JP2006326503A - Organic compound decomposing composition and decomposing method - Google Patents

Organic compound decomposing composition and decomposing method Download PDF

Info

Publication number
JP2006326503A
JP2006326503A JP2005154304A JP2005154304A JP2006326503A JP 2006326503 A JP2006326503 A JP 2006326503A JP 2005154304 A JP2005154304 A JP 2005154304A JP 2005154304 A JP2005154304 A JP 2005154304A JP 2006326503 A JP2006326503 A JP 2006326503A
Authority
JP
Japan
Prior art keywords
soil
decomposing
organic compound
compound
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154304A
Other languages
Japanese (ja)
Other versions
JP4831292B2 (en
Inventor
Akihiko Hiraiwa
明彦 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2005154304A priority Critical patent/JP4831292B2/en
Publication of JP2006326503A publication Critical patent/JP2006326503A/en
Application granted granted Critical
Publication of JP4831292B2 publication Critical patent/JP4831292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition capable of inexpensively and efficiently decomposing organic compounds polluting soil into harmless substances, and to provide a decomposing method. <P>SOLUTION: The organic compounds in the soil containing iron compounds are efficiently decomposed by using the composition having an organic compound decomposition property which comprises reducing agents such as alkali metal sulfites and water. The composition containing the reducing agents of equal moles or more to that of the iron compounds under the condition existing the iron compounds of equal moles or more to that of the organic compounds in the soil. The iron compound is preferably a ferrous compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、揮発性有機化合物、特に土壌や地下水を汚染している揮発性有機化合物を安価かつ効果的に分解する組成物および分解方法に関するものである。   The present invention relates to a composition and a method for decomposing volatile organic compounds, particularly volatile organic compounds contaminating soil and groundwater, at low cost and effectively.

トリクロロエテンやテトラクロロエテンなどの揮発性有機化合物は、不燃性・難燃性および脱脂性に富んでいるという特長により、機械工業および半導体工業における洗浄剤、ドライクリーニング用溶剤等として広範囲に用いられてきた。しかしながら、近年、これらの化合物による土壌または地下水の汚染が確認されており、人体の健康を害する恐れから、土壌および地下水を汚染している揮発性有機化合物の除去・分解が強く望まれている。   Volatile organic compounds such as trichloroethene and tetrachloroethene are widely used as cleaning agents and solvents for dry cleaning in the machinery and semiconductor industries due to their nonflammability, flame retardancy, and degreasing properties. I came. However, in recent years, contamination of soil or groundwater by these compounds has been confirmed, and removal / decomposition of volatile organic compounds that contaminate soil and groundwater is strongly desired because of the risk of harming human health.

従来、揮発性有機化合物で汚染された土壌を浄化する方法としては、土壌ガス吸引法、地下水揚水法および土壌掘削除去法が提案されているが、これらの方法においては、回収した有機物をその場で分解することができなかったり、技術的な理由により、例えば地中深部及び建造物がある場所の土壌汚染に対しては適用が困難であったり、また、費用が非常に高価であるなどという問題があった。
上記の浄化方法により土壌等から分離された揮発性有機化合物を分解したり、あるいは土壌等中の有機化合物を直接分解することにより、土壌等を浄化する方法としては、燃焼分解法、熱的分解法、化学的分解法、触媒的分解法、微生物的分解法および電気的分解法などが知られている。
Conventionally, soil gas suction, groundwater pumping, and soil excavation and removal methods have been proposed as methods for purifying soil contaminated with volatile organic compounds. In these methods, collected organic matter is removed in situ. Can not be disassembled in the environment, for technical reasons, for example, it is difficult to apply to soil contamination in the deep underground and where the building is located, and the cost is very expensive There was a problem.
Methods for purifying soil by decomposing volatile organic compounds separated from soil, etc. by the above purification methods, or by directly decomposing organic compounds in soil, etc. include combustion decomposition methods, thermal decomposition methods Methods, chemical decomposition methods, catalytic decomposition methods, microbial decomposition methods, and electrolysis methods are known.

