JP2006323279A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2006323279A
JP2006323279A JP2005148196A JP2005148196A JP2006323279A JP 2006323279 A JP2006323279 A JP 2006323279A JP 2005148196 A JP2005148196 A JP 2005148196A JP 2005148196 A JP2005148196 A JP 2005148196A JP 2006323279 A JP2006323279 A JP 2006323279A
Authority
JP
Japan
Prior art keywords
optical
scanning direction
optical path
scanned
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148196A
Other languages
Japanese (ja)
Other versions
JP5165189B2 (en
Inventor
Yoshiki Sugimaru
良樹 杉丸
Makoto Oki
誠 大木
Hiroki Kinoshita
博喜 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005148196A priority Critical patent/JP5165189B2/en
Publication of JP2006323279A publication Critical patent/JP2006323279A/en
Application granted granted Critical
Publication of JP5165189B2 publication Critical patent/JP5165189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical scanner in which a beam performance is kept with an inexpensive lens structure and color slippage is suppressed by aligning the curved direction of a bow on a face to be scanned. <P>SOLUTION: The optical scanner is provided with a plurality of light sources, a polygon mirror 5 which deflects the beams from the light sources in a main scanning direction, lenses 11 and 12 which focus the deflected beams onto faces to be scanned 50Y, 50M, 50C and 50 K, turning back mirrors 31 to 38 for guiding the beams passing through the lenses to the faces to be scanned, and a lens 13 which focuses respective separated beams onto the face to be scanned. The lenses 11 and 12 are symmetrical in their face shapes in a subscanning direction, the lens 13 is symmetrical in its face shape in the main scanning direction, and reversely arranged by 180° in the main scanning direction for an upper side optical path and a lower side optical path. The number of the mirrors 31 to 38 are two in the front stage of the lenses 13Y and 13M, one in the front stage of the lenses 13C and 13K, zero in the rear stage of the lenses 13Y and 13K, and one in the rear stage of the lenses 13M and 13C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光走査装置、特に、画像データに基づいて変調された複数のビームを単一の偏向器を用いてそれぞれの被走査面上を走査する光走査装置に関する。   The present invention relates to an optical scanning device, and more particularly to an optical scanning device that scans a plurality of beams, which are modulated based on image data, on each surface to be scanned using a single deflector.

近年、フルカラーの複写機やプリンタなどの画像形成装置にあっては、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色に対応して四つの感光体を並置し、各感光体上に形成された各色の画像を中間転写ベルトに転写して合成するタンデム方式が主流となっている。   In recent years, in an image forming apparatus such as a full-color copying machine or printer, four photoconductors are juxtaposed corresponding to each color of Y (yellow), M (magenta), C (cyan), and K (black). The tandem method in which images of the respective colors formed on the respective photoconductors are transferred to an intermediate transfer belt and synthesized is the mainstream.

そして、この種のタンデム方式の画像形成装置の光走査装置としては、Aタイプ(一つの光走査装置で、光源系1、偏向器1、走査系1)、Bタイプ(四つの光走査装置で、それぞれに、光源系1、偏向器1、走査系1)、Cタイプ(一つの光走査装置で、光源系4、偏向器1、走査系1〜4)に大別される。   As an optical scanning device of this type of tandem image forming apparatus, A type (one optical scanning device, light source system 1, deflector 1, scanning system 1), and B type (four optical scanning devices). The light source system 1, the deflector 1, the scanning system 1) and the C type (one light scanning device, the light source system 4, the deflector 1, and the scanning systems 1 to 4).

前記Aタイプは、光走査装置によって書込みが可能なのは1箇所のみであるから、感光体を順次書込み位置に移動させなければならず、画像形成の高速化は困難である。前記Bタイプは、光走査装置と感光体の数が同じであるから、画像形成の高速化が可能であるが、四つの光走査装置(特に高価な偏向器を4個)を設けるのはコスト面、スペース面で不利である。前記Cタイプは、高速化と低コストを実現でき、本発明の対象でもある。   In the A type, since writing is possible only in one place by the optical scanning device, it is necessary to sequentially move the photosensitive member to the writing position, and it is difficult to increase the speed of image formation. Since the B type has the same number of optical scanning devices and photosensitive members, it is possible to speed up image formation. However, it is costly to provide four optical scanning devices (especially four expensive deflectors). It is disadvantageous in terms of space and space. The C type can realize high speed and low cost, and is also an object of the present invention.

ところで、前記Cタイプでは、四つの光源部からのビームをどのようにして一つの偏向器に入射させるかという問題と、偏向器で偏向した後のビームをどのようにして分離し、四つの感光体に導くかが問題となる。さらに、Cタイプでは、偏向器の両側に走査系を配置するC1タイプと、片側のみに走査系を配置するC2タイプとに分けられる。   By the way, in the C type, the problem of how the beams from the four light source parts are incident on one deflector and how the beams after being deflected by the deflector are separated to obtain four photosensitive elements. The problem is whether it leads to the body. Furthermore, the C type is divided into a C1 type in which a scanning system is arranged on both sides of a deflector and a C2 type in which a scanning system is arranged only on one side.

