JP2006326522A - Method for controlling water treatment - Google Patents

Method for controlling water treatment Download PDF

Info

Publication number
JP2006326522A
JP2006326522A JP2005155509A JP2005155509A JP2006326522A JP 2006326522 A JP2006326522 A JP 2006326522A JP 2005155509 A JP2005155509 A JP 2005155509A JP 2005155509 A JP2005155509 A JP 2005155509A JP 2006326522 A JP2006326522 A JP 2006326522A
Authority
JP
Japan
Prior art keywords
bacteria
water treatment
nitrite
indicator
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005155509A
Other languages
Japanese (ja)
Other versions
JP4279802B2 (en
Inventor
Akira Akashi
昭 赤司
Tetsuo Yamashita
哲生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005155509A priority Critical patent/JP4279802B2/en
Publication of JP2006326522A publication Critical patent/JP2006326522A/en
Application granted granted Critical
Publication of JP4279802B2 publication Critical patent/JP4279802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling water treatment without causing a delay in taking countermeasures, without depending on the capability of an operator and capable of maintaining treatment performance by specifying indicator bacteria which provide an indicator of the treatment performance in a water treatment process. <P>SOLUTION: In the method for controlling water treatment which controls the treatment performance of the water treatment process, the water treatment process which removes an object substance to be treated from treated water supplied to a water treatment tank using a plural kinds of bacteria comprises a selection process for selecting the indicator bacteria providing the indicator of the treatment performance from a group consisting of the plural kinds of bacteria, a measurement process for measuring the number of indicator bacteria in the water treatment tank and a holding process for holding the indicator bacteria of a predetermined number or more in the water treatment tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水処理管理方法に関するものである。   The present invention relates to a water treatment management method.

従来、各種の生産施設(工場)等からの排水や下水等の被処理水を細菌により処理する水処理プロセスでは、活性汚泥量(活性汚泥濃度)を維持管理指標の1つとして、必要量以上の活性汚泥量を保持することにより排水処理を行ってきた。しかしながら、活性汚泥量を必要量以上に保持しても、処理性能が不充分である場合があった。   Conventionally, in water treatment processes where wastewater from various production facilities (factories), etc., and treated water such as sewage are treated with bacteria, the amount of activated sludge (activated sludge concentration) is one of the maintenance management indicators, exceeding the required amount. Wastewater treatment has been carried out by maintaining the amount of activated sludge. However, even if the amount of activated sludge is maintained above the necessary amount, the processing performance may be insufficient.

一方、水処理プロセスにおいて、処理が順調に行われている場合と、悪化した状態で行われている場合とでは、各細菌種の数が異なることが一般的に知られている。そこで、処理が順調に行われるためには各細菌種の数を監視することが考えられている。例えば、処理が順調に行われているかどうかを判定する方法として、顕微鏡観察により特異的な細菌と処理性能とを関連づけて判定する方法が試みられている。   On the other hand, in the water treatment process, it is generally known that the number of bacterial species differs between when the treatment is performed smoothly and when the treatment is performed in a deteriorated state. Therefore, it is considered that the number of each bacterial species is monitored in order to perform the process smoothly. For example, as a method for determining whether or not the processing is being performed smoothly, a method has been attempted in which specific bacteria and processing performance are determined in association with each other through microscopic observation.

さらに、特異的な細菌の特徴、形状、数等に関する画像情報を得て知識デ−タベ−スに蓄え、活性汚泥プロセスの状態を判別する方法を備えた方法が提案されている(例えば、特許文献1参照)。   Furthermore, a method has been proposed that includes a method for obtaining image information relating to the characteristics, shape, number, etc. of specific bacteria, storing it in a knowledge database, and determining the state of the activated sludge process (for example, patents). Reference 1).

また、微生物学で知られている方法では、細菌懸濁液を薄く希釈して寒天培地上に撒き、各個体が充分に空間的に分離された状態で培養して、その結果細菌が繁殖した集団(コロニー)を数え、各細菌種のコロニー数の比率から処理性能を判定する。
特開平1−31539号公報
In addition, in the method known in microbiology, the bacterial suspension is diluted thinly and spread on an agar medium, and each individual is cultured in a sufficiently spatially separated state, so that the bacteria propagate. The population (colony) is counted, and the treatment performance is judged from the ratio of the number of colonies of each bacterial species.
JP-A-1-31539

しかしながら、顕微鏡観察により特異的な細菌と処理性能とを関連づけて判定する方法において、一般には水処理槽から活性汚泥をサンプリングし、オペレータが顕微鏡を使用して細菌の観察を行っている。これらは全て手作業であり、時間も要し、さらに専門的な知識と熟練とを要する。したがって、顕微鏡観察による判定は、その意義が認められているにも拘わらず普及していない。   However, in a method for determining specific bacteria and treatment performance in association with each other by microscopic observation, generally activated sludge is sampled from a water treatment tank, and an operator observes the bacteria using a microscope. These are all manual operations, take time, and require specialized knowledge and skill. Therefore, determination by microscopic observation is not widespread despite its significance being recognized.

また、画像処理を得て細菌の観察に利用する方法もあるが、現在では糸状の微生物の長さを計測したり、活性汚泥フロックの面積や数を計測したりする段階であり、動きによって形状が変わる原生動物や大きさが1ミクロン程度の細菌の同定等への適用は実用化されていない。   There is also a method of obtaining image processing and using it for observing bacteria, but now it is a stage where the length of filamentous microorganisms is measured and the area and number of activated sludge flocs are measured. Application to the identification of protozoa that change or bacteria with a size of about 1 micron has not been put to practical use.

さらに、寒天培地上に撒いた細菌懸濁液から出てきたコロニ−数の比率を計算する方法では、培養に月単位の時間がかかり、しかも培養できるものしか計数されない、あるいは、寒天培地の種類やコロニ−数を数えるタイミングで全く違った値が出てくるため、細菌懸濁液中の各細菌種の数の絶対値を正確に求めることはできないという問題がある。したがって、日々変化する水処理プロセスに対して管理の指標となりえない上に、各細菌種のコロニー数の比率はその時点での正確な細菌の数の比率、つまり正確な各細菌種の数を表していない。   Furthermore, in the method of calculating the ratio of the number of colonies coming out from the bacterial suspension sprinkled on the agar medium, the culture takes time in months and only those that can be cultured are counted, or the type of agar medium In addition, since completely different values appear at the timing of counting the colony number, there is a problem that the absolute value of the number of each bacterial species in the bacterial suspension cannot be obtained accurately. Therefore, it cannot be a management index for the daily water treatment process, and the ratio of the number of colonies of each bacterial species is the exact ratio of the number of bacteria at that time, that is, the exact number of each bacterial species. Not represented.

すなわち、水処理槽内に複数の細菌を存在させる水処理プロセスは、その細菌の種類とその活性を解析することが困難であるために、一種のブラックボックスのように扱われてきた。   That is, a water treatment process in which a plurality of bacteria are present in a water treatment tank has been treated like a kind of black box because it is difficult to analyze the type and activity of the bacteria.

一方、窒素成分を除去する方法で、硝化脱窒法が知られている。硝化脱窒法は、活性汚泥に含まれる細菌により排水のアンモニア性窒素から亜硝酸性窒素を経て硝酸性窒素まで酸化した後、硝酸性窒素から亜硝酸性窒素を経て窒素分子まで還元して、その後、窒素ガスとして大気中に放散させる方法である。なお、アンモニア性窒素から硝酸性窒素まで酸化する反応を硝化と呼び、硝酸性窒素から窒素分子まで還元する反応を脱窒と呼ぶ。すなわち、硝化と脱窒とが組み合わさって硝化脱窒法となっている。   On the other hand, a nitrification denitrification method is known as a method for removing nitrogen components. The nitrification denitrification method uses bacteria contained in activated sludge to oxidize ammonia nitrogen from wastewater through nitrite nitrogen to nitrate nitrogen, then reduce from nitrate nitrogen to nitrite nitrogen to nitrogen molecules, and then In this method, nitrogen gas is diffused into the atmosphere. A reaction that oxidizes ammonia nitrogen to nitrate nitrogen is called nitrification, and a reaction that reduces nitrate nitrogen to nitrogen molecules is called denitrification. That is, nitrification and denitrification are combined to form a nitrification denitrification method.

硝化脱窒法は、単一の細菌が行える反応ではなく、活性汚泥に存在する複数の細菌が担っている。まず、硝化であるが、アンモニア性窒素から亜硝酸性窒素まで酸化するアンモニア酸化細菌や、亜硝酸性窒素から硝酸性窒素まで酸化する亜硝酸酸化細菌が存在することが知られている。アンモニア酸化細菌としては、Nitrosomonas、Nitrosococcus、Nitrosospira、Nitrosobolus等が挙げられる。亜硝酸酸化細菌としては、Nitrobacter、Nitrococcus、Nitrospira等が挙げられる。   The nitrification denitrification method is not a reaction that can be performed by a single bacterium, but a plurality of bacteria present in the activated sludge. First, regarding nitrification, it is known that there are ammonia oxidizing bacteria that oxidize from ammonia nitrogen to nitrite nitrogen and nitrite oxidizing bacteria that oxidize from nitrite nitrogen to nitrate nitrogen. Examples of ammonia oxidizing bacteria include Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosobolus and the like. Examples of nitrite oxidizing bacteria include Nitrobacter, Nitrococcus, Nitrospira and the like.

脱窒については、硝酸性窒素又は亜硝酸性窒素を窒素分子まで還元するさまざまな脱窒細菌の存在が知られている。硝酸性窒素から亜硝酸性窒素まで還元する硝酸還元細菌、亜硝酸性窒素から一酸化窒素まで還元する亜硝酸還元細菌、一酸化窒素から亜酸化窒素まで還元する細菌、亜酸化窒素から窒素分子まで還元する亜酸化窒素還元細菌等が挙げられる。硝酸還元細菌としては、Azotobacter、Bacillus、Paracoccus、Pseudomonas等が挙げられる。亜硝酸還元細菌としては、Paracoccus、Pseudomonas等が挙げられる。亜酸化窒素還元細菌としては、Corynebacterium、Pseudomonas等が挙げられる。   Regarding denitrification, the existence of various denitrifying bacteria that reduce nitrate nitrogen or nitrite nitrogen to nitrogen molecules is known. Nitrate-reducing bacteria that reduce from nitrate nitrogen to nitrite nitrogen, nitrite-reducing bacteria that reduce from nitrite nitrogen to nitric oxide, bacteria that reduce from nitric oxide to nitrous oxide, from nitrous oxide to nitrogen molecule Examples include nitrous oxide-reducing bacteria that reduce. Examples of nitrate-reducing bacteria include Azotobacter, Bacillus, Paracoccus, Pseudomonas and the like. Examples of nitrite-reducing bacteria include Paracoccus and Pseudomonas. Examples of nitrous oxide-reducing bacteria include Corynebacterium, Pseudomonas and the like.

そこで、本発明は上記の点に鑑み、水処理プロセスの処理性能の指標となる指標細菌を特定することにより、対策の遅れを生じることがなく、オペレータの能力に依存せずに、処理性能を維持できる水処理管理方法を提供することを目的とする。   Therefore, in view of the above points, the present invention specifies the indicator bacteria that serve as an indicator of the treatment performance of the water treatment process, so that no delay in countermeasures occurs, and the treatment performance is not dependent on the ability of the operator. It aims at providing the water treatment management method which can be maintained.

