JP2006327350A - Air-conditioner for vehicle - Google Patents

Air-conditioner for vehicle Download PDF

Info

Publication number
JP2006327350A
JP2006327350A JP2005152016A JP2005152016A JP2006327350A JP 2006327350 A JP2006327350 A JP 2006327350A JP 2005152016 A JP2005152016 A JP 2005152016A JP 2005152016 A JP2005152016 A JP 2005152016A JP 2006327350 A JP2006327350 A JP 2006327350A
Authority
JP
Japan
Prior art keywords
condensed water
radiator
air conditioner
refrigerant
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152016A
Other languages
Japanese (ja)
Inventor
Yuichi Matsumoto
雄一 松元
Masato Tsuboi
政人 坪井
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005152016A priority Critical patent/JP2006327350A/en
Publication of JP2006327350A publication Critical patent/JP2006327350A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • B60H1/32331Cooling devices characterised by condensed liquid drainage means comprising means for the use of condensed liquid, e.g. for humidification or for improving condenser performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner for a vehicle which improves a heat radiation performance of a radiator by making an effective use of condensate, and which reduces the power of a compressor through prevention of an pressure increase on the high-pressure side. <P>SOLUTION: The air-conditioner for the vehicle is provided with: the compressor for compressing a refrigerant; the radiator for dissipating a high-temperature high-pressure refrigerant; an internal heat exchanger; an expansion mechanism; an evaporator; and a vapor-liquid separator. The internal heat exchanger performs heat exchange between a low-temperature high-pressure refrigerant and a refrigerant on the low-pressure side, and the vapor-liquid separator separates a low-pressure refrigerant coming out of the evaporator into a gas and a liquid. The air-conditioner for the vehicle has a vapor-compression-type refrigeration cycle which is formed by connecting them one by one, and the condensate generated from the evaporator or from the vapor-liquid separator, or from both of them, is discharged to the radiator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両用空調装置に関し、とくに、二酸化炭素等の冷媒を使用した冷凍サイクルにおいて発生した凝縮水を有効利用できるようにした車両用空調装置に関する。   The present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner that can effectively use condensed water generated in a refrigeration cycle using a refrigerant such as carbon dioxide.

地球環境問題への配慮の面から、車両用空調装置の冷凍サイクル用冷媒として採用されてきたフロン系冷媒の使用が規制され始めており、脱フロン化対策として二酸化炭素冷媒が提案されている。二酸化炭素冷媒は、その物理的性質から臨界圧力を超える超臨界域にて作動する冷媒であり、その作動圧力は約7MPa以上になる。したがって、冷凍サイクル中の圧縮機による仕事量が大きくなり、冷凍サイクルの成績係数が低くなる傾向にある。このような欠点を補うために、気液分離器にて発生した凝縮水を、冷凍サイクル中に設けられた高圧側冷媒と低圧側冷媒との間で熱交換を行わせる内部熱交換器へふりかけて、内部熱交換効率を向上させ、冷凍成績係数を向上させる手法が提案されている(特許文献1)。
特開2004−28460号公報
From the viewpoint of consideration of global environmental problems, the use of CFC-based refrigerants that have been adopted as refrigerants for refrigeration cycles in vehicle air conditioners is beginning to be regulated, and carbon dioxide refrigerants have been proposed as countermeasures for de-Freonization. The carbon dioxide refrigerant is a refrigerant that operates in a supercritical region exceeding the critical pressure due to its physical properties, and the operating pressure is about 7 MPa or more. Therefore, the amount of work by the compressor in the refrigeration cycle increases, and the coefficient of performance of the refrigeration cycle tends to decrease. In order to compensate for these disadvantages, the condensed water generated in the gas-liquid separator is sprinkled on an internal heat exchanger that exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant provided in the refrigeration cycle. Thus, a technique for improving the internal heat exchange efficiency and improving the refrigeration performance coefficient has been proposed (Patent Document 1).
JP 2004-28460 A

しかしながら、内部熱交換器へ凝縮水をかけて熱交換させるには、十分な接触面積と、伝熱速度の向上が必要である。すなわち、十分な内部熱交換効果を発揮させるには、内部熱交換器の配管の伝熱面積の拡大と熱伝導率の向上が必要となってくる。二酸化炭素冷媒は、その物理的性質から高圧側が臨界圧を越える超臨界状態となるため、その高圧に耐えうる材質、構造が要求され、通常、配管等の厚みが増すことになって、熱伝導率の向上が難しくなる。   However, in order to exchange heat by applying condensed water to the internal heat exchanger, it is necessary to improve a sufficient contact area and heat transfer rate. That is, in order to exert a sufficient internal heat exchange effect, it is necessary to expand the heat transfer area of the pipe of the internal heat exchanger and improve the thermal conductivity. Carbon dioxide refrigerant is in a supercritical state where the high-pressure side exceeds the critical pressure due to its physical properties, so a material and structure that can withstand the high pressure are required. It becomes difficult to improve the rate.

