JP2006325766A - Biological signal measuring instrument - Google Patents

Biological signal measuring instrument Download PDF

Info

Publication number
JP2006325766A
JP2006325766A JP2005151627A JP2005151627A JP2006325766A JP 2006325766 A JP2006325766 A JP 2006325766A JP 2005151627 A JP2005151627 A JP 2005151627A JP 2005151627 A JP2005151627 A JP 2005151627A JP 2006325766 A JP2006325766 A JP 2006325766A
Authority
JP
Japan
Prior art keywords
light receiving
biological signal
receiving unit
blood vessel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151627A
Other languages
Japanese (ja)
Inventor
Momoe Kawajiri
百恵 川尻
Yuji Ichikawa
雄二 市川
Katsuya Nakagawa
克哉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005151627A priority Critical patent/JP2006325766A/en
Publication of JP2006325766A publication Critical patent/JP2006325766A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological signal measuring instrument for suppressing the light reception of light not transmitted through the vessel of a measurement object detected in a light receiving part low and realizing highly accurate biological signal measurement. <P>SOLUTION: One light receiving part 105 not measured yet among the plurality of light receiving parts is selected S801, the light receiving part 105 is made to function and measurement is performed S802. AC components and DC components are extracted from a measured value S803 and stored in a memory 107 S804. When the measurement of an AC-DC ratio is ended in all of the plurality of light receiving parts 105 in S805 (YES in S805), all the AC-DC ratios stored in the memory part in S804 are compared S805, and the light receiving part of the best value is selected S806. Since it is suitable for the measurement of an oxygen saturation when the AC (amplitude of signal) components are larger and the DC (DC of signal) components are smaller, the light receiving part where the value of AC-DC ratio is largest may be selected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、血管より光学的に脈波や血中酸素飽和度などの生体信号を測定する生体信号測定装置に関する。   The present invention relates to a biological signal measuring device that optically measures a biological signal such as a pulse wave and blood oxygen saturation from a blood vessel.

在宅医療や予防医療のために、血中酸素飽和度や脈拍などの生体信号を日常生活の中で測定できる装置として、特に測定のための装着の簡易さから、手指の血管(動脈)で生体信号を測定する生体信号測定装置が提案されている。   For home medical care and preventive medical care, it is a device that can measure biological signals such as blood oxygen saturation and pulse in daily life. A biological signal measuring apparatus for measuring a signal has been proposed.

ここで、血中酸素飽和度(SpO2とも呼ばれる)とは、血液中に含まれている酸素の量を表す指標であり、具体的には血液中に含まれるヘモグロビンのうち酸素と結合しているものの割合で表される。酸素飽和度の測定手法としては、例えば、血管に対して二つの異なる波長の赤色光(λ1)、赤外光(λ2)を当てて脈波を測定し、得られた値に基づいて算出することが出来る。なお、本手法の詳細は、後掲の非特許文献1に記載されている通りである。   Here, the blood oxygen saturation (also referred to as SpO2) is an index representing the amount of oxygen contained in the blood, and specifically, is bound to oxygen among the hemoglobin contained in the blood. Expressed as a percentage of things. As a method for measuring oxygen saturation, for example, pulse waves are measured by applying red light (λ1) and infrared light (λ2) of two different wavelengths to a blood vessel, and the oxygen saturation is calculated based on the obtained value. I can do it. The details of this method are as described in Non-Patent Document 1 described later.

後掲の特許文献1には、測定対象となる血管を通過して受光した受光量を高めて脈波を正確に得るために、それぞれ発光領域が異なる複数の発光部を備えて、測定対象となる血管に対して光を照射して最大に脈波のAC成分が得られる発光部の組み合わせを選択することで、最適な脈波が測定できる技術が開示されている。また、複数持つ発光部をすべて照射することで、発光範囲を拡大して血管を通過する光の量を増加させる技術が開示されている。
山越 憲一、戸川 達男 共著、日本エム・イー学会編「生体用センサと計測装置」コロナ社、2002年10月25日、p.206−209 特開平11−318840号公報
Patent Document 1 described later includes a plurality of light emitting units each having a different light emitting region in order to increase the amount of received light that has passed through a blood vessel to be measured and obtain a pulse wave accurately. A technique is disclosed in which an optimum pulse wave can be measured by selecting a combination of light emitting units that irradiate light to the blood vessel to obtain the maximum AC component of the pulse wave. In addition, a technique is disclosed that increases the amount of light passing through a blood vessel by expanding the light emission range by irradiating all the light emitting units having a plurality.
Co-authored by Kenichi Yamakoshi and Tatsuo Togawa, edited by the Japanese Society of EM, “Biological Sensors and Measuring Devices”, Corona, October 25, 2002, p. 206-209 Japanese Patent Laid-Open No. 11-318840

特許文献1は、発光領域が異なる発光部を複数備え、受光部で得られた波形のAC成分(振幅)が最大になるような発光部の組み合わせを選択することで、正確な測定値を得られるようにしているが、受光部に関する解決策は開示していない。通常、受光部の太さ方向のサイズは動脈の太さに比べて大きすぎ、ノイズの原因となる余分な外乱光を受光してしまうと言う問題がある。   In Patent Document 1, an accurate measurement value is obtained by selecting a combination of light emitting units having a plurality of light emitting units having different light emitting areas and maximizing the AC component (amplitude) of the waveform obtained by the light receiving unit. However, it does not disclose a solution regarding the light receiving unit. Usually, the size of the light receiving portion in the thickness direction is too large compared to the thickness of the artery, and there is a problem that extra disturbing light that causes noise is received.

それゆえに、本発明の目的は、受光部にて検出される測定対象の血管を透過しない光の受光を低く抑えて精度の高い生体信号測定を実現する生体信号測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a biological signal measuring device that realizes highly accurate biological signal measurement by suppressing light reception of light that does not pass through a blood vessel to be measured detected by a light receiving unit. To do.

上記課題を解決するために、本発明の第1の局面に係る生体信号測定装置は、発光部と受光部からなる検出部を備え、発光部と受光部からなる検出手段を備え、受光手段の受光検出領域の測定対象である血管の太さ方向のサイズを、1mm以上かつ2mm以下とした。これにより、受光部にて受光する測定対象の血管を通過しない光を低減することが出来、測定精度を向上することが出来る。   In order to solve the above problems, a biological signal measuring apparatus according to a first aspect of the present invention includes a detection unit including a light emitting unit and a light receiving unit, and includes a detection unit including a light emitting unit and a light receiving unit. The size in the thickness direction of the blood vessel that is the measurement target of the light reception detection region was set to 1 mm or more and 2 mm or less. Thereby, the light which does not pass through the blood vessel of the measurement object received by the light receiving unit can be reduced, and the measurement accuracy can be improved.

本発明の第2の局面に係る生体信号測定装置は、さらに、血管の走行方向に対して垂直方向に前記受光部を複数個備え、前記複数個の受光部にて得られた信号から少なくとも1つを選択して生体信号を測定する生体信号選択手段を有する。これにより、装着のずれが発生した場合でも正しく受光できた受光部を選択的に利用することで、日常生活によるずれによる測定精度の悪化をより回避し、より精度の高い測定値を得ることができる。   The biological signal measurement device according to the second aspect of the present invention further includes a plurality of the light receiving units in a direction perpendicular to the traveling direction of the blood vessel, and at least one of the signals obtained by the plurality of light receiving units. There is a biological signal selection means for selecting one of them and measuring the biological signal. This makes it possible to avoid the deterioration of measurement accuracy due to deviation due to daily life and to obtain higher-accuracy measurement values by selectively using the light-receiving unit that has received light correctly even when wearing deviation occurs. it can.

さらに、生体信号選択手段は、受光部にて得られた信号の振幅にもとづいて受光部を選択する。また、複数の受光部は2次元的に分布するように配置する。これにより、より確実に精度の高い測定を行うことが可能となる。   Furthermore, the biological signal selection unit selects the light receiving unit based on the amplitude of the signal obtained by the light receiving unit. The plurality of light receiving units are arranged so as to be distributed two-dimensionally. Thereby, it is possible to perform measurement with higher accuracy more reliably.

さらに、複数の受光部は測定対象の血管の走行方向に対して平行方向および垂直方向の格子状に配置され、さらに、測定対象の血管の走行方向に対して垂直方向の列をそれぞれずらせながら配列する。これにより、正しく受光できる受光部が存在する確率が上がり、より正確な測定が出来るようになる。   Further, the plurality of light receiving units are arranged in a lattice shape parallel and perpendicular to the traveling direction of the blood vessel to be measured, and further arranged while shifting the columns in the vertical direction with respect to the traveling direction of the blood vessel to be measured. To do. This increases the probability that there is a light receiving unit that can receive light correctly, and enables more accurate measurement.