特に、本発明は上記の点に鑑み、水処理プロセスの処理性能の指標となる指標細菌をアンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から特定することにより、対策の遅れを生じることがなく、オペレータの能力に依存せずに、処理性能を維持できる水処理管理方法を提供することを目的とする。   In particular, in view of the above points, the present invention is directed to a group consisting of ammonia oxidizing bacteria, nitrite oxidizing bacteria, nitrate reducing bacteria, nitrite reducing bacteria, and nitrous oxide reducing bacteria. Therefore, it is an object of the present invention to provide a water treatment management method capable of maintaining the treatment performance without depending on the ability of the operator without causing a delay in measures.

本発明は、水処理プロセスの処理性能を管理する水処理管理方法であって、前記水処理プロセスは、複数の種類の細菌を用いて、水処理槽に供給される被処理水から処理対象物質を除去するものであり、処理性能の指標となる指標細菌を、前記複数の種類の細菌から選択する選択工程と、前記水処理槽内の指標細菌の数を測定する測定工程と、前記水処理槽内に所定数以上の指標細菌を保持する保持工程とを含むことを特徴とする(請求項1)。   The present invention is a water treatment management method for managing the treatment performance of a water treatment process, wherein the water treatment process uses a plurality of types of bacteria and is treated from a treated water supplied to a water treatment tank. A selection step of selecting an indicator bacterium as an indicator of treatment performance from the plurality of types of bacteria, a measurement step of measuring the number of indicator bacteria in the water treatment tank, and the water treatment And a holding step of holding a predetermined number or more of indicator bacteria in the tank (Claim 1).

本発明の水処理管理方法によれば、水処理プロセスの処理性能の指標となる指標細菌を特定することにより、その後は特定した指標細菌のみを測定すればよいので、迅速に処理性能を把握することが可能となる。   According to the water treatment management method of the present invention, by identifying the indicator bacteria that serve as an indicator of the treatment performance of the water treatment process, it is only necessary to measure the identified indicator bacteria thereafter, so that the treatment performance can be grasped quickly. It becomes possible.

また、特定した指標細菌のみを所定数以上で保持すればよいので、指標細菌の数が所定数未満であるとき、指標細菌に適した基質を加えたり、pH、温度、酸化還元電位(ORP)等を制御したりすることにより、対策の遅れを生じることがなく、処理性能を維持することが可能となる。   In addition, since only the specified indicator bacteria need to be held at a predetermined number or more, when the number of indicator bacteria is less than the predetermined number, a substrate suitable for the indicator bacteria is added, pH, temperature, redox potential (ORP) By controlling the above, it is possible to maintain the processing performance without causing a delay in measures.

さらに、オペレータの能力及び主観的な判断に依存せずに、処理性能を客観的に管理することが可能となる。   Furthermore, it becomes possible to objectively manage the processing performance without depending on the operator's ability and subjective judgment.

ここで、「処理対象物質」とは、窒素成分、特定の化学物質等をいう。   Here, “substance to be treated” refers to a nitrogen component, a specific chemical substance, or the like.

本発明は、水処理プロセスの処理性能を管理する水処理管理方法であって、前記水処理プロセスは、複数の種類の細菌を用いて、水処理槽に供給される被処理水から窒素成分を除去するものであり、処理性能の指標となる指標細菌を、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択する選択工程と、前記水処理槽内の指標細菌の数を測定する測定工程と、前記水処理槽内に所定数以上の指標細菌を保持する保持工程とを含むことを特徴とする(請求項2)。   The present invention is a water treatment management method for managing the treatment performance of a water treatment process, wherein the water treatment process uses a plurality of types of bacteria to remove nitrogen components from water to be treated supplied to a water treatment tank. A selection step of selecting an indicator bacterium to be removed and serving as an indicator of treatment performance from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria; It includes a measuring step of measuring the number of indicator bacteria in the water treatment tank and a holding step of holding a predetermined number or more of indicator bacteria in the water treatment tank (claim 2).

本発明の水処理管理方法によれば、水処理プロセスの処理性能の指標となる指標細菌をアンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から特定することにより、その後は特定した指標細菌のみを測定すればよいので、迅速に処理性能を把握することが可能となる。   According to the water treatment management method of the present invention, the indicator bacteria that serve as an indicator of the treatment performance of the water treatment process are the group consisting of ammonia oxidizing bacteria, nitrite oxidizing bacteria, nitrate reducing bacteria, nitrite reducing bacteria, and nitrous oxide reducing bacteria. Since it is sufficient to measure only the specified indicator bacteria after that, it becomes possible to quickly grasp the processing performance.

また、指標細菌の特定は1〜2日で可能なため、運転管理に迅速に反映させることができる。   In addition, since the indicator bacteria can be identified in 1 to 2 days, it can be quickly reflected in operation management.

また、特定した指標細菌のみを所定数以上で保持すればよいので、指標細菌の数が所定数未満であるとき、指標細菌に適した基質を加えたり、pH、温度、酸化還元電位等を制御したりすることにより、対策の遅れを生じることがなく、処理性能を維持することが可能となる。   In addition, since only the specified indicator bacteria need be retained at a predetermined number or more, when the number of indicator bacteria is less than the predetermined number, a substrate suitable for the indicator bacteria is added, and pH, temperature, redox potential, etc. are controlled. By doing so, it is possible to maintain the processing performance without causing a delay in measures.

さらに、オペレータの能力及び主観的な判断に依存せずに、処理性能を高精度かつ客観的に管理することが可能となる。   Furthermore, it is possible to manage the processing performance with high accuracy and objectively without depending on the ability and subjective judgment of the operator.

ここで、「窒素成分」とは、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素等の窒素原子のことをいう。   Here, the “nitrogen component” refers to a nitrogen atom such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen or the like.

また、本発明は、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係に基づいて、前記指標細菌を選択することが好ましい(請求項3)。   Further, the present invention relates to the ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria based on the relationship between the number of single bacteria and the treatment performance. It is preferable to select (Claim 3).

本発明の水処理管理方法によれば、被処理水を用いて、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係を示すものを作成することにより、処理性能において重要になっている反応を把握することができるので、正確に処理性能を把握することが可能となる。   According to the water treatment management method of the present invention, the number of single bacteria and treatment of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria using treated water. By creating something that indicates the relationship with the performance, it is possible to grasp the reaction that is important in the processing performance, so it is possible to accurately grasp the processing performance.

このとき、単一の細菌の数と処理性能との関係を示すものを、五種全ての細菌で作成することが好ましいが、少なくとも一種以上の細菌で作成することとしてもよい。   At this time, it is preferable to create all the five types of bacteria that show the relationship between the number of single bacteria and the processing performance, but it is also possible to create them with at least one type of bacteria.

ここで、「単一の細菌」とは、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択される一種の細菌のことをいう。なお、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択された一種の細菌であっても、複数種の細菌が存在してもよい。例えば、亜硝酸還元細菌を単一の細菌とした場合には、亜硝酸還元細菌であるParacoccus、Pseudomonas等の複数種の細菌を単一の細菌とすることになる。   Here, the “single bacterium” refers to a kind of bacteria selected from the group consisting of ammonia oxidizing bacteria, nitrite oxidizing bacteria, nitrate reducing bacteria, nitrite reducing bacteria, and nitrous oxide reducing bacteria. In addition, even if it is a kind of bacteria selected from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria, a plurality of types of bacteria may exist. . For example, when a nitrite-reducing bacterium is a single bacterium, a plurality of types of bacteria such as Paracoccus and Pseudomonas that are nitrite-reducing bacteria are used as a single bacterium.

また、本発明は、前記測定工程では、定量PCR法を用いることが好ましい(請求項4)。上記定量PCR法としては、C−PCR法、リアルタイムPCR法、MPN−PCR法等が挙げられる。   In the present invention, it is preferable to use a quantitative PCR method in the measurement step (claim 4). Examples of the quantitative PCR method include C-PCR method, real-time PCR method, MPN-PCR method and the like.

本発明の水処理管理方法によれば、定量PCR法により判別できるので、前記水処理槽内の指標細菌の数をより迅速かつより正確に測定することが可能となる。   According to the water treatment management method of the present invention, since it can be determined by the quantitative PCR method, the number of indicator bacteria in the water treatment tank can be measured more quickly and accurately.

そして、本発明は、前記被処理水は、火力発電所からの排水であることが好ましい(請求項5)。さらに、本発明は、前記指標細菌は、亜硝酸還元細菌であることが好ましい(請求項6)。火力発電所からの排水において、亜硝酸還元細菌が司る反応は硝化脱窒法中で律速になっている可能性が高いからである。   And as for this invention, it is preferable that the said to-be-processed water is the waste_water | drain from a thermal power station (Claim 5). Furthermore, in the present invention, it is preferable that the indicator bacterium is a nitrite-reducing bacterium (claim 6). This is because the reaction controlled by nitrite-reducing bacteria in effluent from thermal power plants is likely to be rate-limiting in the nitrification denitrification method.

本発明の水処理管理方法によれば、水処理プロセスの処理性能の指標となる指標細菌を特定することにより、その後は特定した指標細菌のみを測定すればよいので、迅速に処理性能を把握することが可能となる。   According to the water treatment management method of the present invention, by identifying the indicator bacteria that serve as an indicator of the treatment performance of the water treatment process, it is only necessary to measure the identified indicator bacteria thereafter, so that the treatment performance can be grasped quickly. It becomes possible.

また、特定した指標細菌のみを所定数以上で保持すればよいので、指標細菌の数が所定数未満であるとき、指標細菌に適した基質を加えたり、pH、温度、酸化還元電位等を制御したりすることにより、対策の遅れを生じることがなく、処理性能を維持することが可能となる。   In addition, since only the specified indicator bacteria need be retained at a predetermined number or more, when the number of indicator bacteria is less than the predetermined number, a substrate suitable for the indicator bacteria is added, and pH, temperature, redox potential, etc. are controlled. By doing so, it is possible to maintain the processing performance without causing a delay in measures.

さらに、オペレータの能力及び主観的な判断に依存せずに、処理性能を客観的に管理することが可能となる。   Furthermore, it becomes possible to objectively manage the processing performance without depending on the operator's ability and subjective judgment.

以下、本発明の実施の形態を、図面を参照しつつ詳細に説明するが、本発明は、その要旨を超えない限り下記に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following unless it exceeds the gist thereof.

図1は、本発明に係る水処理管理方法によって処理性能を管理する水処理プロセスの概略構成図である。水処理プロセスは、硝化槽2、脱窒槽4、再曝気槽6、沈殿槽8をこの順に備える構成である。   FIG. 1 is a schematic configuration diagram of a water treatment process for managing treatment performance by a water treatment management method according to the present invention. The water treatment process includes a nitrification tank 2, a denitrification tank 4, a re-aeration tank 6, and a precipitation tank 8 in this order.

