min, and then the chlorine consumption rate (5 per kg of raw material vinyl chloride resin) Chlorination at the time when the final chlorine content has reached 3% by weight, the chlorine consumption rate (5 minutes of chlorine consumption per kg of raw vinyl chloride resin) is 0. 0.005 to 0.015 kg / PVC-Kg · 5 min.

塩素消費速度の制御方法としては、上述したように、光の照射量、反応温度、過酸化水素の添加等が挙げられる。光照射は照射距離が長くなるに従いエネルギーが損失するため、光照射装置近傍のみで反応が進みやすく反応の均一化の維持が困難となり、これを克服するために攪拌効率を大幅に上げる必要があり、そのためには設備改造が必要である。又、光照射強度の増加には光照射装置の能力増強が必要となるが、光照射強度増加により設備の大型化もしくは光照射装置の増設が必要となるため容易に可変する事が困難であり、経済的ではない。   As described above, the method for controlling the chlorine consumption rate includes light irradiation, reaction temperature, addition of hydrogen peroxide, and the like. Light irradiation loses energy as the irradiation distance becomes longer, so the reaction proceeds easily only in the vicinity of the light irradiation device, making it difficult to maintain a uniform reaction. To overcome this, it is necessary to greatly increase the stirring efficiency. To that end, equipment modification is necessary. In addition, increasing the light irradiation intensity requires enhancement of the light irradiation device capacity, but it is difficult to change easily because the increase in light irradiation intensity requires an increase in the size of the equipment or the addition of the light irradiation device. Not economical.

又、反応初期より高温(PVCのガラス転移温度以上)にした場合には塩素化速度は速くなるが、同時にPVC自体の脱塩酸反応も生じ、熱安定性などに悪影響をきたさない範囲に設定する必要があるため、反応温度の制御範囲が狭くなる。又、高温に耐えうる反応容器、周辺設備の対応といった設備対応が多く発生し経済的ではない。   In addition, when the temperature is higher than the initial reaction (above the glass transition temperature of PVC), the chlorination rate is increased, but at the same time, a dehydrochlorination reaction of PVC itself occurs, and the temperature is set within a range that does not adversely affect the thermal stability. Since this is necessary, the control range of the reaction temperature is narrowed. In addition, there are many facilities such as reaction vessels that can withstand high temperatures and peripheral facilities, which is not economical.

過酸化水素を塩素化反応の触媒に用いた場合は、過酸化水素の濃度、添加スピードにより反応速度を制御できる。特に、過酸化水素は水媒体中に素早く均一に分散し、且つ、添加速度の可変はポンプなどにより容易に制御可能なので、塩素化の進行に合わせた制御に非常に適している。   When hydrogen peroxide is used as a catalyst for the chlorination reaction, the reaction rate can be controlled by the concentration of hydrogen peroxide and the addition speed. In particular, hydrogen peroxide is quickly and uniformly dispersed in an aqueous medium, and the variable addition rate can be easily controlled by a pump or the like, so it is very suitable for control in accordance with the progress of chlorination.

塩素化速度は塩素化の進行具合により同じ条件でも異なる。これは塩素化の進行に伴いPVC構造中、塩素が付加し易い箇所から優先的に反応が進行し、一定塩素含有量以上になった場合には構造上塩素を付加させるに必要なエネルギーが大きくなり、かつ不安定な塩素が脱塩酸するなど塩素付加以外の反応も同時に起こるなどより複雑な反応を伴うためである。   The chlorination rate varies under the same conditions depending on the progress of chlorination. As the chlorination progresses, the reaction proceeds preferentially from the position where chlorine is easily added in the PVC structure, and when the chlorine content exceeds a certain level, the energy required for adding chlorine is large due to the structure. This is because more complicated reactions such as reactions other than the addition of chlorine such as dehydrochlorination of unstable chlorine occur simultaneously.