一方、冷凍サイクル中に設けられている放熱器は、通常、十分に大きい接触面積と、伝熱の良さを備えている熱交換器として構成される。   On the other hand, the radiator provided in the refrigeration cycle is usually configured as a heat exchanger having a sufficiently large contact area and good heat transfer.

そこで本発明の課題は、凝縮水を内部熱交換器の効率向上に利用する場合の上記問題点と、放熱器が十分に大きい接触面積と高伝熱性能を備えた熱交換器である点に着目し、凝縮水を放熱器に対して有効利用し、それによる放熱器の放熱性能の向上、それに伴う高圧側圧力の上昇防止を介して、圧縮機の動力の低減、つまり、冷凍成績係数の向上をはかることが可能な車両用空調装置を提供することにある。   Therefore, the problem of the present invention is that the above-mentioned problem when the condensed water is used to improve the efficiency of the internal heat exchanger, and the heat exchanger is a heat exchanger having a sufficiently large contact area and high heat transfer performance. Focusing on the effective use of condensed water for the radiator, thereby improving the heat dissipation performance of the radiator and preventing the increase of the pressure on the high-pressure side, thereby reducing the compressor power, that is, An object of the present invention is to provide a vehicle air conditioner that can be improved.

上記課題を解決するために、本発明に係る車両用空調装置は、冷媒を圧縮する圧縮機と、圧縮機による圧縮によって高温高圧となった冷媒を放熱させる放熱器と、放熱器によって放熱された低温高圧の冷媒と低圧側冷媒との間で熱交換させる内部熱交換器と、内部熱交換器によってさらに低温となった低温高圧冷媒を減圧膨張させる膨張機構と、膨張機構により減圧膨張された冷媒を蒸発させる蒸発器と、蒸発器を出た低圧冷媒を気体と液体に分離する気液分離器とを備え、それらを順次、冷媒流路にてループ状に接続した蒸気圧縮式冷凍サイクルを有する車両用空調装置において、前記蒸発器または気液分離器またはそれらの両方の外表面から発生する凝縮水を前記放熱器へ放出するようにしたことを特徴とするものからなる。すなわち、本発明においては、発生した凝縮水を、内部熱交換器ではなく、放熱器の放熱効率向上に有効利用するのである。   In order to solve the above problems, an air conditioner for a vehicle according to the present invention has a compressor that compresses a refrigerant, a radiator that dissipates the refrigerant that has become a high temperature and a high pressure due to compression by the compressor, and a radiator that dissipates heat. An internal heat exchanger that exchanges heat between the low-temperature and high-pressure refrigerant and the low-pressure side refrigerant, an expansion mechanism that decompresses and expands the low-temperature and high-pressure refrigerant that has become colder by the internal heat exchanger, and a refrigerant that is decompressed and expanded by the expansion mechanism And a vapor compression refrigeration cycle in which a low-pressure refrigerant exiting the evaporator is separated into a gas and a liquid, and these are sequentially connected in a loop with a refrigerant flow path. The vehicle air conditioner is characterized in that condensed water generated from the outer surfaces of the evaporator, the gas-liquid separator, or both of them is discharged to the radiator. That is, in the present invention, the generated condensed water is effectively used for improving the heat radiation efficiency of the radiator, not the internal heat exchanger.

上記蒸気圧縮式冷凍サイクルとしては、高圧側の冷媒の圧力が超臨界域となる超臨界蒸気圧縮式冷凍サイクルを適用できる。とくに、本発明は、上記蒸気圧縮式冷凍サイクルに用いる冷媒が二酸化炭素である場合に有効である。   As the vapor compression refrigeration cycle, a supercritical vapor compression refrigeration cycle in which the pressure of the refrigerant on the high pressure side is in a supercritical region can be applied. In particular, the present invention is effective when the refrigerant used in the vapor compression refrigeration cycle is carbon dioxide.

上記気液分離器は、上記蒸発器近傍に配置されていることが好ましい。このような配置を採用すれば、蒸発器と気液分離器の両方から発生する凝縮水を容易に共に回収できるようになり、その凝縮水を放熱器の放熱効率向上に効果的に有効利用できる。また、蒸発器に対しては、通常、凝縮水回収容器が設けられていることが多いので、上記配置により、新たな回収容器の設置が不要になる。   The gas-liquid separator is preferably disposed in the vicinity of the evaporator. If such an arrangement is adopted, the condensed water generated from both the evaporator and the gas-liquid separator can be easily recovered together, and the condensed water can be effectively used effectively to improve the heat dissipation efficiency of the radiator. . In addition, since the condensed water recovery container is usually provided for the evaporator, the above arrangement makes it unnecessary to install a new recovery container.

より具体的な構造として、上記凝縮水を回収する凝縮水回収容器と、該凝縮水回収容器からの凝縮水を前記放熱器への放出位置へと導く導管とを有することが好ましい。凝縮水回収容器の凝縮水受面は漏斗形状に形成されていることが好ましく、それによって発生した凝縮水を容易に回収できるようになる。   As a more specific structure, it is preferable to have a condensed water recovery container for recovering the condensed water and a conduit for guiding the condensed water from the condensed water recovery container to the discharge position to the radiator. The condensed water receiving surface of the condensed water recovery container is preferably formed in a funnel shape, so that the condensed water generated can be easily recovered.