本発明において、窒素成分を含む排水(被処理水)を連絡管1に導入して、まず硝化槽2に供給する。硝化槽2で、アンモニア酸化細菌、亜硝酸酸化細菌等を含む活性汚泥によりアンモニア性窒素を亜硝酸性窒素に、さらに亜硝酸性窒素の一部又は全部を硝酸性窒素に酸化する。   In the present invention, waste water (treated water) containing a nitrogen component is introduced into the connecting pipe 1 and first supplied to the nitrification tank 2. In the nitrification tank 2, ammonia nitrogen is oxidized to nitrite nitrogen and a part or all of nitrite nitrogen is oxidized to nitrate nitrogen by activated sludge containing ammonia oxidizing bacteria, nitrite oxidizing bacteria, and the like.

次いで硝化槽2で処理された水を連絡管3を介して脱窒槽4に送給する。脱窒槽4で、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌等を含む活性汚泥により硝化槽2で生成した亜硝酸性窒素及び/又は硝酸性窒素を窒素ガスに還元する。このとき、窒素ガスを大気中に放散することになる。   Subsequently, the water treated in the nitrification tank 2 is fed to the denitrification tank 4 through the communication pipe 3. In the denitrification tank 4, nitrite nitrogen and / or nitrate nitrogen generated in the nitrification tank 2 is reduced to nitrogen gas by activated sludge containing nitrate reducing bacteria, nitrite reducing bacteria, nitrous oxide reducing bacteria and the like. At this time, nitrogen gas is diffused into the atmosphere.

次いで脱窒槽4で処理された処理水を連絡管5を介して再曝気槽6に送給する。再曝気槽6で、好気条件下処理することにより有機物を分解除去する。   Subsequently, the treated water treated in the denitrification tank 4 is supplied to the re-aeration tank 6 through the communication pipe 5. In the re-aeration tank 6, organic substances are decomposed and removed by treatment under aerobic conditions.

さらに再曝気槽6で処理された水を連絡管7を介して沈殿槽8に送給する。沈殿槽8で、分離液と沈殿汚泥とに固液分離する。その後、連絡管9により分離液を取り出す。一方、沈殿汚泥の一部を返送汚泥として硝化槽2に返送する。また、沈殿汚泥の残りの一部は、例えば、余剰汚泥として水処理プロセス外に排出され、適宜処理される。   Further, the water treated in the re-aeration tank 6 is fed to the precipitation tank 8 through the communication pipe 7. In the precipitation tank 8, the liquid is separated into a separated liquid and a precipitated sludge. Thereafter, the separation liquid is taken out through the connecting tube 9. On the other hand, a part of the precipitated sludge is returned to the nitrification tank 2 as return sludge. Further, the remaining part of the precipitated sludge is discharged out of the water treatment process as excess sludge, for example, and appropriately treated.

上記排水としては、火力発電所からの排水、製鉄所からの排水、食品プラントからの排水、紙パルププラントからの排水、化学プラントからの排水等の産業排水や下水処理のような生活排水等が挙げられるが、火力発電所からの排水が好ましい。すなわち、上記排水の全窒素濃度が20mg/L以上100mg/L以下であるものにとって、より有効となる。   Examples of the wastewater include wastewater from thermal power plants, wastewater from steelworks, wastewater from food plants, wastewater from paper pulp plants, wastewater from chemical plants, and domestic wastewater such as sewage treatment. Although it is mentioned, the drainage from a thermal power plant is preferable. That is, it becomes more effective for the waste water whose total nitrogen concentration is 20 mg / L or more and 100 mg / L or less.

ここで、図2は、本発明の水処理管理方法のルーチンの一例を示すフローチャートである。本発明の水処理管理方法は、作成工程を含む準備段階と、選択工程、測定工程及び保持工程を含む実行段階とで構成されている。本発明の水処理管理方法において、準備段階は処理性能を管理するために準備するものであり、実行段階は処理性能を実際に管理するためのものである。   Here, FIG. 2 is a flowchart showing an example of a routine of the water treatment management method of the present invention. The water treatment management method of the present invention includes a preparation stage including a creation process and an execution stage including a selection process, a measurement process, and a holding process. In the water treatment management method of the present invention, the preparation stage is prepared for managing the treatment performance, and the execution stage is for actually managing the treatment performance.

最初に、作成工程を行う(ステップS1)。作成工程では、上記排水を用いて、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係を示す相関式を作成し、これにより決定係数を算出する。なお、作成工程については、後で詳述することにする。   First, a creation process is performed (step S1). In the preparation process, using the above wastewater, a correlation formula showing the relationship between the number of single bacteria and treatment performance for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria To determine the coefficient of determination. The creation process will be described in detail later.

次に、選択工程を行う(ステップS2)。選択工程では、決定係数に基づいて処理性能の指標となる指標細菌を、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択する。なお、選択工程については、後で詳述することにする。   Next, a selection process is performed (step S2). In the selection step, an indicator bacterium that serves as an indicator of processing performance is selected from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria based on the determination coefficient. The selection process will be described in detail later.

次に、測定工程を行う(ステップS3)。測定工程では、上記水処理槽内の指標細菌の数を測定する。このとき、C−PCR法、リアルタイムPCR法、MPN−PCR法等の定量PCR法を用いることが好ましく、迅速かつより正確に結果が得られるという点ではC−PCR法がより好ましい。なお、測定工程については、後でC−PCR法を用いた場合を詳述することにする。   Next, a measurement process is performed (step S3). In the measurement step, the number of indicator bacteria in the water treatment tank is measured. At this time, it is preferable to use a quantitative PCR method such as a C-PCR method, a real-time PCR method, or an MPN-PCR method, and the C-PCR method is more preferable in that a result can be obtained quickly and more accurately. In addition, about a measurement process, the case where C-PCR method is used later is explained in full detail.

次に、保持工程を行う(ステップS4)。保持工程では、上記水処理槽内に所定数以上の指標細菌を保持する。なお、保持工程については、後で詳述することにする。   Next, a holding process is performed (step S4). In the holding step, a predetermined number or more of indicator bacteria are held in the water treatment tank. The holding process will be described in detail later.

次に、処理性能の管理を継続するか否かを判断する(ステップS5)。処理性能の管理を継続すると判断した場合、再び、測定工程を行う(ステップS3)。すなわち、上述したステップS3〜S4の処理は繰り返し実行される。このように処理を繰り返し実行することにより、再び、水処理槽内の状態を判別し、つまり、処理性能の管理を行うことになる。なお、再び、測定工程を行う際には、前回の日と異なる日に行うことが好ましい。   Next, it is determined whether or not to continue managing the processing performance (step S5). When it is determined that the management of the processing performance is to be continued, the measurement process is performed again (step S3). That is, the processes of steps S3 to S4 described above are repeatedly executed. By repeatedly executing the process in this manner, the state in the water treatment tank is again determined, that is, the processing performance is managed. In addition, when performing a measurement process again, it is preferable to carry out on the day different from the last day.

一方、ステップS5において、処理性能の管理を継続しないと判断したときには、本ルーチンを終了する。   On the other hand, when it is determined in step S5 that the management of the processing performance is not continued, this routine is ended.

次に、図2に示すステップS1において行われる亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成し、決定係数を算出する作成工程のサブルーチンについて、図3を用いて説明する。なお、本発明の水処理管理方法では、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係を示す相関式を作成し、これにより決定係数を算出することになるが、亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成し、これにより決定係数を算出する作成工程について主として説明する。   Next, a creation process subroutine for creating a correlation equation showing the relationship between the number of nitrite-reducing bacteria and the treatment performance performed in step S1 shown in FIG. 2 and calculating a determination coefficient will be described with reference to FIG. . In the water treatment management method of the present invention, the correlation showing the relationship between the number of single bacteria and the treatment performance for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria. The formula is created and the coefficient of determination is calculated by this, but the correlation process showing the relationship between the number of nitrite-reducing bacteria and the processing performance is created, and the creation process for calculating the coefficient of determination by this is mainly described. .

(1)作成工程
まず、脱窒槽4内から活性汚泥を採取する(ステップS10)。
(1) Creation process First, activated sludge is sampled from the denitrification tank 4 (step S10).

次に、活性汚泥に含まれる複数の種類の細菌の全DNAを抽出する(ステップS11)。さらに、混在するRNAを分解した後、全DNAを精製することが好ましい。全DNAを抽出する方法としては、例えば、Current Protocol in Molecularbiology等の文献に記載された定法、又は、市販のDNA抽出キット類を用いて行う方法等が挙げられる。   Next, the total DNA of a plurality of types of bacteria contained in the activated sludge is extracted (step S11). Furthermore, it is preferable to purify the total DNA after decomposing the mixed RNA. Examples of the method for extracting total DNA include a conventional method described in a literature such as Current Protocol in Molecularbiology or a method using a commercially available DNA extraction kit.

次に、抽出された全DNAに既知数の競合的DNAを添加し、亜硝酸還元細菌に存在した目的DNA断片及び競合的DNA断片をDNA複製酵素連鎖反応(PCR法)で増幅する(ステップS12)。このとき、後述する脱窒槽4内の亜硝酸還元細菌の数を測定する(ステップS16)ために、抽出された全DNAを数個に分け、それぞれに異なる数の競合的DNAを添加してPCR法を行う。PCR法としては、例えば、抽出された全DNA及び競合的DNAに、プライマー、酵素(Taqポリメラーゼ)、dNTPs、塩類等を添加する方法等が挙げられる。なお、プライマーとして、亜硝酸還元細菌を検出するために設計された塩基配列を有するDNA断片、すなわち、亜硝酸還元細菌のDNAと競合的DNAとのみに特異的に結合し、亜硝酸還元細菌と競合的DNA以外の細菌のDNAに結合しないものを選択する。   Next, a known number of competitive DNAs are added to the extracted total DNA, and the target DNA fragment and the competitive DNA fragment present in the nitrite-reducing bacteria are amplified by the DNA replication enzyme chain reaction (PCR method) (step S12). ). At this time, in order to measure the number of nitrite-reducing bacteria in the denitrification tank 4 to be described later (step S16), the extracted total DNA is divided into several pieces, and a different number of competitive DNAs are added to each to perform PCR. Do the law. Examples of the PCR method include a method of adding primers, enzymes (Taq polymerase), dNTPs, salts and the like to the extracted total DNA and competitive DNA. As a primer, a DNA fragment having a base sequence designed for detecting nitrite-reducing bacteria, that is, specifically binding only to DNA of nitrite-reducing bacteria and competitive DNA, Those that do not bind to bacterial DNA other than competitive DNA are selected.

また、PCR法における反応温度は、プライマーのTm値を考慮に入れた値に設定されることが好ましい。さらに、PCR法のサイクル数は、15サイクル以上50サイクル以下であることが好ましい。   The reaction temperature in the PCR method is preferably set to a value that takes into account the Tm value of the primer. Furthermore, the number of cycles in the PCR method is preferably 15 cycles or more and 50 cycles or less.

次に、それぞれについて、得られた目的DNA断片と競合的DNA断片とを分離する(ステップS13)。目的DNA断片と競合的DNA断片とを分離する方法としては、例えば、アガロースゲル電気泳動やポリアクリルアミドゲル電気泳動等が挙げられるが、アガロースゲル電気泳動が簡便で好ましい。例えば、1%以上3%以下のアガロースゲルを用いて、室温で、100V、約30分で行うこと等が挙げられる。   Next, for each, the obtained target DNA fragment and competitive DNA fragment are separated (step S13). Examples of the method for separating the target DNA fragment and the competitive DNA fragment include agarose gel electrophoresis and polyacrylamide gel electrophoresis. Agarose gel electrophoresis is convenient and preferable. For example, using agarose gel of 1% or more and 3% or less and performing at 100 V for about 30 minutes at room temperature can be mentioned.