このことから塩素化反応初期においては、通常光照射や加熱温度のみでも充分に塩化速度を高く維持することができるが、塩素化反応中期から後期にかけてはこれらのエネルギー源では不足となり塩素化速度が極端に遅くなることが知られている。これを補完するために過酸化水素などの過酸化物を触媒として添加することにより反応速度の向上を計ることが可能となる。   Therefore, at the initial stage of the chlorination reaction, the chlorination rate can be maintained sufficiently high even with ordinary light irradiation and heating temperature alone, but these energy sources are insufficient from the middle to the later stage of the chlorination reaction, and the chlorination rate is reduced. It is known to be extremely slow. In order to supplement this, it is possible to improve the reaction rate by adding a peroxide such as hydrogen peroxide as a catalyst.

塩素化反応初期において過酸化水素を投入した場合には、反応速度は当然通常以上に早くなり塩素化反応時間自体を短縮することは可能であるが、反応速度が速くなりすぎると発熱反応が起こり、通常塩素化反応後期に起こる脱塩酸反応などが初期から起こりやすくなることから二重結合や分岐といった不安定な構造を通常より多く有したCPVCとなり、最も重要な初期着色性や熱安定性といった性能が低下する。   When hydrogen peroxide is added at the initial stage of the chlorination reaction, the reaction rate is naturally faster than usual, and the chlorination reaction time itself can be shortened. However, if the reaction rate becomes too fast, an exothermic reaction occurs. Since the dehydrochlorination reaction that usually occurs in the latter stage of the chlorination reaction tends to occur from the beginning, CPVC has more unstable structures such as double bonds and branching than usual, and the most important initial colorability and thermal stability, etc. Performance decreases.

塩素化反応中期から後期にかけて、例えば、過酸化水素を添加することで反応速度を落とさないように制御可能となるが、添加しなかった場合には製品塩素含有量に達するまでの時間が長くなり生産性が大幅に悪化する。生産性を維持しようと加熱温度を上げた場合でもその効果は少なく、塩素化反応時間中に受ける熱履歴が大きくなることによる熱安定性が低下する。   From mid to late chlorination reaction, for example, by adding hydrogen peroxide, it can be controlled so as not to reduce the reaction rate, but if it is not added, it takes longer to reach the product chlorine content. Productivity is greatly deteriorated. Even if the heating temperature is increased to maintain productivity, the effect is small, and the thermal stability due to the increased thermal history received during the chlorination reaction time is lowered.

例えば、過酸化水素を添加することにより、塩素化の進行具合(塩素含有量)と塩素消費速度を制御し、生産性の向上、不安定構造の生成抑制、熱履歴受容の最小化等をはかり、熱安定性に優れたCPVCを得ることが可能となる。   For example, by adding hydrogen peroxide, the progress of chlorination (chlorine content) and the rate of chlorine consumption are controlled to improve productivity, suppress the formation of unstable structures, minimize the acceptance of thermal history, etc. It becomes possible to obtain CPVC excellent in thermal stability.

前述のCPVCの製造方法(例えば、特許文献1参照)では、塩素含有量が60重量%になった時点の塩素消費速度を制御することで生産性と初期着色性の改善を実施しているが、塩素含有量が65重量%以上の製品についても一様に適用させた場合には、熱安定性などの性能に対しては効果を発揮するが、生産性の面では塩素含有量が高くなるほどに低下している。これは反応速度の制御がCPVCの塩素含有量に関わらず一定に設定しているためである。   In the above-mentioned CPVC manufacturing method (for example, see Patent Document 1), productivity and initial colorability are improved by controlling the chlorine consumption rate when the chlorine content reaches 60% by weight. When applied even to products with a chlorine content of 65% by weight or more, it is effective for performance such as thermal stability, but in terms of productivity, the higher the chlorine content, It has dropped to. This is because the reaction rate is set to be constant regardless of the chlorine content of CPVC.