本発明では前記C1タイプを対象とするが、それでも片側ずつで2ビームを走査する必要があり、2ビームを異なる位置の感光体上に導くためには走査系内に光路分離手段を配置できるように副走査方向断面で2ビームの間隔を確保する必要がある。特許文献1には、2ビームを偏向面に対して副走査方向に異なる角度で入射させ、走査レンズ系の光軸を中心に対称な光路を構成した光走査装置が開示されている。   In the present invention, the C1 type is targeted, but it is still necessary to scan two beams on each side, and in order to guide the two beams onto the photosensitive member at different positions, an optical path separating means can be arranged in the scanning system. In addition, it is necessary to ensure the interval between two beams in the cross section in the sub-scanning direction. Patent Document 1 discloses an optical scanning device in which two beams are incident on the deflection surface at different angles in the sub-scanning direction, and a symmetric optical path is formed around the optical axis of the scanning lens system.

しかし、上下の光学系に1組のレンズ系を用いると、副走査方向に対称な面形状にする必要があり、ビームを偏向器へ副走査方向に傾斜角度をもって入射させると被走査面上での描画ラインの副走査方向の湾曲(以下、ボウと称する)が顕著になる。このようなボウは、上下の光学系で湾曲方向が異なるために副走査方向に色ずれした画像となってしまう。特許文献1では前段に配置した第1光学系と後段に配置した第2光学系との間の光路折返しミラーの枚数の差を1とすることによりボウの湾曲方向を揃えている。   However, when a pair of lens systems are used for the upper and lower optical systems, it is necessary to make the surface shape symmetrical in the sub-scanning direction. When the beam is incident on the deflector at an inclination angle in the sub-scanning direction, the surface is scanned. The curve in the sub-scanning direction (hereinafter referred to as bow) of the drawing line becomes remarkable. Such a bow results in a color-shifted image in the sub-scanning direction because the upper and lower optical systems have different bending directions. In Patent Document 1, the bow curving direction is aligned by setting the difference in the number of optical path folding mirrors between the first optical system arranged in the preceding stage and the second optical system arranged in the succeeding stage to 1.

一方、主走査方向の光学性能を向上させるために、分離ミラーの後段に配置された第2光学系を光軸に対して主走査方向に非対称な形状にしたり、ボウなど副走査方向の光学性能を向上させるために、副走査方向にも非対称な形状にすることが考えられる。この場合は、設計性能は向上するが、偏向器の回転軸に対して同じ側に配置された二つの第2光学系が偏向器の回転軸に垂直な平面に対して対称形な別部品となるため、加工誤差の量が異なってしまう。   On the other hand, in order to improve the optical performance in the main scanning direction, the second optical system arranged after the separation mirror is made asymmetric in the main scanning direction with respect to the optical axis, or the optical performance in the sub-scanning direction such as bow In order to improve the above, it is conceivable to form an asymmetric shape also in the sub-scanning direction. In this case, the design performance is improved, but the two second optical systems arranged on the same side with respect to the rotation axis of the deflector are symmetrical with respect to a plane perpendicular to the rotation axis of the deflector. Therefore, the amount of processing error is different.

特許文献2では、前記ボウの湾曲を抑えるために第2光学系の副走査方向の偏芯量を規定しているが、ボウの湾曲方向を揃えることまでも想定していない。   In Patent Document 2, the amount of eccentricity in the sub-scanning direction of the second optical system is specified in order to suppress the bowing of the bow, but it is not assumed that the bow curving direction is aligned.

タンデム方式で四つの画像を合成してカラー画像を形成するプリンタでは、ボウなどの副走査方向のずれは“色ずれ”として目立ちやすく、モノクロプリンタ以上に副走査方向に高い精度が要求される。
特開昭64−909号公報 特開2003−57585号公報
In a printer that synthesizes four images in a tandem system to form a color image, a deviation in the sub-scanning direction such as a bow is easily noticeable as a “color shift”, and requires higher accuracy in the sub-scanning direction than a monochrome printer.
Japanese Unexamined Patent Publication No. 64-909 JP 2003-57585 A

そこで、本発明の目的は、低コストなレンズ構成であってもビーム性能を維持でき、被走査面上でのボウの湾曲方向を揃えて色ずれを抑えることのできる光走査装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical scanning apparatus that can maintain beam performance even with a low-cost lens configuration, and can suppress color misregistration by aligning the bow curving direction on the scanned surface. It is in.