次に、DNA断片に特異的に結合して蛍光を発する色素、例えば、エチジウムブロマイド、SYBR Gold、SYBR Green I等を添加する(ステップS14)。   Next, a dye that specifically binds to the DNA fragment and emits fluorescence, such as ethidium bromide, SYBR Gold, SYBR Green I, or the like is added (step S14).

次に、ゲルドキュメンテーションシステム等により所定波長の励起光を照射したときに発する目的DNA断片及び競合的DNA断片に相当するバンドの蛍光強度を測定する(ステップS15)。なお、図4は、目的DNA断片及び競合的DNA断片のアガロースゲル電気泳動写真の一例である。目的DNA断片と競合的DNA断片とは、塩基対数が異なるので、それぞれに対応する塩基対数の位置に分かれている。そして、それぞれに相当するバンドは、数に対応する蛍光強度を有している。さらに、比較のために、異なる数の競合的DNAを添加したものを1枚のアガロースゲル上で行っている。   Next, the fluorescence intensity of the band corresponding to the target DNA fragment and the competitive DNA fragment emitted when the excitation light of a predetermined wavelength is irradiated by a gel documentation system or the like is measured (step S15). FIG. 4 is an example of an agarose gel electrophoresis photograph of the target DNA fragment and the competitive DNA fragment. Since the target DNA fragment and the competitive DNA fragment are different in the number of base pairs, they are divided into positions corresponding to the number of base pairs. Each band corresponding to each has a fluorescence intensity corresponding to the number. Furthermore, for comparison, a sample containing a different number of competitive DNAs is run on a single agarose gel.

次に、目的DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比と混合した競合的DNAの数との関係に基づいて脱窒槽4内の亜硝酸還元細菌の数を測定する(ステップS16)。例えば、目的DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比と混合した競合的DNAの数との関係として、目的DNA断片に相当するバンドの蛍光強度Tと競合的DNA断片に相当するバンドの蛍光強度Cとの比の対数を横軸とし、混合した競合的DNAの数Nの対数を縦軸とするグラフ等を作成する(図5参照)。そして、一次関数Y=aX+bで近似する。その結果、目的DNA断片に相当するバンドの蛍光強度が、競合的DNAに相当するバンドの蛍光強度と等しくなる点、すなわち、log(T/C)が0である線と近似式との交点を読みとることにより、採取した活性汚泥中に含まれた亜硝酸還元細菌の数を得て、脱窒槽4内の亜硝酸還元細菌の数を得る。   Next, the number of nitrite-reducing bacteria in the denitrification tank 4 is measured based on the relationship between the ratio of the fluorescence intensity of the band corresponding to the target DNA fragment and the competitive DNA fragment and the number of mixed competitive DNAs (step) S16). For example, the relationship between the ratio of the fluorescence intensity of the band corresponding to the target DNA fragment and the competitive DNA fragment and the number of mixed competitive DNAs corresponds to the fluorescence intensity T of the band corresponding to the target DNA fragment and the competitive DNA fragment. A graph or the like is created with the logarithm of the ratio to the fluorescence intensity C of the band to be used as the horizontal axis and the logarithm of the number N of competitive DNAs mixed as the vertical axis (see FIG. 5). And it approximates with a linear function Y = aX + b. As a result, the point where the fluorescence intensity of the band corresponding to the target DNA fragment becomes equal to the fluorescence intensity of the band corresponding to the competitive DNA, that is, the intersection of the line where log (T / C) is 0 and the approximate expression By reading, the number of nitrite-reducing bacteria contained in the collected activated sludge is obtained, and the number of nitrite-reducing bacteria in the denitrification tank 4 is obtained.

次に、排水中の単位時間当りの全窒素及び分離液中の全窒素濃度を測定する(ステップS17)。排水中の単位時間当りの全窒素を測定するために、例えば、連絡管1から排水を採取して、排水中の全窒素濃度T−Nを測定し、さらに単位時間当りの排水量を測定する。一方、分離液中の全窒素濃度T−Nを測定するために、例えば、連絡管9から分離液を採取する。ここで、全窒素濃度T−Nとは、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素等の全ての窒素原子の濃度のことをいう。   Next, the total nitrogen per unit time in the waste water and the total nitrogen concentration in the separation liquid are measured (step S17). In order to measure the total nitrogen per unit time in the waste water, for example, the waste water is collected from the connecting pipe 1, the total nitrogen concentration TN in the waste water is measured, and the amount of waste water per unit time is further measured. On the other hand, in order to measure the total nitrogen concentration TN in the separation liquid, for example, the separation liquid is collected from the communication tube 9. Here, the total nitrogen concentration TN means the concentration of all nitrogen atoms such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen and the like.

また、全窒素の測定方法としては、例えば、総和法、ケルダール窒素法、還元蒸留ケルダール法、紫外線吸光光度法等が挙げられる(「下水試験方法」、上巻、1997年版、財団法人 日本下水道協会参照)。   Examples of the method for measuring total nitrogen include the summation method, Kjeldahl nitrogen method, reductive distillation Kjeldahl method, ultraviolet absorption photometry method, etc. (see “Sewage Test Method”, Vol. 1, 1997 edition, Japan Sewerage Association) ).

次に、亜硝酸還元細菌の数と処理性能との関係を示すデータが充分であるか否かを判断する(ステップS18)。亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成するデータが充分でないと判断した場合、再び、脱窒槽4内から活性汚泥を採取する(ステップS10)。すなわち、上述したステップS10〜S17の処理は繰り返し実行される。このように処理を繰り返し実行することにより、亜硝酸還元細菌の数と処理性能との関係を示すデータの数を増加させることになる。なお、再び、脱窒槽4内から活性汚泥を採取する際には、前回の日と異なる日に行うことが好ましい。   Next, it is determined whether or not the data indicating the relationship between the number of nitrite-reducing bacteria and the processing performance is sufficient (step S18). If it is determined that there is not enough data to create a correlation equation indicating the relationship between the number of nitrite-reducing bacteria and the treatment performance, activated sludge is again collected from the denitrification tank 4 (step S10). That is, the processes of steps S10 to S17 described above are repeatedly executed. By repeatedly executing the processing in this way, the number of data indicating the relationship between the number of nitrite-reducing bacteria and the processing performance is increased. In addition, when collecting activated sludge again from the inside of the denitrification tank 4, it is preferable to carry out on the day different from the last day.

一方、ステップS18において、亜硝酸還元細菌の数と処理性能との関係を示すデータが充分であると判断したときには、亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成する(ステップS19)。例えば、亜硝酸還元細菌の数と処理性能との関係を示す相関式として、亜硝酸還元細菌1ヶ当りの窒素負荷(排水中の単位時間当りの全窒素/亜硝酸還元細菌の数)を横軸とし、分離液中の全窒素濃度T−Nを縦軸とするグラフ等を作成する(図6(a)参照)。そして、指数関数Y=aebXで近似して、相関式を得る。 On the other hand, when it is determined in step S18 that the data indicating the relationship between the number of nitrite-reducing bacteria and the processing performance is sufficient, a correlation equation indicating the relationship between the number of nitrite-reducing bacteria and the processing performance is created ( Step S19). For example, as a correlation equation showing the relationship between the number of nitrite-reducing bacteria and treatment performance, the nitrogen load per nitrite-reducing bacterium (total nitrogen per unit time in wastewater / number of nitrite-reducing bacteria) A graph or the like having the vertical axis and the total nitrogen concentration TN in the separation liquid as the vertical axis is created (see FIG. 6A). Then, the correlation function is obtained by approximating with the exponential function Y = ae bX .

次に、相関式に基づいて決定係数R2を算出する(ステップS20)。 Next, a determination coefficient R 2 is calculated based on the correlation equation (step S20).

図3では、亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成し、決定係数を算出する工程について説明したが、硝酸還元細菌、亜酸化窒素還元細菌についても同様に行うこととなる(図6(c)参照)。さらに、アンモニア酸化細菌、亜硝酸酸化細菌についても、ステップS10における活性汚泥を採取する場所を脱窒槽4から硝化槽2に変更すること以外は同様に行うことになる(図6(b)参照)。このように本発明の水処理管理方法では、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係を示す相関式を作成し、これにより決定係数を算出することが好ましい。   In FIG. 3, the correlation equation indicating the relationship between the number of nitrite-reducing bacteria and the treatment performance is created and the process of calculating the determination coefficient has been described. However, the same applies to nitrate-reducing bacteria and nitrous oxide-reducing bacteria. (See FIG. 6C). Further, ammonia oxidizing bacteria and nitrite oxidizing bacteria are similarly processed except that the place where the activated sludge is collected in step S10 is changed from the denitrification tank 4 to the nitrification tank 2 (see FIG. 6B). . Thus, the water treatment management method of the present invention shows the relationship between the number of single bacteria and the treatment performance for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria. It is preferable to create a correlation formula and thereby calculate the coefficient of determination.

なお、図3においては亜硝酸還元細菌の数と処理性能との関係を示す相関式のみを作成する場合を示したが、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌に存在したそれぞれの目的DNA断片及び競合的DNA断片をPCR法で増幅して、それぞれの目的DNA断片及び競合的DNA断片を全て分離することにより、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌の単一の数と処理性能との関係を示す相関式を同時に作成することとしてもよい。   Note that FIG. 3 shows a case where only a correlation equation indicating the relationship between the number of nitrite-reducing bacteria and the treatment performance is created. The target DNA fragment and the competitive DNA fragment of the present invention are amplified by the PCR method, and all of the target DNA fragment and the competitive DNA fragment are separated, so that nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria are isolated. A correlation equation indicating the relationship between the number of one and the processing performance may be created at the same time.

(2)選択工程
次に、図2に示すステップS2において行われる決定係数に基づいて処理性能の指標となる指標細菌を、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択する選択工程の一例について説明する。
(2) Selection Step Next, an indicator bacterium that serves as an index of processing performance based on the coefficient of determination performed in step S2 shown in FIG. 2 is selected from ammonia oxidizing bacteria, nitrite oxidizing bacteria, nitrate reducing bacteria, nitrite reducing bacteria, and An example of the selection process for selecting from the group consisting of nitrous oxide-reducing bacteria will be described.

上述した作成工程で作成されたそれぞれの細菌の決定係数に基づいて、決定係数R2が一番高くなるものを選択して、処理性能の指標となる指標細菌を、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択する。 Based on the determination coefficient of each bacterium prepared in the above-described preparation process, the one having the highest determination coefficient R 2 is selected, and the indicator bacteria serving as the processing performance index are selected from ammonia oxidizing bacteria and nitrite oxidation. Selected from the group consisting of bacteria, nitrate reducing bacteria, nitrite reducing bacteria and nitrous oxide reducing bacteria.