本発明は、塩素化されているPVCの塩素含有率が、製造するCPVCの塩素含有率より5重量%手前及び3重量%手前の2段階で制御することにより、生産性を確保しつつ、不安定構造の発生を抑制した。   In the present invention, the chlorine content of chlorinated PVC is controlled in two stages, 5 wt% before and 3 wt% before the chlorine content of CPVC to be manufactured, while ensuring productivity. Stable structure was suppressed.

即ち、CPVCの塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.010〜0.020kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.005〜0.015kg/PVC−Kg・5minの範囲で行うことにより、生産性が優れ、不安定構造の生成を抑制することにより熱安定性の優れたCPVCが得られる。   That is, when the chlorine content of CPVC reaches 5% by weight before the final chlorine content, the chlorine consumption rate (5 minutes of chlorine consumption per 1 kg of the raw vinyl chloride resin) is 0.010. 〜0.020kg / PVC-Kg ・ 5min. After that, the chlorine consumption rate (chlorine consumption for 5 minutes per 1kg of raw material vinyl chloride resin) is gradually decreased and 3% by weight from the final chlorine content. Chlorination at the point of time when the chlorine consumption rate is reached in a range of 0.005 to 0.015 kg / PVC-Kg · 5 min when the chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of the raw material vinyl chloride resin) is CPVC excellent in heat stability can be obtained by suppressing the formation of unstable structures.

上記CPVCの製造方法は、特に、塩素含有量が65重量%以上のCPVCを製造するのに適しているが、塩素含有量が高くなるほどに生産性が低下し、又、不安定構造が多く生成することによる熱安定性の低下も発生し、生産性と熱安定性を両立するためには、塩素化速度をより細かく制御することが必要となる。   The CPVC production method is particularly suitable for producing CPVC having a chlorine content of 65% by weight or more. However, the higher the chlorine content, the lower the productivity and the generation of many unstable structures. As a result, a decrease in thermal stability occurs, and in order to achieve both productivity and thermal stability, it is necessary to control the chlorination rate more finely.

従って、最終塩素含有量が65重量%以上、70重量%未満のCPVCを製造する際には、最終塩素含有量から5重量%手前に達した時点から3重量%手前に達した時点までの塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.010〜0.015kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を、0.005〜0.010kg/PVC−Kg・5minの範囲にて行うのが好ましい。   Therefore, when manufacturing CPVC with a final chlorine content of 65% by weight or more and less than 70% by weight, the chlorine from the time when the final chlorine content reaches 5% by weight to the time when it reaches 3% by weight. Chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is in the range of 0.010 to 0.015 kg / PVC-Kg · 5 min. Chlorination at the time when 3% by weight of the final chlorine content was reached, and the chlorine consumption rate (chlorine for 5 minutes per kg of vinyl chloride resin) The consumption) is preferably in the range of 0.005 to 0.010 kg / PVC-Kg · 5 min.

又、塩素含有量が70重量%以上のCPVCを製造する際には、更に、生産性の低下が激しく、又、反応速度に関わらず不安定構造が生成する領域となるため、さらに熱安定性の低下が大きくなる。   In addition, when manufacturing CPVC with a chlorine content of 70% by weight or more, the productivity is further lowered, and an unstable structure is generated regardless of the reaction rate. The decrease in

従って、最終塩素含有量が70重量%未満のCPVCを製造する際には、最終塩素含有量から5重量%手前に達した時点の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.015〜0.020kg/PVC−Kg・5minの範囲で行い、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を、0.005〜0.015kg/PVC−Kg・5minの範囲にて行うのが好ましい。   Therefore, when manufacturing CPVC having a final chlorine content of less than 70% by weight, the chlorination at the time when the final chlorine content has reached 5% by weight is reduced by the chlorine consumption rate (5 per kg of the raw vinyl chloride resin). Chlorination at a time when the final chlorine content reaches 3% by weight, and the chlorine consumption rate (raw material vinyl chloride) is 0.15 to 0.020 kg / PVC-Kg · 5 min. (Chlorine consumption for 5 minutes per 1 kg of the resin) is preferably performed in the range of 0.005 to 0.015 kg / PVC-Kg · 5 min.