さらに、複数の受光部は測定対象の血管の走行方向に対して離れた場所で複数箇所に密集するように配置する。これにより、測定対象である血管が蛇行していた場合でも正確な測定を行うことが出来る。   Further, the plurality of light receiving units are arranged so as to be densely arranged at a plurality of locations at locations away from the traveling direction of the blood vessel to be measured. Thereby, even when the blood vessel to be measured is meandering, accurate measurement can be performed.

本発明の第3の局面に係る生体信号測定装置は、発光部と受光部からなる検出手段と、検出手段からの出力に基づき生体信号の測定を行う測定処理手段とを備え、受光部は測定対象の血管の走行方向に垂直な方向のサイズが血管の太さ方向の径に対して十分小さい受光部を測定対象の血管の走行方向に対して垂直方向に複数配列してなり、測定処理手段は複数の受光部より有効な領域にある受光部を選択し選択された受光部からの信号により測定処理を行う。これにより、日常生活によるずれによる測定精度の悪化をより回避することが可能となる。   A biological signal measuring apparatus according to a third aspect of the present invention includes a detection unit including a light emitting unit and a light receiving unit, and a measurement processing unit that measures a biological signal based on an output from the detection unit. A plurality of light-receiving portions whose size in the direction perpendicular to the running direction of the target blood vessel is sufficiently small with respect to the diameter in the thickness direction of the blood vessel, arranged in a direction perpendicular to the running direction of the blood vessel to be measured; Selects a light-receiving unit in an effective area from a plurality of light-receiving units, and performs measurement processing according to a signal from the selected light-receiving unit. Thereby, it becomes possible to avoid the deterioration of the measurement accuracy due to the deviation due to daily life.

さらに、特に手指に装着される指輪型とすると、日常生活を妨げずに生体信号の常時測定することが可能となる。   Furthermore, in particular, when the ring type is attached to the fingers, it is possible to always measure the biological signal without disturbing daily life.

本発明の第1の局面によると、測定の阻害要因となる外乱光による影響を低減して正確な生体信号の測定が可能となる。   According to the first aspect of the present invention, it is possible to accurately measure a biological signal by reducing the influence of disturbance light that becomes a measurement inhibiting factor.

本発明の第2の局面によると、複数の受光部を備えることにより、正確に生体信号の測定が行える生体信号測定装置の装着状態の許容範囲を広げることができる。また、生体信号測定装置の体動などによる位置ずれを許容することが可能となる。   According to the 2nd aspect of this invention, the tolerance | permissible_range of the mounting state of the biosignal measuring apparatus which can measure a biosignal correctly can be expanded by providing a some light-receiving part. In addition, it is possible to allow positional deviation due to body movement of the biological signal measuring device.

本発明の第3の局面によると、測定対象となる血管径より十分小さい受光部を複数備え、その一部を選択的に使用することにより、正確に生体信号の測定が行える生体信号測定装置の装着状態の許容範囲を広げることができ、生体信号測定装置の体動などによる位置ずれを許容することが可能となる。さらに、血管の太さの個人差に影響を受けずに適切な測定が可能となる。また、個人差に対応可能となることで、測定の阻害要因となる外乱光による影響を低減してより正確な生体信号の測定が可能となる。   According to the third aspect of the present invention, there is provided a biological signal measuring apparatus that includes a plurality of light receiving units that are sufficiently smaller than a blood vessel diameter to be measured, and that can selectively measure a biological signal by selectively using a part thereof. The allowable range of the wearing state can be widened, and it is possible to allow a positional shift due to body movement of the biological signal measuring device. Furthermore, appropriate measurement can be performed without being affected by individual differences in the thickness of blood vessels. In addition, since it is possible to cope with individual differences, it is possible to reduce the influence of disturbance light, which becomes a measurement inhibiting factor, and to measure biological signals more accurately.

(第1の実施の形態)
以下、図面を参照しつつ本発明の具体的な実施の形態について説明する。なお、以下の説明に用いる図面は、同一の部品または同一の機能のものについては同一の符号を付してある。したがって、それらについての詳細な説明は繰り返さない。
(First embodiment)
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. In the drawings used in the following description, the same parts or the same functions are denoted by the same reference numerals. Therefore, detailed description thereof will not be repeated.

以下に例示する本発明の第1の実施の形態では、発光部より測定対象の血管に光を照射し、受光部にて得られる信号により生体信号を測定する生体信号測定装置として、特に指に装着し、指の動脈より脈波や酸素飽和度を測定する指輪型の生体信号測定装置(以下、単に「人体装着センサ」と記す。)を例に説明を行う。本構成例によれば、装着箇所が手指であるため、日常生活を妨げずに常時生体信号の測定を行うことが可能である。このように、人体装着センサは、ユーザの指にほぼ常時装着され、脈波から酸素飽和度や脈拍、血圧などを常時あるいは間欠的に測定する装置である。なお、以下に説明する構成は指輪型などの装着する形態に限らず、血管を測定対象として生体に密着させた受光部より得られる信号により生体信号を測定する生体信号測定装置全般に適応可能である。   In the first embodiment of the present invention exemplified below, as a biological signal measuring device that irradiates a blood vessel to be measured from a light emitting unit and measures a biological signal by a signal obtained by the light receiving unit, A ring type biological signal measuring device (hereinafter simply referred to as “human body wearing sensor”) that wears and measures a pulse wave and oxygen saturation from a finger artery will be described as an example. According to this configuration example, since the wearing location is a finger, it is possible to always measure a biological signal without disturbing daily life. As described above, the human body wearing sensor is a device that is almost always worn on the user's finger and measures oxygen saturation, pulse, blood pressure, etc. from the pulse wave constantly or intermittently. Note that the configuration described below is not limited to a ring type or the like, and can be applied to any biological signal measuring apparatus that measures a biological signal using a signal obtained from a light receiving unit that is in close contact with a living body with a blood vessel as a measurement target. is there.

図1に、人体装着センサ100と手指の断面図を模式的に示す。図のように、本実施の形態における人体装着センサ100は円環状をしており、その内周上に発光部104と受光部105を供えている。固有掌側指動脈102は、手指101の腹側(手の平側)にある動脈であり人体装着センサの測定の対象であり、骨103は、通常指輪が装着される位置に人体装着センサ100が装着されている場合は基節骨となる。前記固有掌側指動脈102は、人差し指から薬指までのそれぞれに、前記骨103の指の腹側に2本(102−a、102−b)存在する。この測定対象となる前記動脈102に対して、前記発光部104から光を照射して、前記動脈102を含む生体組織を通過した光を前記受光部105にて受信する。なお、ここでは前記発光部104の光源としてLED(Light Emitting Diode)を、前記受光部105の受光素子としてPD(Photo Diode)を用いている。また、前記動脈102の脈動が大きくなるよう、前記受光部105は、手指101に対して適切な押圧力を持って密着するように構成されている。   FIG. 1 schematically shows a cross-sectional view of the human body wearing sensor 100 and fingers. As shown in the figure, the human body wearing sensor 100 in the present embodiment has an annular shape, and a light emitting unit 104 and a light receiving unit 105 are provided on the inner periphery thereof. The intrinsic palmar finger artery 102 is an artery on the ventral side (palm side) of the finger 101 and is a measurement target of the human body mounting sensor, and the bone 103 is mounted by the human body mounting sensor 100 at a position where a normal ring is mounted. If it is, it becomes the proximal phalanx. There are two (102-a, 102-b) unique palmar finger arteries 102 on the ventral side of the finger of the bone 103 in each of the index finger to the ring finger. The artery 102 to be measured is irradiated with light from the light emitting unit 104, and the light passing through the living tissue including the artery 102 is received by the light receiving unit 105. Here, an LED (Light Emitting Diode) is used as the light source of the light emitting unit 104, and a PD (Photo Diode) is used as the light receiving element of the light receiving unit 105. In addition, the light receiving unit 105 is configured to be in close contact with the finger 101 with an appropriate pressing force so that the pulsation of the artery 102 increases.