また、上記導管は、水平面に対し、放熱器側に行くにつれ下方に位置する方向に傾斜されていることが好ましい。これにより、凝縮水の自重を利用して、凝縮水を容易に放熱器への放出位置へと導くことができる。   Moreover, it is preferable that the said conduit | pipe is inclined in the direction located below as it goes to a heat radiator side with respect to a horizontal surface. Thereby, using the dead weight of condensed water, condensed water can be easily led to the discharge position to a radiator.

さらに、上記導管により導かれてきた凝縮水を貯留する凝縮水貯留容器と、該凝縮水貯留容器に貯留された凝縮水を放熱器に向けて放出する凝縮水放出管とを有することが好ましい。この構造により、放熱器に向けて放出すべき凝縮水を適量貯留しておくことができ、かつ、凝縮水放出管により、放熱器に対し、望ましい位置へと凝縮水を放出することが可能になる。   Furthermore, it is preferable to have a condensed water storage container that stores the condensed water guided by the conduit and a condensed water discharge pipe that discharges the condensed water stored in the condensed water storage container toward the radiator. With this structure, it is possible to store an appropriate amount of condensed water to be discharged toward the radiator, and it is possible to discharge condensed water to a desired position with respect to the radiator by the condensed water discharge pipe. Become.

この凝縮水放出管は、放熱器の車両前方側に配置されていることが好ましい。このような配置により、車両前面風を凝縮水放出に利用可能になるとともに、放熱器を空気と凝縮水の両方で放熱させることができるようになり、放熱が促進される。   This condensed water discharge pipe is preferably disposed on the vehicle front side of the radiator. With such an arrangement, the front wind of the vehicle can be used for discharging condensed water, and the heat radiator can be radiated by both air and condensed water, and heat dissipation is promoted.

また、凝縮水放出管は、略水平方向に延設されていることが好ましい。これにより、放熱器のより広い範囲にわたって凝縮水を放出できるようになる。   Moreover, it is preferable that the condensed water discharge pipe is extended in the substantially horizontal direction. Thereby, it becomes possible to discharge condensed water over a wider range of the radiator.

上記凝縮水放出管には、放熱器に向けて凝縮水を放出する放出孔が設けられていることが好ましい。放出孔は複数設けられていることが好ましい。これにより、均一な望ましい形態にて、凝縮水を放熱器の広い範囲に対し放出できるようになる。   The condensed water discharge pipe is preferably provided with a discharge hole for discharging condensed water toward the radiator. A plurality of discharge holes are preferably provided. This allows condensed water to be discharged over a wide range of radiators in a uniform and desirable form.

また、上記放出孔は、斜め下方に向けて開口されていることが好ましい。これにより、凝縮水は、容易にかつ円滑に、凝縮水放出管内から放出される。   The discharge hole is preferably opened obliquely downward. Thereby, condensed water is discharge | released from the condensed water discharge pipe easily and smoothly.

さらに、上記放出孔からの凝縮水の放出が、車両前方側からの空気流である車両前面風により行われるようになっていること、例えば車両前面風によるベンチュリー効果を利用して凝縮水が凝縮水放出管内から吸い出されて放出されるようになっていることが好ましい。このような構造においては、凝縮水の放出のために、特別な機構や操作が不要化される。なお、アイドリング時にもクーリングファンによって冷却風は発生するので、上記「車両前面風」にはこの冷却風も含む。   Furthermore, the condensed water is discharged from the discharge hole by the vehicle front wind that is the air flow from the front side of the vehicle. For example, the condensed water is condensed by using the venturi effect of the vehicle front wind. It is preferable that the water is discharged from the inside of the water discharge pipe. In such a structure, no special mechanism or operation is required for discharging condensed water. In addition, since cooling air is generated by the cooling fan even during idling, the “vehicle front air” includes this cooling air.

本発明に係る車両用空調装置によれば、とくに二酸化炭素を用いた臨界温度、臨界圧力の低い超臨界域での運転となる冷凍サイクルにおいて、高温高圧となった放熱器の放熱性能を凝縮水を有効利用して大幅に向上させることでき、高圧側圧力の低下、それに伴う圧縮機動力の低減が可能な車両用空調装置を提供できる。   According to the vehicle air conditioner of the present invention, the heat dissipation performance of the radiator that has become a high temperature and a high pressure, particularly in a refrigeration cycle that operates in a supercritical region with a critical temperature and a low critical pressure using carbon dioxide is condensed water. It is possible to provide a vehicular air conditioner that can be significantly improved by effectively using and can reduce the high-pressure side pressure and the compressor power associated therewith.