その中で、現地で使用し易く、確実に分解できる化学的分解法として、鉄粉などを用いた分解法が提案されている(特許文献1)。しかしながら、この方法においては、非水溶性の固体である鉄粉を水又は泥水といっしょに地中に拡散させるため、ボーリング時に直接注入したり、回転工具(リーマ)を駆動し、攪拌して、鉄粉を地層中に混入させる作業が必要であり、さらにボーリング等の専用機材が必須であって、該ボーリングと同時に分解剤注入作業を行わなければならないなど、作業上の制約が多く費用も高価になる。
また、鉄粉等と還元性物質を組み合わせることで、分解、浄化速度を上げる提案もなされている(特許文献2、特許文献3)。しかしながら、これらの方法においても、非水溶性の固体である鉄粉等の使用が必須であり、作業の制約や費用が高価になるという問題があることに変わりはない。
それに対し、水溶性の高い亜ジチオン酸ナトリウム水溶液を注入し、原位置にて汚染揮発性有機化合物を分解、浄化する方法も提案されている(非特許文献1)。しかしながら、この化合物は自己分解性があるなど、反応性に富み、固体状態では勿論のこと、薬剤液の状態でも、水分が蒸発し、濃度が高くなると自己分解して浄化薬剤の機能が発現できなくなる等、取り扱いが難しいという欠点があった。
特開2000−135483公報 特許第3490247号公報 特開2004−74141公報 特開平5−231086公報 特開平9−125859公報 特開2003−337534公報 第37回地盤工学研究発表会要旨集ページ2357−2358 (2002年7月)
Among them, a decomposition method using iron powder or the like has been proposed as a chemical decomposition method that is easy to use locally and can be reliably decomposed (Patent Document 1). However, in this method, in order to diffuse iron powder that is a water-insoluble solid into the ground together with water or mud water, it is directly injected during boring, or a rotary tool (reamer) is driven and stirred, Work to mix iron powder into the formation is necessary, and dedicated equipment such as boring is essential, and the work of injecting the decomposition agent at the same time as the boring requires many work restrictions and is expensive. become.
Moreover, the proposal which raises decomposition | disassembly and a purification | cleaning speed by combining iron powder etc. and a reducing substance is also made | formed (patent document 2, patent document 3). However, even in these methods, it is essential to use iron powder or the like that is a water-insoluble solid, and there is still a problem that work restrictions and costs are expensive.
On the other hand, a method of injecting a highly water-soluble sodium dithionite aqueous solution to decompose and purify contaminating volatile organic compounds in situ has also been proposed (Non-Patent Document 1). However, this compound has high reactivity such as self-degradability, and in the solid state as well as in the drug solution state, the water evaporates, and when the concentration is high, it can self-decompose and express the function of the purification drug. There was a drawback that it was difficult to handle.
JP 2000-135483 A Japanese Patent No. 3490247 JP 2004-74141 A JP-A-5-231086 Japanese Patent Laid-Open No. 9-1225859 JP 2003-337534 A 37th Geotechnical Research Presentation Summary Page 2357-2358 (July 2002)

本発明が解決しようとする課題は、揮発性有機化合物により汚染された土壌を浄化する場合において、水溶液でかつ自己分解性などがない安定な薬剤をその汚染が確認された土地に使用することにより、安価、かつ効率良く、確実に、施工、浄化することにある。
なお、本組成物は土壌中の地下水を浄化する場合も有効であり、本発明においては、土壌なる言葉に地下水も含めるものとする。
The problem to be solved by the present invention is that, when purifying soil contaminated with volatile organic compounds, by using a stable drug that is aqueous solution and does not have self-degradability, etc., on the land where the contamination is confirmed. It is cheap, efficient, and reliable and reliable.
In addition, this composition is effective also when purifying the groundwater in a soil, and groundwater is also included in the word soil in this invention.

本発明者らは、上記課題を解決するため鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、有機化合物に汚染された土壌中の有機化合物を分解する組成物および該組成物を用いた土壌中の有機化合物を分解する方法に関するものであり、以下の発明を含んでいる。
(a)還元剤および水を必須成分とする土壌中の有機化合物を分解する組成物。
(b)該還元剤が亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩である組成物。
(c)該組成物を用いて鉄化合物を含む土壌中の有機化合物を分解する方法。
(d)土壌に予め水溶性の鉄化合物を加えた後、該組成物を用いて土壌中の有機物を分解する方法。
(e)土壌中の有機化合物に対し、鉄化合物が等モル以上存在する条件下で、鉄化合物と等モル以上の該組成物を添加することにより有機化合物を分解する方法。
(f)土壌が有機化合物で汚染されていることを確認する工程、土壌に鉄化合物が含まれていることを確認する工程、該組成物を施工する工程を含んだ有機化合物の分解方法。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention relates to a composition for decomposing organic compounds in soil contaminated with organic compounds and a method for decomposing organic compounds in soil using the composition, and includes the following inventions: .
(A) A composition that decomposes an organic compound in soil containing a reducing agent and water as essential components.
(B) A composition in which the reducing agent is an alkali metal sulfite or an alkali metal hydrogen sulfite.
(C) A method for decomposing an organic compound in soil containing an iron compound using the composition.
(D) A method of decomposing organic matter in the soil using the composition after adding a water-soluble iron compound to the soil in advance.
(E) A method for decomposing an organic compound by adding an equimolar amount or more of the composition to an iron compound and an equimolar amount of the organic compound in the soil.
(F) A method for decomposing an organic compound, including a step of confirming that the soil is contaminated with an organic compound, a step of confirming that the soil contains an iron compound, and a step of applying the composition.