さて、前記動脈102は心拍に合わせて脈動するため、ヘモグロビンによる光の吸収度は心拍に同期して変動しており、前記受光部105において前記動脈102を通過して受光する光量にも変化が生じる。非特許文献1に示されるとおり、酸素飽和度の測定では、赤色光と赤外光という異なる2つの波長の光を用いて、前記動脈102内のヘモグロビンによる吸光度の違いを利用する。このとき、2つの波長でのAC成分とDC成分の比率の比(Ratio of ratioと呼ばれる)にもとづき、酸素飽和度の近似値が得られることが知られている。したがって、AC/DCが大きな値となる環境の方が、より正確な測定が可能となる。なお、図12に示したように、ここでAC成分とは、信号の振幅成分を指し、DC成分とは、信号の平均値である直流成分を指すものとする。   Since the artery 102 pulsates in accordance with the heartbeat, the light absorption by hemoglobin fluctuates in synchronization with the heartbeat, and the amount of light received through the artery 102 in the light receiving unit 105 also changes. Arise. As shown in Non-Patent Document 1, in measuring oxygen saturation, the difference in absorbance due to hemoglobin in the artery 102 is used by using light of two different wavelengths, red light and infrared light. At this time, it is known that an approximate value of the oxygen saturation can be obtained based on the ratio of the ratio of the AC component to the DC component at two wavelengths (called Ratio of ratio). Therefore, more accurate measurement is possible in an environment where AC / DC is a large value. As shown in FIG. 12, the AC component here refers to the amplitude component of the signal, and the DC component refers to the DC component that is the average value of the signal.

図2に、脈動により前記動脈102の内径が拡張、収縮する様子を示す。このように、心臓の拍動により血流量に変化が生じて起こる脈動によって拡張した際の動脈を102−w、収縮した際(定常の状態)の動脈を102−sとして示している。また、拡張した際の、前記受光部105の受光面に平行な方向および垂直な方向の内径をそれぞれWmax、Lmaxとし、収縮した際の前記受光部105の受光面に平行な方向および垂直な方向の内径をWmin、Lminとする。   FIG. 2 shows how the inner diameter of the artery 102 expands and contracts due to pulsation. Thus, the artery when expanded due to the pulsation caused by the change in blood flow caused by the pulsation of the heart is shown as 102-w, and the artery when contracted (steady state) is shown as 102-s. In addition, the inner diameters in the direction parallel to and perpendicular to the light receiving surface of the light receiving unit 105 when expanded are Wmax and Lmax, respectively, and the direction parallel to and perpendicular to the light receiving surface of the light receiving unit 105 when contracted The inner diameter of each is Wmin and Lmin.

本実施の形態における、前記受光部105の動脈の太さ方向のサイズは、この1.3mmとする。以下、このようなサイズとした理由を、図を用いて説明する。   In the present embodiment, the size of the light receiving unit 105 in the thickness direction of the artery is 1.3 mm. Hereinafter, the reason why such a size is used will be described with reference to the drawings.

図3に、人体装着センサ100を装着した場合の人体装着センサ100の一部及び前記手指101の断面図のうち、測定対象となる前記動脈102と、前記受光部105付近のみをモデル化したものを、異なるサイズの受光部105毎に3パターン示す。より具体的には、図3の(a)〜(c)では、前記受光部105の測定対象となる血管の太さ方向のサイズ(検出可能領域)を、前記動脈102の内径に対して3種類に変化させたものである。   FIG. 3 shows a model of only a part of the human body wearing sensor 100 and the finger 101 when the human body wearing sensor 100 is worn, and the vicinity of the artery 102 to be measured and the light receiving unit 105. 3 patterns are shown for each of the light receiving portions 105 of different sizes. More specifically, in (a) to (c) of FIG. 3, the size (detectable region) in the thickness direction of the blood vessel to be measured by the light receiving unit 105 is set to 3 with respect to the inner diameter of the artery 102. It has been changed to a kind.

まず、図3(a)は、前記受光部105の測定対象となる血管の太さ方向のサイズが血管収縮時102a−sの縦方向の内径、すなわちWmin以下の場合を示している。手指101aに装着されている人体装着センサから、発光部104aより測定対象となる動脈102aに対して照射された光を、106aとして横実線で示している。受光部105aは図示するように収縮時動脈102a−sの内径よりも小さいため、前記発光部104から発光された光106aのうち、動脈102aを通過して受光する光は、点線でしめした107aとなる。なお、実際には細胞その他の組織により光は拡散することとなるが、測定対象である固有掌側指動脈102は浅い位置にあるため、前記検出部105と測定対象である動脈102との距離(図1中のd)が小さくなり、図示した指の内部を光が直進するようなモデル化が可能となる。さらに、測定に際しては前述のように前記検出部105が指に対して押し当てられているので、図1中のdはより小さくなる。   First, FIG. 3A shows a case where the size in the thickness direction of the blood vessel to be measured by the light receiving unit 105 is equal to or smaller than the inner diameter in the vertical direction of the blood vessel contraction 102a-s, that is, Wmin. The light emitted from the human body wearing sensor attached to the finger 101a to the artery 102a to be measured from the light emitting unit 104a is indicated by a horizontal solid line 106a. Since the light receiving portion 105a is smaller than the inner diameter of the contracting artery 102a-s as shown in the figure, among the light 106a emitted from the light emitting portion 104, the light received through the artery 102a is indicated by a dotted line 107a. It becomes. In practice, light is diffused by cells and other tissues, but the intrinsic palmar finger artery 102 as a measurement target is in a shallow position, so the distance between the detection unit 105 and the artery 102 as a measurement target. (D in FIG. 1) becomes smaller, and modeling in which light goes straight through the inside of the illustrated finger becomes possible. Furthermore, since the detection unit 105 is pressed against the finger as described above during measurement, d in FIG. 1 becomes smaller.

次に図3の(b)は、前記受光部105のサイズを、収縮時内径Wminより大きく、拡張時内径Wmaxより小さくした場合である。この場合、受光エリア107bは点線エリアで示すとおり(a)に比較して広がる。また、受光部105bのサイズが血管の太さ方向の収縮時内径Wmin、拡張時内径Wmaxの間であるので、血管の太さ方向の脈動(Wmax−Wmin)も検知でき、脈動による変化をとらえやすくなる。   Next, FIG. 3B shows a case where the size of the light receiving portion 105 is larger than the contracted inner diameter Wmin and smaller than the expanded inner diameter Wmax. In this case, the light receiving area 107b expands as compared with (a) as indicated by the dotted line area. Further, since the size of the light receiving unit 105b is between the contracted inner diameter Wmin and the expanded inner diameter Wmax in the blood vessel thickness direction, the pulsation in the blood vessel thickness direction (Wmax-Wmin) can also be detected, and changes due to the pulsation can be captured. It becomes easy.

最後に図3(c)は、前記受光部105のサイズを拡張時内径Wmaxよりも大きくした場合である。この場合、拡張時動脈102c−wの内径Wmaxよりも受光部105cが大きいので、入射した光106cのうち、動脈102cを通過しないものまでも常に受光してしまう。受光部105cのうち、動脈102cを通過しない光、すなわちノイズ光を受光している部分を斜線で示しているが、受光部105cのサイズが大きくなるに従ってこの斜線のエリアは大きくなってしまう。   Finally, FIG. 3C shows a case where the size of the light receiving portion 105 is made larger than the expanded inner diameter Wmax. In this case, since the light receiving portion 105c is larger than the inner diameter Wmax of the dilated artery 102c-w, even the incident light 106c that does not pass through the artery 102c is always received. Of the light receiving unit 105c, light that does not pass through the artery 102c, that is, a portion that receives noise light is indicated by hatching. As the size of the light receiving unit 105c increases, the hatched area increases.

さて、図4に、この前記受光部105のサイズと信号強度との関係を示す。まず、前記受光部105のサイズが図3(a)の場合は、図中Wmin(収縮時内径)以下の場合である。この場合、PDのサイズが大きくなるに従って、受信する信号の強度が全体的に増えていくので、AC成分、DC成分それぞれ一定の増分で増えていく。しかしながら、動脈102aは脈動によって収縮時動脈102a−s、拡張時動脈102a−wと変化するが、受光部105aのサイズが収縮時内動脈内径Wminよりも小さいため、受光部105aにおける脈動による受光量の変動は、光の経路長(図2でいうLmin、Lmax)の変動のみにより発生することになる。   FIG. 4 shows the relationship between the size of the light receiving unit 105 and the signal intensity. First, the case where the size of the light receiving portion 105 is shown in FIG. 3A is the case where Wmin (inner diameter during contraction) or less in the drawing. In this case, as the size of the PD increases, the strength of the received signal increases as a whole, so that each of the AC component and the DC component increases at a constant increment. However, the artery 102a changes due to the pulsation to the contraction artery 102a-s and the dilation artery 102a-w. However, since the size of the light receiving portion 105a is smaller than the contraction inner artery inner diameter Wmin, the amount of light received by the pulsation in the light receiving portion 105a. The fluctuations are caused only by fluctuations in the light path length (Lmin, Lmax in FIG. 2).