また、気液分離器から発生する凝縮水を蒸発器から発生する凝縮水と同じ回収容器にて回収するようにすれば、実質的に回収容器の新たな設置が必要なくなる。さらに、凝縮水を凝縮水回収容器に回収し、導管、凝縮水貯留容器、凝縮水放出管を介して放熱器に向けて放出するようにすれば、簡単な機構にて容易に放熱器の所定範囲に対して凝縮水を放出させることができ、放熱器の放熱性能を効率よく向上させることができる。   Further, if the condensed water generated from the gas-liquid separator is collected in the same collection container as the condensed water generated from the evaporator, it is substantially unnecessary to install a new collection container. Furthermore, if the condensed water is collected in a condensed water recovery container and discharged toward the radiator through the conduit, the condensed water storage container, and the condensed water discharge pipe, the predetermined heat radiator can be easily set with a simple mechanism. Condensed water can be discharged with respect to the range, and the heat dissipation performance of the radiator can be improved efficiently.

さらに、車両前面風を利用して凝縮水放出管内から凝縮水を吸い出して放出できるようにすれば、特別な機構や操作を必要とすることなく、容易にかつ適正に凝縮水を放熱器に向けて放出できるようになる。また、放熱器を空気と凝縮水で放熱するので、より放熱を促進させることができる。   Furthermore, if condensed air can be sucked and discharged from inside the condensed water discharge pipe using the wind in the front of the vehicle, the condensed water can be easily and properly directed to the radiator without the need for special mechanisms or operations. Can be released. Moreover, since the heat radiator radiates heat with air and condensed water, heat radiation can be further promoted.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る車両用空調装置100を示しており、該車両用空調装置100は、二酸化炭素を冷媒とする蒸気圧縮式冷凍サイクル101を有している。この蒸気圧縮式冷凍サイクル101には、車両原動機としてのエンジン1からの駆動力がベルト等を介して伝達され、冷媒を圧縮する圧縮機2が設けられている。圧縮機2による圧縮により高温高圧となった冷媒は、放熱器3(ガスクーラ)で放熱される。放熱器3で放熱された低温高圧の冷媒は、内部熱交換器4によって、低圧側冷媒と、内部隔壁を通して熱交換される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a vehicle air conditioner 100 according to an embodiment of the present invention, and the vehicle air conditioner 100 has a vapor compression refrigeration cycle 101 using carbon dioxide as a refrigerant. The vapor compression refrigeration cycle 101 is provided with a compressor 2 that transmits a driving force from an engine 1 as a vehicle prime mover via a belt or the like and compresses a refrigerant. The refrigerant that has become high temperature and high pressure due to compression by the compressor 2 is radiated by the radiator 3 (gas cooler). The low-temperature and high-pressure refrigerant radiated by the radiator 3 is heat-exchanged by the internal heat exchanger 4 through the internal partition and the low-pressure side refrigerant.

内部熱交換器4によってさらに低温となった低温高圧冷媒は、膨張機構5(膨張弁)により減圧膨張される。膨張機構5により減圧膨張された冷媒は、車室内側に配置された(車室内外隔壁8の車室内側に配置された)蒸発器6によって蒸発され、蒸発による吸熱が車室内の冷房に供される。蒸発器6を出た低圧冷媒は、気液分離器7(アキュムレータ)の中で気体と液体に分離され、液冷媒は貯留され、実質的に気冷媒のみが出ていく構造となっている。この気液分離器7から出た低圧冷媒が、上述の如く内部熱交換器4で高圧側冷媒と熱交換された後、再び圧縮機2に吸入され、圧縮される。このように、冷媒は、各機器がループ状に配置された蒸気圧縮式冷凍サイクル101中を循環され、この蒸気圧縮式冷凍サイクル101は、高圧側の冷媒(二酸化炭素冷媒)の圧力が超臨界域となる超臨界蒸気圧縮式冷凍サイクルとして構成されている。なお、図1における矢印は冷媒の流れ方向を示している。   The low-temperature and high-pressure refrigerant whose temperature has been further lowered by the internal heat exchanger 4 is decompressed and expanded by the expansion mechanism 5 (expansion valve). The refrigerant decompressed and expanded by the expansion mechanism 5 is evaporated by the evaporator 6 disposed on the vehicle interior side (arranged on the vehicle interior side of the vehicle interior / exterior partition wall 8), and the heat absorbed by the evaporation is used for cooling the vehicle interior. Is done. The low-pressure refrigerant that has exited the evaporator 6 is separated into gas and liquid in a gas-liquid separator 7 (accumulator), the liquid refrigerant is stored, and only the gas refrigerant is substantially discharged. The low-pressure refrigerant discharged from the gas-liquid separator 7 is heat-exchanged with the high-pressure side refrigerant in the internal heat exchanger 4 as described above, and is then sucked into the compressor 2 and compressed. As described above, the refrigerant is circulated through the vapor compression refrigeration cycle 101 in which each device is arranged in a loop. In the vapor compression refrigeration cycle 101, the pressure of the high-pressure side refrigerant (carbon dioxide refrigerant) is supercritical. It is configured as a supercritical vapor compression refrigeration cycle. In addition, the arrow in FIG. 1 has shown the flow direction of the refrigerant | coolant.