本発明によれば、有機化合物により汚染された土壌に対して、水溶液でかつ自己分解性などがなく、安定な薬剤を施工することで、汚染土壌を浄化する方法において従来問題点であった高価な施工費用を安価にしつつ、確実、効率的に汚染有機化合物を分解することができる。   According to the present invention, an expensive solution that has been a problem in the conventional method for purifying contaminated soil by applying a stable chemical that is aqueous solution, not self-degradable, etc., to soil contaminated with organic compounds. It is possible to reliably and efficiently decompose contaminating organic compounds while reducing the construction cost.

本発明において分解の対象となる有機化合物としては、クロロエテン(塩化ビニルモノマー)、1,1−ジクロロエテン、1,2−ジクロロエテン、トリクロロエテン、テトラクロロエテン、ジクロロメタン、四塩化炭素、1,2−ジクロロメタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,2,2−テトラクロロエタンおよびクロロベンゼン等のハロゲン化炭化水素、ならびにベンゼン、トルエンおよびキシレン等の芳香族炭化水素等が挙げられる。
上記ハロゲン化炭化水素または芳香族炭化水素は、過去に空調機の冷却媒体または塗料用溶剤等として地球上で大量に使用された結果、現在では土壌、地下水等を汚染する代表的な有機化合物であると言われている。
発ガン性、難分解性等の観点から本発明の対象となる有機溶剤としてはハロゲン化炭化水素が好ましい。
Examples of the organic compound to be decomposed in the present invention include chloroethene (vinyl chloride monomer), 1,1-dichloroethene, 1,2-dichloroethene, trichloroethene, tetrachloroethene, dichloromethane, carbon tetrachloride, 1,2 -Halogenated hydrocarbons such as dichloromethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane and chlorobenzene, and aromatic hydrocarbons such as benzene, toluene and xylene Etc.
The above-mentioned halogenated hydrocarbons or aromatic hydrocarbons are typical organic compounds that contaminate soil, groundwater, etc. as a result of being used in large quantities on earth as a cooling medium for air conditioners or paint solvents in the past. It is said that there is.
From the viewpoints of carcinogenicity, hardly decomposability and the like, the organic solvent which is the subject of the present invention is preferably halogenated hydrocarbon.

本発明において鉄化合物の存在は必須であるが、土壌中に含まれる鉄化合物であっても良いし、鉄化合物を予め土壌に加えても良いし、本組成物と同時に加えても良い。予め加える場合は、施工の容易さから水溶性の鉄化合物である必要がある。好ましい鉄化合物は、第一鉄化合物であり、具体的には塩化第一鉄、硫酸第一鉄、硫酸第一鉄アンモニウム、酸化第一鉄が挙げられる。その鉄化合物の量は分解の対象となる有機化合物に対し、等モル量以上の量が好ましく、さらに好ましくは有機化合物に対し5倍モル量以上の量である。   In the present invention, the presence of the iron compound is essential, but it may be an iron compound contained in the soil, or the iron compound may be added to the soil in advance, or may be added simultaneously with the present composition. When added in advance, it is necessary to use a water-soluble iron compound for ease of construction. Preferred iron compounds are ferrous compounds, and specific examples include ferrous chloride, ferrous sulfate, ferrous ammonium sulfate, and ferrous oxide. The amount of the iron compound is preferably an equimolar amount or more with respect to the organic compound to be decomposed, more preferably 5 times the molar amount or more with respect to the organic compound.

本発明における亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩としては、具体的には亜硫酸ナトリウム、亜硫酸水素ナトリウムまたはこれらのナトリウムをカリウムに置換した化合物を用いることができる。また、これらの化合物のうち、いくつかを混合して用いることもできる。その使用量は上記鉄化合物に対し、等モル量以上の量が必須で、好ましくは鉄化合物に対し5倍モル量以上の量である。   As the alkali metal sulfite or the hydrogen bisulfite metal salt in the present invention, specifically, sodium sulfite, sodium hydrogen sulfite, or a compound in which these sodium is substituted with potassium can be used. Moreover, some of these compounds can also be mixed and used. The amount used is an equimolar amount or more with respect to the iron compound, and preferably an amount of 5 times the molar amount or more with respect to the iron compound.

本発明の組成物は、上記亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩(以下、亜硫酸アルカリ金属塩類と呼ぶことがある。)と水を必須成分とするものであり、水の好ましい使用量は、亜硫酸アルカリ金属塩類と水の合計量を基準にして、亜硫酸アルカリ金属塩類が0.01〜10質量%となる量である。さらに好ましい水の使用量は、亜硫酸アルカリ金属塩類の割合が0.1〜5質量%となる量である。   The composition of the present invention comprises the above-mentioned alkali metal sulfite or alkali metal hydrogen sulfite (hereinafter sometimes referred to as alkali metal sulfite) and water as essential components. The amount of alkali metal sulfite is 0.01 to 10% by mass based on the total amount of alkali metal sulfite and water. A more preferable amount of water used is such that the proportion of the alkali metal sulfite is 0.1 to 5% by mass.