次に、前記受光部105のサイズが図3(b)の場合は、AC成分において、前述のLmin、Lmaxによる経路長変化による光量変化と、血管の幅Wmin、Wmaxによる光量変化の双方による変動を検知可能であるため、前記受光部105のサイズが大きくなるに従って、変動幅であるAC成分は(a)の場合よりも急な傾きとなりながら増加する。一方、DC成分は、動脈102bの収縮時においては、動脈102bを通過しない成分も受光してしまうので、DC成分の増率は(a)の場合よりも増加する。   Next, in the case where the size of the light receiving unit 105 is FIG. 3B, in the AC component, fluctuation due to both the light amount change due to the path length change due to the above-described Lmin and Lmax and the light amount change due to the blood vessel widths Wmin and Wmax. Therefore, as the size of the light receiving unit 105 increases, the AC component, which is the fluctuation range, increases with a steeper slope than in the case of (a). On the other hand, when the artery 102b contracts, the component that does not pass through the artery 102b is also received when the artery 102b contracts, so that the increase rate of the DC component increases compared to the case of (a).

最後に、前記受光部105のサイズが図3(c)の場合は、DC成分は受光部105cのサイズが大きくなるに従ってノイズ光が大きくなるため増加する一方、AC成分については、受光部105cが拡張時動脈102c−wより大きくなっても、動脈102cを通過して受光するエリア107cのサイズは拡張時動脈102c−wよりは大きくならないため、AC成分の値は一定となる。   Finally, when the size of the light receiving unit 105 is as shown in FIG. 3C, the DC component increases because the noise light increases as the size of the light receiving unit 105c increases, whereas the AC component is increased by the light receiving unit 105c. Even if it becomes larger than the dilated artery 102c-w, the size of the area 107c that passes through the artery 102c and receives light does not become larger than the dilated artery 102c-w, so the value of the AC component is constant.

以上のように、前記受光部105のサイズが小さすぎると脈動による変動が検知できなくなり、逆に前記受光部105のサイズが大きすぎると測定対象である前記動脈102を通過しない光がノイズ光としてDC成分の増加させることになり、前述の算出式より量子化誤差などで測定精度が悪くなることが理解される。また、前記受光部105のサイズが大きすぎると蛍光灯などの周波数成分を含んだ外乱光が正確な測定を阻害することにもなる。さらに、前記受光部105のサイズの増加はダイオードの接合容量の増加をもたらし、周波数応答が悪くなり、LEDのパルス駆動幅を増加させなければいけなくなり、これは消費電力の増大に繋がる。   As described above, if the size of the light receiving unit 105 is too small, fluctuation due to pulsation cannot be detected. Conversely, if the size of the light receiving unit 105 is too large, light that does not pass through the artery 102 that is a measurement target is noise light. It is understood that the DC component is increased and the measurement accuracy is deteriorated due to a quantization error or the like from the above-described calculation formula. In addition, if the size of the light receiving unit 105 is too large, disturbance light including frequency components such as a fluorescent lamp may hinder accurate measurement. Furthermore, an increase in the size of the light receiving unit 105 causes an increase in the junction capacitance of the diode, resulting in a poor frequency response and an increase in the pulse driving width of the LED, which leads to an increase in power consumption.

従って、前記受光部105のサイズを、AC成分において脈動による信号の変動がもっともよく検知でき、かつ前記動脈102を通過しないDC成分や、外乱光ノイズ成分、接合容量を最小に抑えるようにできる血管サイズに余裕分を加えたサイズとすることで、精度の高い測定値を得ることができる。このように、本実施の形態における前記受光部105の動脈の太さ方向の大きさは、このWmaxに個人差や位置ずれを許容するよう、さらに余裕分を加えたサイズとすることで、受光部にて検出されるDC成分を低く抑えて精度の高い測定値を得ることができる。好ましくは、個人差を含めた血管のサイズが1mmであり、体動による位置ずれの範囲も1mmであるため、Wmaxの1から2倍程度、すなわち1mmから2mm程度がよい。ここではWmaxの130%のサイズ、1.3mmとする。   Therefore, the size of the light receiving unit 105 can best detect the fluctuation of the signal due to pulsation in the AC component, and can suppress the DC component that does not pass through the artery 102, the disturbance light noise component, and the junction capacitance to the minimum. A highly accurate measurement value can be obtained by adding a margin to the size. As described above, the size of the light receiving unit 105 in the thickness direction in the present embodiment in the thickness direction of the artery is a size obtained by further adding a margin so as to allow individual differences and positional deviations. It is possible to obtain a highly accurate measurement value by keeping the DC component detected by the unit low. Preferably, the size of blood vessels including individual differences is 1 mm, and the range of displacement due to body movement is also 1 mm. Therefore, it is preferably about 1 to 2 times Wmax, that is, about 1 mm to 2 mm. Here, the size is 130% of Wmax and 1.3 mm.

また、本実施の形態では、図1に示したように、縦方向(Wmin、Wmax)の方向に前記受光部105が設置されていたが、横方向(Lmin、Lmax)の方向に設置されていた場合であれば、同様に、前記受光部105のサイズを拡張時内径Lmaxにすることで、AC成分最大でDC成分最小の精度の高い測定値を得ることができる。なお、加圧しない通常の血管の径をWmaxの近似値として用いても良い。
(第2の実施の形態)
第1の実施の形態では、測定対象である前記動脈102と前記受光部の距離(図1中の距離d)が小さいため、前記受光部105のサイズ105をWmaxに個人差や位置ずれを許容するようさらに余裕分を加えた1.3mmに設定することで、精度の良い測定値が得られることを説明した。しかし、人体装着センサ100は、日常生活において装着することを想定すると、さまざまな体動による装着ずれが生じる可能性があり、前記受光部105自体が測定対象の前記動脈102からより大きくずれてしまう可能性がある。本実施の形態では、第1の実施の形態で示した最適な測定値が得られるサイズである前記受光部105を、2次元的に分布した受光領域が測定対象の血管付近を含むように複数配置することで、装着のずれが発生した場合でも正しく受光できた前記受光部105を選択的に利用することで、より精度の高い測定値を得ることができる構成について説明する。
In this embodiment, as shown in FIG. 1, the light receiving unit 105 is installed in the vertical direction (Wmin, Wmax), but is installed in the horizontal direction (Lmin, Lmax). In this case, similarly, by setting the size of the light receiving unit 105 to the expanded inner diameter Lmax, it is possible to obtain a highly accurate measurement value with the maximum AC component and the minimum DC component. Note that the diameter of a normal blood vessel that is not pressurized may be used as an approximate value of Wmax.
(Second Embodiment)
In the first embodiment, since the distance between the artery 102 to be measured and the light receiving unit (distance d in FIG. 1) is small, the size 105 of the light receiving unit 105 is set to Wmax, and individual differences and positional deviations are allowed. It has been explained that a highly accurate measurement value can be obtained by setting the thickness to 1.3 mm with a margin added. However, assuming that the human body wearing sensor 100 is worn in daily life, there is a possibility that the wearing deviation due to various body movements may occur, and the light receiving unit 105 itself is greatly displaced from the artery 102 to be measured. there is a possibility. In the present embodiment, a plurality of the light receiving sections 105 having the sizes that can obtain the optimum measurement values shown in the first embodiment are arranged so that the two-dimensionally distributed light receiving areas include the vicinity of the blood vessel to be measured. A description will be given of a configuration in which a more accurate measurement value can be obtained by selectively using the light receiving unit 105 that has received light correctly even when a mounting deviation occurs.