本実施態様では、気液分離器7は車室内外隔壁8付近に配置され、蒸発器6の近傍に配置されている。蒸発器6および気液分離器7の下方には、蒸発器6および気液分離器7の外表面から発生し、落下してくる凝縮水を回収する凝縮水回収容器9が設けられており、該凝縮水回収容器9の凝縮水受面は漏斗状に形成されている。   In this embodiment, the gas-liquid separator 7 is disposed in the vicinity of the vehicle interior / exterior partition wall 8 and is disposed in the vicinity of the evaporator 6. Below the evaporator 6 and the gas-liquid separator 7, there is provided a condensed water recovery container 9 for recovering the condensed water falling from the outer surfaces of the evaporator 6 and the gas-liquid separator 7, The condensed water receiving surface of the condensed water recovery container 9 is formed in a funnel shape.

凝縮水回収容器9の底部に開口された排出口に、凝縮水回収容器9からの凝縮水を放熱器3への放出位置へと導く導管10が接続されている。導管10は、水平面に対し、放熱器3側に行くにつれ下方に位置する方向に傾斜されている。導管10は、導管10により導かれてきた凝縮水を貯留する凝縮水貯留容器11に接続されている。ここで、気液分離器7から凝縮水回収容器9、導管10を介して凝縮水貯留容器11に至る経路は、凝縮水が外気の影響を受けにくいように断熱されていることが好ましい。   A conduit 10 that guides the condensed water from the condensed water recovery container 9 to a discharge position to the radiator 3 is connected to a discharge port opened at the bottom of the condensed water recovery container 9. The conduit 10 is inclined with respect to a horizontal plane in a direction positioned downward as it goes to the radiator 3 side. The conduit 10 is connected to a condensed water storage container 11 that stores the condensed water guided by the conduit 10. Here, the path from the gas-liquid separator 7 to the condensed water storage container 11 via the condensed water recovery container 9 and the conduit 10 is preferably insulated so that the condensed water is not easily affected by the outside air.

凝縮水貯留容器11には、該凝縮水貯留容器11に貯留された凝縮水を放熱器3に向けて放出する凝縮水放出管12が接続されている。凝縮水放出管12は、放熱器3の車両前方側に配置されている。この凝縮水放出管12は、図2に示すように、放熱器3の車両前方側において、略水平方向に延設されており、凝縮水放出管12から放熱器3の前面側に向けて凝縮水13が水滴状に放出される。つまり、放熱器3には、車両前面風14が送られるとともに、該車両前面風14を利用して凝縮水放出管12から凝縮水13が放出される。図2における15は放熱器3の冷媒入口配管を、16は冷媒出口配管を、それぞれ示している。   A condensed water discharge pipe 12 that discharges condensed water stored in the condensed water storage container 11 toward the radiator 3 is connected to the condensed water storage container 11. The condensed water discharge pipe 12 is disposed on the vehicle front side of the radiator 3. As shown in FIG. 2, the condensed water discharge pipe 12 extends substantially in the horizontal direction on the vehicle front side of the radiator 3, and condenses from the condensed water discharge pipe 12 toward the front side of the radiator 3. Water 13 is discharged in the form of water droplets. That is, the vehicle front wind 14 is sent to the radiator 3, and the condensed water 13 is discharged from the condensed water discharge pipe 12 using the vehicle front wind 14. In FIG. 2, 15 indicates a refrigerant inlet pipe of the radiator 3, and 16 indicates a refrigerant outlet pipe.

凝縮水放出管12には、図3に示すように、放熱器3に向けて凝縮水13を放出する放出孔17が、凝縮水放出管12の延設方向に沿って、複数設けられている。放出孔17は、斜め下方に向けて開口されており、車両前方側からの空気流である車両前面風14の凝縮水放出管12の裏側に回り込んだ空気流によるベンチュリー効果を利用して、特別な機構や操作を要することなく、凝縮水13が凝縮水放出管12内から吸い出されて放出されるようになっている。   As shown in FIG. 3, the condensed water discharge pipe 12 is provided with a plurality of discharge holes 17 for discharging the condensed water 13 toward the radiator 3 along the extending direction of the condensed water discharge pipe 12. . The discharge hole 17 is opened obliquely downward, and utilizes the venturi effect due to the air flow around the back side of the condensed water discharge pipe 12 of the vehicle front wind 14 that is the air flow from the front side of the vehicle, The condensed water 13 is sucked out of the condensed water discharge pipe 12 and discharged without requiring any special mechanism or operation.