本発明の塩素化塩化ビニル系樹脂の製造方法の構成は上述の通りであり、生産性が優れ、不安定構造の生成を抑制することによる熱安定性の優れた塩素化塩化ビニル系樹脂、特に、塩素含有量が65重量%以上の塩素化塩化ビニル系樹脂の製造することができる。   The structure of the method for producing the chlorinated vinyl chloride resin of the present invention is as described above, and the productivity is excellent, and the chlorinated vinyl chloride resin excellent in thermal stability by suppressing the generation of unstable structure, particularly A chlorinated vinyl chloride resin having a chlorine content of 65% by weight or more can be produced.

以下、本発明の実施例について説明するが、下記の例に限定されるものではない。
(実施例1)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000のPVC50重量部を供給し、攪拌してPVCをイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に100℃に昇温した。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
Example 1
Supply 200 parts by weight of ion-exchanged water and 50 parts by weight of PVC with an average polymerization degree of 1000 to a glass-lined reaction vessel with an internal volume of 300 liters, stir to uniformly disperse the PVC in the ion-exchanged water, and then reduce the pressure. The oxygen in the reaction vessel was removed and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を320ppm(/時間)添加しながら塩素化反応を開始し、塩素化されたPVCの塩素含有量が62重量%になるまで反応を行った。   Next, chlorine was supplied into the reaction vessel so that the partial pressure of chlorine was 0.4 MPa, and chlorination reaction was started while adding 0.2 wt% hydrogen peroxide at 320 ppm (/ hour). The reaction was continued until the chlorine content of PVC reached 62% by weight.

塩素化されたPVCの塩素含有量が62重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を200ppm(/時間)に減少し、塩素消費速度が0.012kg/PVC−kg・5minになるように調整して、塩素化を進め、塩素含有量が64重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を1時間当たり150ppmに(/時間)減少し、塩素消費速度が0.008kg/PVC−kg・5minになるように調整して塩素化を進め、合計6.0時間塩素化して塩素含有量が67重量%のCPVCを得た。   When the chlorine content of chlorinated PVC reaches 62% by weight (before 5% by weight), the addition amount of 0.2% by weight hydrogen peroxide is reduced to 200 ppm (/ hour), and the chlorine consumption rate is 0 .012 kg / PVC-kg · adjusted to 5 min, proceeded with chlorination, and added 0.2 wt% hydrogen peroxide when the chlorine content reached 64 wt% (3 wt% before) Reduced to 150 ppm per hour (/ hour), adjusted to a chlorine consumption rate of 0.008 kg / PVC-kg · 5 min, proceeded with chlorination, and chlorinated for a total of 6.0 hours with a chlorine content of 67 A weight percent CPVC was obtained.

(実施例2)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000のPVC50重量部を供給し、攪拌してPVCをイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に100℃に昇温した。
(Example 2)
Supply 200 parts by weight of ion-exchanged water and 50 parts by weight of PVC with an average polymerization degree of 1000 to a glass-lined reaction vessel with an internal volume of 300 liters, stir to uniformly disperse the PVC in the ion-exchanged water, and then reduce the pressure. The oxygen in the reaction vessel was removed and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を320ppm(/時間)添加しながら塩素化反応を開始し、塩素化されたPVCの塩素含有量が66重量%になるまで反応を行った。   Next, chlorine was supplied into the reaction vessel so that the partial pressure of chlorine was 0.4 MPa, and chlorination reaction was started while adding 0.2 wt% hydrogen peroxide at 320 ppm (/ hour). The reaction was continued until the chlorine content of PVC reached 66% by weight.