本発明の分解機構は、明らかではないが、トリクロロエテンの分解生成物として、炭酸ガスと塩素イオンのみが確認されたことから、従来のトリクロロエテンの還元的な分解反応とは異なるものと推測される。従来のトリクロロエテンの還元的な分解においては、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンが分解生成物として検出されるが、本発明においては、係る生成物は観察されない。   Although the decomposition mechanism of the present invention is not clear, only carbon dioxide and chlorine ions were confirmed as the decomposition products of trichloroethene, and it is assumed that this is different from the conventional reductive decomposition reaction of trichloroethene. The In the conventional reductive decomposition of trichloroethene, cis-1,2-dichloroethene, chloroethene and ethylene are detected as decomposition products, but such products are not observed in the present invention.

本発明において、本発明の分解性組成物の使用方法に関してはいかなる制限もないが、土壌に散布し、浸透させる方法が好ましく採用される。具体的には、有機化合物で汚染された土壌であることを確認する工程、および前記の有機化合物分解性を有する組成物を施工する工程が採用される。
有機化合物で汚染された土壌であることを確認する工程の具体例としては、土壌汚染対策法施行規則に基き、環境省令告示第十六号に定める土壌ガス調査に係る採取及び測定を行う。その他、特許文献4乃至6に記載の方法によることも可能である。
調査する地点についても、法規則に基き、10m格子の中心点や30m格子の中心点であったり、当該する土地全体の広さ、汚染の広がりの可能性なども考慮して決められる。 汚染土壌が集中して存在するおそれが多いと認められる部分については、特許文献6に記載してあるように1m格子にしたり、揮発性有機化合物の取り扱いの履歴、移動不可能な建築物・大型設備の存在等も勘案し、実情に応じて特定の地点を決めることもできる。
In the present invention, there is no limitation on the method of using the degradable composition of the present invention, but a method of spreading and infiltrating the soil is preferably employed. Specifically, a step of confirming that the soil is contaminated with an organic compound and a step of applying the composition having the organic compound decomposability are employed.
As a specific example of the process for confirming soil contaminated with organic compounds, sampling and measurement related to soil gas surveys stipulated in Ordinance No. 16 of the Ordinance of the Ministry of the Environment are conducted based on the Enforcement Rules of the Soil Contamination Countermeasures Law. In addition, the methods described in Patent Documents 4 to 6 are also possible.
The points to be surveyed are also determined based on the laws and regulations, taking into consideration the center point of the 10m grid and the center point of the 30m grid, the size of the entire land concerned, and the possibility of contamination spreading. As for the part where it is recognized that there is a high possibility that contaminated soil is concentrated, a 1m grid as described in Patent Document 6, a history of handling volatile organic compounds, immovable buildings and large-sized buildings Considering the existence of equipment, etc., it is possible to determine a specific point according to the actual situation.

土壌に鉄化合物が含まれることを確認する工程としては、土壌を一定量採取し、通常の無機分析によりおこなうことができる。一般に土壌には鉄化合物が約0.1重量%以上含まれているが、0.1重量%未満である場合には、水溶性の鉄化合物を施工することが好ましい。   As a step of confirming that the iron compound is contained in the soil, a certain amount of soil can be collected and subjected to a normal inorganic analysis. In general, the soil contains about 0.1% by weight or more of an iron compound, but when it is less than 0.1% by weight, it is preferable to apply a water-soluble iron compound.

有機物分解性を有する組成物を施工する工程の具体例としては、前記の調査により汚染を検出した地点を選定し、高濃度で検出された地点を重点的に施工する。必要により汚染された地点の周辺や低濃度の地点も施工する。地下水の流れ、汚染が拡散した方向が判っている場合には、その上流側に施工することが効果的である。   As a specific example of the process of applying a composition having organic substance decomposability, a spot where contamination is detected by the above-mentioned investigation is selected, and a spot detected at a high concentration is mainly applied. If necessary, work around contaminated points and low-concentration points. If the flow of groundwater or the direction in which the contamination has spread is known, it is effective to install it upstream.