このように構成された車両用空調装置100においては、蒸発器6および気液分離器7から発生した凝縮水が、凝縮水回収容器9、導管10、凝縮水貯留容器11、凝縮水放出管12を介して、放熱器3に向けて放出される。放熱器3は、車両前面風14により放熱されるとともに、放出された凝縮水によっても放熱され、凝縮水が有効利用されることにより、放熱器3の放熱性能が大幅に向上される。すなわち、従来地面に向けて排出されていた凝縮水が、放熱器3の放熱性能の向上に極めて有効に利用され、放熱が促進されることになる。とくに二酸化炭素を用いて超臨界域で運転される冷凍サイクル101において、高温高圧冷媒の放熱器3による放熱性能を凝縮水を有効利用して大幅に向上させることでき、高圧側圧力を低下させ、それに伴って圧縮機動力を低減させることができ、冷凍サイクル101の成績係数を大幅に向上することができる。   In the vehicle air conditioner 100 configured as described above, the condensed water generated from the evaporator 6 and the gas-liquid separator 7 is converted into a condensed water recovery container 9, a conduit 10, a condensed water storage container 11, and a condensed water discharge pipe 12. Is emitted toward the radiator 3 via the. The radiator 3 is radiated by the front wind 14 of the vehicle and is also radiated by the discharged condensed water, and the condensed water is effectively used, so that the heat radiating performance of the radiator 3 is greatly improved. That is, the condensed water that has been discharged toward the ground surface is used extremely effectively for improving the heat dissipation performance of the radiator 3, and heat dissipation is promoted. In particular, in the refrigeration cycle 101 operated in the supercritical region using carbon dioxide, the heat radiation performance by the radiator 3 of the high-temperature and high-pressure refrigerant can be significantly improved by using condensed water, the pressure on the high-pressure side is reduced, Accordingly, the compressor power can be reduced, and the coefficient of performance of the refrigeration cycle 101 can be greatly improved.

また、気液分離器7を蒸発器6の近傍に配置し、蒸発器6および気液分離器7から発生する凝縮水を共通の凝縮水回収容器9で回収するので、効率のよい凝縮水回収が可能になる。また、蒸発器6には通常、凝縮水受け(回収容器)が設けられているので、実質的に回収容器の新たな設置が必要なくなる。さらに、凝縮水回収容器9に回収した凝縮水を導管10、凝縮水貯留容器11、凝縮水放出管12を介して放熱器3に向けて放出することにより、放出用凝縮水を凝縮水貯留容器11に常に適量貯留しておくことが可能になり、かつ、凝縮水放出管12を介して、放熱器3の広い範囲にわたって効果的に凝縮水を放出させることができようになり、放熱器3の放熱性能を一層効率よく向上させることができる。   Further, since the gas-liquid separator 7 is disposed in the vicinity of the evaporator 6 and the condensed water generated from the evaporator 6 and the gas-liquid separator 7 is recovered by the common condensed water recovery container 9, efficient condensed water recovery is possible. Is possible. Further, since the evaporator 6 is usually provided with a condensed water receiver (recovery container), it is substantially unnecessary to newly install a recovery container. Further, the condensed water recovered in the condensed water recovery container 9 is discharged toward the radiator 3 through the conduit 10, the condensed water storage container 11, and the condensed water discharge pipe 12, so that the condensed water for discharge is condensed into the condensed water storage container. 11 can always be stored in an appropriate amount, and condensed water can be effectively discharged over a wide range of the radiator 3 via the condensed water discharge pipe 12. The heat dissipation performance can be improved more efficiently.

さらに、車両前面風14を利用して凝縮水放出管12内から凝縮水を吸い出して放出できるようにすることにより、特別な機構や操作を必要とすることなく、極めて簡単な機構にて凝縮水を放熱器に向けて自動的に放出できるようになる。   Further, the condensed water can be sucked and discharged from the condensed water discharge pipe 12 using the front wind 14 of the vehicle, so that the condensed water can be discharged by a very simple mechanism without requiring any special mechanism or operation. Can be released automatically toward the radiator.

本発明は、蒸気圧縮式冷凍サイクルを備えたあらゆる車両用空調装置に適用可能であり、とくに二酸化炭素を冷媒とする蒸気圧縮式冷凍サイクルを備えた車両用空調装置に好適である。   The present invention is applicable to any vehicle air conditioner equipped with a vapor compression refrigeration cycle, and is particularly suitable for a vehicle air conditioner equipped with a vapor compression refrigeration cycle using carbon dioxide as a refrigerant.

本発明の一実施態様に係る車両用空調装置の車両側面側から見た概略構成図である。It is a schematic structure figure seen from the vehicles side of the air-conditioner for vehicles concerning one embodiment of the present invention. 図1の装置における放熱器部の正面図である。It is a front view of the heat radiator part in the apparatus of FIG. 図2の装置における凝縮水放出管の拡大断面図である。It is an expanded sectional view of the condensed water discharge pipe in the apparatus of FIG.

符号の説明Explanation of symbols

1 エンジン
2 圧縮機
3 放熱器
4 内部熱交換器
5 膨張機構
6 蒸発器
7 気液分離器
8 車室内外隔壁
9 凝縮水回収容器
10 導管
11 凝縮水貯留容器
12 凝縮水放出管
13 凝縮水
14 車両前面風
15 放熱器の冷媒入口配管
16 放熱器の冷媒出口配管
17 放出孔
100 車両用空調装置
101 蒸気圧縮式冷凍サイクル
DESCRIPTION OF SYMBOLS 1 Engine 2 Compressor 3 Radiator 4 Internal heat exchanger 5 Expansion mechanism 6 Evaporator 7 Gas-liquid separator 8 Car interior and exterior partition wall 9 Condensate recovery container 10 Conduit 11 Condensate storage container 12 Condensate discharge pipe 13 Condensate 14 Vehicle front wind 15 Radiator refrigerant inlet pipe 16 Radiator refrigerant outlet pipe 17 Release hole 100 Air conditioner 101 for vehicle Vapor compression refrigeration cycle