なお、以下においては、亜硝酸還元細菌を指標細菌として選択した場合を説明する。また、処理性能の指標となる指標細菌をアンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から特定した後は、処理性能を管理するために、特定した指標細菌の数のみを測定すればよいことになる。   In the following, a case where nitrite-reducing bacteria are selected as indicator bacteria will be described. In addition, after identifying the indicator bacteria that are indicators of treatment performance from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria, in order to manage the treatment performance Therefore, it is only necessary to measure the number of the specified indicator bacteria.

(3)測定工程
次に、図2に示すステップS3において行われる脱窒槽4内の亜硝酸還元細菌の数を測定する測定工程のサブルーチンを図7に示すフローチャートを用いて説明する。まず、脱窒槽4内から活性汚泥を採取する(ステップS21)。
(3) Measurement Step Next, a measurement step subroutine for measuring the number of nitrite-reducing bacteria in the denitrification tank 4 performed in step S3 shown in FIG. 2 will be described using the flowchart shown in FIG. First, activated sludge is collected from the denitrification tank 4 (step S21).

次に、活性汚泥に含まれる複数の種類の細菌の全DNAを抽出する(ステップS22)。DNAを抽出する方法としては、上述したものと同様な方法等が挙げられる。   Next, the total DNA of a plurality of types of bacteria contained in the activated sludge is extracted (step S22). Examples of the method for extracting DNA include the same methods as described above.

次に、抽出された全DNAに既知数の競合的DNAを添加し、亜硝酸還元細菌に存在した指標DNA断片及び競合的DNA断片をPCR法で増幅する(ステップS23)。このとき、抽出された全DNAを数個に分け、それぞれに異なる数の競合的DNAを添加してPCR法を行う。PCR法としては、例えば、抽出された全DNA及び競合的DNAに、プライマー、酵素(Taqポリメラーゼ)、dNTPs、塩類等を添加する方法等が挙げられる。なお、プライマーとして、亜硝酸還元細菌を検出するために設計された塩基配列を有するDNA断片、すなわち、亜硝酸還元細菌のDNAと競合的DNAとのみに特異的に結合し、亜硝酸還元細菌と競合的DNA以外の細菌のDNAに結合しないものを選択する。   Next, a known number of competitive DNA is added to the extracted total DNA, and the indicator DNA fragment and the competitive DNA fragment present in the nitrite-reducing bacteria are amplified by the PCR method (step S23). At this time, the extracted total DNA is divided into several pieces, and a different number of competitive DNAs are added to each to perform PCR. Examples of the PCR method include a method of adding primers, enzymes (Taq polymerase), dNTPs, salts and the like to the extracted total DNA and competitive DNA. As a primer, a DNA fragment having a base sequence designed for detecting nitrite-reducing bacteria, that is, specifically binding only to DNA of nitrite-reducing bacteria and competitive DNA, Those that do not bind to bacterial DNA other than competitive DNA are selected.

また、PCR法における反応温度及びPCR法のサイクル数は、上述したものと同様であることが好ましい。   The reaction temperature in the PCR method and the number of cycles in the PCR method are preferably the same as those described above.

次に、それぞれについて、得られた指標DNA断片と競合的DNA断片とを分離する(ステップS24)。指標DNA断片と競合的DNA断片とを分離する方法としては、上述したものと同様な方法等が挙げられる。   Next, for each, the obtained indicator DNA fragment and competitive DNA fragment are separated (step S24). Examples of the method for separating the indicator DNA fragment and the competitive DNA fragment include the same methods as described above.

次に、DNA断片に特異的に結合して蛍光を発する色素、例えば、エチジウムブロマイド、SYBR Gold、SYBR Green I等を添加する(ステップS25)。   Next, a dye that specifically binds to the DNA fragment and emits fluorescence, such as ethidium bromide, SYBR Gold, SYBR Green I, or the like is added (step S25).

次に、ゲルドキュメンテーションシステム等により所定波長の励起光を照射したときに発する指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度を測定する(ステップS26)。   Next, the fluorescence intensity of the band corresponding to the indicator DNA fragment and the competitive DNA fragment emitted when the excitation light of a predetermined wavelength is irradiated by a gel documentation system or the like is measured (step S26).

次に、指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比と混合した競合的DNAの数との関係に基づいて脱窒槽4内の亜硝酸還元細菌の数を測定する(ステップS27)。例えば、指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比と混合した競合的DNAの数との関係として、指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比の対数を横軸とし、混合した競合的DNAの数の対数を縦軸とするグラフ等を作成する。そして、一次関数Y=aX+bで近似する。その結果、指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度の比の対数が0である線と近似式との交点を読みとることにより、採取した活性汚泥中に含まれた亜硝酸還元細菌の数を得て、脱窒槽4内の亜硝酸還元細菌の数を得る。   Next, the number of nitrite-reducing bacteria in the denitrification tank 4 is measured based on the relationship between the ratio of the fluorescence intensity of the bands corresponding to the indicator DNA fragment and the competitive DNA fragment and the number of mixed competitive DNAs (step) S27). For example, as the relationship between the ratio of the fluorescence intensity of the band corresponding to the indicator DNA fragment and the competitive DNA fragment and the number of the competitive DNAs mixed, the ratio of the fluorescence intensity of the band corresponding to the indicator DNA fragment and the competitive DNA fragment A graph or the like is created with the logarithm as the horizontal axis and the logarithm of the number of mixed competitive DNAs as the vertical axis. And it approximates with a linear function Y = aX + b. As a result, the nitrite reduction contained in the collected activated sludge was obtained by reading the intersection of the line with the logarithm of the ratio of the fluorescence intensity of the band corresponding to the indicator DNA fragment and the competitive DNA fragment being zero and the approximate expression. The number of bacteria is obtained, and the number of nitrite-reducing bacteria in the denitrification tank 4 is obtained.

次に、排水中の単位時間当りの全窒素を測定する(ステップS28)。排水中の単位時間当りの全窒素を測定するために、例えば、連絡管1から排水を採取して、排水中の全窒素濃度T−Nを測定し、さらに単位時間当りの排水量を測定する。   Next, the total nitrogen per unit time in the waste water is measured (step S28). In order to measure the total nitrogen per unit time in the waste water, for example, the waste water is collected from the connecting pipe 1, the total nitrogen concentration TN in the waste water is measured, and the amount of waste water per unit time is further measured.

(4)保持工程
次に、図2に示すステップS4において行われる脱窒槽4内の所定数以上の亜硝酸還元細菌を保持する保持工程の一例について説明する。
(4) Holding Step Next, an example of a holding step for holding a predetermined number or more of nitrite-reducing bacteria in the denitrification tank 4 performed in step S4 shown in FIG. 2 will be described.

亜硝酸還元細菌の数が所定数未満である(例えば、亜硝酸還元細菌1ヶ当りの窒素負荷が所定数より大きい)ときには、脱窒槽4に亜硝酸還元細菌に適した基質を加えたり、脱窒槽4内のpH、温度、酸化還元電位等を制御したりする。一方、亜硝酸還元細菌の数が所定数以上である(例えば、亜硝酸還元細菌1ヶ当りの窒素負荷が所定数以下である)ときには、特に何もする必要がない。このように亜硝酸還元細菌の数を測定することにより、対策の遅れを生じることがなく、処理性能を維持することが可能となる。   When the number of nitrite-reducing bacteria is less than a predetermined number (for example, the nitrogen load per nitrite-reducing bacteria is larger than a predetermined number), a substrate suitable for nitrite-reducing bacteria is added to the denitrification tank 4 or denitration is performed. The pH, temperature, oxidation-reduction potential, etc. in the nitrogen tank 4 are controlled. On the other hand, when the number of nitrite-reducing bacteria is not less than a predetermined number (for example, the nitrogen load per nitrite-reducing bacteria is not more than a predetermined number), nothing is required. By measuring the number of nitrite-reducing bacteria in this way, it is possible to maintain the processing performance without causing a delay in measures.

また、本発明の水処理管理方法は、図1を用いて説明したように、硝化槽2、脱窒槽4、再曝気槽6、沈殿槽8をこの順に備える構成に用いることが可能であるが、さらに、本発明では、図8に示すように、脱窒槽21、硝化槽22、沈殿槽23をこの順に備えるとともに、硝化槽22で処理された硝化液を脱窒槽21に循環できる構成に用いることも可能である。   In addition, as described with reference to FIG. 1, the water treatment management method of the present invention can be used in a configuration including the nitrification tank 2, the denitrification tank 4, the re-aeration tank 6, and the precipitation tank 8 in this order. Furthermore, in the present invention, as shown in FIG. 8, a denitrification tank 21, a nitrification tank 22, and a precipitation tank 23 are provided in this order, and the nitrification liquid treated in the nitrification tank 22 is used in a configuration that can be circulated to the denitrification tank 21. It is also possible.

このような構成に用いる場合には、脱窒素21内の亜硝酸還元細菌を指標細菌として選択したとき、脱窒槽21内の亜硝酸還元細菌の数を測定することにより、脱窒槽21内で所定数以上の亜硝酸還元細菌を保持することになる。   When used in such a configuration, when the nitrite-reducing bacteria in the denitrification 21 are selected as indicator bacteria, the number of nitrite-reducing bacteria in the denitrification tank 21 is measured to determine a predetermined value in the denitrification tank 21. It will retain more than a few nitrite-reducing bacteria.

また、本発明の水処理管理方法は、図9に示すように、脱窒槽31、硝化槽32、脱窒槽33、硝化槽34、沈殿槽35をこの順に備えるとともに、硝化槽34で処理された硝化液を脱窒槽33に循環でき、かつ、排水を脱窒槽31及び脱窒槽33に供給できる構成に用いることも可能である。   Further, as shown in FIG. 9, the water treatment management method of the present invention includes a denitrification tank 31, a nitrification tank 32, a denitrification tank 33, a nitrification tank 34, and a precipitation tank 35 in this order, and was treated in the nitrification tank 34. It is also possible to use the structure in which the nitrification liquid can be circulated to the denitrification tank 33 and the waste water can be supplied to the denitrification tank 31 and the denitrification tank 33.

このような構成に用いる場合には、脱窒槽31及び脱窒槽33内の亜硝酸還元細菌を指標細菌として選択したとき、脱窒槽31及び脱窒槽33内の亜硝酸還元細菌の数を測定することにより、脱窒槽31及び脱窒槽33内で所定数以上の亜硝酸還元細菌を保持することになる。   When used in such a configuration, when the nitrite-reducing bacteria in the denitrification tank 31 and the denitrification tank 33 are selected as indicator bacteria, the number of nitrite-reducing bacteria in the denitrification tank 31 and the denitrification tank 33 is measured. Thus, a predetermined number or more of nitrite-reducing bacteria are retained in the denitrification tank 31 and the denitrification tank 33.