図5は、9つの前記受光部105を群受光部として配置した場合の配置図である。受光部105−1から105−9は、それぞれ受光領域を血管の走行方向に対して平行方向と垂直方向の格子状に配置しているが、特に、格子を測定対象の血管の走行方向についてのみ、少しずつずらして配置する。より具体的には、血流の方向に対しておおよそ垂直方向に3つずつ横並びに前記受光部105を配置し、血流方向に対しておおよそ平行方向に対しては、それぞれ上方の前記受光部105よりもそれぞれ前記受光部105の幅が3分の1ずつずれた位置に配置している。なお、前記受光部105の血管の太さ方向の大きさは、個人差や位置ずれを考慮して前述のWmaxの150%程度のサイズ、すなわち1.5mm程度が望ましい。このように、サイズがほぼ血管の拡張時の径とより多少大きめのサイズとなっており、かつ、9つの受光部105−1から105−9がそれぞれ互いに少しずつ(横方向の33%ずつ)ずれて配置しているので、前記動脈102が図の上下方向に直線的に走行しているとすると、良好に受光できる領域がある受光部105−nから移動しても、他のいずれかの受光部105にて良好に受光することができるので、該良好に受光することができる受光部105を選択することで、前記動脈102を通過した光の多い検出値、すなわちAC成分が最大でDC成分(ノイズ)が少ない測定値で酸素飽和度等の測定が行え、精度の高い測定を実現できる。   FIG. 5 is a layout view when nine light receiving portions 105 are arranged as a group light receiving portion. In the light receiving units 105-1 to 105-9, the light receiving areas are arranged in a lattice shape parallel to and perpendicular to the traveling direction of the blood vessel. In particular, the lattice is only in the traveling direction of the blood vessel to be measured. Align them slightly. More specifically, the light receiving portions 105 are arranged side by side in a direction approximately perpendicular to the direction of blood flow, and the light receiving portions above each of the directions parallel to the direction of blood flow. Each of the light receiving portions 105 is arranged at a position shifted by one third from the width of 105. The size of the light receiving unit 105 in the thickness direction of the blood vessel is preferably about 150% of the aforementioned Wmax, that is, about 1.5 mm in consideration of individual differences and positional deviation. Thus, the size is slightly larger than the diameter when the blood vessel is expanded, and the nine light receiving sections 105-1 to 105-9 are slightly different from each other (33% in the lateral direction). Since the artery 102 is linearly running in the vertical direction in the figure because it is displaced, even if it moves from the light receiving part 105-n where there is a region that can receive light well, Since the light receiving unit 105 can receive light well, by selecting the light receiving unit 105 that can receive light well, a detection value with a large amount of light that has passed through the artery 102, that is, the AC component has a maximum DC. Measurement of oxygen saturation and the like can be performed with measurement values with less components (noise), and high-accuracy measurement can be realized.

図6に、本実施の形態における人体装着センサ100の機能構成図を示す。図のように、人体装着センサ100は、大きく検出部103と測定処理部108により構成される。前記検出部103は、前記発光部104と、複数の前記受光部105(図5の場合ではn=9)からなる群受光部と、前記受光部105に接続され測定に使用する受光部を決定する受光部決定部106と、前記受光部決定部に接続されたメモリ部107により構成される。次に、前記測定処理部108は、前記受光部決定部に接続されている。なお、前記メモリ部107は、前記受光部決定部106において受光部を決める際にそれぞれの受光部105による測定値を保存しておくメモリであり、前記受光部決定部106は最適な前記受光部105を決定し、前記測定処理部108に該決定した受光部105による測定値の通知を行う。また、前記測定処理部108は、酸素飽和度等の算出など、前記受光部105により得られた信号により生体信号の測定処理を行う。   FIG. 6 shows a functional configuration diagram of the human body wearing sensor 100 in the present embodiment. As shown in the figure, the human body wearing sensor 100 is mainly composed of a detection unit 103 and a measurement processing unit 108. The detection unit 103 determines the light receiving unit 104, a group light receiving unit including a plurality of light receiving units 105 (n = 9 in the case of FIG. 5), and a light receiving unit connected to the light receiving unit 105 and used for measurement. And a memory unit 107 connected to the light receiving unit determining unit. Next, the measurement processing unit 108 is connected to the light receiving unit determination unit. The memory unit 107 is a memory that stores measurement values obtained by the respective light receiving units 105 when the light receiving unit determination unit 106 determines the light receiving units, and the light receiving unit determination unit 106 selects the optimum light receiving unit. 105 is determined, and the measurement value by the determined light receiving unit 105 is notified to the measurement processing unit 108. The measurement processing unit 108 performs a biological signal measurement process based on the signal obtained by the light receiving unit 105, such as calculation of oxygen saturation.

図7は、受光部決定部106の処理の流れを示すフロー図である。まず、複数ある受光部のうち、未測定の受光部105を一つ選択し(S801)、該受光部105を機能させて測定を行う(S802)。測定値から、AC成分とDC成分を抽出し(S803)、前記メモリ107に格納する(S804)し、S805において、複数の受光部105すべてにおいてAC−DC比を測定し終えたら(S805のYES)、S804で前記メモリ部107格納されたすべてのAC−DC比を比較して(S805)、最良な値の受光部を選択する(S806)。   FIG. 7 is a flowchart showing a processing flow of the light receiving unit determination unit 106. First, an unmeasured light receiving unit 105 is selected from a plurality of light receiving units (S801), and the light receiving unit 105 is operated to perform measurement (S802). An AC component and a DC component are extracted from the measured value (S803), stored in the memory 107 (S804), and when the AC-DC ratio has been measured in all the plurality of light receiving units 105 in S805 (YES in S805). In step S804, all AC-DC ratios stored in the memory unit 107 are compared (S805), and the light receiving unit having the best value is selected (S806).

さて、図8にメモリ107に格納された、複数の前記受光部105のそれぞれから測定されたAC成分とDC成分のデータ例を示す。右端のAC−DC比の列には、それぞれの受光部により得られたAC成分をDC成分で除算した値である。AC成分が大きく、DC成分が小さいほど酸素飽和度の測定には適しているため、前記受光部決定部106は、右端の列のAC−DC比の値が最も大きくなる受光部を選択すればよい。以降、該選択した受光部105(例えば図6における受光部―1)にて受光した測定値を前記測定処理部108に通知し、それ以外の受光部(受光部―2から受光部―n)は受光機能を停止しておき、測定値として採用しない。   FIG. 8 shows an example of AC component and DC component data measured from each of the plurality of light receiving units 105 stored in the memory 107. The AC-DC ratio column at the right end is a value obtained by dividing the AC component obtained by each light receiving unit by the DC component. Since the larger the AC component and the smaller the DC component, the more suitable the oxygen saturation measurement is, the light receiving unit determining unit 106 should select the light receiving unit having the largest AC-DC ratio value in the rightmost column. Good. Thereafter, the measurement value received by the selected light receiving unit 105 (for example, light receiving unit-1 in FIG. 6) is notified to the measurement processing unit 108, and the other light receiving units (light receiving unit-2 to light receiving unit-n). Stops the light receiving function and does not adopt it as a measurement value.

なお、前記受光部決定部106において最良の受光部105を決定するタイミングは、前記測定処理部108が測定を行う直前が好ましい。   The timing at which the light receiving unit determination unit 106 determines the best light receiving unit 105 is preferably immediately before the measurement processing unit 108 performs measurement.

さらに、前述のS801においては、複数ある受光部のうち、1つずつ順番に受光部105を機能させて測定を行ったが、もちろん複数ある受光部からの測定を同時に行っても良い。   Furthermore, in the above-described S801, measurement is performed by causing the light receiving unit 105 to function one by one in order among the plurality of light receiving units, but of course, measurement from a plurality of light receiving units may be performed simultaneously.

また、図5に示した群受光部は、血管の走行方向にのみずれつつ、格子状に規則正しく配置したが、それぞれの受光部105が重ならないようにランダムに平面的に配置しても、どれかの受光部において適切に受光される可能性が高くなり、測定精度を向上させる効果が期待できる。   In addition, the group light receiving units shown in FIG. 5 are regularly arranged in a lattice shape while shifting only in the traveling direction of the blood vessels, but any of the light receiving units 105 may be randomly arranged in a plane so as not to overlap. Such a light receiving unit is likely to receive light appropriately, and an effect of improving measurement accuracy can be expected.

また、前記受光部決定部106は、右端の列のAC−DC比の値が最も大きくなる受光部を選択したが、単にACの値が最も大きくなる受光部105を選択してもよい。   In addition, the light receiving unit determining unit 106 selects the light receiving unit having the largest AC-DC ratio value in the rightmost column, but may simply select the light receiving unit 105 having the largest AC value.

以上のように、複数のそれぞれ検出領域をずらして配置された群受光部の受光部105の中から最良のものを選択するので、装着中にずれや個人による前記動脈102の位置の違いに応じても、最良の測定が可能となる。
(第3の実施の形態)
第2の実施の形態では、前記受光部105を異なる受光領域となるように少しずつずらしながら複数配置することで、装着のずれが発生した場合でも正しく受光できた前記受光部105を選択的に利用することで、より精度の高い測定値を得ることができる構成について説明した。
As described above, since the best one is selected from the plurality of light receiving portions 105 of the group light receiving portions arranged by shifting the detection areas, depending on the displacement during wearing and the difference in position of the artery 102 depending on the individual. However, the best measurement is possible.
(Third embodiment)
In the second embodiment, by arranging a plurality of the light receiving portions 105 so as to be different light receiving regions little by little, the light receiving portions 105 that have received light correctly even when mounting displacement occurs can be selectively performed. A configuration has been described in which it is possible to obtain a more accurate measurement value by using it.

しかしながら、第2の実施の形態では測定対象となる血管が直線的に走行していることを前提としており、血管が蛇行していた場合には有効に動作しない。本実施の形態に係る生体信号測定装置100は、血管が蛇行していた場合において、ずれが発生した場合でも正確な生体信号の測定できる可能性を向上する人体装着センサ100の構成について説明する。   However, the second embodiment is based on the premise that the blood vessel to be measured runs linearly, and does not operate effectively when the blood vessel is meandering. The biological signal measuring apparatus 100 according to the present embodiment will be described with respect to the configuration of the human-body-mounted sensor 100 that improves the possibility that an accurate biological signal can be measured even when a deviation occurs when a blood vessel is meandering.

本実施の形態に係る人体装着センサ100の前記受光部105の配置図を図9に示す。   FIG. 9 shows a layout of the light receiving unit 105 of the human body wearing sensor 100 according to the present embodiment.

図のように、本実施の形態に係る人体装着センサ100においては、複数の前記受光部105を格子状に密集するように配置した群受光部を、血管の走行方向に距離を置いて離れた場所の2箇所に設けている。なお、発光部104は図示していないが、2つの群受光部に対してそれぞれ一つずつ2つ備えられている。   As shown in the figure, in the human-body-mounted sensor 100 according to the present embodiment, the group light receiving units arranged so that the plurality of light receiving units 105 are densely arranged in a lattice pattern are separated from each other by a distance in the blood vessel traveling direction. It is provided at two locations. Although not shown, two light emitting units 104 are provided for each of the two group light receiving units.

図10に、本実施の形態における人体装着センサ100の機能構成図を示す。図のように、人体装着センサ100は、大きく検出部103と測定処理部108により構成される。前記検出部103は、複数の前記受光部105(図5の場合ではn=9)からなる群受光部が2つと、それぞれの群受光部用の2つの前記発光部104A、104Bと、2つの群受光部それぞれの前記受光部105に接続され測定に使用する受光部を決定する受光部決定部106A、106Bと、前記それぞれの受光部決定部に接続されたメモリ部107A、107B、さらに、前記それぞれの群受光部に接続された受光部決定部106A、106Bのいずれの出力を測定に利用するかを決定する群受光部決定部109により構成される。   FIG. 10 shows a functional configuration diagram of the human body wearing sensor 100 in the present embodiment. As shown in the figure, the human body wearing sensor 100 is mainly composed of a detection unit 103 and a measurement processing unit 108. The detection unit 103 includes two group light receiving units composed of a plurality of light receiving units 105 (n = 9 in the case of FIG. 5), two light emitting units 104A and 104B for each group light receiving unit, and two Light receiving unit determination units 106A and 106B for determining a light receiving unit to be used for measurement connected to the light receiving unit 105 of each group light receiving unit, memory units 107A and 107B connected to the respective light receiving unit determination units, A group light receiving unit determining unit 109 that determines which output of the light receiving unit determining units 106A and 106B connected to each group light receiving unit is used for measurement is configured.

本実施の形態にかかる人体装着センサ100の2つの前記受光部決定部106A、106Bは、図7において説明した動作フローのS806までを行った後、それぞれのAC−DC比の値が最も大きくなる受光部のAC−DC比を、前記群受光部決定部109に通知する。前記群受光部決定部109は、通知されたAC−DC比の良好な方、すなわち、大きい値の方の前記受光部決定部からの出力を利用することを決定し、測定処理において、前記測定処理部108に当該前記受光部決定部からの出力を中継する。   The two light receiving unit determination units 106A and 106B of the human body wearing sensor 100 according to the present embodiment perform the operations up to S806 in the operation flow described in FIG. The group light receiving unit determination unit 109 is notified of the AC-DC ratio of the light receiving unit. The group light receiving unit determination unit 109 determines to use the output from the light receiving unit determination unit with the better AC-DC ratio notified, that is, the larger value, and in the measurement process, the measurement The output from the light receiving unit determination unit is relayed to the processing unit 108.

なお、図9に示したそれぞれの群受光部は、血管の走行方向にのみずれつつ、格子状に規則正しく配置したが、それぞれの群受光部領域内で、それぞれの受光部105が重ならないようにランダムに平面的に配置しても、どれかの受光部において適切に受光される可能性が高くなり、測定精度を向上させる効果が期待できる。   The group light receiving units shown in FIG. 9 are regularly arranged in a lattice pattern while being displaced only in the blood vessel traveling direction, but the respective light receiving units 105 are not overlapped in each group light receiving unit region. Even if they are randomly arranged in a plane, there is a high possibility that light is received appropriately in any of the light receiving sections, and an effect of improving measurement accuracy can be expected.

また、最良の受光部105を選出するにあたり、それぞれの群受光部により図7のフローに従い最良の受光部105を2つ決定しさらにそれらの比較を行う手順としたが、図7のフローにおけるS801からS805の処理において、両方の群受光部すべてに含まれる受光部105について測定、比較するようにしても良いことは言うまでもない。   Further, in selecting the best light receiving unit 105, the group light receiving unit determines two best light receiving units 105 in accordance with the flow of FIG. 7 and compares them, and S801 in the flow of FIG. 7 is used. From S to S805, it goes without saying that the light receiving units 105 included in both the group light receiving units may be measured and compared.

以上のように、血管の略走行方向に離れて群受光部が2箇所にあるため、動脈がまっすぐでなく蛇行している場合であっても、複数の受光部うちのいずれかの受光部105が動脈102の位置に合う可能性が高くなる。さらに、本実施の形態で示した群受光部の数は
2つであったが、この数に限らず、より多い数であってもよい。
(第4の実施の形態)
上述の実施の形態では、前記受光部105の受光素子そのものの測定対象となる血管の太さ方向へのサイズを、血管の拡張時のWmaxの1から2倍程度、すなわち、1mmから2mm程度とすることで、受光部にて検出されるDC成分を低く抑えて精度の高い測定を実現し、さらに複数の前記受光部105を備えることで、日常生活によるずれによる測定精度の悪化を回避した。
As described above, since there are two group light receiving portions that are separated from each other in the substantially traveling direction of the blood vessel, even if the artery is meandering instead of being straight, any one of the plurality of light receiving portions 105. Is likely to match the position of the artery 102. Furthermore, although the number of group light-receiving units shown in the present embodiment is two, the number is not limited to this number and may be larger.
(Fourth embodiment)
In the above-described embodiment, the size in the thickness direction of the blood vessel to be measured of the light receiving element itself of the light receiving unit 105 is about 1 to 2 times Wmax when the blood vessel is expanded, that is, about 1 mm to 2 mm. By doing so, the DC component detected by the light receiving unit is suppressed to a low level to achieve highly accurate measurement, and the plurality of light receiving units 105 are provided, thereby avoiding deterioration in measurement accuracy due to deviation due to daily life.

本実施の形態では、日常生活によるずれによる測定精度の悪化を、DC成分を低く抑えて精度の高い測定を実現し、さらに複数の前記受光部105を備えることで、回避する別の構成について、図を用いて説明する。   In this embodiment, the deterioration of measurement accuracy due to deviation due to daily life is achieved by realizing a high-accuracy measurement by suppressing the DC component low, and further by providing a plurality of the light receiving units 105, This will be described with reference to the drawings.

本実施の形態に係る人体装着センサ100の前記受光部105の配置図を図11に示す。   FIG. 11 shows a layout of the light receiving unit 105 of the human body wearing sensor 100 according to the present embodiment.