本発明の分解性組成物の施工は、土壌に散布し浸透させてもよく、また土壌に注入管を挿入し、該注入管を通して分解性組成物を注入する方法も採用できる。より具体的には、調査に用いた穴や井戸で、特に高濃度の汚染を観測した調査孔に分解性組成物を直接注入したり、それらの調査孔を含む周辺に散布、浸透する方法が採用される。それらの調査孔周辺の汲み上げた地下水に分解性組成物を添加したり、このように処理した水を地下水に戻し循環してもよい。土壌ガス吸引、揚水曝気、エアースパージング等により直接水などとともに回収したり、一旦活性炭などに吸着した有機化合物を分解性組成物で処理、分解してもよい。掘り起こした汚染土壌に分解性組成物を混合することにより、有機化合物を分解することも可能である。   The construction of the decomposable composition of the present invention may be applied by spreading and infiltrating the soil, or a method of inserting an injecting tube into the soil and injecting the decomposable composition through the injecting tube can be employed. More specifically, there is a method in which the decomposable composition is directly injected into the holes or wells used in the survey, especially in the hole where the high concentration of contamination is observed, or is sprayed and permeated around the hole including those holes. Adopted. A degradable composition may be added to the groundwater pumped around these survey holes, or the water treated in this way may be returned to the groundwater and circulated. It may be recovered together with water directly by soil gas suction, pumped water aeration, air sparging, or the like, or an organic compound once adsorbed on activated carbon or the like may be treated with a decomposable composition and decomposed. It is also possible to decompose organic compounds by mixing the degradable composition into the excavated contaminated soil.

本発明の分解性組成物は、前記の処理で有機化合物の分解が不十分であった場合、または一旦該処理により有機物が分解した後に再汚染された場合には、その土壌に対して前記と同様の方法により再調査、再施工することが可能である。
以下に、実施例および比較例を挙げて本発明をさら具体的に説明する。
○実施例1
When the organic compound is not sufficiently decomposed by the above-described treatment, or when the organic matter has been re-contaminated after being decomposed by the treatment, the degradable composition of the present invention can be applied to the soil. Re-investigation and re-construction are possible by the same method.
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
○ Example 1

40mL容のバイアル瓶に0.3ミリモルに相当する塩化第一鉄0.04gと1.5ミリモルに相当する亜硫酸水素ナトリウム0.16gを採り、そこに蒸留水20gを加え、混合、溶解し、ふっ素樹脂によりコーティングされたシリコーンゴム製セプタム及びアルミキャップにより密栓して本発明の有機物分解性組成物(以下、薬剤と呼ぶ)を調整した。その中にマイクロシリンジを用い、0.06ミリモルに相当する5μLのトリクロロエテンを注入し、25℃恒温槽中で、3日間振とう後の気相部におけるトリクロロエテンの濃度をヘッドスペースガスクロマトグラフィー法にて分析し、薬剤を用いない場合のブランクの分析値から下式の如く、分解率と定義し、算出したところ、0.7となった。
なお、ガスクロマトグラフィーでは、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンは検出されなかった。また、別途の分析方法により、分解ガス中の炭酸ガスの生成とバイアル瓶液相中の塩素イオンが増加したことを確認した。
分解率=((ブランク分析値)−(試験後の分析値))/(ブランク分析値)
○実施例2〜8
In a 40 mL vial, take 0.04 g of ferrous chloride corresponding to 0.3 mmol and 0.16 g of sodium bisulfite corresponding to 1.5 mmol, add 20 g of distilled water, mix and dissolve, The organic matter-decomposable composition (hereinafter referred to as a drug) of the present invention was prepared by sealing with a silicone rubber septum coated with a fluororesin and an aluminum cap. A microsyringe was used to inject 5 μL of trichloroethene corresponding to 0.06 mmol, and the concentration of trichloroethene in the gas phase after shaking for 3 days in a 25 ° C. constant temperature bath was analyzed by headspace gas chromatography. When the analysis was performed by the method, the decomposition rate was defined and calculated from the blank analysis value when no drug was used, as in the following formula, and the result was 0.7.
In gas chromatography, cis-1,2-dichloroethene, chloroethene and ethylene were not detected. In addition, it was confirmed by the separate analysis method that the generation of carbon dioxide in the cracked gas and the increase of chlorine ions in the vial liquid phase were confirmed.
Decomposition rate = ((blank analysis value) − (analysis value after test)) / (blank analysis value)
○ Examples 2-8

表1記載の薬剤を用いた以外は実施例1同様の操作を行った。結果を表1に示す。
○比較例1〜6
The same operation as in Example 1 was performed except that the drugs listed in Table 1 were used. The results are shown in Table 1.
○ Comparative Examples 1-6

表1に記載した条件で、トリクロロエテンの分解を行い、その結果を分解率として表1に示す。
○実施例9
Trichloroethene was decomposed under the conditions described in Table 1, and the results are shown in Table 1 as the decomposition rate.
Example 9