また、脱窒槽、硝化槽等の水処理槽としては、例えば、細菌を含む活性汚泥を水処理槽内に浮遊させる活性汚泥処理装置、細菌を含む活性汚泥を付着させた担体を用いる流動床式処理装置、固定床式処理装置等が挙げられる。したがって、上記活性汚泥処理装置の場合には、水処理槽内から一定体積のサンプルを採取し、その後、水処理槽内の全体のサンプル体積に換算することにより、水処理槽内の状態を把握できることになる。また、上記流動床式処理装置、固定床式処理装置の場合には、水処理槽内から一定数の担体又は一定表面積からの汚泥を採取し、その後、処理槽内の全体の担体数に換算することにより、水処理槽内の状態を把握できることになる。   In addition, as a water treatment tank such as a denitrification tank or a nitrification tank, for example, an activated sludge treatment apparatus that floats activated sludge containing bacteria in the water treatment tank, a fluidized bed type using a carrier to which activated sludge containing bacteria is attached. A processing apparatus, a fixed bed type processing apparatus, etc. are mentioned. Therefore, in the case of the above activated sludge treatment apparatus, a constant volume of sample is taken from the water treatment tank, and then converted into the entire sample volume in the water treatment tank, thereby grasping the state in the water treatment tank. It will be possible. In the case of the above fluidized bed type processing apparatus and fixed bed type processing apparatus, a fixed number of carriers or sludge from a certain surface area is collected from the water treatment tank, and then converted into the total number of carriers in the treatment tank. By doing so, the state in the water treatment tank can be grasped.

図1に示すような硝化槽2、脱窒槽4、再曝気槽6、沈殿槽8をこの順に備える構成である水処理プロセスにおいて、火力発電所からの排水から窒素成分を除去して、分離液(T−N:2.0mg/L以下)として取り出す水処理プロセスを行った。なお、脱窒槽4は活性汚泥処理装置であり、脱窒槽4内の有効容積は400000Lであった。   In a water treatment process having a nitrification tank 2, a denitrification tank 4, a re-aeration tank 6, and a precipitation tank 8 as shown in FIG. 1, nitrogen components are removed from waste water from a thermal power plant, The water treatment process taken out as (TN: 2.0 mg / L or less) was performed. In addition, the denitrification tank 4 is an activated sludge treatment apparatus, and the effective volume in the denitrification tank 4 was 400,000 L.

(1)作成工程
まず、脱窒槽4内から1mLの活性汚泥及び排水の混合物を採取した。次に、混合物中の活性汚泥を遠心分離により分離して、活性汚泥を得た。そして、活性汚泥に含まれる複数の種類の細菌の全DNAを、FastDNA SPIN kit for Soil(Qbiogene,Inc.製)を用い、製造業者の推奨する方法にしたがって抽出し、全DNAを11400ng得た。
(1) Preparation process First, 1 mL of the activated sludge and waste water mixture was collected from the denitrification tank 4. Next, the activated sludge in the mixture was separated by centrifugation to obtain activated sludge. Then, total DNA of a plurality of types of bacteria contained in the activated sludge was extracted using FastDNA SPIN kit for Soil (manufactured by Qbiogene, Inc.) according to the method recommended by the manufacturer, and 11400 ng of total DNA was obtained.

次に、抽出された全DNAに既知数の競合的DNAとしてcompetitive DNA Construction Kit(宝バイオ株式会社製)を用いて製造業者の推奨する方法にしたがって添加した。このとき、抽出された全DNAが10ngとなるものを5個準備して、それぞれに1.25×103、2.5×103、5×103、1×104、2×104copiesの競合的DNAを1.0μL添加した。さらに、5.0μLの10×PCR Buffer(キアゲン製)、10.0μLの5×Q solution(キアゲン製)、4.0μLの10mM dNTPs(アプライドバイオシステムズジャパン製)、2.0μLの25mM MgCl2、0.3μLの0.3unit Taqポリメラーゼ(キアゲン製)、0.5μLの各プライマーを添加し、そして滅菌水(エッペンドルフ製)を用いて全体量を50μLとした反応液を得た。 Next, a known number of competitive DNAs were added to the extracted total DNA using a competitive DNA Construction Kit (manufactured by Takara Bio Inc.) according to the method recommended by the manufacturer. At this time, five samples with 10 ng of total extracted DNA were prepared, and competitive with 1.25 × 10 3 , 2.5 × 10 3 , 5 × 10 3 , 1 × 10 4 , and 2 × 10 4 copies respectively. 1.0 μL of DNA was added. In addition, 5.0 μL of 10 × PCR Buffer (Qiagen), 10.0 μL of 5 × Q solution (Qiagen), 4.0 μL of 10 mM dNTPs (Applied Biosystems Japan), 2.0 μL of 25 mM MgCl 2 , 0.3 μL of 0.3 unit Taq polymerase (manufactured by Qiagen) and 0.5 μL of each primer were added, and a reaction solution with a total volume of 50 μL was obtained using sterile water (manufactured by Eppendorf).

なお、各プライマーとして、目的細菌である亜硝酸還元細菌(nir S)を検出するために設計された塩基配列を有する下述するDNA断片を用いた(文献:G.Braker, A.Fesefeldt, and K-P. Witzel, 1998 Appl. Environ. Microbiol. 64, 3769-3775.参照)。   Each primer used was a DNA fragment described below having a base sequence designed to detect the target nitrite-reducing bacteria (nir S) (reference: G. Braker, A. Fesefeldt, and KP. Witzel, 1998 Appl. Environ. Microbiol. 64, 3769-3775.).

nirS1F:CCTA(C/T)TGGCCGCC(A/G)CA(A/G)T (配列番号1)
nirS6R:CGTTGAACTT(A/G)CCGGT (配列番号2)
そして、得られた反応液を用いて、表1に示す条件でPCR法を実施した。
nirS1F: CCTA (C / T) TGGCCGCC (A / G) CA (A / G) T (SEQ ID NO: 1)
nirS6R: CGTTGAACTT (A / G) CCGGT (SEQ ID NO: 2)
And PCR method was implemented on the conditions shown in Table 1 using the obtained reaction liquid.

Figure 2006326522
次に、PCR法で増幅させた目的DNA断片及び競合的DNA断片10μLに1μLのloading dye(東洋紡績株式会社製)を添加して、常法にしたがい、室温で、100V、30分で2%アガロースゲルを用いて電気泳動を行った。
Figure 2006326522
Next, 1 μL of loading dye (manufactured by Toyobo Co., Ltd.) is added to 10 μL of the target DNA fragment and competitive DNA fragment amplified by the PCR method, and 2% at 100 V for 30 minutes at room temperature according to a conventional method. Electrophoresis was performed using an agarose gel.

次に、エチジウムブロマイド染色を行い、電気泳動ゲル撮影/解析方法1D Image Analysis Software(Kodak)により、目的DNA断片及び競合的DNA断片に相当するバンドの蛍光強度を測定した(図4参照)。   Next, ethidium bromide staining was performed, and the fluorescence intensity of the band corresponding to the target DNA fragment and the competitive DNA fragment was measured by electrophoresis gel imaging / analysis method 1D Image Analysis Software (Kodak) (see FIG. 4).

これにより、目的DNA断片に相当するバンドの蛍光強度Tと競合的DNA断片に相当するバンドの蛍光強度Cとの比の対数を横軸とし、混合した競合的DNAの数Nの対数を縦軸とするグラフを作成した。そして、一次関数Y=aX+bで近似し、Y=−1.3007X+4.0877を得た(図5参照)。   Thus, the horizontal axis represents the logarithm of the ratio of the fluorescence intensity T of the band corresponding to the target DNA fragment and the fluorescence intensity C of the band corresponding to the competitive DNA fragment, and the logarithm of the number N of mixed competitive DNAs represents the vertical axis. A graph was created. And it approximated with linear function Y = aX + b, and Y = -1.3007X + 4.0877 was obtained (refer FIG. 5).

図5からlog(T/C)が0である線とグラフとの交点を4.09と読みとることにより、全DNA10 ng中に含まれた亜硝酸還元細菌の数は104.09copiesと算出した。そして、活性汚泥及び排水の混合物1mLから精製された全DNAは11400ngであったため、活性汚泥及び排水の混合物1mL中に含まれた亜硝酸還元細菌の数は、104.09 ×11400/10 = 107.15copiesであったと算出した。 From FIG. 5, by reading the intersection of the line where log (T / C) is 0 and the graph as 4.09, the number of nitrite-reducing bacteria contained in 10 ng of total DNA was calculated as 10 4.09 copies. Since the total DNA purified from 1 mL of the activated sludge and wastewater mixture was 11400 ng, the number of nitrite-reducing bacteria contained in 1 mL of the activated sludge and wastewater mixture was 10 4.09 × 11400/10 = 10 7.15. It was calculated to be copies.

次に、連絡管1から採取した排水中の全窒素濃度T−Nを40mg/L(NH4-N:20mg/L、NO2-N:10mg/L、NO3-N:10mg/L)と測定し、さらに1日当りの排水量を1800m3と測定した。一方、連絡管9から採取した分離液中の全窒素濃度T−Nを0.9mg/L(1日の水量:1800m3)と測定した。 Next, the total nitrogen concentration TN in the wastewater collected from the connecting pipe 1 is 40 mg / L (NH 4 -N: 20 mg / L, NO 2 -N: 10 mg / L, NO 3 -N: 10 mg / L) Further, the amount of discharged water per day was measured as 1800 m 3 . On the other hand, the total nitrogen concentration TN in the separated liquid collected from the connecting tube 9 was measured as 0.9 mg / L (the amount of water per day: 1800 m 3 ).

上述した処理を一定間隔をおいて繰り返し実行した。これにより、亜硝酸還元細菌1ヶ当りの窒素負荷を横軸とし、分離液中の全窒素濃度T−Nを縦軸とするグラフを作成した。そして、指数関数Y=aebXで近似して、Y=0.5826e4E+0.7Xとなる相関式を得た。さらに、決定係数R2を0.7880と得た(図6(a)参照)。 The above-described processing was repeatedly executed at regular intervals. This produced a graph with the horizontal axis representing the nitrogen load per nitrite-reducing bacterium and the vertical axis representing the total nitrogen concentration TN in the separation liquid. Then, an approximation was made with an exponential function Y = ae bX to obtain a correlation equation Y = 0.5826e 4E + 0.7X . Furthermore, the determination coefficient R 2 was obtained as 0.7880 (see FIG. 6A).

また、亜酸化窒素還元細菌についても同様に行い、決定係数R2を0.2136と得た(図6(c)参照)。 Similarly, it performed for nitrous oxide reducing bacteria, the coefficient of determination R 2 to give a 0.2136 (see Figure 6 (c)).

なお、各プライマーとして、目的細菌である亜酸化窒素還元細菌(Nos Z)を検出するために設計された塩基配列を有する下述するDNA断片を用いた(文献:D.J.Scala and L.J.Kerkhof. 1998 FEMS Microbiology Letters 168, 61-68参照)。   Each primer used was a DNA fragment described below having a base sequence designed to detect the target nitrous oxide reducing bacterium (Nos Z) (Reference: DJScala and LJKerkhof. 1998 FEMS). Microbiology Letters 168, 61-68).

Nos1527F:CGCTGTTC(A/T/C)TCGACAG(C/T)CA (配列番号3)
Nos1773R:AT(A/G)TCGATCA(A/G)CTG(T/C/G)TCGTT (配列番号4)
さらに、アンモニア酸化細菌についても、活性汚泥を採取する場所を脱窒槽4から硝化槽2に変更すること以外は同様に行い、決定係数R2を2×10-9と得た(図6(b)参照)。
Nos1527F: CGCTGTTC (A / T / C) TCGACAG (C / T) CA (SEQ ID NO: 3)
Nos1773R: AT (A / G) TCGATCA (A / G) CTG (T / C / G) TCGTT (SEQ ID NO: 4)
Furthermore, ammonia-oxidizing bacteria were obtained in the same manner except that the place for collecting activated sludge was changed from the denitrification tank 4 to the nitrification tank 2, and a determination coefficient R 2 of 2 × 10 −9 was obtained (FIG. 6 (b)). )reference).