図のように、本実施の形態に係る人体装着センサ100においては、測定の対象となる前記動脈102の走行方向に細長い複数(N個)の前記受光部105を血管の走行方向に対して垂直方向に一列に配置した群受光部を設けている。なお、前記受光部105の血管の太さ方向のサイズは、血管の太さ方向の径に比較して十分短くなっている。本実施の形態における前記受光部105の血管の太さ方向のサイズは、血管の太さ方向の径の20分の1程度、すなわち、0.05mm程度である。さらに、前記受光部105の数は100(N=100)としている。すなわち、前記複数の受光部105からなる群受光部全体での血管の太さ方向のサイズは5mm程度となり、より大きな位置ずれや血管の太さ等の個人差にも対応できるようになる。なお、前記受光部105の血管の走行方向のサイズは1mmとする。   As shown in the figure, in the human body wearing sensor 100 according to the present embodiment, a plurality (N) of light receiving portions 105 elongated in the running direction of the artery 102 to be measured are perpendicular to the running direction of the blood vessel. A group light receiving portion arranged in a line in the direction is provided. The size of the light receiving unit 105 in the thickness direction of the blood vessel is sufficiently shorter than the diameter in the thickness direction of the blood vessel. The size of the light receiving unit 105 in the thickness direction of the blood vessel in the present embodiment is about 1/20 of the diameter in the thickness direction of the blood vessel, that is, about 0.05 mm. Further, the number of the light receiving portions 105 is 100 (N = 100). That is, the size in the thickness direction of the blood vessel in the entire group light receiving unit composed of the plurality of light receiving units 105 is about 5 mm, and it is possible to cope with individual differences such as a larger positional deviation and the thickness of the blood vessel. The size of the light receiving unit 105 in the running direction of the blood vessel is 1 mm.

本実施の形態における人体装着センサ100の機能構成図は、第2の実施の形態で示した図10と同様であり、大きく検出部103と測定処理部108により構成される。前記検出部103は、前記発光部104と、複数の前記受光部105からなる群受光部と、群受光部の前記受光部105に接続され測定に使用する受光部を決定する受光部決定部106と、前記受光部決定部に接続されたメモリ部107により構成される。   The functional configuration diagram of the human body wearing sensor 100 in the present embodiment is the same as that of FIG. 10 shown in the second embodiment, and is largely configured by the detection unit 103 and the measurement processing unit 108. The detection unit 103 includes the light-emitting unit 104, a group light-receiving unit including a plurality of light-receiving units 105, and a light-receiving unit determining unit 106 that determines a light-receiving unit connected to the light-receiving unit 105 of the group light-receiving unit and used for measurement. And a memory unit 107 connected to the light receiving unit determining unit.

本実施の形態にかかる人体装着センサ100の前記受光部決定部106は、第2の実施の形態の図7のS805までの処理を行い、図8と同様のテーブルを、前記メモリ部107に作成する。なお、本テーブルでは、前記複数の受光部105が物理的に並んでいる順に、1番からサフィックスが振られている。次に、式1により定義されるαの値が最大となる整数nとmの組み合わせを検索する。この手法については、総当りなどの手法が公知であるのでここでその詳細な説明は繰り返さない。なお、N≧m>n>0であるものとする。   The light receiving unit determination unit 106 of the human body wearing sensor 100 according to the present embodiment performs the processing up to S805 in FIG. 7 of the second embodiment, and creates a table similar to FIG. 8 in the memory unit 107. To do. In this table, suffixes are assigned from the first in the order in which the plurality of light receiving portions 105 are physically arranged. Next, a combination of integers n and m that maximizes the value of α defined by Equation 1 is searched. Since this technique is known as a brute force technique, the detailed description thereof will not be repeated here. Note that N ≧ m> n> 0.

Figure 2006325766
Figure 2006325766

前記受光部決定部106は、以上の処理により得られた式1のαが最大となるnとmの値に基づき、それぞれのn番目からm番目までのm−n+1個の前記受光部105のみを動作させ、これらのac値とdc値を合計した値を、前記測定処理部108に通知するように動作する。   Based on the values of n and m that maximize α in Expression 1 obtained by the above processing, the light receiving unit determination unit 106 only includes the (m−n + 1) light receiving units 105 from the n-th to the m-th. , And the measurement processing unit 108 is notified of the sum of these ac and dc values.

あるいは、スイッチ回路により前記複数の受光部のうち、良好に測定対象からの信号を検出できる一部を有効にして測定するようにしても良い。   Alternatively, a part of the plurality of light receiving units that can detect a signal from the measurement target can be effectively measured by the switch circuit.

なお、上述した複数の受光部から一部の受光部を選択する方法は一例であり、この他、脈動による受光量の変化率が高いエリアを中心に血管拡張時の平均的サイズ分を切り出す、あるいは、それぞれのAC/DC値が所定値以上となる受光部を選択する、AC値のみが所定値以上となる受光部を選択する、などの手法を用いても良い。   In addition, the method of selecting a part of the light receiving units from the plurality of light receiving units described above is an example, and in addition, an average size at the time of vascular dilation is cut out mainly in an area where the rate of change in the amount of received light due to pulsation is high. Alternatively, a method of selecting a light receiving unit in which each AC / DC value is a predetermined value or more, or selecting a light receiving unit in which only the AC value is a predetermined value or more may be used.

以上のように、本実施の形態にかかる人体装着センサ100は、血管102の走行方向に対して垂直方向に多くの前記受光部105を群として一列に並べ、受光部105の中からその合計によるAC−DC比が最良となる部分集合を選択するので、装着中にずれや個人による前記動脈102の位置の違いがあっても、最良の測定が可能となる。   As described above, the human body wearing sensor 100 according to the present embodiment arranges a large number of the light receiving units 105 in a row in a direction perpendicular to the traveling direction of the blood vessel 102, and the total number of the light receiving units 105 is determined from the light receiving units 105. Since the subset with the best AC-DC ratio is selected, the best measurement is possible even if there is a deviation during wearing or the position of the artery 102 varies between individuals.

本発明の第1の実施の形態に係る人体装着センサ及び装着手指の断面図である。It is sectional drawing of the human body mounting | wearing sensor which concerns on the 1st Embodiment of this invention, and a mounting finger. 測定対象となる動脈の断面図である。It is sectional drawing of the artery used as a measuring object. 本発明の第1の実施の形態に係る人体装着センサの受光部及び動脈の関係をモデル的に示した図である。It is the figure which showed typically the relationship between the light-receiving part of the human body wearing sensor which concerns on the 1st Embodiment of this invention, and an artery. 本発明の第1の実施の形態に係る人体装着センサの受光部のサイズと信号強度との関係を示したグラフである。It is the graph which showed the relationship between the size of the light-receiving part of the human body wearing sensor which concerns on the 1st Embodiment of this invention, and signal strength. 本発明の第2の実施の形態に係る人体装着センサ及び装着手指の透過図である。It is a permeation figure of a human body wearing sensor and a wearing finger concerning a 2nd embodiment of the present invention. 本発明の第2の実施の形態に係る人体装着センサのブロック図である。It is a block diagram of a human body wearing sensor concerning a 2nd embodiment of the present invention. 本発明の第2の実施の形態に係る人体装着センサの受光部決定部の処理の流れを示したフロー図である。It is the flowchart which showed the flow of the process of the light-receiving part determination part of the human body mounting sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る人体装着センサのメモリに格納されるテーブルを示した図である。It is the figure which showed the table stored in the memory of the human body mounting sensor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る人体装着センサ及び装着手指の透過図である。It is a permeation | transmission figure of the human body mounting | wearing sensor which concerns on the 3rd Embodiment of this invention, and a mounting finger. 本発明の第3の実施の形態に係る人体装着センサのブロック図である。It is a block diagram of a human body wearing sensor concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る人体装着センサ及び装着手指の透過図である。It is a permeation | transmission figure of the human body mounting | wearing sensor which concerns on the 4th Embodiment of this invention, and a mounting finger. AC成分とDC成分を説明する図である。It is a figure explaining an AC component and a DC component.

符号の説明Explanation of symbols

100 人体装着センサ
101 手指
102 動脈
102a−w、102b−w、102c−w 拡張時動脈
102a−s、102b−s、102c−s 収縮時動脈
103 骨
104 発光部
105 受光部
106 受光部決定部
107 メモリ
108 測定処理部
109 群受光部決定部
100 Human Body Sensor 101 Finger 102 Arteries 102a-w, 102b-w, 102c-w Arteries 102a-s, 102b-s, 102c-s at the time of expansion Arteries 103 at the time of contraction 103 Bone 104 Light emitting unit 105 Light receiving unit 106 Light receiving unit determining unit 107 Memory 108 Measurement processing unit 109 Group light receiving unit determination unit

Claims (8)

発光部より測定対象の血管に光を照射し、受光部にて得られる信号により生体信号を測定する生体信号測定装置であって、
発光部と受光部からなる検出手段を備え、
前記受光部の受光検出領域の測定対象である血管の太さ方向のサイズは、1mm以上かつ2mm以下であることを特徴とする生体信号測定装置。
A biological signal measuring device that irradiates a blood vessel to be measured from a light emitting unit and measures a biological signal by a signal obtained by a light receiving unit,
A detection means comprising a light emitting part and a light receiving part
The biological signal measuring apparatus according to claim 1, wherein a size of a blood vessel which is a measurement target of the light receiving detection region of the light receiving unit is 1 mm or more and 2 mm or less.
血管の走行方向に対して垂直方向に前記受光部を複数個備え、前記複数個の受光部にて得られた信号から少なくとも1つを選択して生体信号を測定する生体信号選択手段を有することを特徴とする請求項1に記載の生体信号測定装置。   A plurality of the light receiving units in a direction perpendicular to a running direction of the blood vessel, and a biological signal selection unit configured to select at least one of the signals obtained by the plurality of light receiving units and measure a biological signal. The biological signal measuring device according to claim 1. 前記生体信号選択手段は、受光部にて得られた信号の振幅にもとづいて受光部を選択することを特徴とする請求項2に記載の生体信号測定装置。   The biological signal measuring apparatus according to claim 2, wherein the biological signal selection unit selects the light receiving unit based on an amplitude of a signal obtained by the light receiving unit. 前記複数の受光部は2次元的に分布するように配置されたことを特徴とする請求項2または3に記載の生体信号測定装置。   The biological signal measuring apparatus according to claim 2 or 3, wherein the plurality of light receiving units are arranged so as to be two-dimensionally distributed. 前記複数の受光部は測定対象の血管の走行方向に対して平行方向および垂直方向の格子状に配置され、さらに、測定対象の血管の走行方向に対して垂直方向の列をそれぞれずらせながら配列されたことを特徴とする請求項4に記載の生体信号測定装置。   The plurality of light receiving units are arranged in a lattice shape parallel to and perpendicular to the traveling direction of the blood vessel to be measured, and further arranged while shifting the columns in the vertical direction with respect to the traveling direction of the blood vessel to be measured. The biological signal measuring apparatus according to claim 4, wherein: 前記複数の受光部は測定対象の血管の走行方向に対して離れた場所で複数箇所に密集するように配置されたことを特徴とする請求項4に記載の生体信号測定装置。   The biological signal measuring device according to claim 4, wherein the plurality of light receiving units are arranged so as to be densely arranged at a plurality of locations at a location distant from a traveling direction of a blood vessel to be measured. 発光部より測定対象の血管に光を照射し、受光部にて得られる信号により生体信号を測定する生体信号測定装置であって、
発光部と受光部からなる検出手段と、
前記検出手段からの出力に基づき生体信号の測定を行う測定処理手段と、を備え、
前記受光部は、測定対象の血管の走行方向に垂直な方向のサイズが血管の太さ方向の径に対して十分小さい受光部を、測定対象の血管の走行方向に対して垂直方向に複数配列してなり、
前記測定処理手段は、前記複数の受光部より、有効な領域にある受光部を選択し、前記選択された受光部からの信号により測定処理を行う、
ことを特徴とする生体信号測定装置。
A biological signal measuring device that irradiates a blood vessel to be measured from a light emitting unit and measures a biological signal by a signal obtained by a light receiving unit,
Detection means comprising a light emitting part and a light receiving part;
Measurement processing means for measuring a biological signal based on the output from the detection means,
The light receiving unit has a plurality of light receiving units arranged in a direction perpendicular to the traveling direction of the blood vessel to be measured, the size of the direction perpendicular to the traveling direction of the blood vessel to be measured being sufficiently small with respect to the diameter in the thickness direction of the blood vessel. And
The measurement processing unit selects a light receiving unit in an effective area from the plurality of light receiving units, and performs a measurement process according to a signal from the selected light receiving unit.
A biological signal measuring device.
手指に装着される指輪型であることを特徴とする、請求項1から7のいずれかに記載の生体信号測定装置。   The biological signal measuring device according to any one of claims 1 to 7, wherein the biological signal measuring device is a ring type attached to a finger.
JP2005151627A 2005-05-24 2005-05-24 Biological signal measuring instrument Pending JP2006325766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151627A JP2006325766A (en) 2005-05-24 2005-05-24 Biological signal measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151627A JP2006325766A (en) 2005-05-24 2005-05-24 Biological signal measuring instrument

Publications (1)

Publication Number Publication Date
JP2006325766A true JP2006325766A (en) 2006-12-07

Family

ID=37548111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151627A Pending JP2006325766A (en) 2005-05-24 2005-05-24 Biological signal measuring instrument

Country Status (1)

Country Link
JP (1) JP2006325766A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257554A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Biometrics device and biometrics method
JP2008253598A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Biometric authentication device and biometric authentication method
JP2009254523A (en) * 2008-04-15 2009-11-05 Sharp Corp Optical biological information measuring instrument, and light emitting/receiving unit for measuring biological information
JP2011519703A (en) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド Optical sensor device and method of using the same
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8123695B2 (en) 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
WO2016079953A1 (en) * 2014-11-18 2016-05-26 京セラ株式会社 Measuring device and measuring method
JP2016152918A (en) * 2014-02-27 2016-08-25 京セラ株式会社 Sensor device, and method for driving sensor device
JP2018099409A (en) * 2016-12-21 2018-06-28 セイコーエプソン株式会社 Measuring device and measuring method
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
JP2019171225A (en) * 2019-07-23 2019-10-10 京セラ株式会社 Measuring device and measuring method
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption
WO2023176427A1 (en) * 2022-03-14 2023-09-21 オムロン株式会社 Oxygen saturation value measurement device and oxygen saturation value measurement method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8123695B2 (en) 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
JP2008257554A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Biometrics device and biometrics method
JP2008253598A (en) * 2007-04-06 2008-10-23 Seiko Epson Corp Biometric authentication device and biometric authentication method
JP2009254523A (en) * 2008-04-15 2009-11-05 Sharp Corp Optical biological information measuring instrument, and light emitting/receiving unit for measuring biological information
JP2011519703A (en) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド Optical sensor device and method of using the same
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
JP2016152918A (en) * 2014-02-27 2016-08-25 京セラ株式会社 Sensor device, and method for driving sensor device
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
WO2016079953A1 (en) * 2014-11-18 2016-05-26 京セラ株式会社 Measuring device and measuring method
US20170319084A1 (en) * 2014-11-18 2017-11-09 Kyocera Corporation Measuring apparatus and measuring method
JP2016096848A (en) * 2014-11-18 2016-05-30 京セラ株式会社 Measuring device and measuring method
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption
JP2018099409A (en) * 2016-12-21 2018-06-28 セイコーエプソン株式会社 Measuring device and measuring method
JP2019171225A (en) * 2019-07-23 2019-10-10 京セラ株式会社 Measuring device and measuring method
WO2023176427A1 (en) * 2022-03-14 2023-09-21 オムロン株式会社 Oxygen saturation value measurement device and oxygen saturation value measurement method

Similar Documents

Publication Publication Date Title
JP2006325766A (en) Biological signal measuring instrument
KR102411658B1 (en) Apparatus for detecting information of the living body
JP4229919B2 (en) Pulse wave detection device and method
KR102409382B1 (en) Method and apparatus for detecting information of the living body
US11690513B2 (en) Methods and system for multi-channel bio-optical sensing
US11478158B2 (en) Wearable ring of optical biometric sensors
MXPA02000369A (en) Optical noninvasive blood pressure sensor and method.
JP4957354B2 (en) Biological condition detection device
KR960009970A (en) Biometrics and wrist-mounted pulse wave measurement devices
JP5115855B2 (en) Pulse oximetry and pulse oximeter
JPH0670890A (en) Pressure wave monitoring device
EP3169228B1 (en) Device and method suitable for monitoring arterial blood in body part
JP2006218013A (en) Biological information measuring apparatus and controlling method
JP2017153874A (en) Biological information measurement device and biological information measurement method
US10244950B2 (en) Biological information detection apparatus and method
JP2016002167A (en) Wrist fitting type pulse oximeter
KR20100018127A (en) Apparatus and method for measuring blood pressure
JP2009148388A (en) Optical measuring device
US11737677B2 (en) System and method for use in photoplethysmography
JP2005111161A (en) Instrument for measuring biological information, its control method, control program, and recording medium
KR20150098940A (en) Physiological Signal Sensing Device
JPH11318840A (en) Pulse wave detector
KR102250188B1 (en) Apparatus for detecting information of the living body
JP4844291B2 (en) Time division pulse oximetry and pulse oximeter
JP2017108924A (en) Biological information acquisition device and biological information acquisition method