実施例1の塩化第一鉄に変え、マサ土10gを入れ、1.9ミリモルに相当する亜硫酸水素ナトリウム0.2gを採り、そこに蒸留水20gを加え、混合、溶解し、ふっ素樹脂によりコーティングされたシリコーンゴム製セプタム及びアルミキャップにより密栓した。その中にマイクロシリンジを用い、0.06ミリモルに相当する5μLのトリクロロエテンを注入し、25℃恒温槽中で、3日間振とう後の気相部におけるトリクロロエテンの濃度をヘッドスペースガスクロマトグラフィー法にて分析し、薬剤を用いない場合のブランクの分析値から下式の如く、分解率と定義し、算出したところ、0.8となった。
なお、ガスクロマトグラフィーでは、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンは検出されなかった。また、別途の分析方法により、分解ガス中の炭酸ガスの生成とバイアル瓶液相中の塩素イオンが増加したことを確認した。
また、別途、試験に用いたマサ土中の第一鉄含有量を測定したところ、0.13重量%で、0.2ミリモルの第一鉄化合物に相当し、系内に総量0.2ミリモルの第一鉄化合物が存在することになる。
分解率=((ブランク分析値)−(試験後の分析値))/(ブランク分析値)
*1.マサ土:中部地方の山地より、採取した花崗岩等の風化した土礫類。
○実施例10〜14
In place of ferrous chloride of Example 1, 10 g of masa soil was added, 0.2 g of sodium bisulfite corresponding to 1.9 mmol was taken, 20 g of distilled water was added thereto, mixed, dissolved, and coated with a fluorine resin. Sealed with a silicone rubber septum and an aluminum cap. A microsyringe was used to inject 5 μL of trichloroethene corresponding to 0.06 mmol, and the concentration of trichloroethene in the gas phase after shaking for 3 days in a 25 ° C. constant temperature bath was analyzed by headspace gas chromatography. According to the analysis by the method, the decomposition rate was defined from the analysis value of the blank when no chemical was used, as shown in the following formula, and calculated to be 0.8.
In gas chromatography, cis-1,2-dichloroethene, chloroethene and ethylene were not detected. In addition, it was confirmed by the separate analysis method that the generation of carbon dioxide in the cracked gas and the increase of chlorine ions in the vial liquid phase were confirmed.
Separately, the ferrous content in the Masa soil used in the test was measured and found to be 0.13% by weight, corresponding to 0.2 mmol of ferrous compound, and a total amount of 0.2 mmol in the system. Of ferrous compounds.
Decomposition rate = ((blank analysis value) − (analysis value after test)) / (blank analysis value)
* 1. Masa soil: Weathered debris such as granite collected from the Chubu region.
○ Examples 10-14

表2記載の薬剤、土壌を用いた以外は実施例9同様の操作を行った。結果を表2に示す。
*2.黒ボク土:中部地方の丘陵地で、採取したもの。第一鉄含有量を測定したところ、0.65重量%であった。
○比較例7〜12
The same operation as in Example 9 was performed except that the drugs and soil described in Table 2 were used. The results are shown in Table 2.
* 2. Kuroboku soil: collected from the hilly area of the Chubu region. When the ferrous content was measured, it was 0.65% by weight.
○ Comparative Examples 7-12

表2に記載した条件で、トリクロロエテンの分解を行い、その結果を分解率として表2に示す。
○実施例15
Trichloroethene was decomposed under the conditions described in Table 2, and the results are shown in Table 2 as the decomposition rate.
Example 15

直径26mm、高さ300mmのガラス製カラムにマサ土150g(第一鉄成分に換算して3.5ミリモルに相当する)を詰め、そこに0.06ミリモルに相当するトリクロロエテン7.5mgを水20gへ溶かしたものを加え、汚染が調査により検出された地点を想定した模擬汚染土壌層を調整した。そこに亜硫酸水素ナトリウムを蒸留水に溶かした5重量%の水溶液80g(亜硫酸水素ナトリウム38ミリモル相当)を0.48g/分の速度で滴下、薬剤を浸透させた。薬剤滴下後の流出液中のトリクロロエテンも加え、系内で検出したトリクロロエテンの総量は1.5mgであった。また、この試験のブランクとして、薬剤を添加しない蒸留水のみを同量滴下した後の系内で検出したトリクロロエテンの総量は4.9mgとなり、実施例1同様分解率を算出し、0.7となったことを確認した。
○実施例16
A glass column having a diameter of 26 mm and a height of 300 mm is filled with 150 g of masa soil (corresponding to 3.5 mmol in terms of ferrous component), and 7.5 mg of trichloroethene corresponding to 0.06 mmol is added to water. What was melt | dissolved in 20g was added, and the simulation contaminated soil layer which assumed the point where pollution was detected by investigation was adjusted. Thereto, 80 g of a 5 wt% aqueous solution of sodium bisulfite dissolved in distilled water (corresponding to 38 mmol of sodium bisulfite) was added dropwise at a rate of 0.48 g / min, and the drug was infiltrated. Trichloroethene in the effluent after dropping the drug was also added, and the total amount of trichloroethene detected in the system was 1.5 mg. Further, as a blank for this test, the total amount of trichloroethene detected in the system after dropping only the same amount of distilled water to which no drug was added was 4.9 mg, the decomposition rate was calculated as in Example 1, and 0.7 It was confirmed that
Example 16