なお、各プライマーとして、目的細菌であるアンモニア酸化細菌(amo A)を検出するために設計された塩基配列を有する下述するDNA断片を用いた(文献:J-H. Rotfhauwe, K-P. Witzel and W. Liesack. 1997. Appl. Environ. Microbiol. 63, 4704-4712参照)。   Each primer used was a DNA fragment described below having a base sequence designed to detect the target bacteria, ammonia-oxidizing bacteria (amo A) (reference: JH. Rotfhauwe, KP. Witzel and W. Liesack. 1997. Appl. Environ. Microbiol. 63, 4704-4712).

amoA-1F:GGGGTTTCTACTGGTGGT (配列番号5)
amoA-2R:CCCCTC(G/T)G(C/G)AAAGCCTTCTTC (配列番号6)
(2)選択工程
上述した作成工程で作成されたそれぞれの細菌の決定係数に基づいて、決定係数R2が一番高かった亜硝酸還元細菌を指標細菌として選択した。
amoA-1F: GGGGTTTCTACTGGTGGT (SEQ ID NO: 5)
amoA-2R: CCCCTC (G / T) G (C / G) AAAGCCTTCTTC (SEQ ID NO: 6)
(2) selection process based on the coefficient of determination of each of the bacteria that have been created in the above-described forming process, the coefficient of determination R 2 has selected the most high was nitrite-reducing bacteria as the indicator bacteria.

(3)測定工程
まず、脱窒槽4内から1mLの活性汚泥及び排水の混合物を採取した。次に、混合物中の活性汚泥を遠心分離により分離して、活性汚泥を得た。そして、活性汚泥に含まれる複数の種類の細菌の全DNAを、FastDNA SPIN kit for Soil(Qbiogene,Inc.製)を用い、製造業者の推奨する方法にしたがって抽出し、全DNAを12300ng得た。
(3) Measurement process First, 1 mL of the activated sludge and wastewater mixture was collected from the denitrification tank 4. Next, the activated sludge in the mixture was separated by centrifugation to obtain activated sludge. Then, total DNA of a plurality of types of bacteria contained in the activated sludge was extracted according to the method recommended by the manufacturer using FastDNA SPIN kit for Soil (manufactured by Qbiogene, Inc.) to obtain 12300 ng of total DNA.

次に、抽出された全DNAに既知数の競合的DNAとしてcompetitive DNA Construction Kit(宝バイオ株式会社製)を用いて製造業者の推奨する方法にしたがって添加した。このとき、抽出された全DNAが10ngとなるものを5個準備して、それぞれに1.25×103、2.5×103、5×103、1×104、2×104copiesの競合的DNAを1.0μL添加した。さらに、5.0μLの10×PCR Buffer(キアゲン製)、10.0μLの5×Q solution(キアゲン製)、4.0μLの10mM dNTPs(アプライドバイオシステムズジャパン製)、2.0μLの25mM MgCl2、0.3μLの0.3unit Taqポリメラーゼ(キアゲン製)、0.5μLの各プライマーを添加し、そして滅菌水(エッペンドルフ製)を用いて全体量を50μLとした反応液を得た。 Next, a known number of competitive DNAs were added to the extracted total DNA using a competitive DNA Construction Kit (manufactured by Takara Bio Inc.) according to the method recommended by the manufacturer. At this time, five samples with 10 ng of total extracted DNA were prepared, and competitive with 1.25 × 10 3 , 2.5 × 10 3 , 5 × 10 3 , 1 × 10 4 , and 2 × 10 4 copies respectively. 1.0 μL of DNA was added. In addition, 5.0 μL 10 × PCR Buffer (Qiagen), 10.0 μL 5 × Q solution (Qiagen), 4.0 μL 10 mM dNTPs (Applied Biosystems Japan), 2.0 μL 25 mM MgCl 2 , 0.3 μL 0.3 unit Taq polymerase (Qiagen), 0.5 μL of each primer was added, and a sterilized water (Eppendorf) was used to obtain a reaction solution with a total volume of 50 μL.

なお、各プライマーとして、指標細菌である亜硝酸還元細菌(nir S)を検出するために設計された塩基配列を有する下述するDNA断片を用いた。   As each primer, a DNA fragment described below having a base sequence designed to detect nitrite-reducing bacteria (nir S), which are indicator bacteria, was used.

nirS1F:CCTA(C/T)TGGCCGCC(A/G)CA(A/G)T (配列番号1)
nirS6R:CGTTGAACTT(A/G)CCGGT (配列番号2)
そして、得られた反応液を用いて、表1に示した条件でPCR法を実施した。
nirS1F: CCTA (C / T) TGGCCGCC (A / G) CA (A / G) T (SEQ ID NO: 1)
nirS6R: CGTTGAACTT (A / G) CCGGT (SEQ ID NO: 2)
And PCR method was implemented on the conditions shown in Table 1 using the obtained reaction liquid.

次に、PCR法で増幅させた指標DNA断片及び競合的DNA断片10μLに1μLのloading dye(東洋紡績株式会社製)を添加して、常法にしたがい、室温で、100V、30分で2%アガロースゲルを用いて電気泳動を行った。   Next, 1 μL of loading dye (manufactured by Toyobo Co., Ltd.) is added to 10 μL of the indicator DNA fragment and competitive DNA fragment amplified by the PCR method, and 2% at 100 V for 30 minutes at room temperature according to a conventional method. Electrophoresis was performed using an agarose gel.

次に、エチジウムブロマイド染色を行い、電気泳動ゲル撮影/解析方法1D Image Analysis Software(Kodak)により、指標DNA断片及び競合的DNA断片に相当するバンドの蛍光強度を測定した。   Next, ethidium bromide staining was performed, and the fluorescence intensity of the bands corresponding to the indicator DNA fragment and the competitive DNA fragment was measured by electrophoresis gel imaging / analysis method 1D Image Analysis Software (Kodak).

これにより、指標DNA断片に相当するバンドの蛍光強度Tと競合的DNA断片に相当するバンドの蛍光強度Cとの比の対数を横軸とし、混合した競合的DNAの数Nの対数を縦軸とするグラフを作成した。そして、一次関数Y=aX+bで近似し、Y=1.13X+4.18を得た。   Thus, the horizontal axis represents the logarithm of the ratio of the fluorescence intensity T of the band corresponding to the indicator DNA fragment and the fluorescence intensity C of the band corresponding to the competitive DNA fragment, and the logarithm of the number N of mixed competitive DNAs represents the vertical axis. A graph was created. And it approximated by the linear function Y = aX + b, and Y = 1.13X + 4.18 was obtained.

log(T/C)が0である線とグラフとの交点を4.18と読みとることにより、全DNA10 ng中に含まれた亜硝酸還元細菌の数は104.18copiesと算出した。そして、活性汚泥及び排水の混合物1mLから精製された全DNAは12300ngであったため、活性汚泥及び排水の混合物1mL中に含まれた亜硝酸還元細菌の数は、104.18×12300/10 =107.27copiesであったと算出した。 The intersection between the line and the graph log (T / C) is 0 by reading the 4.18, the number of nitrite-reducing bacteria contained in the total DNA 10 ng was calculated as 10 4.18 copies. Since the total DNA purified from 1 mL of the activated sludge and wastewater mixture was 12300 ng, the number of nitrite-reducing bacteria contained in 1 mL of the activated sludge and wastewater mixture was 10 4.18 × 12300/10 = 10 7.27. It was calculated to be copies.

次に、連絡管1から採取した排水中の全窒素濃度T−Nを40mg/L(NH4-N:20mg/L、NO2-N:10mg/L、NO3-N:10mg/L)と測定し、さらに1日当りの排水量を1800m3と測定した。 Next, the total nitrogen concentration TN in the wastewater collected from the connecting pipe 1 is 40 mg / L (NH 4 -N: 20 mg / L, NO 2 -N: 10 mg / L, NO 3 -N: 10 mg / L) Further, the amount of discharged water per day was measured as 1800 m 3 .

(4)保持工程
図6(a)から分離液の全窒素濃度(T-N)を2.0mg/L以下とするためには、亜硝酸還元細菌1ヶ当りの窒素負荷を3.2×10-8mg/(copies・日)以下となるよう亜硝酸還元細菌を保持すればよいことになる。そこで、処理性能を管理するために、亜硝酸還元細菌の数を測定する測定工程を10日置きに行った。そして、亜硝酸還元細菌1ヶ当りの窒素負荷が3.2×10-8mg/(copies・日)を超えるときには、亜硝酸還元細菌に適した基質を加えたり、pH、温度、酸化還元電位等を制御した。一方、亜硝酸還元細菌1ヶ当りの窒素負荷が3.2×10-8mg/(copies・日)以下であるときには、特に何もしなかった。
(4) Holding step From Fig. 6 (a), in order to keep the total nitrogen concentration (TN) of the separation liquid at 2.0 mg / L or less, the nitrogen load per nitrite-reducing bacterium is set to 3.2 x 10 -8. Nitrite-reducing bacteria may be retained so as to be less than mg / (copies · day). Therefore, in order to manage the processing performance, a measurement process for measuring the number of nitrite-reducing bacteria was performed every 10 days. When the nitrogen load per nitrite-reducing bacterium exceeds 3.2 × 10 -8 mg / (copies / day), a substrate suitable for nitrite-reducing bacteria can be added, pH, temperature, redox potential, etc. Controlled. On the other hand, when the nitrogen load per nitrite-reducing bacterium was 3.2 × 10 −8 mg / (copies · day) or less, nothing was done.

<評価方法>
処理性能を管理し始めたときから、1、10、20、30及び40日目に、連絡管9から採取した分離液中の全窒素濃度T−Nを測定した。その結果を表2に示す。
<Evaluation method>
From the beginning of managing the processing performance, the total nitrogen concentration TN in the separated liquid collected from the communication tube 9 was measured on the first, tenth, twentieth, thirty and forty days. The results are shown in Table 2.

Figure 2006326522
実施例1に係る水処理管理方法によれば、水処理プロセスの処理性能の指標となる指標細菌を亜硝酸還元細菌に特定して、その後は亜硝酸還元細菌の数のみを測定することにより、オペレータの能力に依存せずに、処理性能を維持できた。
Figure 2006326522
According to the water treatment management method according to Example 1, by specifying an indicator bacterium as an indicator of the treatment performance of the water treatment process as a nitrite-reducing bacterium, and then measuring only the number of nitrite-reducing bacteria, The processing performance could be maintained without depending on the operator's ability.