Claims (14)

冷媒を圧縮する圧縮機と、圧縮機による圧縮によって高温高圧となった冷媒を放熱させる放熱器と、放熱器によって放熱された低温高圧の冷媒と低圧側冷媒との間で熱交換させる内部熱交換器と、内部熱交換器によってさらに低温となった低温高圧冷媒を減圧膨張させる膨張機構と、膨張機構により減圧膨張された冷媒を蒸発させる蒸発器と、蒸発器を出た低圧冷媒を気体と液体に分離する気液分離器とを備え、それらを順次、冷媒流路にてループ状に接続した蒸気圧縮式冷凍サイクルを有する車両用空調装置において、前記蒸発器または気液分離器またはそれらの両方の外表面から発生する凝縮水を前記放熱器へ放出するようにしたことを特徴とする車両用空調装置。   A compressor that compresses the refrigerant, a radiator that dissipates the high-temperature and high-pressure refrigerant that is compressed by the compressor, and an internal heat exchange that exchanges heat between the low-temperature and high-pressure refrigerant and the low-pressure side refrigerant that are dissipated by the radiator , An expansion mechanism that decompresses and expands the low-temperature high-pressure refrigerant that has been cooled to a lower temperature by the internal heat exchanger, an evaporator that evaporates the refrigerant decompressed and expanded by the expansion mechanism, and a low-pressure refrigerant that exits the evaporator as gas and liquid In a vehicle air conditioner having a vapor compression refrigeration cycle, which is sequentially connected in a loop with a refrigerant flow path, the evaporator or the gas-liquid separator or both A vehicle air conditioner characterized in that condensed water generated from the outer surface of the vehicle is discharged to the radiator. 前記蒸気圧縮式冷凍サイクルは、高圧側の冷媒の圧力が超臨界域となる超臨界蒸気圧縮式冷凍サイクルであることを特徴とする、請求項1に記載の車両用空調装置。   The vehicle air conditioner according to claim 1, wherein the vapor compression refrigeration cycle is a supercritical vapor compression refrigeration cycle in which the pressure of a refrigerant on a high pressure side is in a supercritical region. 前記蒸気圧縮式冷凍サイクルに用いる冷媒が二酸化炭素であることを特徴とする、請求項1または2に記載の車両用空調装置。   The vehicle air conditioner according to claim 1 or 2, wherein the refrigerant used in the vapor compression refrigeration cycle is carbon dioxide. 前記気液分離器が前記蒸発器近傍に配置されていることを特徴とする、請求項1〜3のいずれかに記載の車両用空調装置。   The vehicle air conditioner according to any one of claims 1 to 3, wherein the gas-liquid separator is disposed in the vicinity of the evaporator. 前記凝縮水を回収する凝縮水回収容器と、該凝縮水回収容器からの凝縮水を前記放熱器への放出位置へと導く導管とを有することを特徴とする、請求項1〜4のいずれかに記載の車両用空調装置。   It has a condensed water collection | recovery container which collect | recovers the said condensed water, and a conduit | pipe which guides the condensed water from this condensed water collection | recovery container to the discharge | release position to the said heat radiator, The any one of Claims 1-4 characterized by the above-mentioned. The vehicle air conditioner described in 1. 前記凝縮水回収容器の凝縮水受面が漏斗形状に形成されていることを特徴とする、請求項5に記載の車両用空調装置。   6. The vehicle air conditioner according to claim 5, wherein a condensed water receiving surface of the condensed water recovery container is formed in a funnel shape. 前記導管が、水平面に対し、前記放熱器側に行くにつれ下方に位置する方向に傾斜されていることを特徴とする、請求項5または6に記載の車両用空調装置。   The vehicle air conditioner according to claim 5 or 6, wherein the conduit is inclined with respect to a horizontal plane in a direction positioned downward as it goes to the radiator side. さらに、前記導管により導かれてきた凝縮水を貯留する凝縮水貯留容器と、該凝縮水貯留容器に貯留された凝縮水を前記放熱器に向けて放出する凝縮水放出管とを有することを特徴とする、請求項5〜7のいずれかに記載の車両用空調装置。   And a condensed water storage container for storing the condensed water guided by the conduit, and a condensed water discharge pipe for discharging the condensed water stored in the condensed water storage container toward the radiator. The vehicle air conditioner according to any one of claims 5 to 7. 前記凝縮水放出管が前記放熱器の車両前方側に配置されていることを特徴とする、請求項8に記載の車両用空調装置。   The vehicle air conditioner according to claim 8, wherein the condensed water discharge pipe is disposed on the vehicle front side of the radiator. 前記凝縮水放出管が略水平方向に延設されていることを特徴とする、請求項8または9に記載の車両用空調装置。   The vehicular air conditioner according to claim 8 or 9, wherein the condensed water discharge pipe is extended in a substantially horizontal direction. 前記凝縮水放出管に、前記放熱器に向けて凝縮水を放出する放出孔が設けられていることを特徴とする、請求項8〜10のいずれかに記載の車両用空調装置。   The vehicle air conditioner according to any one of claims 8 to 10, wherein the condensed water discharge pipe is provided with a discharge hole for discharging condensed water toward the radiator. 前記放出孔が複数設けられていることを特徴とする、請求項11に記載の車両用空調装置。   The vehicle air conditioner according to claim 11, wherein a plurality of the discharge holes are provided. 前記放出孔が斜め下方に向けて開口されていることを特徴とする、請求項11または12に記載の車両用空調装置。   The vehicle air conditioner according to claim 11 or 12, wherein the discharge hole is opened obliquely downward. 前記放出孔からの凝縮水の放出が、車両前方側からの空気流である車両前面風により行われるようになっていることを特徴とする、請求項11〜13のいずれかに記載の車両用空調装置。   The vehicle according to any one of claims 11 to 13, wherein the condensed water is discharged from the discharge hole by a vehicle front wind that is an air flow from the front side of the vehicle. Air conditioner.
JP2005152016A 2005-05-25 2005-05-25 Air-conditioner for vehicle Pending JP2006327350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152016A JP2006327350A (en) 2005-05-25 2005-05-25 Air-conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152016A JP2006327350A (en) 2005-05-25 2005-05-25 Air-conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2006327350A true JP2006327350A (en) 2006-12-07

Family

ID=37549502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152016A Pending JP2006327350A (en) 2005-05-25 2005-05-25 Air-conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2006327350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126980A2 (en) * 2009-04-29 2010-11-04 Carrier Corporation Transcritical thermally activated cooling, heating and refrigerating system
CN106705504A (en) * 2017-01-04 2017-05-24 合肥华凌股份有限公司 Condenser and refrigeration device
WO2018100995A1 (en) * 2016-12-01 2018-06-07 カルソニックカンセイ株式会社 Air conditioning device
WO2018100996A1 (en) * 2016-12-01 2018-06-07 カルソニックカンセイ株式会社 Gas-liquid separator
DE102022003871A1 (en) 2022-10-18 2024-04-18 Truma Gerätetechnik GmbH & Co. KG Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126980A2 (en) * 2009-04-29 2010-11-04 Carrier Corporation Transcritical thermally activated cooling, heating and refrigerating system
WO2010126980A3 (en) * 2009-04-29 2011-03-03 Carrier Corporation Transcritical thermally activated cooling, heating and refrigerating system
CN102414522A (en) * 2009-04-29 2012-04-11 开利公司 Transcritical thermally activated cooling, heating and refrigerating system
WO2018100995A1 (en) * 2016-12-01 2018-06-07 カルソニックカンセイ株式会社 Air conditioning device
WO2018100996A1 (en) * 2016-12-01 2018-06-07 カルソニックカンセイ株式会社 Gas-liquid separator
JP2018090049A (en) * 2016-12-01 2018-06-14 カルソニックカンセイ株式会社 Gas-liquid separator
JP2018090048A (en) * 2016-12-01 2018-06-14 カルソニックカンセイ株式会社 Air conditioner
US11235262B2 (en) 2016-12-01 2022-02-01 Marelli Cabin Comfort Japan Corporation Gas-liquid separator
US11597258B2 (en) 2016-12-01 2023-03-07 Marelli Cabin Comfort Japan Corporation Air conditioning device
CN106705504A (en) * 2017-01-04 2017-05-24 合肥华凌股份有限公司 Condenser and refrigeration device
DE102022003871A1 (en) 2022-10-18 2024-04-18 Truma Gerätetechnik GmbH & Co. KG Air conditioner

Similar Documents

Publication Publication Date Title
JP3903851B2 (en) Heat exchanger
JP2007040690A (en) Ejector type refrigeration cycle
US20070144201A1 (en) Air conditioning systems for vehicles
JP2006327350A (en) Air-conditioner for vehicle
JP5057429B2 (en) Chemical heat pump, hybrid refrigeration system and hybrid refrigeration vehicle using the same
JP2007145104A (en) Vehicular air-conditioner
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
KR100666920B1 (en) Heat exchanging device
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
JP3910096B2 (en) Heat dissipating system for Stirling engine and refrigerator equipped with the same
JPWO2014203500A1 (en) Air conditioner
JP2007191125A (en) Vehicular air-conditioner
JP2008273220A (en) Cooling device for vehicle
JP4407870B2 (en) Refrigeration cycle equipment
JP2005337577A5 (en)
KR20110117459A (en) Air conditioning system for vehicle
JP2004028460A (en) Vapor compression type refrigerator
JP2005337577A (en) Refrigerating device
KR100436935B1 (en) One Body Type Evaporator Havng The Sub-Cooling Condensor
KR102092568B1 (en) Air conditioner system for vehicle
JP2008298307A (en) Refrigerating cycle
KR100556760B1 (en) Refrigerator with dual condenser
KR101309193B1 (en) A cooling system for automobile using thermoelectric element
KR20110004155A (en) Chiller type air conditioner
JP2009074701A (en) Outdoor unit for air conditioner and air conditioner