直径40mm、高さ300mmのガラス製カラムにマサ土450g(第一鉄成分に換算して10.5ミリモルに相当する)を詰め、そこにトリクロロエテン7.5mg(0.06ミリモル)およびテトラクロロエテン3.2mg(0.02ミリモル)を水20gへ溶かしたものを加え、汚染が調査により、検出された地点を想定した模擬汚染土壌層を調整した。そこに亜硫酸ナトリウム(38ミリモル相当)と亜硫酸水素ナトリウム(15.5ミリモル相当)を重量比15対5で蒸留水に溶かした3重量%の水溶液215gを0.41g/分の速度で滴下して薬剤を浸透させた。薬剤滴下後の流出液中のトリクロロエテン又はテトラクロロエテンも各々加え、系内で検出した各々の総量は1.7mgと1.2mgであり、薬剤を添加しない蒸留水のみを同量滴下した後のトリクロロエテン又はテトラクロロエテンのブランクの総量は各々5.8mg又は2.3mgであり、各々の分解率は0.7、0.5となった。   A glass column having a diameter of 40 mm and a height of 300 mm is filled with 450 g of masa soil (corresponding to 10.5 mmol in terms of ferrous component), and 7.5 mg (0.06 mmol) of trichloroethene and tetrachloro are added thereto. A solution in which 3.2 mg (0.02 mmol) of ethene was dissolved in 20 g of water was added, and a simulated contaminated soil layer assuming a point where contamination was detected was adjusted. Thereto was added dropwise 215 g of a 3% by weight aqueous solution of sodium sulfite (equivalent to 38 mmol) and sodium hydrogen sulfite (equivalent to 15.5 mmol) dissolved in distilled water at a weight ratio of 15: 5 at a rate of 0.41 g / min. The drug was infiltrated. Trichloroethene or tetrachloroethene in the effluent after dropping the drug was also added, and the total amount detected in the system was 1.7 mg and 1.2 mg, respectively, and only the same amount of distilled water without adding the drug was dropped. The total amount of the trichloroethene or tetrachloroethene blank was 5.8 mg or 2.3 mg, respectively, and the respective degradation rates were 0.7 and 0.5.

Figure 2006326503
Figure 2006326503

Figure 2006326503
Figure 2006326503

本発明によれば、安価に、確実に、揮発性有機化合物を分解することが可能となり、それらに汚染された土壌を経済的に、効率良く、施工、浄化することができる。

According to the present invention, volatile organic compounds can be decomposed reliably and inexpensively, and soil contaminated with them can be economically and efficiently constructed and purified.

Claims (10)

還元剤および水を必須成分とする土壌中の有機化合物を分解する組成物。 The composition which decomposes | disassembles the organic compound in the soil which has a reducing agent and water as an essential component. 還元剤が亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩である請求項1記載の組成物。 The composition according to claim 1, wherein the reducing agent is an alkali metal sulfite or an alkali metal hydrogen sulfite. 請求項1乃至2記載の組成物を用いて土壌中の有機物を分解することを特徴とする有機化合物の分解方法。 A method for decomposing an organic compound, comprising decomposing an organic substance in soil using the composition according to claim 1. 土壌が鉄化合物を含むことを特徴とする請求項3記載の有機化合物の分解方法。 The method for decomposing an organic compound according to claim 3, wherein the soil contains an iron compound. 土壌に予め水溶性の鉄化合物を加えた後、請求項1乃至2記載の組成物を用いて土壌中の有機物を分解することを特徴とする有機化合物の分解方法。 A method for decomposing an organic compound, comprising: adding a water-soluble iron compound to soil in advance; and decomposing organic matter in the soil using the composition according to claim 1. 土壌中の有機化合物に対し、鉄化合物が等モル以上存在する条件下で、鉄化合物と等モル以上の還元剤を含む請求項1乃至2記載の組成物を施工することを特徴とする請求項4乃至5記載の有機化合物の分解方法。 3. The composition according to claim 1 or 2, wherein the composition contains at least an equimolar amount of the iron compound and at least an equimolar amount of the reducing agent with respect to the organic compound in the soil. 4. A method for decomposing organic compounds according to 4-5. 鉄化合物が第一鉄化合物である請求項4乃至6記載の有機化合物の分解方法。 The method for decomposing an organic compound according to any one of claims 4 to 6, wherein the iron compound is a ferrous compound. 有機化合物がハロゲン化炭化水素化合物である請求項3乃至7記載の有機化合物の分解方法。 8. The method for decomposing an organic compound according to claim 3, wherein the organic compound is a halogenated hydrocarbon compound. 土壌が有機化合物で汚染されていることを確認する工程、請求項1乃至2記載の組成物を施工する工程を含むことを特徴とする、請求項3記載の有機化合物の分解方法。 The method for decomposing an organic compound according to claim 3, comprising a step of confirming that the soil is contaminated with an organic compound, and a step of applying the composition according to claim 1 or 2. 土壌が有機化合物で汚染されていることを確認する工程、土壌に鉄化合物が含まれていることを確認する工程、請求項1乃至2記載の組成物を施工する工程を含むことを特徴とする、請求項4乃至8記載の有機化合物の分解方法。


It includes a step of confirming that the soil is contaminated with an organic compound, a step of confirming that the soil contains an iron compound, and a step of applying the composition according to claim 1. The method for decomposing an organic compound according to any one of claims 4 to 8.


JP2005154304A 2005-05-26 2005-05-26 Composition and method for decomposing organic compounds Active JP4831292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154304A JP4831292B2 (en) 2005-05-26 2005-05-26 Composition and method for decomposing organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154304A JP4831292B2 (en) 2005-05-26 2005-05-26 Composition and method for decomposing organic compounds

Publications (2)

Publication Number Publication Date
JP2006326503A true JP2006326503A (en) 2006-12-07
JP4831292B2 JP4831292B2 (en) 2011-12-07

Family

ID=37548788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154304A Active JP4831292B2 (en) 2005-05-26 2005-05-26 Composition and method for decomposing organic compounds

Country Status (1)

Country Link
JP (1) JP4831292B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135483A (en) * 1998-11-02 2000-05-16 Dowa Mining Co Ltd Contaminated soil purification
JP2004074141A (en) * 2001-12-20 2004-03-11 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material
JP2004082115A (en) * 2002-08-07 2004-03-18 Katsuhisa Honda Soil treating agent and soil treatment method
JP2004249227A (en) * 2003-02-20 2004-09-09 Ishihara Sangyo Kaisha Ltd Decomposing agent for organic compound and environmental decontaminating method using it
JP2004283650A (en) * 2003-03-19 2004-10-14 Civil Chemical Engineering Co Ltd Soil or ground water purifying method and method for treating contaminated water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135483A (en) * 1998-11-02 2000-05-16 Dowa Mining Co Ltd Contaminated soil purification
JP2004074141A (en) * 2001-12-20 2004-03-11 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material
JP2004082115A (en) * 2002-08-07 2004-03-18 Katsuhisa Honda Soil treating agent and soil treatment method
JP2004249227A (en) * 2003-02-20 2004-09-09 Ishihara Sangyo Kaisha Ltd Decomposing agent for organic compound and environmental decontaminating method using it
JP2004283650A (en) * 2003-03-19 2004-10-14 Civil Chemical Engineering Co Ltd Soil or ground water purifying method and method for treating contaminated water

Also Published As

Publication number Publication date
JP4831292B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
BRPI0617476A2 (en) Oxidation method of a contaminant present in an environment, and, composition
AU2016204532A1 (en) Organic acid activation of persulfates
JP4069174B2 (en) Detoxification method of soil
EP2828209B1 (en) Environmental remediation process
JP2007209824A (en) Method for cleaning contaminated soil or contaminated groundwater
TWI566806B (en) A composition for decomposing a chemical substance and a method for decomposing a chemical substance by using the composition
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JPH11235577A (en) Detoxicating treatment of soil
JP4831292B2 (en) Composition and method for decomposing organic compounds
KR100228993B1 (en) Method for the remediation of polluted soils
JP4803346B2 (en) Composition having organic compound decomposability and decomposition method
JP4569427B2 (en) Method for decomposing organic compounds
JP5109036B2 (en) Detoxification method of soil
JP5888877B2 (en) Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same
JP4596524B2 (en) Contaminated soil purification method
KR20020055488A (en) Improvements on disposing(treating) soils
US20210016121A1 (en) In situ treatment systems for remediation of polychlorinated biphenyl contaminated building materials
JP2002316050A (en) Iron powder for decomposing organic chlorine compound and method for purifying soil, water and gas stained with the same compound
JP2005262119A (en) Method for purifying contaminated soil or contaminated water
JP2004160458A (en) Method of purifying ground water contaminated with chlorinated organic compound
Hoag et al. Technology fusion for MGP remediation: surfactant-enhanced in situ chemical oxidation, pressure-pulse injections and advanced site investigation
JP2001062441A (en) Cleaning treatment of soil or the like
JP2002361228A (en) Method for treating organic chlorine compound in soil and/or underground water
JP2003326243A (en) Soil decontamination method
CN104801539A (en) Method for remedying halohydrocarbon contaminated site through reductive dechlorination enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4831292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250