なお、通常用いられているT-N-SS負荷と処理水質の関連性は低く、処理性能を管理することはできなかった。同様に、アンモニア酸化細菌1ヶ当りの窒素負荷(図6(b))や亜酸化窒素還元細菌1ヶ当りの窒素負荷(図6(c))と処理水質との関連性も低く、本指標で処理性能を管理することはできなかった。   In addition, the relationship between the commonly used T-N-SS load and treated water quality was low, and the treatment performance could not be managed. Similarly, the relationship between the nitrogen load per ammonia-oxidizing bacterium (Fig. 6 (b)) and the nitrogen load per nitrous oxide-reducing bacterium (Fig. 6 (c)) and the quality of treated water is low. It was not possible to manage the processing performance.

このように、水処理プロセスの処理性能の指標となる指標細菌をアンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から特定することにより、対策の遅れを生じることがなく、オペレータの能力や主観的な判断に依存せずに、処理性能を維持できる。   In this way, measures are taken by identifying indicator bacteria that are indicators of treatment performance of water treatment processes from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria. The processing performance can be maintained without depending on the operator's ability and subjective judgment.

本発明に係る水処理管理方法によって処理性能を管理する水処理プロセスの概略構成図である。It is a schematic block diagram of the water treatment process which manages process performance with the water treatment management method which concerns on this invention. 本発明の水処理管理方法のルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the routine of the water treatment management method of this invention. 亜硝酸還元細菌の数と処理性能との関係を示す相関式を作成し、決定係数を算出する作成工程のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the preparation process which produces the correlation type | formula which shows the relationship between the number of nitrite reduction bacteria, and processing performance, and calculates a determination coefficient. 目的DNA断片及び競合的DNA断片のアガロースゲル電気泳動写真の一例である。It is an example of the agarose gel electrophoresis photograph of the target DNA fragment and a competitive DNA fragment. 目的DNA断片に相当するバンドの蛍光強度Tと競合的DNA断片に相当するバンドの蛍光強度Cとの比の対数を横軸とし、混合した競合的DNAの数Nの対数を縦軸とするグラフである。A graph in which the horizontal axis represents the logarithm of the ratio of the fluorescence intensity T of the band corresponding to the target DNA fragment and the fluorescence intensity C of the band corresponding to the competitive DNA fragment, and the vertical axis represents the logarithm of the number of mixed competitive DNAs N It is. 細菌1ヶ当りの窒素負荷を横軸とし、分離液中の全窒素濃度T−Nを縦軸とするグラフである。It is a graph which makes the horizontal axis | shaft the nitrogen load per bacterium, and makes the vertical axis | shaft the total nitrogen concentration TN in a separation liquid. 脱窒槽内の亜硝酸還元細菌の数を測定する測定工程のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the measurement process which measures the number of nitrite reduction bacteria in a denitrification tank. 本発明に係る水処理管理方法によって処理性能を管理する他の水処理プロセスの概略構成図である。It is a schematic block diagram of the other water treatment process which manages process performance with the water treatment management method which concerns on this invention. 本発明に係る水処理管理方法によって処理性能を管理する他の水処理プロセスの概略構成図である。It is a schematic block diagram of the other water treatment process which manages process performance with the water treatment management method which concerns on this invention.

符号の説明Explanation of symbols

1、3、5、7、9:連絡管
2、22、32、34:硝化槽
4、21、31、33:脱窒槽
6:再曝気槽
8、23、35:沈殿槽
1, 3, 5, 7, 9: Communication pipe 2, 22, 32, 34: Nitrification tank 4, 21, 31, 33: Denitrification tank 6: Re-aeration tank 8, 23, 35: Precipitation tank

Claims (6)

水処理プロセスの処理性能を管理する水処理管理方法であって、
前記水処理プロセスは、複数の種類の細菌を用いて、水処理槽に供給される被処理水から処理対象物質を除去するものであり、
処理性能の指標となる指標細菌を、前記複数の種類の細菌から選択する選択工程と、
前記水処理槽内の指標細菌の数を測定する測定工程と、
前記水処理槽内に所定数以上の指標細菌を保持する保持工程とを含むことを特徴とする水処理管理方法。
A water treatment management method for managing the treatment performance of a water treatment process,
The water treatment process uses a plurality of types of bacteria to remove a substance to be treated from water to be treated supplied to a water treatment tank,
A selection step of selecting an indicator bacterium serving as an indicator of treatment performance from the plurality of types of bacteria;
A measuring step of measuring the number of indicator bacteria in the water treatment tank;
And a holding step of holding a predetermined number or more of indicator bacteria in the water treatment tank.
水処理プロセスの処理性能を管理する水処理管理方法であって、
前記水処理プロセスは、複数の種類の細菌を用いて、水処理槽に供給される被処理水から窒素成分を除去するものであり、
処理性能の指標となる指標細菌を、アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌及び亜酸化窒素還元細菌からなる群から選択する選択工程と、
前記水処理槽内の指標細菌の数を測定する測定工程と、
前記水処理槽内に所定数以上の指標細菌を保持する保持工程とを含むことを特徴とする水処理管理方法。
A water treatment management method for managing the treatment performance of a water treatment process,
The water treatment process is to remove nitrogen components from the treated water supplied to the water treatment tank using a plurality of types of bacteria.
A selection step of selecting an indicator bacterium serving as an indicator of treatment performance from the group consisting of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria;
A measuring step of measuring the number of indicator bacteria in the water treatment tank;
And a holding step of holding a predetermined number or more of indicator bacteria in the water treatment tank.
アンモニア酸化細菌、亜硝酸酸化細菌、硝酸還元細菌、亜硝酸還元細菌、亜酸化窒素還元細菌について単一の細菌の数と処理性能との関係に基づいて、前記指標細菌を選択する、請求項1又は2に記載の水処理管理方法。   The indicator bacteria are selected based on the relationship between the number of single bacteria and treatment performance for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, nitrate-reducing bacteria, nitrite-reducing bacteria, and nitrous oxide-reducing bacteria. Or the water treatment management method of 2. 前記測定工程では、定量PCR法を用いる、請求項1乃至3のいずれか1項に記載の水処理管理方法。   The water treatment management method according to any one of claims 1 to 3, wherein a quantitative PCR method is used in the measurement step. 前記被処理水は、火力発電所からの排水である、請求項1乃至4のいずれか1項に記載の水処理管理方法。   The water treatment management method according to any one of claims 1 to 4, wherein the water to be treated is drainage from a thermal power plant. 前記指標細菌は、亜硝酸還元細菌である、請求項1乃至5のいずれか1項に記載の水処理管理方法。

The water treatment management method according to any one of claims 1 to 5, wherein the indicator bacterium is a nitrite-reducing bacterium.

JP2005155509A 2005-05-27 2005-05-27 Water treatment management method Expired - Fee Related JP4279802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155509A JP4279802B2 (en) 2005-05-27 2005-05-27 Water treatment management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155509A JP4279802B2 (en) 2005-05-27 2005-05-27 Water treatment management method

Publications (2)

Publication Number Publication Date
JP2006326522A true JP2006326522A (en) 2006-12-07
JP4279802B2 JP4279802B2 (en) 2009-06-17

Family

ID=37548806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155509A Expired - Fee Related JP4279802B2 (en) 2005-05-27 2005-05-27 Water treatment management method

Country Status (1)

Country Link
JP (1) JP4279802B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089615A (en) * 2007-10-04 2009-04-30 Kobelco Eco-Solutions Co Ltd Primer, primer set, method for determining nitrate-reducing bacterium, and biological treatment method
JP2009112924A (en) * 2007-11-05 2009-05-28 Kobelco Eco-Solutions Co Ltd Simulation method, simulation apparatus, biological treatment method and biological treatment apparatus
JP2009131848A (en) * 2007-06-19 2009-06-18 Kobelco Eco-Solutions Co Ltd Simulation method, simulation device, biological treatment method, and biological treatment apparatus
JP2009214037A (en) * 2008-03-11 2009-09-24 Toshiba Corp Water treatment method and apparatus
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
KR20190063688A (en) * 2017-11-30 2019-06-10 한국에너지기술연구원 Method of optimizing capture matrix
US11225680B2 (en) 2015-04-03 2022-01-18 Sumitomo Chemical Company, Limited Prediction-rule generating system, prediction system, prediction-rule generating method, and prediction method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131848A (en) * 2007-06-19 2009-06-18 Kobelco Eco-Solutions Co Ltd Simulation method, simulation device, biological treatment method, and biological treatment apparatus
JP2009089615A (en) * 2007-10-04 2009-04-30 Kobelco Eco-Solutions Co Ltd Primer, primer set, method for determining nitrate-reducing bacterium, and biological treatment method
JP2009112924A (en) * 2007-11-05 2009-05-28 Kobelco Eco-Solutions Co Ltd Simulation method, simulation apparatus, biological treatment method and biological treatment apparatus
JP2009214037A (en) * 2008-03-11 2009-09-24 Toshiba Corp Water treatment method and apparatus
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
US11225680B2 (en) 2015-04-03 2022-01-18 Sumitomo Chemical Company, Limited Prediction-rule generating system, prediction system, prediction-rule generating method, and prediction method
KR20190063688A (en) * 2017-11-30 2019-06-10 한국에너지기술연구원 Method of optimizing capture matrix
KR101995858B1 (en) 2017-11-30 2019-07-04 한국에너지기술연구원 Method of optimizing capture matrix

Also Published As

Publication number Publication date
JP4279802B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
Bassin et al. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors
Dong et al. Ammonia-oxidizing bacterial community and nitrification rates in constructed wetlands treating swine wastewater
Limpiyakorn et al. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo
JP4279802B2 (en) Water treatment management method
Liu et al. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method
Burger et al. Manganese removal and occurrence of manganese oxidizing bacteria in full-scale biofilters
Kim et al. Comparison of conventional and integrated fixed‐film activated sludge systems: Attached‐and suspended‐growth functions and quantitative polymerase chain reaction measurements
Li et al. Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs
Kurisu et al. Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors
Molina-Muñoz et al. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions
Sundberg et al. Overland flow systems for treatment of landfill leachates—potential nitrification and structure of the ammonia-oxidising bacterial community during a growing season
Cydzik-Kwiatkowska et al. Impact of operational parameters on bacterial community in a full-scale municipal wastewater treatment plant
Chen et al. Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater
Brannon et al. Comparison of N2O emissions and gene abundances between wastewater nitrogen removal systems
Weber et al. Microbiology in treatment wetlands
Dionisi et al. Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench‐scale wastewater treatment reactors operating at different solids retention times
Gatti et al. Enrichment of AOB and NOB population by applying a BABE reactor in an activated sludge pilot plant
Kim et al. Identification of bacterial communities in conventional wastewater treatment sludge to inform inoculation of the anammox process
Jaranowska et al. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge
Pogue et al. Impact of protozoan grazing on nitrification and the ammonia-and nitrite-oxidizing bacterial communities in activated sludge
EP2181966A1 (en) Simulation method, simulation apparatus, biological treatment method and biological treatment apparatus
Mehrani et al. The coexistence and competition of canonical and comammox nitrite oxidizing bacteria in a nitrifying activated sludge system–experimental observations and simulation studies
Hall et al. Microbial quantification in activated sludge: the hits and misses
JP4278701B1 (en) Simulation method, simulation apparatus, biological treatment method, and biological treatment apparatus
Rowan et al. A comparitive study of ammonia-oxidizing bacteria in lab-scale industrial wastewater treatment reactors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees