JP2006326532A - Production method for gas reaction catalyst and manufacturing apparatus used for it - Google Patents

Production method for gas reaction catalyst and manufacturing apparatus used for it Download PDF

Info

Publication number
JP2006326532A
JP2006326532A JP2005155999A JP2005155999A JP2006326532A JP 2006326532 A JP2006326532 A JP 2006326532A JP 2005155999 A JP2005155999 A JP 2005155999A JP 2005155999 A JP2005155999 A JP 2005155999A JP 2006326532 A JP2006326532 A JP 2006326532A
Authority
JP
Japan
Prior art keywords
noble metal
honeycomb structure
fine particles
metal fine
reaction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005155999A
Other languages
Japanese (ja)
Inventor
Masatoshi Mashima
正利 真嶋
Kohei Shimoda
浩平 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005155999A priority Critical patent/JP2006326532A/en
Publication of JP2006326532A publication Critical patent/JP2006326532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method capable of efficiently producing, with less step, a gas reaction catalyst capable of enhancing a utilization efficiency of a precious metal fine particle by sufficiently carrying only selectively an area of a surface layer part circulated with a gas of a wash coat and a surface layer part of the wash coat at an inner depth part of a penetration hole with the precious metal fine particle and effectively treating an exhaust gas component of a low temperature immediately after starting of an engine only by using the carried precious metal fine particle, and a production apparatus. <P>SOLUTION: In the production method, an ion of the precious metal is reduced by an action of a reducing agent while circulating a solution containing the ion of the precious metal and the reducing agent through the inside of respective penetration holes only in one direction while directing it from an opening at one end surface side of the honeycomb structure body to an opening at the other end surface side, thereby, the precious metal fine particle is precipitated. In the production apparatus, the solution L is repeatedly circulated through a circulation passage member 2 connected to a retaining member 1 in the state that the honeycomb structure body H is retained by the retaining member 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガスを通過させるための、異なる二端面間を繋ぐ多数の通孔を有すると共に、各通孔の内壁面を、ウォッシュコートで被覆したハニカム構造体の、上記ウォッシュコートに、ガス処理のための触媒として機能する貴金属微粒子を担持させてガス反応触媒を製造する方法と、それに用いる製造装置とに関するものである。   The present invention has a large number of through-holes connecting two different end faces for allowing gas to pass, and the wash coat of the honeycomb structure in which the inner wall surface of each through-hole is covered with a wash coat is used for gas treatment. The present invention relates to a method for producing a gas reaction catalyst by supporting noble metal fine particles functioning as a catalyst for the production, and a production apparatus used therefor.

自動車の排気ガス浄化等に用いるガス反応触媒としては、排気ガスを通過させるための、異なる二端面間を繋ぐ多数の通孔を有すると共に、各通孔の内壁面を、アルミナ等の粉末からなり、ウォッシュコートと呼ばれる多孔質の層で被覆した、コージェライトや金属等からなるハニカム構造体の、上記ウォッシュコートに、ガス処理のための触媒として機能する貴金属微粒子を担持させた構造を有するものが一般的に用いられる。   As a gas reaction catalyst used for exhaust gas purification of automobiles, etc., it has a large number of through-holes connecting two different end faces for passing exhaust gas, and the inner wall surface of each through-hole is made of powder such as alumina. A honeycomb structure made of cordierite or metal, covered with a porous layer called a washcoat, having a structure in which noble metal fine particles functioning as a catalyst for gas treatment are supported on the washcoat. Generally used.

上記の構造を有するガス反応触媒は、通常、ハニカム構造体を、貴金属のイオンを含む溶液中に浸漬して、主にウォッシュコートの多孔質構造内に溶液を含浸させた後、引き上げて焼成することで、イオンを還元させて貴金属微粒子を析出させる工程を繰り返し行う、いわゆる含浸法によって製造される。   In the gas reaction catalyst having the above structure, the honeycomb structure is usually immersed in a solution containing noble metal ions so that the solution is mainly impregnated into the porous structure of the washcoat, and then pulled up and fired. Thus, it is manufactured by a so-called impregnation method in which the step of reducing the ions to precipitate the noble metal fine particles is repeated.

しかし、含浸法では、ハニカム構造体の、排気ガスと接触しない外側面等にも貴金属微粒子が析出して担持されることから、触媒としての貴金属微粒子の利用効率が低く、無駄が多いという問題がある。また、一度の浸漬−焼成によって担持できる貴金属微粒子の量が少ないため、ウォッシュコートに所定量の貴金属微粒子を担持させてガス反応触媒を製造するためには、浸漬−焼成の工程を何度も繰り返し行う必要があり、多大なエネルギーと時間とを要するため、ガス反応触媒の生産性が低く、製造コストが高くつくという問題もある。   However, in the impregnation method, since the noble metal fine particles are deposited and supported on the outer surface of the honeycomb structure that does not come into contact with the exhaust gas, there is a problem that the use efficiency of the noble metal fine particles as a catalyst is low and wasteful. is there. In addition, since the amount of noble metal fine particles that can be supported by one immersion-firing is small, in order to produce a gas reaction catalyst by supporting a predetermined amount of noble metal fine particles on the washcoat, the immersion-firing process is repeated many times. There is a problem that the productivity of the gas reaction catalyst is low and the manufacturing cost is high because it is necessary to perform the process and requires a lot of energy and time.

さらに、担持法では、静止状態の溶液中に、ハニカム構造体を浸漬して処理していることから、特に、ハニカム構造体のサイズが大きくなるほど、通孔の、開口から遠い内奥部のウォッシュコートまで、溶液が十分に行き渡らなくなる傾向がある。そこで、浸漬したハニカム構造体を、液中で上下動させることも行われるが、それでも、特に、大型のハニカム構造体においては、溶液を、通孔の、開口から遠い内奥部のウォッシュコートまで、十分に行き渡らせることができず、結果として、溶液が十分に行き渡らなかった通孔の内奥部のウォッシュコートに、貴金属微粒子が十分に担持されない領域を生じるという問題もある。   Furthermore, in the supporting method, since the honeycomb structure is immersed in a solution in a static state, the wash in the inner and inner parts of the through-hole farther from the opening becomes larger as the size of the honeycomb structure increases. There is a tendency that the solution does not spread sufficiently to the coat. Therefore, the immersed honeycomb structure is also moved up and down in the liquid. However, in particular, in the case of a large honeycomb structure, the solution is passed through the through-holes to the inner and outer washcoats. As a result, there is a problem that a region in which the noble metal fine particles are not sufficiently supported is formed in the washcoat in the inner and inner portions of the through holes where the solution is not sufficiently distributed.

ウォッシュコートのもとになるアルミナ等の粉末として、その表面に、あらかじめ、貴金属微粒子を担持させたものを用いて、ハニカム構造体の、通孔の内壁面にウォッシュコートを形成することが提案されている(特許文献1参照)。この方法によれば、ウォッシュコートにのみ、選択的に、しかも、通孔の、開口から遠い内奥部のウォッシュコートまで、貴金属微粒子が十分に担持されない領域を生じることなく、ほぼ均一に、貴金属微粒子が担持されたガス反応触媒を、より少ない工程で製造することができる。
特開平6−327978号公報(特許請求の範囲、第0005欄〜第0006欄、第0039欄、第0042欄〜第0044欄、図7、図8)
It has been proposed to form a washcoat on the inner wall surface of the through-holes of the honeycomb structure by using a powder of alumina or the like as a basis for the washcoat, on which the noble metal fine particles are previously supported. (See Patent Document 1). According to this method, the noble metal is almost uniformly formed only in the washcoat, selectively, and even to the washcoat in the inner and rear portions of the through hole far from the opening, without causing a region where the noble metal fine particles are not sufficiently supported. The gas reaction catalyst carrying the fine particles can be produced with fewer steps.
JP-A-6-327978 (Claims, columns 0005 to 0006, column 0039, columns 0042 to 0044, FIGS. 7 and 8)

しかし、ガス反応触媒の使用時に、実際に、排気ガスが流通するのは、ウォッシュコートのうち、通孔内に露出した表面から、ウォッシュコートの厚み方向の、およそ1/3程度の深さまでの表層部の領域のみであり、この表層部の領域に存在する貴金属微粒子のみが、排気ガスと接触してガス処理のために機能し、それより深部に貴金属微粒子が担持されても、それは、触媒として機能することができない。そのため、あらかじめ、貴金属微粒子を担持させた粉末を用いてウォッシュコートの全体を形成した場合には、貴金属微粒子の利用効率が低く、無駄が多いという問題は解消されない。   However, when the gas reaction catalyst is used, the exhaust gas actually circulates from the surface exposed in the through hole of the washcoat to a depth of about 1/3 in the thickness direction of the washcoat. Even if the noble metal fine particles existing only in the surface layer region and only the noble metal fine particles existing in the surface layer region are in contact with the exhaust gas and function for gas treatment, Can not function as. Therefore, in the case where the entire washcoat is formed using a powder carrying precious metal fine particles in advance, the problem that the utilization efficiency of precious metal fine particles is low and wasteful is not solved.

特許文献1の請求項2、第0043欄〜第0044欄、および図8には、ハニカム構造体の通孔の内壁面に、まず、エンジン始動直後における低温の排気ガス成分を吸着する機能を有する改質結晶性アルミノケイ酸塩の粒子からなる下層を形成し、その上に、貴金属微粒子を担持させた粒子からなる上層を形成することが記載されている。この積層構造を利用すれば、通孔内のウォッシュコートの表層部にのみ選択的に、しかも、通孔の、開口から遠い内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、ほぼ均一に、貴金属微粒子を担持させて、貴金属微粒子の利用効率を向上できると考えられる。   In claim 2, column 0043 to column 0044 of FIG. 1, and FIG. 8, the inner wall surface of the through hole of the honeycomb structure has a function of first adsorbing a low-temperature exhaust gas component immediately after starting the engine. It is described that a lower layer made of modified crystalline aluminosilicate particles is formed, and an upper layer made of particles carrying noble metal fine particles is formed thereon. If this laminated structure is used, noble metal fine particles are not sufficiently supported selectively only on the surface layer portion of the washcoat in the through-hole, and further up to the surface layer portion of the washcoat in the inner deep portion far from the opening of the through-hole. It is considered that the use efficiency of the noble metal fine particles can be improved by supporting the noble metal fine particles almost uniformly without generating a region.

しかし、上記の積層構造を有するガス反応触媒を製造するためには、下層および上層の2層のウォッシュコートを形成する工程が必要となることから、ガス反応触媒の生産性が低く、製造コストが高くつくという問題が再び生じてしまう。また、構成を単純化するために、下層を、貴金属微粒子を担持させていないアルミナ等の粉末で形成した場合には、貴金属粉末が、通孔の、開口から遠い内奥部のウォッシュコートの表層部(上層)まで、ほぼ均一に担持されているため、貴金属微粒子の利用効率の点では問題ないものの、エンジン始動直後の、低温の排気ガス成分を有効に除去する効果が十分でない。そこで、特許文献1では、前記のように、下層を、改質結晶性アルミノケイ酸塩の粒子によって形成しており、このことが、生産性が低く、製造コストが高くつくもう一つの原因となる。   However, in order to manufacture a gas reaction catalyst having the above-described laminated structure, a process for forming a two-layer washcoat of a lower layer and an upper layer is required, so the productivity of the gas reaction catalyst is low and the manufacturing cost is low. The problem of being expensive again occurs. In addition, in order to simplify the structure, when the lower layer is formed of a powder such as alumina not supporting noble metal fine particles, the noble metal powder is a surface layer of the wash coat in the inner and inner part of the through hole far from the opening. Since it is supported almost uniformly up to the upper part (upper layer), there is no problem in terms of utilization efficiency of the noble metal fine particles, but the effect of effectively removing the low-temperature exhaust gas component immediately after the engine is started is not sufficient. Therefore, in Patent Document 1, as described above, the lower layer is formed of modified crystalline aluminosilicate particles, which is another cause of low productivity and high manufacturing cost. .

本発明の目的は、ウォッシュコートの、ガスが流通する表層部の領域にのみ選択的に、しかも、通孔の内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、十分に、貴金属微粒子を担持させて、貴金属微粒子の利用効率を向上できる上、担持させた貴金属微粒子のみを用いて、エンジン始動直後の低温の排気ガス成分をも有効に処理することができるガス反応触媒を、これまでよりも少ない工程で、効率よく製造することができる製造方法を提供することにある。また、本発明の他の目的は、上記の製造方法によって、より効率的に、生産性よく、ガス反応触媒を製造することができる製造装置を提供することにある。   The object of the present invention is to produce a region where noble metal fine particles are not sufficiently supported selectively only in the region of the surface layer portion of the washcoat where gas flows, and to the surface layer portion of the washcoat in the inner part of the through hole. Therefore, it is possible to sufficiently support the noble metal fine particles and improve the utilization efficiency of the noble metal fine particles, and to effectively treat the low-temperature exhaust gas components immediately after starting the engine using only the noble metal fine particles supported. An object of the present invention is to provide a production method capable of efficiently producing a gas reaction catalyst that can be produced with fewer steps than before. Another object of the present invention is to provide a production apparatus capable of producing a gas reaction catalyst more efficiently and with high productivity by the above production method.

請求項1記載の発明は、ガスを通過させるための、異なる二端面間を繋ぐ多数の通孔を有すると共に、各通孔の内壁面を、ウォッシュコートで被覆したハニカム構造体の、上記ウォッシュコートに、ガス処理のための触媒として機能する貴金属微粒子を担持させてガス反応触媒を製造する方法であって、貴金属微粒子のもとになる貴金属のイオンと、当該イオンを還元させて、貴金属微粒子として析出させるための還元剤とを含む溶液を、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、各通孔内を、一方向にのみ流通させながら、還元剤の作用によって貴金属のイオンを還元させることで、貴金属微粒子を析出させると共にウォッシュコートに担持させることを特徴とするガス反応触媒の製造方法である。   The invention according to claim 1 is the above-described washcoat of a honeycomb structure having a plurality of through holes connecting two different end faces for allowing gas to pass through, and covering the inner wall surface of each through hole with a wash coat In addition, a method for producing a gas reaction catalyst by supporting noble metal fine particles functioning as a catalyst for gas treatment, wherein noble metal ions that are the basis of the noble metal fine particles and the ions are reduced to form noble metal fine particles. By causing the solution containing the reducing agent to be precipitated to flow from the opening on the one end surface side of the honeycomb structure toward the opening on the other end surface side, through each through hole only in one direction, by the action of the reducing agent. A method for producing a gas reaction catalyst, wherein noble metal fine particles are precipitated and supported on a washcoat by reducing noble metal ions.

請求項2記載の発明は、請求項1のガス反応触媒の製造方法を実施するための装置であって、複数個のハニカム構造体を個別に保持する保持部を有する保持部材と、この保持部材の保持部に保持する複数個のハニカム構造体の多数の通孔と繋がれて、貴金属のイオンと還元剤とを含む溶液を、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、一方向にのみ流通させながら、各通孔内を、繰り返し循環させるための循環路を構成する循環路部材とを備えることを特徴とするガス反応触媒の製造装置である。   The invention according to claim 2 is an apparatus for carrying out the method for producing a gas reaction catalyst according to claim 1, wherein the holding member has a holding portion for holding a plurality of honeycomb structures individually, and the holding member The solution containing the noble metal ions and the reducing agent is connected from the openings on one end face side of the honeycomb structure to the openings on the other end face side. A gas reaction catalyst manufacturing apparatus comprising: a circulation path member that constitutes a circulation path for repeatedly circulating inside each through hole while flowing in only one direction.

請求項3記載の発明は、保持部材が、複数個のハニカム構造体のうち1つの、通孔が開口された一端面を、循環路部材の、溶液の供給口に対向させた位置に保持する保持部を備えると共に、他の複数個のハニカム構造体の、通孔が開口された一端面を、それぞれ、上記1つのハニカム構造体の一端面の周囲の、上記供給口と等距離隔てて対向させた位置に保持する保持部を備える請求項2記載のガス反応触媒の製造装置である。   According to a third aspect of the present invention, the holding member holds one end surface of one of the plurality of honeycomb structures in which the through hole is opened at a position facing the solution supply port of the circulation path member. A holding portion is provided, and one end face of each of the other honeycomb structures having the through holes opened is opposed to the supply port at an equal distance around the one end face of the one honeycomb structure. It is a manufacturing apparatus of the gas reaction catalyst of Claim 2 provided with the holding part hold | maintained in the made position.

請求項1記載の発明においては、貴金属のイオンとその還元剤とを含む溶液を、ハニカム構造体の通孔内を流通させながら、還元剤の作用によって貴金属のイオンを還元させて貴金属微粒子を析出させる還元析出反応を行わせることで、上記ハニカム構造体のうち、通孔内のウォッシュコートの表層部にのみ選択的に、しかも、通孔の内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、十分に、貴金属微粒子を担持させることができる。   In the first aspect of the present invention, the noble metal ions are reduced by the action of the reducing agent while the solution containing the noble metal ions and the reducing agent is circulated in the through holes of the honeycomb structure to precipitate the noble metal fine particles. By performing a reduction precipitation reaction, noble metal fine particles are selectively selected only on the surface layer portion of the washcoat in the through hole in the honeycomb structure, and further up to the surface layer portion of the wash coat in the inner depth of the through hole. Noble metal fine particles can be sufficiently supported without generating a region where the is not sufficiently supported.

すなわち、通孔内を流通する溶液中で、還元剤の作用によって貴金属のイオンが還元されると、ウォッシュコートの、溶液と接触する表面(ウォッシュコートの、見かけの表面だけでなく、表面から深部に達する多孔質構造の内側表面をも含む)を析出の起点として貴金属微粒子が析出すると同時に、これらの表面に担持される還元析出反応が進行する。この際、溶液は、通孔内への流通を開始した初期の時点では、ウォッシュコートの、多孔質構造内のほぼ全体に行き渡るが、その後、次々と新たな溶液が供給されて、還元析出反応によって、集中的に貴金属微粒子が析出して担持される領域は、ガス反応触媒の使用時に、ガスが流通する表層部の領域とほぼ一致する。これは、ガスと溶液とが共に流体であって、通孔内で類似した挙動をするためである。しかも、溶液は、通孔内を、一端面側の開口から多端面側の開口へ向けて強制的に流通されるため、ウォッシュコートに、溶液が十分に行き渡らず、貴金属微粒子が十分に担持されない領域を生じることもない。   In other words, when noble metal ions are reduced by the action of the reducing agent in the solution flowing through the through hole, the surface of the washcoat that comes into contact with the solution (not only the apparent surface of the washcoat but also the deep part from the surface). In addition, the noble metal fine particles are precipitated starting at the same time as the starting point of precipitation (including the inner surface of the porous structure reaching the surface), and the reduction precipitation reaction supported on these surfaces proceeds. At this time, the solution reaches the entire inside of the porous structure of the washcoat at the initial point when the flow into the through-hole is started, but after that, new solutions are supplied one after another to reduce the precipitation reaction. Therefore, the region where the precious metal fine particles are concentrated and deposited is substantially the same as the region of the surface layer portion through which the gas flows when the gas reaction catalyst is used. This is because both the gas and the solution are fluids and behave similarly in the through hole. Moreover, since the solution is forcibly distributed through the through hole from the opening on one end surface side to the opening on the multi-end surface side, the solution does not sufficiently spread on the washcoat, and the noble metal fine particles are not sufficiently supported. There is no area.

また、従来の浸漬法では、溶液中に浸漬して、ウォッシュコートの表面に、貴金属のイオンを一通り付着させた状態で、その上に、さらに貴金属のイオンを付着させることができないため、一旦、溶液から引き上げて焼成して、付着した貴金属のイオンから貴金属微粒子を生成させると共に、ウォッシュコートの表面を露出させた後、再び溶液中に浸漬して、貴金属のイオンを付着させるという作業を、前記のように、所定量の貴金属微粒子が担持されるまで、繰り返し、行わなければならない。これに対し、還元析出反応では、貴金属のイオンとその還元剤とを含む溶液を、ハニカム構造体の通孔に、連続的に、供給し続けることで、ウォッシュコートの、溶液と接触する表面に、次々と新たな貴金属微粒子を析出させて担持させることができる。   In addition, in the conventional dipping method, since noble metal ions cannot be further adhered on the surface of the washcoat after the noble metal ions are adhered to the surface of the washcoat, In addition, the precious metal particles are generated from the noble metal ions that are pulled up from the solution and fired, and after the surface of the washcoat is exposed, the work is again immersed in the solution to attach the noble metal ions. As described above, it must be repeated until a predetermined amount of noble metal fine particles are supported. In contrast, in the reduction precipitation reaction, the solution containing the noble metal ions and the reducing agent is continuously supplied to the through-holes of the honeycomb structure so that the washcoat surface is brought into contact with the solution. One after another, new noble metal fine particles can be deposited and supported.

また、あらかじめ、貴金属微粒子を担持させた粉末を用いてウォッシュコートを形成する方法によって、表層部にのみ貴金属微粒子が担持されたウォッシュコートを形成するには、前記のように、貴金属微粒子を担持させていない粉末を用いて下層を形成し、その上に、貴金属微粒子を担持させた粉末を用いて上層を形成する2工程を要する。これに対し、還元析出報では、ウォッシュコートの形成は1工程のみでよい。   In addition, in order to form a wash coat in which noble metal fine particles are supported only on the surface layer by a method of forming a wash coat using a powder in which noble metal fine particles are supported in advance, the noble metal fine particles are supported as described above. Two steps are required, in which a lower layer is formed using a non-powder powder, and an upper layer is formed thereon using a powder carrying precious metal fine particles. On the other hand, in the reduction precipitation report, the wash coat is formed in only one step.

そのため、請求項1記載の発明によれば、ウォッシュコートの、ガスが流通する表層部の領域にのみ、選択的に、しかも、通孔の内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、十分に、貴金属微粒子が担持されているため、貴金属微粒子の利用効率に優れたガス反応触媒を、より少ない製造工程で、効率よく製造することができる。   Therefore, according to the first aspect of the present invention, the noble metal fine particles are selectively applied only to the region of the surface layer portion of the washcoat where gas flows, and to the surface layer portion of the washcoat in the inner part of the through hole. Since the noble metal fine particles are sufficiently supported without generating a region that is not sufficiently supported, a gas reaction catalyst excellent in the use efficiency of the noble metal fine particles can be efficiently produced with fewer production steps.

しかも、請求項1記載の発明では、ハニカム構造体の通孔に、一端側の開口からのみ、一方的に溶液を流し続けることによって、ウォッシュコートにおける貴金属微粒子の担持量を、通孔の、溶液の入口側の領域で、できるだけ多くすることができる。これは、通孔内を流通する際に還元析出反応が進行することで、溶液の金属イオンの濃度に、入口側が高く出口側で低い濃度勾配を生じるためである。   Moreover, according to the first aspect of the present invention, the amount of the noble metal fine particles supported in the washcoat is determined by continuously flowing the solution unilaterally from the opening on one end side into the through hole of the honeycomb structure. As much as possible in the area of the entrance side of the. This is because the reduction precipitation reaction proceeds when flowing through the through-hole, thereby causing a concentration gradient of the metal ion in the solution to be high on the inlet side and low on the outlet side.

そのため、製造したガス反応触媒を、より多くの貴金属微粒子を担持させた溶液の入口側の領域を排気ガスの入口として、自動車等の排気系に組み込むことによって、改質結晶性アルミノケイ酸塩の粒子からなる下層等と組み合わせることなしに、貴金属微粒子のみで、エンジン始動直後の低温の排気ガスをも有効に処理することが可能となる。また、ウォッシュコートの全体を、改質結晶性アルミノケイ酸塩の粒子によって形成すれば、上記両構成の相乗効果によって、エンジン始動直後の低温の排気ガスを、より一層、有効に処理することもできる。   For this reason, the produced gas reaction catalyst is incorporated into an exhaust system of an automobile or the like, with the region on the inlet side of the solution carrying more noble metal fine particles supported as an exhaust gas inlet, whereby particles of modified crystalline aluminosilicate are obtained. Without combining with the lower layer made of, etc., it becomes possible to effectively treat the low-temperature exhaust gas immediately after the engine start with only the noble metal fine particles. Further, if the entire washcoat is formed of modified crystalline aluminosilicate particles, the exhaust gas at a low temperature immediately after engine start can be treated more effectively due to the synergistic effect of the above two configurations. .

請求項2記載の発明によれば、保持部材の保持部に保持させた複数個のハニカム構造体の通孔内のウォッシュコートに対して、ほぼ同時に、貴金属微粒子を担持させることができる。また、溶液を、循環路を通して繰り返し、循環させることで、当該溶液内の貴金属イオンを、できる限り無駄なく還元析出反応させて、貴金属微粒子として、ウォッシュコートに担持させることができる。したがって、請求項2記載の発明の製造装置によれば、貴金属微粒子の利用効率が高い上、貴金属微粒子のみで、エンジン始動直後の低温の排気ガスをも有効に処理することができるガス反応触媒を、より効率的に、生産性よく、製造することが可能となる。   According to the second aspect of the present invention, the noble metal fine particles can be carried almost simultaneously on the washcoat in the through holes of the plurality of honeycomb structures held by the holding portion of the holding member. Further, by repeatedly circulating the solution through the circulation path, the noble metal ions in the solution can be reduced and precipitated without waste as much as possible, and can be supported on the washcoat as noble metal fine particles. Therefore, according to the production apparatus of the second aspect of the present invention, there is provided a gas reaction catalyst that has high utilization efficiency of noble metal fine particles and can effectively treat low-temperature exhaust gas immediately after engine startup with only noble metal fine particles. It becomes possible to manufacture more efficiently and with high productivity.

請求項3記載の発明においては、保持部材の各保持部によって、1つのハニカム構造体の、通孔が開口された一端面を、循環路部材の、溶液の供給口に対向させた位置に保持すると共に、他の複数個のハニカム構造体の、通孔が開口された一端面を、それぞれ、上記1つのハニカム構造体の一端面の周囲の、上記供給口と等距離隔てて対向させた位置に保持することができるため、供給口から供給される溶液を、ほぼ等量ずつ、各保持部に保持したハニカム構造体の通孔に供給することができる。したがって、請求項3記載の発明の製造装置によれば、保持部材の保持部に保持させた複数個のハニカム構造体の通孔内のウォッシュコートに対して、ほぼ同量の貴金属微粒子を、同様の分布で担持させて、製造される各ガス反応触媒の性能を、できる限り均一化することができる。   According to the third aspect of the present invention, the one end surface of one honeycomb structure, in which the through holes are opened, is held at a position facing the solution supply port of the circulation path member by each holding portion of the holding member. In addition, the positions of the other end surfaces of the plurality of honeycomb structures having the through holes opened are respectively opposed to the supply port at an equal distance around the one end surface of the one honeycomb structure. Therefore, the solution supplied from the supply port can be supplied to the through-holes of the honeycomb structure held in each holding portion in almost equal amounts. Therefore, according to the manufacturing apparatus of the third aspect of the present invention, substantially the same amount of the noble metal fine particles are similarly applied to the washcoat in the through holes of the plurality of honeycomb structures held by the holding portion of the holding member. The performance of each produced gas reaction catalyst can be made as uniform as possible.

(ガス反応触媒の製造方法)
本発明のガス反応触媒の製造方法は、貴金属微粒子のもとになる貴金属のイオンと、当該イオンを還元させて、貴金属微粒子として析出させるための還元剤とを含む溶液を、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、各通孔内を、一方向にのみ流通させながら、還元剤の作用によって貴金属のイオンを還元させることで、貴金属微粒子を析出させると共にウォッシュコートに担持させることを特徴とするものである。
(Production method of gas reaction catalyst)
In the method for producing a gas reaction catalyst of the present invention, a solution containing a noble metal ion that is a source of noble metal fine particles and a reducing agent for reducing the ions and precipitating them as noble metal fine particles is obtained. While flowing through each through hole in only one direction from the opening on the end face side to the opening on the other end face side, the noble metal ions are reduced by the action of the reducing agent to precipitate the noble metal fine particles and wash coat. It is characterized in that it is supported on the surface.

ガス反応触媒のもとになるハニカム構造体としては、従来同様に、マグネシウムとアルミニウムとケイ素の複合酸化物であるコージェライト等のセラミックや、あるいはチタン、ステンレス鋼等の金属等からなり、排気ガスを通過させるための、異なる二端面間を繋ぐ多数の通孔を有する構造体が、いずれも使用可能である。   The honeycomb structure that is the basis of the gas reaction catalyst is made of a ceramic such as cordierite, which is a composite oxide of magnesium, aluminum, and silicon, or a metal such as titanium or stainless steel, as in the past, and exhaust gas. Any structure having a large number of through-holes connecting two different end surfaces can be used.

また、上記ハニカム構造体の、通孔の内壁面を被覆するウォッシュコートとしては、アルミナ(Al23)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、酸化セリウム(CeO2)等の金属酸化物や、ゼオライト、アルミニウムとジルコニウムとランタンの複合酸化物等の粒子から形成される、多孔質構造を有するものが挙げられる。ウォッシュコートは、上記各種の粒子を含むスラリーを調製し、このスラリーにハニカム構造体を浸漬する等して、通孔の内周面にスラリーの層を形成後、乾燥させることで、通孔の内壁面を覆うように形成される。 Further, as a wash coat for covering the inner wall surface of the through hole of the honeycomb structure, alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), Examples thereof include those having a porous structure formed from particles such as metal oxides such as magnesium oxide (MgO) and cerium oxide (CeO 2 ), zeolite, and composite oxides of aluminum, zirconium and lanthanum. The washcoat is prepared by preparing a slurry containing the various particles described above, immersing the honeycomb structure in the slurry, etc., and forming a slurry layer on the inner peripheral surface of the through hole, followed by drying. It is formed so as to cover the inner wall surface.

また、ウォッシュコートを、特許文献1に記載された改質結晶性アルミノケイ酸塩の粒子によって形成することもできる。その場合には、ウォッシュコートの全体を、上記改質結晶性アルミノケイ酸塩の粒子によって1工程で形成できるため、ガス反応触媒の生産性が低下するおそれはない。しかも、先に説明したように、貴金属微粒子を、通孔内のウォッシュコートの表層部のうち、溶液の入口側の領域にできるだけ多く担持させることと相まって、エンジン始動直後の低温の排気ガスを、より一層、有効に処理することも可能となる。   In addition, the washcoat may be formed of modified crystalline aluminosilicate particles described in Patent Document 1. In this case, since the entire washcoat can be formed in one step with the modified crystalline aluminosilicate particles, the productivity of the gas reaction catalyst is not lowered. In addition, as described above, coupled with supporting as much precious metal fine particles as possible in the region on the inlet side of the solution in the surface layer portion of the washcoat in the through hole, the low-temperature exhaust gas immediately after the engine is started, Even more effective processing is possible.

還元析出反応によって、ウォッシュコートの、多孔質の内側表面を含む表面に析出させて担持させる貴金属微粒子としては、白金、パラジウム、ロジウム、ルテニウム、イリジウム、金、銀、およびオスミウムから選ばれた少なくとも1種の貴金属からなる微粒子が挙げられる。貴金属微粒子を形成する貴金属としては、ガス反応触媒によって処理する排気ガス中の成分等に応じて、上記の中から1種または2種以上の貴金属を選択すればよい。   As the noble metal fine particles deposited and supported on the surface of the washcoat including the porous inner surface by the reduction precipitation reaction, at least one selected from platinum, palladium, rhodium, ruthenium, iridium, gold, silver, and osmium. Fine particles made of a kind of noble metal can be mentioned. As the noble metal forming the noble metal fine particles, one or more kinds of noble metals may be selected from the above according to the components in the exhaust gas to be treated by the gas reaction catalyst.

ウォッシュコートの表面に、貴金属微粒子を析出させて担持させるために、ハニカム構造体の通孔内を流通させる溶液は、貴金属のイオン源となる金属化合物と、還元剤とを、両成分に共通の溶媒、特に水に溶解して調製される。このうち、貴金属のイオン源となる金属化合物としては、水等の溶媒に可溶である種々の金属化合物が、いずれも使用可能である。   In order to deposit and carry noble metal fine particles on the surface of the washcoat, the solution that circulates in the through-holes of the honeycomb structure has a metal compound that serves as a noble metal ion source and a reducing agent that are common to both components. It is prepared by dissolving in a solvent, particularly water. Among these, as the metal compound serving as a noble metal ion source, any of various metal compounds that are soluble in a solvent such as water can be used.

ただし、金属化合物は、可能であれば、核成長の起点となって異常な核成長を生じさせるおそれのある、塩素等のハロゲン元素や、硫黄、リン、ホウ素等の不純物元素を含まないのが好ましい。これにより、ウォッシュコートの表面に、個々の粒径ができるだけ小さい貴金属微粒子を、できるだけ多数、担持させて、ガス処理の効率を向上させることができる。しかし、不純物元素を含む金属化合物を使用する場合でも、反応条件等を調整することによって、異常な核成長を抑えて、ウォッシュコートの表面に、できるだけ粒径の小さい貴金属微粒子を、できるだけ多数、担持させることは可能である。   However, if possible, the metal compound should not contain halogen elements such as chlorine and impurity elements such as sulfur, phosphorus and boron, which may cause abnormal nucleus growth as a starting point of nucleus growth. preferable. As a result, as many precious metal fine particles as small as possible can be carried on the surface of the washcoat, thereby improving the efficiency of gas treatment. However, even when using a metal compound containing an impurity element, by adjusting the reaction conditions, etc., abnormal nucleus growth is suppressed, and as many noble metal fine particles as small as possible are supported on the surface of the washcoat. It is possible to make it.

貴金属のイオン源として好適な金属化合物としては、これに限定されないが、例えば、白金の場合は、ジニトロジアンミン白金(II)〔Pt(NO22(NH32〕や、ヘキサクロロ白金(IV)酸六水和物〔H2[PtCl6]・6H2O〕等が挙げられ、特にジニトロジアンミン白金(II)が好ましい。また、銀の場合は、硝酸銀(I)〔AgNO3〕やメタンスルホン酸銀〔CH3SO3Ag〕等が挙げられ、特に硝酸銀(I)が好ましい。金の場合は、テトラクロロ金(III)酸四水和物〔HAuCl4・4H2O〕等が挙げられる。パラジウムの場合は、塩化パラジウム(II)溶液〔PdCl2〕、硝酸パラジウム(II)溶液〔Pd(NO32〕、イリジウムの場合は、ヘキサクロロイリジウム(III)酸六水和物〔2(IrCl6)・6H2O〕、ロジウムの場合は、塩化ロジウム(III)溶液〔RhCl3・3H2O〕、ルテニウムの場合は、硝酸ルテニウム(III)溶液〔Ru(NO3)3〕等が挙げられる。 The metal compound suitable as the ion source for the noble metal is not limited to this. For example, in the case of platinum, dinitrodiammine platinum (II) [Pt (NO 2 ) 2 (NH 3 ) 2 ], hexachloroplatinum (IV ) Acid hexahydrate [H 2 [PtCl 6 ] · 6H 2 O] and the like, and dinitrodiammine platinum (II) is particularly preferable. In the case of silver, silver nitrate (I) [AgNO 3 ], silver methanesulfonate [CH 3 SO 3 Ag] and the like can be mentioned, and silver nitrate (I) is particularly preferable. In the case of gold, tetrachloroauric (III) acid tetrahydrate [HAuCl 4 · 4H 2 O] and the like can be mentioned. In the case of palladium, palladium chloride (II) solution [PdCl 2 ], palladium nitrate (II) solution [Pd (NO 3 ) 2 ], and in the case of iridium, hexachloroiridium (III) hexahydrate [2 (IrCl 6 ) · 6H 2 O], rhodium, rhodium (III) chloride solution [RhCl 3 · 3H 2 O], ruthenium, ruthenium nitrate (III) solution [Ru (NO 3 ) 3 ] It is done.

還元剤としては、上記金属化合物中の貴金属のイオンを還元することで、ウォッシュコートの表面に貴金属微粒子を析出させると共に、担持させることができる種々の還元剤が、いずれも使用可能である。かかる還元剤としては、例えば、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、遷移金属元素のイオン(三価のチタンイオン、二価のコバルトイオン等)が挙げられる。   As the reducing agent, any of various reducing agents capable of depositing and supporting noble metal fine particles on the surface of the washcoat by reducing noble metal ions in the metal compound can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal element ions (trivalent titanium ions, divalent cobalt ions, and the like).

ただし、ガス処理の効率を向上することを考慮すると、前記のように、ウォッシュコートの表面に、個々の粒径ができるだけ小さい貴金属微粒子を、できるだけ多数、担持させることが好ましく、そのためには、貴金属のイオンの還元、析出速度を遅くするのが有効であり、還元、析出速度を遅くするためには、できるだけ還元力の弱い還元剤を選択して使用することが好ましい。   However, in consideration of improving the efficiency of gas treatment, as described above, it is preferable to carry as many precious metal fine particles as small as possible with the individual particle diameters on the surface of the washcoat. It is effective to slow down the reduction and precipitation rate of the ions, and in order to slow down the reduction and precipitation rate, it is preferable to select and use a reducing agent having a reducing power as weak as possible.

還元力の弱い還元剤としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコールや、あるいはアスコルビン酸等を挙げることができる他、エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元性糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、および糖アルコール類(ソルビトール等)等を挙げることができ、中でも、還元性糖類や、その誘導体としての糖アルコール類が好ましい。また、還元剤として、アルコールと、その他の還元剤とを併用すると、ウォッシュコートの表面に担持される貴金属微粒子の担持率を増加させることができる。つまり、より多数の貴金属微粒子を、ウォッシュコートの表面に担持させて、ガス処理の効率を向上することができる。   Examples of the reducing agent having a weak reducing power include alcohols such as methanol, ethanol and isopropyl alcohol, ascorbic acid, and the like, as well as ethylene glycol, glutathione, and organic acids (citric acid, malic acid, tartaric acid, etc.). , Reducing sugars (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.) and sugar alcohols (sorbitol, etc.). Among them, reducing sugars and sugars as derivatives thereof Alcohols are preferred. Further, when alcohol and another reducing agent are used in combination as the reducing agent, the loading ratio of the noble metal fine particles supported on the surface of the washcoat can be increased. That is, a larger number of noble metal fine particles can be carried on the surface of the washcoat to improve the efficiency of gas treatment.

また、溶液中には、例えば、溶液のpHを、貴金属イオンの還元、析出に適した範囲に調整するためのpH調整剤や、溶液の粘度を調整するための粘度調整剤等の、各種の添加剤を添加してもよい。このうち、pH調整剤としては、各種の酸やアルカリが何れも使用可能であるが、特に、前記のように、核成長の起点となって異常な核成長を生じさせるおそれのある不純物元素を含まない酸やアルカリを使用するのが好ましい。かかる、不純物元素を含まない酸としては、硝酸等を挙げることができ、アルカリとしては、アンモニア水等を挙げることができる。   Further, in the solution, for example, various pH adjusters for adjusting the pH of the solution to a range suitable for reduction and precipitation of noble metal ions, and a viscosity adjuster for adjusting the viscosity of the solution. Additives may be added. Among these, as the pH adjuster, any of various acids and alkalis can be used. In particular, as described above, an impurity element that may cause abnormal nuclear growth as a starting point of nuclear growth is used. It is preferable to use an acid or alkali not contained. Nitric acid etc. can be mentioned as this acid which does not contain an impurity element, Ammonia water etc. can be mentioned as an alkali.

溶液のpHの好適な範囲は、析出させる貴金属微粒子の種類や、そのもとになる貴金属のイオン源としての金属化合物の種類等によって異なり、また、その好適な範囲内でpHが小さいほど、形成される貴金属微粒子の粒径が小さくなる傾向がある。よって、形成する貴金属微粒子の種類や粒径、使用する還元剤の種類その他の条件を考慮しながら、pH調整剤を添加するか否か、添加する場合はどの程度の量を添加するかを選択するのが好ましい。   The preferred range of the pH of the solution varies depending on the kind of precious metal fine particles to be deposited, the kind of metal compound as the ion source of the precious metal that forms the base, and the smaller the pH within the preferred range, the more There is a tendency that the particle diameter of the precious metal fine particles to be reduced becomes small. Therefore, select whether or not to add a pH adjuster, taking into account the type and particle size of the precious metal particles to be formed, the type of reducing agent to be used, and other conditions. It is preferable to do this.

また、粘度調整剤としては、従来公知の種々の化合物を用いることができるが、特に、高分子系の粘度調整剤を使用するのが好ましい。かかる高分子系の粘度調整剤としては、例えば、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子化合物や、ポリアクリル酸、カルボキシメチルセルロース等の、分子中にカルボン酸基を有する炭化水素系の高分子化合物、ポリエチレングリコール等のポリアルキレンオキサイド系の高分子化合物、あるいは1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等を挙げることができる。   As the viscosity modifier, conventionally known various compounds can be used, and it is particularly preferable to use a polymer-based viscosity modifier. Examples of such a polymer-based viscosity modifier include, for example, amine-based polymer compounds such as polyethyleneimine and polyvinylpyrrolidone, and hydrocarbon-based polymers having a carboxylic acid group in the molecule, such as polyacrylic acid and carboxymethylcellulose. Examples thereof include molecular compounds, polyalkylene oxide polymer compounds such as polyethylene glycol, and copolymers having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.

粘度調整剤の添加量は、特に限定されないが、添加量を多くするほど、溶液の粘度が上昇して、形成される貴金属微粒子の粒径が小さくなる傾向があることから、析出させる貴金属微粒子の粒径や、使用する還元剤の種類その他の条件を考慮しながら、好適な添加量の範囲を設定するのが好ましい。さらに、溶液を調製するための溶媒としては、前記のように水が、好適に使用される。   The addition amount of the viscosity modifier is not particularly limited, but as the addition amount is increased, the viscosity of the solution increases and the particle size of the formed noble metal fine particles tends to be small. It is preferable to set a suitable range of the addition amount in consideration of the particle size, the type of reducing agent used and other conditions. Further, as described above, water is preferably used as a solvent for preparing the solution.

上記の各成分を含む溶液を、所定の温度条件下で、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、各通孔内を、一方向にのみ流通させながら、還元剤の作用によって貴金属のイオンを還元させると、先に説明した反応機構によって、各通孔内のウォッシュコートの、排気ガスが流通する表層部の領域にのみ、選択的に、しかも、通孔の内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、十分に、貴金属微粒子を担持させることができると共に、その担持量を、通孔の、溶液の入口側の領域で、できるだけ多くすることができる。そのため、貴金属微粒子の利用効率に優れる上、エンジン始動直後の低温の排気ガス成分をも有効に処理することができるガス反応触媒を、より少ない製造工程で、効率よく製造することができる。   The solution containing each of the above components is reduced while flowing through each through hole only in one direction from the opening on one end surface side to the opening on the other end surface side of the honeycomb structure under a predetermined temperature condition. When the noble metal ions are reduced by the action of the agent, the reaction mechanism described above selectively and only in the surface layer portion of the washcoat in each through hole through which the exhaust gas flows. The noble metal fine particles can be sufficiently supported up to the surface layer portion of the innermost washcoat without causing a region where the noble metal fine particles are not sufficiently supported, and the supported amount can be set on the inlet side of the through hole. Can be as much as possible in the area. Therefore, it is possible to efficiently produce a gas reaction catalyst that is excellent in the utilization efficiency of the noble metal fine particles and that can effectively treat a low-temperature exhaust gas component immediately after the engine is started, with fewer production steps.

また、この際、溶液の温度や粘度、通孔内での流通速度等を変更することにより、ウォッシュコートの表面に担持される貴金属微粒子の粒径や担持量や担持量の分布等を調整することができる。すなわち、液の温度が低いほど、また粘度が高いほど、さらには流通速度が速いほど、形成される貴金属微粒子の粒径を小さくすることができる。また、溶液の流通速度を遅くするほど、個々の通孔内における貴金属微粒子の担持量の差を小さくすることができる。したがって、形成する貴金属微粒子の種類や粒径、担持量の分布、使用する還元剤の種類その他の条件を考慮しながら、液の温度、粘度、流通速度等を設定するのが好ましい。   At this time, by adjusting the temperature and viscosity of the solution, the flow rate in the through-hole, etc., the particle size, loading amount and loading amount distribution of the noble metal fine particles carried on the surface of the washcoat are adjusted. be able to. That is, the lower the temperature of the liquid, the higher the viscosity, and the higher the flow rate, the smaller the particle size of the noble metal fine particles formed. Further, the slower the solution flow rate, the smaller the difference in the amount of noble metal fine particles supported in each through hole. Therefore, it is preferable to set the temperature, viscosity, flow rate, etc. of the liquid while taking into consideration the type and particle size of the noble metal fine particles to be formed, the distribution of the supported amount, the type of reducing agent used and other conditions.

(ガス反応触媒の製造装置)
図1は、上記の製造方法によってガス反応触媒を製造するための、本発明のガス反応触媒の製造装置の、実施の形態の一例を示す概略断面図である。また、図2(a)は、上記製造装置のうち、複数個(図では7個)のハニカム構造体Hを保持するための保持部材1の外観を示す斜視図、図2(b)は、上記保持部材1に保持される1個のハニカム構造体Hの外観を示す斜視図である。
(Production equipment for gas reaction catalyst)
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a gas reaction catalyst production apparatus of the present invention for producing a gas reaction catalyst by the production method described above. FIG. 2 (a) is a perspective view showing an appearance of the holding member 1 for holding a plurality (seven in the figure) of the honeycomb structures H in the manufacturing apparatus, and FIG. 2 is a perspective view showing an appearance of one honeycomb structure H held by the holding member 1. FIG.

図2(b)を参照して、この例の製造装置は、全体が円柱状に形成されると共に、当該円柱の軸方向と平行に、多数の通孔H1が設けられ、かつ、各通孔H1が、いずれも、図では一方しか示していないが、円柱の両側の端面H2で開口されたハニカム構造体Hを用いて、当該ハニカム構造体Hの通孔H1内にあらかじめ形成したウォッシュコートの表面に、貴金属微粒子を担持させて、ガス反応触媒を製造するために用いられるものである。   Referring to FIG. 2 (b), the manufacturing apparatus of this example is formed in a cylindrical shape as a whole, and has a large number of through holes H1 parallel to the axial direction of the column, and each through hole. Although only one of H1 is shown in the figure, a washcoat formed in advance in the through-hole H1 of the honeycomb structure H using the honeycomb structure H opened at the end faces H2 on both sides of the cylinder. It is used for producing a gas reaction catalyst by supporting noble metal fine particles on the surface.

図1を参照して、上記製造装置は、複数個のハニカム構造体Hを保持する保持部1と、この保持部1に保持した複数個のハニカム構造体Hの通孔H1と繋がれて、貴金属のイオンと還元剤とを含む溶液Lを、図中に一点鎖線の矢印で示すように循環させて、各ハニカム構造体Hの通孔H1内を繰り返し流通させるための循環路を構成する循環路部材2とを備えている。   Referring to FIG. 1, the manufacturing apparatus is connected to a holding portion 1 that holds a plurality of honeycomb structures H, and through holes H1 of the plurality of honeycomb structures H that are held in the holding portions 1. Circulation that constitutes a circulation path for circulating the solution L containing the noble metal ions and the reducing agent as shown by the one-dot chain line arrow in the figure, and repeatedly circulating through the through holes H1 of the honeycomb structures H. A road member 2 is provided.

図2(a)を参照して、保持部材1は、中心に、1個のハニカム構造体Hを保持するための保持部としての、断面円形の通孔10が設けられると共に、この通孔10の周囲に、残り6個のハニカム構造体Hを保持するための保持部としての、同じく断面円形の通孔11が、中心の通孔10と等距離隔てると共に、隣り合う通孔11同士も等距離隔てて設けられた、全体が円柱状に形成されている。   Referring to FIG. 2 (a), the holding member 1 is provided with a through hole 10 having a circular cross section as a holding part for holding one honeycomb structure H at the center. A through-hole 11 having a circular cross section, which is the same as a holding portion for holding the remaining six honeycomb structures H, is separated from the central through-hole 10 by an equal distance, and adjacent through-holes 11 are also equal to each other. The whole is formed in a columnar shape provided at a distance.

図1を参照して、中心の通孔10は、循環路部材2のうち、溶液Lの供給口2aに対向させた位置に配設され、それによって、1つのハニカム構造体Hの端面H2を、循環路部材2のうち、溶液Lの供給口2aに対向させた位置に保持するための保持部として機能する。また、その他の通孔11は、上記のように、中心の通孔10と等距離隔てて配設されていることから、その他のハニカム構造体Hの端面H2を、上記供給口2aと等距離隔てた位置に保持する保持部として機能する。そして、これらの機能によって、上記供給口2aから供給される溶液Lを、各保持部に保持させたハニカム構造体Hの通孔H1にほぼ均等に供給できるため、製造される各ガス反応触媒の性能を、均一化することができる。   With reference to FIG. 1, the central through hole 10 is disposed at a position of the circulation path member 2 facing the supply port 2a of the solution L, whereby the end face H2 of one honeycomb structure H is formed. It functions as a holding part for holding the circulating path member 2 at a position facing the supply port 2a of the solution L. In addition, since the other through holes 11 are arranged at an equal distance from the central through hole 10 as described above, the end face H2 of the other honeycomb structure H is arranged at an equal distance from the supply port 2a. It functions as a holding part that holds the parts at a distance. And by these functions, since the solution L supplied from the supply port 2a can be supplied almost evenly to the through holes H1 of the honeycomb structure H held in each holding portion, each of the gas reaction catalysts to be manufactured is supplied. The performance can be made uniform.

図2(a)を参照して、保持部材1は、通孔10、11を有する筒体1aを7個、それよりも径の大きい筒体1b内に配設し、各筒体1a、1b間の隙間に充てん材1cを充てんするなどして形成される。筒体1a、1bや充てん材1cは、種々の材料によって形成することができる。しかし、これらの部材の表面を析出の起点として貴金属微粒子が析出するのを防止して、溶液L中の貴金属イオンの無駄な消費をできるだけ少なくすることや、還元析出反応をスムースに進行させるために、装置の全体が、60〜100℃程度に加温されること等を考慮すると、筒体1a、1bは、ある程度の耐熱性を有する樹脂や、ガラス、あるいは上記樹脂で被覆した金属やガラス等によって形成するのが好ましい。   Referring to FIG. 2 (a), the holding member 1 is provided with seven cylinders 1a having through holes 10 and 11 in a cylinder 1b having a larger diameter, and each cylinder 1a, 1b. It is formed, for example, by filling the gap 1 between them with the filler 1c. The cylinders 1a and 1b and the filler 1c can be formed of various materials. However, in order to prevent the precious metal fine particles from precipitating from the surface of these members as the starting point of precipitation, to reduce the wasteful consumption of precious metal ions in the solution L as much as possible, and to allow the reduction precipitation reaction to proceed smoothly. Considering that the entire apparatus is heated to about 60 to 100 ° C., etc., the cylinders 1a and 1b are made of resin or glass having a certain degree of heat resistance, or metal or glass coated with the resin. It is preferable to form by.

上記樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等が挙げられる。また、筒体1a、1b間に充てんされる充てん材1cとしては、充てんのしやすさや、充てん後の耐熱性等を考慮すると、硬化前に液状を呈し、硬化後には高い耐熱性を有する硬化物となる、シリコーン樹脂等の熱硬化性樹脂を用いるのが好ましい。   Examples of the resin include polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene fluoride, and polytetrafluoroethylene. In addition, as the filler 1c filled between the cylinders 1a and 1b, in consideration of ease of filling, heat resistance after filling, etc., it exhibits a liquid state before curing and has high heat resistance after curing. It is preferable to use a thermosetting resin such as a silicone resin.

図の例の場合、筒体1aは、通孔10、11の内径が、保持するハニカム構造体Hの外径よりも少し大きめに形成されている。そして、通孔10、11にハニカム構造体Hを保持させる場合には、両者の間に一対のOリングRを嵌め合わせて固定すると共に、ハニカム構造体Hの外周面に溶液Lが回りこまず、通孔H1内のみを流通するようにしている。   In the example shown in the figure, the cylindrical body 1a is formed such that the inner diameters of the through holes 10 and 11 are slightly larger than the outer diameter of the honeycomb structure H to be held. When the honeycomb structure H is held in the through holes 10 and 11, a pair of O-rings R are fitted and fixed between them, and the solution L does not circulate on the outer peripheral surface of the honeycomb structure H. , Only in the through hole H1.

詳しくは、その内径が、ハニカム構造体Hの外径と等しいか、またはわずかに小さく、かつ、外径が、通孔10、11の内径と等しいか、またはわずかに大きいOリングRを2本、用意し、それを、ハニカム構造体Hの外周面の、両端面H2の近傍の位置に嵌め合わせた状態で、通孔10、11に挿入することで、ハニカム構造体Hが、保持部としての通孔10、11内に保持される。それと共に、一対のOリングによって、ハニカム構造体Hの外周面を循環路から遮断して、溶液Lが、当該外周面に回りこまず、通孔H1内のみを流通するようにしている。   Specifically, two O-rings R whose inner diameter is equal to or slightly smaller than the outer diameter of the honeycomb structure H and whose outer diameter is equal to or slightly larger than the inner diameter of the through holes 10 and 11 are provided. The honeycomb structure H is used as a holding portion by preparing and inserting it into the through holes 10 and 11 in a state where the outer peripheral surface of the honeycomb structure H is fitted to the positions near the both end faces H2. Are held in the through holes 10 and 11. At the same time, the outer peripheral surface of the honeycomb structure H is blocked from the circulation path by a pair of O-rings, so that the solution L does not circulate around the outer peripheral surface and only flows through the through hole H1.

図1を参照して、保持部材1は、通孔10、11内にハニカム構造体Hを保持した状態で、当該ハニカム構造体Hの軸線を鉛直方向に向けると共に、その上下に、循環路部材2を接続するための接続部材22、23を接続した状態で、加温槽3中に配置される。   With reference to FIG. 1, the holding member 1 has the honeycomb structure H held in the through holes 10 and 11, and the axis of the honeycomb structure H is directed in the vertical direction, and the circulation path member is disposed above and below the axis. In the state where the connection members 22 and 23 for connecting 2 are connected, they are arranged in the heating tank 3.

上記保持部材1に接続される循環路部材2は、溶液Lを貯留するための貯留槽20と、溶液Lを、循環路部材2内で循環させるためのポンプPと、貯留槽20から出て、ポンプPを経由して接続部材22に達し、その先端が、前記供給口2aとされた第1の管路部材21と、接続部材23から出て貯留槽20に達する第2の管路部材24とを備えている。このうち、貯留槽20には、溶液Lの放散を防止しながら、貯留槽20内を外気と接続して圧力上昇を防止するための還流管4が接続されている。また、貯留槽20は、保持部材1、および投げ込みヒータ5と共に、加温槽3内に配置されている。そして、加温槽3に水Wを満たした状態で、投げ込みヒータ5に通電して水Wを加熱することで、上記装置の全体が、所定の温度(前述したように60〜100℃程度)に加温される。   The circulation path member 2 connected to the holding member 1 comes out of the storage tank 20 for storing the solution L, the pump P for circulating the solution L in the circulation path member 2, and the storage tank 20. The first pipe member 21 that reaches the connection member 22 via the pump P, the tip of which is the supply port 2a, and the second pipe member that reaches the storage tank 20 through the connection member 23 24. Among these, the storage tank 20 is connected with the reflux pipe 4 for preventing the pressure increase by connecting the inside of the storage tank 20 to the outside air while preventing the solution L from being diffused. The storage tank 20 is arranged in the heating tank 3 together with the holding member 1 and the throwing heater 5. Then, in the state where the heating tank 3 is filled with the water W, the throwing heater 5 is energized to heat the water W, so that the entire apparatus has a predetermined temperature (about 60 to 100 ° C. as described above). Is warmed.

上記各部のうち、溶液Lと直接に接触する貯留槽20、管路部材21、24、接続部材22、23、および還流管4は、これらの部材の表面を析出の起点として貴金属微粒子が析出するのを防止して、溶液L中の貴金属イオンの無駄な消費をできるだけ少なくすることや、還元析出反応をスムースに進行させるために、装置の全体が、上記のように60〜100℃程度に加温されること等を考慮すると、前記筒体1a、1bと同様に、ある程度の耐熱性を有する樹脂や、ガラス、あるいは上記樹脂で被覆した金属やガラス等によって形成するのが好ましい。また、ポンプPとしても、溶液Lと直接に接触する部分が、上記樹脂等で被覆されたものを用いるのが好ましい。   Among the above parts, the storage tank 20, the pipe members 21 and 24, the connection members 22 and 23, and the reflux pipe 4 that are in direct contact with the solution L deposit noble metal fine particles with the surface of these members as the starting point of precipitation. In order to prevent wasteful consumption of precious metal ions in the solution L as much as possible and to allow the reduction precipitation reaction to proceed smoothly, the entire apparatus is heated to about 60 to 100 ° C. as described above. In consideration of heating, etc., it is preferable to form with a resin having a certain degree of heat resistance, glass, or a metal or glass coated with the resin as in the case of the cylinders 1a and 1b. Also, as the pump P, it is preferable to use a pump in which a portion that is in direct contact with the solution L is coated with the resin or the like.

上記の製造装置を用いて、本発明の製造方法によってガス反応触媒を製造するためには、まず、図2(a)に示すように、保持部材1の通孔10、11に、OリングRを嵌め合わせた複数個(図の例では先に説明したように7個)のハニカム構造体Hを挿入して保持させる。ハニカム構造体Hとしては、その通孔H1の内壁面に、あらかじめウォッシュコートを形成したものを用いる。次に、図1に示すように、保持部材1の上下に接続部材22、23を接続した状態で、水Wを満たす前の加温槽3内に設置すると共に、接続部材22、23に管路部材21、24を接続する。   In order to manufacture the gas reaction catalyst by the manufacturing method of the present invention using the above manufacturing apparatus, first, as shown in FIG. 2 (a), the O-ring R is formed in the through holes 10, 11 of the holding member 1. A plurality of honeycomb structures H (7 in the example shown in the figure as described above) are inserted and held. As the honeycomb structure H, a structure in which a wash coat is formed in advance on the inner wall surface of the through hole H1 is used. Next, as shown in FIG. 1, the connecting members 22 and 23 are connected to the upper and lower sides of the holding member 1 and installed in the heating tank 3 before filling the water W, and the connecting members 22 and 23 are connected to the connecting members 22 and 23. The road members 21 and 24 are connected.

また、貯留槽20に所定量の溶液Lを入れ、加温槽3に水Wを満たして、投げ込みヒータ5に通電する。そして、装置の全体が、所定の温度に達した時点で、ポンプPを作動させて、溶液Lを、図中に一点鎖線の矢印で示す経路に沿って順に循環させることで、各ハニカム構造体Hの通孔H1内を一方向にのみ流通させる作業を一定時間、続ける。   Further, a predetermined amount of the solution L is put in the storage tank 20, the water tank W is filled with water W, and the throwing heater 5 is energized. Then, when the entire apparatus reaches a predetermined temperature, the pump P is operated, and the solution L is circulated in order along a path indicated by a one-dot chain line arrow in the figure, thereby each honeycomb structure. The operation of circulating in the H through hole H1 only in one direction is continued for a certain time.

そうすると、先に説明したメカニズムによって、保持部材1の保持部11に保持したハニカム構造体Hの通孔H1内に形成したウォッシュコートの、排気ガスが流通する表層部の領域にのみ、選択的に、しかも、通孔H1の内奥部のウォッシュコートの表層部まで、貴金属微粒子が十分に担持されない領域を生じることなく、十分に、貴金属微粒子を担持させることができると共に、その担持量を、通孔H1の、溶液Lの入口側(図において下側)の領域において、できるだけ多くすることができる。   Then, according to the mechanism described above, the washcoat formed in the through hole H1 of the honeycomb structure H held in the holding portion 11 of the holding member 1 is selectively selected only in the region of the surface layer portion where the exhaust gas flows. In addition, the noble metal fine particles can be sufficiently supported up to the surface layer portion of the wash coat at the inner back portion of the through hole H1 without generating a region where the noble metal fine particles are not sufficiently supported, and the amount of the noble metal fine particles can be passed through. In the region of the hole H1 on the inlet side (lower side in the figure) of the solution L, it can be increased as much as possible.

しかも、図の装置では、上記の処理を、保持部材1の保持部11に保持した複数個(図では7個)のハニカム構造体Hに対して同時に行うことができると共に、先に説明した保持部11の配置に基づいて、供給口2aから供給される溶液Lを、ほぼ等量ずつ、各保持部11に保持したハニカム構造体Hの通孔H1に供給して、各ハニカム構造体Hの通孔H1内のウォッシュコートに対して、ほぼ同量の貴金属微粒子を、同様の分布で担持させることができる。   Moreover, in the apparatus shown in the figure, the above processing can be performed simultaneously on a plurality (seven in the figure) of the honeycomb structures H held in the holding portion 11 of the holding member 1, and the holding described above. Based on the arrangement of the portions 11, the solution L supplied from the supply port 2a is supplied to the through holes H1 of the honeycomb structures H held in the holding portions 11 in substantially equal amounts, and the honeycomb structures H are supplied. Almost the same amount of noble metal fine particles can be supported in the same distribution on the washcoat in the through hole H1.

したがって、上記の製造装置によれば、貴金属微粒子の利用効率に優れる上、エンジン始動直後の低温の排気ガス成分をも有効に処理することができるガス反応触媒を、より少ない製造工程で、より効率的に、生産性よく、量産することができる上、製造される各ガス反応触媒の性能を、できる限り均一化することが可能となる。   Therefore, according to the manufacturing apparatus described above, the gas reaction catalyst capable of effectively processing the low-temperature exhaust gas component immediately after the engine is started can be more efficiently used with fewer manufacturing processes. In addition, mass production can be performed with high productivity, and the performance of each produced gas reaction catalyst can be made as uniform as possible.

なお、本発明の構成は、以上で説明した例のものには限定されない。例えば、ハニカム構造体Hとしては、図2(b)に示した円柱状のものの他に、角柱状のものなども一般的に用いられており、本発明の構成は、かかる角柱状のハニカム構造体等に対しても、当然ながら適用可能である。その場合には、処理するハニカム構造体の形状に合わせて、保持部材1の保持部11の形状、構造等を変更すればよい。その他、本発明の範囲を逸脱しない範囲で、種々の変更を施すことができる。   In addition, the structure of this invention is not limited to the thing of the example demonstrated above. For example, as the honeycomb structure H, in addition to the columnar shape shown in FIG. 2 (b), a prismatic shape is generally used, and the configuration of the present invention has such a prismatic honeycomb structure. Of course, it can be applied to the body and the like. In that case, what is necessary is just to change the shape of the holding | maintenance part 11 of the holding member 1, a structure, etc. according to the shape of the honeycomb structure to process. In addition, various modifications can be made without departing from the scope of the present invention.

実施例1:
ハニカム構造体Hとして、図2(b)に示す円柱状で、かつ直径が3cm、高さが5cm、通孔H1の口径が1mm角であるアルミナセラミックハニカム〔(株)長峰製作所製〕を7個用意し、それを、図2(a)に示すように、それぞれ一対のOリングRを嵌め合わせた状態で、保持部材1の通孔10内に固定した後、当該保持部材1を、図1に示す製造装置の循環路部材2と接続した。
Example 1:
As the honeycomb structure H, an alumina ceramic honeycomb (manufactured by Nagamine Manufacturing Co., Ltd.) having a columnar shape shown in FIG. 2 (b), a diameter of 3 cm, a height of 5 cm, and a diameter of the through hole H1 of 1 mm square is 7 As shown in FIG. 2 (a), each piece is prepared and fixed in the through hole 10 of the holding member 1 with a pair of O-rings R fitted together. It connected with the circulation path member 2 of the manufacturing apparatus shown in FIG.

次に、パラジウム化合物としての硝酸パラジウム(II)溶液を純水に混ぜ、粘度調整剤としてのポリアルキレンオキサイド系の高分子系化合物を加えて完全に溶解させた後、還元剤としてのエタノールとフルクトースとを純水に溶解した溶液を加えて反応溶液を調製した。各成分の濃度は、パラジウム:5g/リットル、高分子系化合物:3062g/リットル、エタノール300ミリリットル/リットル、フルクトース5g/リットルとした。   Next, a palladium (II) nitrate solution as a palladium compound is mixed with pure water, a polyalkylene oxide polymer compound as a viscosity modifier is added and completely dissolved, and then ethanol and fructose as a reducing agent are added. A reaction solution was prepared by adding a solution of and dissolved in pure water. The concentration of each component was palladium: 5 g / liter, polymer compound: 3062 g / liter, ethanol 300 ml / liter, fructose 5 g / liter.

次に、この反応溶液3リットルを、図1に示す製造装置の貯留槽20に供給し、ポンプPを作動させて、循環路部材2内を、一方向に連続的に循環させると共に、還流管4に冷却水を連続的に供給しながら、加温槽3に水Wを満たした状態で、投げ込みヒータ5に通電して水Wを加熱することで、装置の全体を80℃に加温して反応を開始させた。反応溶液を循環路部材2内で循環させる流量は、3リットル/分とした。   Next, 3 liters of the reaction solution is supplied to the storage tank 20 of the manufacturing apparatus shown in FIG. 1, and the pump P is operated to continuously circulate in the circulation path member 2 in one direction, and the reflux pipe. While the cooling water is continuously supplied to 4, the entire apparatus is heated to 80 ° C. by energizing the throwing heater 5 and heating the water W while the heating tank 3 is filled with the water W. The reaction was started. The flow rate for circulating the reaction solution in the circulation path member 2 was 3 liters / minute.

そして、反応開始から3時間、経過した時点で反応溶液の循環を停止させ、保持部材1からハニカム構造体Hを取り出して、大気中で、50℃、12時間の乾燥を行ってガス反応触媒を製造した。   Then, when 3 hours have elapsed from the start of the reaction, the circulation of the reaction solution is stopped, the honeycomb structure H is taken out from the holding member 1, and dried in the atmosphere at 50 ° C. for 12 hours to obtain the gas reaction catalyst. Manufactured.

比較例1:
パラジウム化合物としての硝酸パラジウム(II)溶液を純水に混ぜた溶液3リットルに、実施例1で使用したのと同じハニカム構造体を7本、浸漬した状態で、窒素フロー中で200℃に加熱して水分を蒸発させることで、ガス反応触媒を製造した。溶液におけるパラジウムの濃度は5g/リットルであった。
Comparative Example 1:
Heating to 200 ° C. in a nitrogen flow with 7 of the same honeycomb structure used in Example 1 immersed in 3 liters of a solution of palladium (II) nitrate as a palladium compound in pure water Then, the gas reaction catalyst was produced by evaporating the water. The concentration of palladium in the solution was 5 g / liter.

パラジウム微粒子の担持量の測定(その1):
実施例1、比較例1で製造したガス反応触媒を、円柱の軸方向に切断して露出させた通孔の内壁のウォッシュコートの、表面から深さ100μmまでの表層部を、X線光電子分光分析法によって、その表面から順次エッチングしながら、パラジウム微粒子の担持量分布を測定した。ウォッシュコートの最表面におけるパラジウム微粒子の担持量を1としたときの、深さ方向の担持量分布の測定結果を図3に示す。
Measurement of supported amount of palladium fine particles (Part 1):
X-ray photoelectron spectroscopy was performed on the surface layer portion of the washcoat on the inner wall of the through-hole exposed by cutting the gas reaction catalyst produced in Example 1 and Comparative Example 1 in the axial direction of the cylinder to a depth of 100 μm. The amount distribution of palladium fine particles was measured while sequentially etching from the surface by an analysis method. FIG. 3 shows the measurement results of the distribution of the loading amount in the depth direction when the loading amount of the palladium fine particles on the outermost surface of the washcoat is 1.

図3より、比較例1のガス反応触媒では、ウォッシュコートの表層部の、さらにごく表面にしかパラジウム微粒子を担持できないことが判った。また、比較例1のガス反応触媒は、ハニカム構造体の、排気ガスと接触しない外側面等にもパラジウム微粒子が析出しており、触媒としてのパラジウム微粒子の利用効率が低く、無駄が多いことが判った。   From FIG. 3, it was found that in the gas reaction catalyst of Comparative Example 1, palladium fine particles could be supported only on the surface of the washcoat surface layer. Further, in the gas reaction catalyst of Comparative Example 1, palladium fine particles are deposited on the outer surface of the honeycomb structure that is not in contact with the exhaust gas, and the utilization efficiency of the palladium fine particles as the catalyst is low and wasteful. understood.

これに対し、実施例1のガス反応触媒では、ウォッシュコートの、表面から深さ100μmまでの表層部に、パラジウム微粒子を集中的に担持できることが判った。また、実施例1のガス反応触媒は、ハニカム構造体の、排気ガスと接触しない外側面等にはパラジウム微粒子が析出しておらず、触媒としてのパラジウム微粒子の利用効率が高く、無駄が少ないことが判った。   On the other hand, it was found that in the gas reaction catalyst of Example 1, palladium fine particles can be intensively supported on the surface layer portion of the washcoat from the surface to a depth of 100 μm. Further, in the gas reaction catalyst of Example 1, the palladium fine particles are not deposited on the outer surface of the honeycomb structure that does not come into contact with the exhaust gas, and the utilization efficiency of the palladium fine particles as the catalyst is high and the waste is low. I understood.

パラジウム微粒子の担持量の測定(その2):
実施例1、比較例1で製造したガス反応触媒を、円柱の軸方向に切断して露出させた通孔の内壁のウォッシュコートの、円柱の軸方向である通孔の長さ方向に沿う複数箇所おけるパラジウム微粒子の担持量を、誘導結合プラズマ(ICP)発光分析法によって測定して、その分布を求めた。実施例1の、最も担持量が多い部分の担持量を1としたときの、通孔の長さ方向におけるパラジウム微粒子の担持量分布の測定結果を図4に示す。
Measurement of supported amount of palladium fine particles (part 2):
The gas reaction catalyst produced in Example 1 and Comparative Example 1 was cut in the axial direction of the cylinder, and the washcoat on the inner wall of the through hole was exposed along the length direction of the through hole, which is the axial direction of the cylinder. The amount of palladium fine particles supported at each location was measured by inductively coupled plasma (ICP) emission spectrometry to determine its distribution. FIG. 4 shows the measurement result of the supported amount distribution of palladium fine particles in the length direction of the through-hole when the supported amount of the portion with the largest supported amount in Example 1 is 1.

図4より、反応溶液を、ハニカム構造体の通孔内で、一方向のみに流通させながら還元析出させた実施例1では、パラジウム微粒子の担持量を、反応溶液の入口側でより多くできることが判った。   From FIG. 4, in Example 1 in which the reaction solution was reduced and precipitated while flowing in only one direction within the through holes of the honeycomb structure, the amount of palladium fine particles supported could be increased on the reaction solution inlet side. understood.

排気ガス浄化試験:
実施例1、比較例1で製造したガス反応触媒に、排気ガスのモデルガスとしての炭化水素ガス(HC)、一酸化炭素ガス(CO)、または窒素酸化物ガス(NOx)を流通させて処理させる操作を、流通させる、それぞれのモデルガスの温度を所定の温度ずつ段階的に上昇させながら繰り返し行った際の、ガスの温度と、その温度でのガスの浄化割合(体積%)とをプロットした。なお、実施例1のガス反応触媒は、パラジウム微粒子の担持量が多い側を、ガスの入口側に設定して測定を行った。そして、ガスの20体積%が浄化された温度の下限値を求めて、20%浄化温度とした。この20%浄化温度が低いほど、触媒は、低温の排気ガス成分を有効に処理できることになる。結果を図5に示す。
Exhaust gas purification test:
The gas reaction catalyst produced in Example 1 and Comparative Example 1 is treated by flowing hydrocarbon gas (HC), carbon monoxide gas (CO), or nitrogen oxide gas (NOx) as a model gas of exhaust gas. Plotting the gas temperature and the purification rate (volume%) of the gas at that temperature when the model gas was repeatedly performed while increasing the temperature of each model gas stepwise in steps. did. In addition, the gas reaction catalyst of Example 1 was measured by setting the side with a large amount of supported palladium fine particles as the gas inlet side. Then, the lower limit value of the temperature at which 20% by volume of the gas was purified was obtained and set as the 20% purification temperature. The lower the 20% purification temperature, the more effectively the catalyst can treat the lower temperature exhaust gas components. The results are shown in FIG.

図5より、実施例1のガス反応触媒は、比較例1に比べて、各モデルガスの20%浄化温度が、いずれも大幅に低下していることがわかった。そして、このことから、実施例1のガス反応触媒によれば、比較例1に比べて、エンジン始動直後の低温の排気ガス成分を有効に処理できることが確認された。   From FIG. 5, it was found that the 20% purification temperature of each model gas in the gas reaction catalyst of Example 1 was significantly lower than that in Comparative Example 1. From this, it was confirmed that, according to the gas reaction catalyst of Example 1, it is possible to effectively treat the low-temperature exhaust gas component immediately after the engine start, as compared with Comparative Example 1.

本発明の製造方法によってガス反応触媒を製造するための、本発明のガス反応触媒の製造装置の、実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of the manufacturing apparatus of the gas reaction catalyst of this invention for manufacturing a gas reaction catalyst with the manufacturing method of this invention. 同図(a)は、上記製造装置のうち、複数個のハニカム構造体を保持するための保持部材の外観を示す斜視図、同図(b)は、上記保持部材に保持される1個のハニカム構造体の外観を示す斜視図である。FIG. 4A is a perspective view showing an appearance of a holding member for holding a plurality of honeycomb structures in the manufacturing apparatus, and FIG. 4B is a diagram showing one piece held by the holding member. It is a perspective view which shows the external appearance of a honeycomb structure. 本発明の実施例、比較例で製造したガス反応触媒のうち、通孔の内壁のウォッシュコートの、表面から深さ100μmまでの表層部における、パラジウム微粒子の担持量分布を測定した結果を示すグラフである。The graph which shows the result of having measured the amount distribution of the palladium fine particle in the surface layer part of the washcoat of the inner wall of a through-hole from the surface to the depth of 100 micrometers among the gas reaction catalysts manufactured by the Example of this invention and the comparative example. It is. 本発明の実施例、比較例で製造したガス反応触媒のうち、通孔の内壁のウォッシュコートの、通孔の長さ方向におけるパラジウム微粒子の担持量分布を測定した結果を示すグラフである。It is a graph which shows the result of having measured the carrying amount distribution of the palladium fine particle in the length direction of a through-hole of the washcoat of the inner wall of a through-hole among the gas reaction catalysts manufactured by the Example and comparative example of this invention. 本発明の実施例、比較例で製造したガス反応触媒における、各種ガスの20%浄化温度を示すグラフである。It is a graph which shows the 20% purification temperature of various gas in the gas reaction catalyst manufactured by the Example of this invention and the comparative example.

符号の説明Explanation of symbols

H1 通孔
H ハニカム構造体
1 保持部材
10、11 通孔(保持部)
2 循環路部材
L 溶液
H1 through-hole H honeycomb structure 1 holding member 10, 11 through-hole (holding portion)
2 Circuit member L solution

Claims (3)

ガスを通過させるための、異なる二端面間を繋ぐ多数の通孔を有すると共に、各通孔の内壁面を、ウォッシュコートで被覆したハニカム構造体の、上記ウォッシュコートに、ガス処理のための触媒として機能する貴金属微粒子を担持させてガス反応触媒を製造する方法であって、貴金属微粒子のもとになる貴金属のイオンと、当該イオンを還元させて、貴金属微粒子として析出させるための還元剤とを含む溶液を、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、各通孔内を、一方向にのみ流通させながら、還元剤の作用によって貴金属のイオンを還元させることで、貴金属微粒子を析出させると共にウォッシュコートに担持させることを特徴とするガス反応触媒の製造方法。   A catalyst for gas treatment of a honeycomb structure having a plurality of through-holes connecting two different end faces for allowing gas to pass through, and covering the inner wall surface of each through-hole with a wash coat on the wash coat. A method for producing a gas reaction catalyst by supporting noble metal fine particles that function as a noble metal ion that is a source of noble metal fine particles, and a reducing agent for reducing the ions and precipitating them as noble metal fine particles. By reducing the noble metal ions by the action of the reducing agent while flowing the solution containing the honeycomb structure in one direction from the opening on one end surface side of the honeycomb structure to the opening on the other end surface. A method for producing a gas reaction catalyst, comprising precipitating fine metal particles and supporting them on a washcoat. 請求項1のガス反応触媒の製造方法を実施するための装置であって、複数個のハニカム構造体を個別に保持する保持部を有する保持部材と、この保持部材の保持部に保持する複数個のハニカム構造体の多数の通孔と繋がれて、貴金属のイオンと還元剤とを含む溶液を、ハニカム構造体の一端面側の開口から他端面側の開口へ向けて、一方向にのみ流通させながら、各通孔内を、繰り返し循環させるための循環路を構成する循環路部材とを備えることを特徴とするガス反応触媒の製造装置。   It is an apparatus for implementing the manufacturing method of the gas reaction catalyst of Claim 1, Comprising: The holding member which has a holding part which hold | maintains several honeycomb structure separately, and the plurality hold | maintained at the holding part of this holding member A solution containing noble metal ions and a reducing agent is connected to a large number of through holes in the honeycomb structure of the honeycomb structure from one end side opening to the other end side opening of the honeycomb structure in only one direction. An apparatus for producing a gas reaction catalyst, comprising: a circulation path member that constitutes a circulation path for repeatedly circulating the inside of each through hole. 保持部材が、複数個のハニカム構造体のうち1つの、通孔が開口された一端面を、循環路部材の、溶液の供給口に対向させた位置に保持する保持部を備えると共に、他の複数個のハニカム構造体の、通孔が開口された一端面を、それぞれ、上記1つのハニカム構造体の一端面の周囲の、上記供給口と等距離隔てて対向させた位置に保持する保持部を備える請求項2記載のガス反応触媒の製造装置。

The holding member includes a holding portion that holds one end surface of one of the plurality of honeycomb structures, in which the through-holes are opened, at a position facing the solution supply port of the circulation path member. A holding unit that holds one end face of each of the plurality of honeycomb structures, each having a through hole, at a position around the one end face of the one honeycomb structure and facing the supply port at an equal distance. An apparatus for producing a gas reaction catalyst according to claim 2.

JP2005155999A 2005-05-27 2005-05-27 Production method for gas reaction catalyst and manufacturing apparatus used for it Pending JP2006326532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155999A JP2006326532A (en) 2005-05-27 2005-05-27 Production method for gas reaction catalyst and manufacturing apparatus used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155999A JP2006326532A (en) 2005-05-27 2005-05-27 Production method for gas reaction catalyst and manufacturing apparatus used for it

Publications (1)

Publication Number Publication Date
JP2006326532A true JP2006326532A (en) 2006-12-07

Family

ID=37548815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155999A Pending JP2006326532A (en) 2005-05-27 2005-05-27 Production method for gas reaction catalyst and manufacturing apparatus used for it

Country Status (1)

Country Link
JP (1) JP2006326532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140846A (en) * 2015-02-04 2016-08-08 株式会社キャタラー Catalyst for purifying exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140846A (en) * 2015-02-04 2016-08-08 株式会社キャタラー Catalyst for purifying exhaust gas
WO2016125617A1 (en) * 2015-02-04 2016-08-11 株式会社キャタラー Exhaust-gas cleaning catalyst
US11286830B2 (en) 2015-02-04 2022-03-29 Cataler Corporation Exhaust gas cleaning catalyst

Similar Documents

Publication Publication Date Title
JP3791901B2 (en) Photocatalyst holder and method for producing the same
EP1938893A2 (en) Engine exhaust catalysts containing palladium-gold
US20080124514A1 (en) Engine Exhaust Catalysts Containing Palladium-Gold
EP3354336B1 (en) Catalytic exhaust gas purification apparatus
EP1985353A1 (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
TWI419741B (en) Method for producing catalyst-supporting carrier and apparatus for producing same
US20070207078A1 (en) Catalyst for treating exhaust gas and method for producing the same
JP2010539332A (en) Porous electroless plating
JP5251227B2 (en) Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles
CN101432069A (en) Catalyst carrier particle, method for producing the same, and exhaust gas purifying catalyst
JP4853498B2 (en) Method for producing gold fine particle supported carrier catalyst for fuel cell and catalyst for polymer electrolyte fuel cell containing gold fine particle produced by the method
CN1182376A (en) Method of abating Nox and preparation of catalytic material therefor
JP4513014B2 (en) Method for producing gas reaction catalyst and production apparatus used therefor
CN1216937A (en) Three-way catalyst for treating exhaust gases
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
JP2006326532A (en) Production method for gas reaction catalyst and manufacturing apparatus used for it
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
JP2004057949A (en) Catalyst for removing particulate
JP7426945B2 (en) Exhaust gas purification device
JP2011152512A (en) Catalyst for decomposing and removing ozone, method for manufacturing thereof, and method for decomposing and removing ozone using the catalyst
JP2014136174A (en) Particulate filter provided with catalyst and method for producing the same
EP2442893B1 (en) Exhaust gas purifying catalyst
KR101777361B1 (en) Electroless plating method of tubular or cylinder-type membrane and plating device therefor
JP5311536B2 (en) Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag
CN103977842A (en) Method for coating motor vehicle exhaust cleaning catalyst