塩素化されたPVCの塩素含有量が66重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を300ppm(/時間)に減少し、塩素消費速度が0.016kg/PVC−kg・5minになるように調整して、塩素化を進め、68重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を200ppm(/時間)に減少し、塩素消費速度が0.012kg/PVC−kg・5minになるように調整して塩素化を進め、合計9.0時間塩素化して塩素含有量が71重量%のCPVCを得た。   When the chlorine content of chlorinated PVC reaches 66 wt% (5 wt% before), the amount of 0.2 wt% hydrogen peroxide added is reduced to 300 ppm (/ hour), and the chlorine consumption rate is 0 .016 kg / PVC-kg · adjusted to 5 min, proceeded with chlorination, and when it reached 68 wt% (3 wt%), the amount of 0.2 wt% hydrogen peroxide added was 200 ppm (/ hour) ), The chlorine consumption rate was adjusted to 0.012 kg / PVC-kg · 5 min, and chlorination proceeded, and chlorination was performed for a total of 9.0 hours to obtain CPVC having a chlorine content of 71 wt%. .

(比較例1)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000のPVC50重量部を供給し、攪拌してPVCをイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に100℃に昇温した。
(Comparative Example 1)
Supply 200 parts by weight of ion-exchanged water and 50 parts by weight of PVC with an average polymerization degree of 1000 to a glass-lined reaction vessel with an internal volume of 300 liters, stir to uniformly disperse the PVC in the ion-exchanged water, and then reduce the pressure. The oxygen in the reaction vessel was removed and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を320ppm(/時間)添加しながら塩素化反応を開始し、塩素化されたPVCの塩素含有量が60重量%になるまで反応を行った。   Next, chlorine was supplied into the reaction vessel so that the partial pressure of chlorine was 0.4 MPa, and chlorination reaction was started while adding 0.2 wt% hydrogen peroxide at 320 ppm (/ hour). The reaction was continued until the chlorine content of PVC reached 60% by weight.

塩素化された塩化ビニル樹脂の塩素含有量が60重量%(7重量%手前)に達した時に、0.2重量%過酸化水素の添加量を150ppm(/時間)に減少し、塩素消費速度が0.005kg/PVC−kg・5minになるように調整して、塩素化を進め、8.0時間塩素化して塩素含有量が67重量%のCPVCを得た。   When the chlorine content of the chlorinated vinyl chloride resin reaches 60% by weight (7% by weight), the addition amount of 0.2% by weight hydrogen peroxide is reduced to 150 ppm (/ hour), and the chlorine consumption rate Was adjusted to 0.005 kg / PVC-kg · 5 min, chlorination was advanced, and chlorination was performed for 8.0 hours to obtain CPVC having a chlorine content of 67 wt%.

(比較例2)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000のPVC50重量部を供給し、攪拌してPVCをイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に100℃に昇温した。
(Comparative Example 2)
Supply 200 parts by weight of ion-exchanged water and 50 parts by weight of PVC with an average polymerization degree of 1000 to a glass-lined reaction vessel with an internal volume of 300 liters, stir to uniformly disperse PVC in ion-exchanged water, and then reduce the pressure. The oxygen in the reaction vessel was removed and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を320ppm(/時間)添加しながら塩素化反応を開始し、塩素化された塩化ビニル樹脂の塩素含有量が60重量%になるまで反応を行った。   Next, chlorine was supplied into the reaction vessel so that the partial pressure of chlorine was 0.4 MPa, and chlorination reaction was started while adding 0.2 wt% hydrogen peroxide at 320 ppm (/ hour). The reaction was continued until the chlorine content of the vinyl chloride resin reached 60% by weight.

塩素化されたPVCの塩素含有量が60重量%(11重量%手前)に達した時に、0.2重量%過酸化水素の添加量を塩素消費速度が0.012kg/PVC−kg・5minになるように調整してしながら塩素化を進め、5.8時間塩素化して塩素含有量が67重量%のCPVCを得た。   When the chlorine content of chlorinated PVC reaches 60% by weight (11% before), the amount of 0.2% hydrogen peroxide added is reduced to 0.012kg / PVC-kg · 5min. The chlorination was advanced while adjusting so that CPVC with a chlorine content of 67 wt% was obtained by chlorinating for 5.8 hours.

(比較例3)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000のPVC50重量部を供給し、攪拌してPVCをイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に100℃に昇温した。
(Comparative Example 3)
Supply 200 parts by weight of ion-exchanged water and 50 parts by weight of PVC with an average polymerization degree of 1000 to a glass-lined reaction vessel with an internal volume of 300 liters, stir to uniformly disperse the PVC in the ion-exchanged water, and then reduce the pressure. The oxygen in the reaction vessel was removed and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を320ppm(/時間)添加しながら塩素化反応を開始し、塩素化された塩化ビニル樹脂の塩素含有量が60重量%になるまで反応を行った。   Next, chlorine was supplied into the reaction vessel so that the partial pressure of chlorine was 0.4 MPa, and chlorination reaction was started while adding 0.2 wt% hydrogen peroxide at 320 ppm (/ hour). The reaction was continued until the chlorine content of the vinyl chloride resin reached 60% by weight.

塩素化されたPVCの塩素含有量が60重量%(11重量%手前)に達した時に、0.2重量%過酸化水素の添加量を150ppm(/時間)に減少し、塩素消費速度が0.005kg/PVC−kg・5minになるように調整して、塩素化を進め、18時間塩素化して塩素含有量が71重量%のCPVCを得た。   When the chlorine content of chlorinated PVC reaches 60% by weight (before 11% by weight), the addition amount of 0.2% by weight hydrogen peroxide is reduced to 150 ppm (/ hour), and the chlorine consumption rate is 0 The chlorination was advanced by adjusting to 0.005 kg / PVC-kg · 5 min and chlorinated for 18 hours to obtain a CPVC having a chlorine content of 71 wt%.

得られたCPVC100重量部、有機錫系安定剤(三共有機合成社製、商品名「ONZ−100F」)1.5重量部、MBS系衝撃改質剤(カネカ社製、商品名「M511」)8重量部、アクリル系加工助剤(三菱レイヨン社製、商品名「メタブンレンP−550」)1重量部及びステアリン酸系滑剤(理研ビタミン社製、商品名「SL800」)0.5重量部よりなる樹脂組成物を195℃のロールでロールに巻き付き後3分間ロール混練した。得られたロールシートを用いて静的熱安定性試験である熱老化試験(200℃、10毎×140分)を実施し黒化するまでの時間(分)を測定した。   100 parts by weight of the obtained CPVC, 1.5 parts by weight of an organic tin-based stabilizer (trade name “ONZ-100F” manufactured by Sansha Co., Ltd.), an MBS impact modifier (trade name “M511” manufactured by Kaneka Corporation) ) 8 parts by weight, acrylic processing aid (manufactured by Mitsubishi Rayon Co., Ltd., trade name “Metabunlen P-550”) 1 part by weight and stearic acid lubricant (manufactured by Riken Vitamin Co., trade name “SL800”) 0.5 parts by weight The resulting resin composition was wound around a roll with a 195 ° C. roll and then kneaded for 3 minutes. Using the obtained roll sheet, a heat aging test (200 ° C., 10 × 140 minutes), which is a static thermal stability test, was performed, and the time (minutes) until blackening was measured.

得られたCPVC1gを10mlのガラス製試験管に取り、窒素気流下で190℃のオイルバス中で加熱し、CPVCから発生する塩酸を水中でトラップし、その水のpHを測定することにより、発生した塩酸量が5,000ppmに達するまでの時間を測定した。
各実施例及び比較例の塩素化の条件と、黒化時間及び脱塩酸時間を表1に示した。
Generated by taking 1 g of the obtained CPVC into a 10 ml glass test tube, heating in a 190 ° C oil bath under a nitrogen stream, trapping hydrochloric acid generated from CPVC in water, and measuring the pH of the water The time taken for the amount of hydrochloric acid to reach 5,000 ppm was measured.
Table 1 shows the chlorination conditions, blackening time, and dehydrochlorination time of each example and comparative example.

Figure 2006328165
Figure 2006328165

Claims (3)

密閉可能な反応容器内で塩化ビニル系樹脂を水性媒体中に分散させ、反応容器内を減圧した後、塩素を容器内に導入して塩化ビニル系樹脂を塩素化する塩素化塩化ビニル系樹脂の製造方法であって、塩素化塩化ビニル系樹脂の塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.010〜0.020kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.005〜0.015kg/PVC−Kg・5minの範囲で行うことを特徴とする塩素化塩化ビニル系樹脂の製造方法。   Disperse vinyl chloride resin in an aqueous medium in a sealable reaction vessel, depressurize the reaction vessel, and then introduce chlorine into the vessel to chlorinate the vinyl chloride resin. Chlorination at the time when the chlorine content of the chlorinated vinyl chloride resin has reached 5% by weight from the final chlorine content, the chlorine consumption rate (5 minutes per kg of raw vinyl chloride resin) Of chlorine consumption) is in the range of 0.010 to 0.020 kg / PVC-Kg · 5 min, and thereafter the chlorine consumption rate (chlorine consumption for 5 minutes per kg of the raw vinyl chloride resin) is gradually reduced, Chlorination when the final chlorine content reaches 3% by weight is the chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of the raw vinyl chloride resin) is 0.005 to 0.015 kg / PVC-Kg · 5 Method for producing a chlorinated vinyl chloride resin, which comprises carrying out a range of in. 最終塩素含有量が65重量%以上、70重量%未満の塩素化塩化ビニル系樹脂の製造方法であって、塩素化塩化ビニル系樹脂の塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.010〜0.015kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を、0.005〜0.010kg/PVC−Kg・5minの範囲で行うことを特徴とする請求項1記載の塩素化塩化ビニル系樹脂の製造方法。   A method for producing a chlorinated vinyl chloride resin having a final chlorine content of 65% by weight or more and less than 70% by weight, wherein the chlorine content of the chlorinated vinyl chloride resin is 5% by weight before the final chlorine content. Chlorination at the time of reaching is performed in a range of chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw material vinyl chloride resin) in the range of 0.010 to 0.015 kg / PVC-Kg · 5 min. The rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is gradually reduced, and chlorination at the point when it reaches 3% by weight from the final chlorine content, the chlorine consumption rate (1 kg of raw vinyl chloride resin) 5. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the chlorine consumption per 5 minutes is within a range of 0.005 to 0.010 kg / PVC-Kg · 5 min. 最終塩素含有量が70重量%以上の塩素化塩化ビニル系樹脂の製造方法であって、塩素化塩化ビニル系樹脂の塩素含有量が、最終塩素含有量から5重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)が0.015〜0.020kg/PVC−Kg・5minの範囲で行い、その後、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を次第に低下させ、最終塩素含有量から3重量%手前に達した時点の塩素化を、塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を、0.005〜0.015kg/PVC−Kg・5minの範囲で行うことを特徴とする請求項1記載の塩素化塩化ビニル系樹脂の製造方法。   A method for producing a chlorinated vinyl chloride resin having a final chlorine content of 70% by weight or more, wherein the chlorine content of the chlorinated vinyl chloride resin reaches 5% by weight before the final chlorine content. The chlorine consumption rate (chlorine consumption for 5 minutes per kg of raw vinyl chloride resin) is in the range of 0.015 to 0.020 kg / PVC-Kg · 5 min, and then the chlorine consumption rate (raw vinyl chloride) Chlorine consumption at 5 minutes per 1 kg of raw material vinyl chloride resin is gradually reduced, and chlorination at the time when the final chlorine content reaches 3% by weight is reduced. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the chlorine consumption is performed in the range of 0.005 to 0.015 kg / PVC-Kg · 5 min.
JP2005151932A 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin Active JP4728701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151932A JP4728701B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151932A JP4728701B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JP2006328165A true JP2006328165A (en) 2006-12-07
JP4728701B2 JP4728701B2 (en) 2011-07-20

Family

ID=37550205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151932A Active JP4728701B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP4728701B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246852A (en) * 2006-03-20 2007-09-27 Kaneka Corp Method for producing chlorinated vinyl chloride-based resin
WO2008062526A1 (en) * 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resins and process for production
WO2011004786A1 (en) 2009-07-06 2011-01-13 積水化学工業株式会社 Polymer membrane for water treatment
WO2011108579A1 (en) 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
CN114901706A (en) * 2020-03-31 2022-08-12 积水化学工业株式会社 Chlorinated polyvinyl chloride resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148495A (en) * 1974-05-18 1975-11-28
JPH11263808A (en) * 1998-03-18 1999-09-28 Sekisui Chem Co Ltd Preparation of chlorinated vinyl chloride-based resin
JP2001151815A (en) * 1999-11-29 2001-06-05 Tokuyama Sekisui Ind Corp Method of manufacturing for chlorinated vinyl chloride resin
JP2005126519A (en) * 2003-10-22 2005-05-19 Tokuyama Sekisui Ind Corp Method for producing chlorinated vinyl chloride resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148495A (en) * 1974-05-18 1975-11-28
JPH11263808A (en) * 1998-03-18 1999-09-28 Sekisui Chem Co Ltd Preparation of chlorinated vinyl chloride-based resin
JP2001151815A (en) * 1999-11-29 2001-06-05 Tokuyama Sekisui Ind Corp Method of manufacturing for chlorinated vinyl chloride resin
JP2005126519A (en) * 2003-10-22 2005-05-19 Tokuyama Sekisui Ind Corp Method for producing chlorinated vinyl chloride resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246852A (en) * 2006-03-20 2007-09-27 Kaneka Corp Method for producing chlorinated vinyl chloride-based resin
WO2008062526A1 (en) * 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resins and process for production
WO2011004786A1 (en) 2009-07-06 2011-01-13 積水化学工業株式会社 Polymer membrane for water treatment
WO2011108579A1 (en) 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
CN114901706A (en) * 2020-03-31 2022-08-12 积水化学工业株式会社 Chlorinated polyvinyl chloride resin
CN114901706B (en) * 2020-03-31 2023-10-17 积水化学工业株式会社 Chlorinated polyvinyl chloride resin

Also Published As

Publication number Publication date
JP4728701B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP6469086B2 (en) Method for producing chlorinated vinyl chloride resin
WO2008062526A1 (en) Chlorinated vinyl chloride resins and process for production
JP4728701B2 (en) Method for producing chlorinated vinyl chloride resin
EP2497787B1 (en) Vinyl chloride-based polymer
JP5891242B2 (en) Method for producing chlorinated vinyl chloride resin
JP4610877B2 (en) Method for producing chlorinated vinyl chloride resin
JP2001151815A (en) Method of manufacturing for chlorinated vinyl chloride resin
WO2018043945A1 (en) Method for preparing chlorinated vinyl chloride resin
JP4338703B2 (en) Method for producing chlorinated vinyl chloride resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
CN109415453B (en) Process for producing vinyl chloride polymer
JP2000119333A (en) Production of chlorinated vinyl chloride-based resin
JPH11209425A (en) Production of chlorinated vinyl chloride resin
TWI428360B (en) Production method of chlorinated vinyl chloride resin
TWI428361B (en) Production method of vinyl chloride-based resin (2)
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JPH10279627A (en) Production of chlorinated vinyl chloride resin
KR102235035B1 (en) Method for preparing polyvinylchloride
JP2000344830A (en) Production of chlorinated vinyl chloride resin
JPH1129613A (en) Production of chlorinated vinyl chloride-based resin
JP2009102609A (en) Vinyl chloride-based resin molded body and method for manufacturing the same
JP2002060420A (en) Method for producing chlorinated vinyl chloride resin
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JPH07238104A (en) Production of vinyl chloride polymer
CN104245754A (en) Method for preparing vinyl chloride-based resin by using suspension polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250