以上の目的を達成するため、本発明は、複数の光源と、該光源からのビームを主走査方向に偏向する偏向器と、該偏向器にて偏向されたビームを被走査面上に結像する第1光学系と、該第1光学系を透過したビームをそれぞれの被走査面に分離して導くための光路折返しミラーと、分離された各ビームを被走査面上に結像する第2光学系とを備えた光走査装置において、
偏向器は各光源に対して共通に設置されており、前記第1光学系を構成するレンズは偏向器の左右両側に同じ構成のものが配置され、かつ、レンズの面形状は副走査方向に対称であり、第2光学系を構成するレンズは全ての光路に関して同じ構成であり、かつ、レンズの面形状は主走査方向に対称であり、上側光路と下側光路とで主走査方向に180°反転配置されており、
光路折返しミラーの枚数に関して、前記偏向器に対して一方の下側光路の配置枚数をA、一方の上側光路の配置枚数をB、他方の上側光路の配置枚数をC、他方の下側光路の配置枚数をDとしたとき、以下の条件を満足すること、
第2光学系の前段では、
|A−B|=2×i
|C−D|=2×j
|A−D|=2×m+1
|B−C|=2×n+1
但し、i,j,m,nは0以上の整数
第2光学系の後段では、
|A−B|=2×i+1
|C−D|=2×j+1
|A−D|=2×m
|B−C|=2×n
但し、i,j,m,nは0以上の整数
を特徴とする。
In order to achieve the above object, the present invention provides a plurality of light sources, a deflector for deflecting the beam from the light source in the main scanning direction, and forming an image of the beam deflected by the deflector on the surface to be scanned. A first optical system, an optical path folding mirror for separating and guiding the beam transmitted through the first optical system to each scanned surface, and a second image forming each separated beam on the scanned surface In an optical scanning device comprising an optical system,
The deflector is installed in common for each light source, the lenses constituting the first optical system are arranged on the left and right sides of the deflector, and the surface shape of the lens is in the sub-scanning direction. The lenses constituting the second optical system have the same configuration with respect to all the optical paths, and the surface shape of the lens is symmetric in the main scanning direction. The upper optical path and the lower optical path are 180 in the main scanning direction. ° Inverted arrangement,
With respect to the number of optical path folding mirrors, the number of arrangement of one lower optical path is A, the number of arrangement of one upper optical path is B, the number of arrangement of the other upper optical path is C, and the number of arrangement of the other lower optical path with respect to the deflector. When the number of arranged sheets is D, the following conditions must be satisfied:
In the first stage of the second optical system,
| A−B | = 2 × i
| C−D | = 2 × j
| A−D | = 2 × m + 1
| B−C | = 2 × n + 1
However, i, j, m, and n are integers greater than or equal to 0. In the second stage of the second optical system,
| A−B | = 2 × i + 1
| C−D | = 2 × j + 1
| A−D | = 2 × m
| B-C | = 2 × n
However, i, j, m, and n are characterized by an integer of 0 or more.

本発明に係る光走査装置において、偏向器の左右両側とは、偏向器の回転軸を中心とする左右対称な両側をいう。また、下側光路とは偏向器にて偏向されたビームが前記レンズの光軸を中心として被走査面側を進行する光路をいい、上側光路とは被走査面とは反対側を進行する光路をいう。   In the optical scanning device according to the present invention, the left and right sides of the deflector refer to both sides that are symmetrical about the rotation axis of the deflector. The lower optical path refers to an optical path in which the beam deflected by the deflector travels on the scanned surface side about the optical axis of the lens, and the upper optical path travels on the opposite side of the scanned surface. Say.

本発明に係る光走査装置によれば、光路を分離する折返しミラーの前段に副走査方向に対称な面形状を有するレンズを配置したため、分離された二つの光路で共通のレンズを用いることができ、低コストになる。また、折返しミラーの枚数を、前記条件式を満足するように設定することで、被走査面上での描画ラインのボウの湾曲方向を揃えることができ、副走査方向の色ずれを効果的に抑えることができる。   According to the optical scanning device of the present invention, since the lens having a plane shape symmetrical in the sub-scanning direction is arranged in front of the folding mirror that separates the optical path, a common lens can be used in the two separated optical paths. , Become low cost. In addition, by setting the number of folding mirrors so as to satisfy the conditional expression, it is possible to align the bending direction of the bow of the drawing line on the surface to be scanned, and to effectively prevent color misregistration in the sub-scanning direction. Can be suppressed.

また、各光源から放射されたビームは偏向器へ副走査方向面内で所定の傾斜角度をもって入射することが好ましい。偏向器の厚みを増すことなくビームの分離が可能となる。   Further, it is preferable that the beam emitted from each light source is incident on the deflector with a predetermined inclination angle in the sub-scanning direction plane. The beam can be separated without increasing the thickness of the deflector.

また、光路折返しミラーのうち少なくとも1枚に該ミラーを主走査方向において撓ませることで被走査面上でのボウを補正する手段を設けることが好ましい。設計的に大きなボウが残存した場合であっても補正が可能になる。このようにボウを補正した場合、折返しミラーの枚数に関する前記条件式はボウ(副走査方向の位置ずれの2次成分)補正後の副走査方向の位置ずれ残存分を揃えることになる。   Preferably, at least one of the optical path folding mirrors is provided with means for correcting bow on the surface to be scanned by bending the mirror in the main scanning direction. Even if a large bow remains in design, correction is possible. When the bow is corrected in this way, the conditional expression relating to the number of folding mirrors aligns the remaining amount of misalignment in the sub-scanning direction after correcting bow (secondary component of misalignment in the sub-scanning direction).

以下、本発明に係る光走査装置の実施例について、添付図面を参照して説明する。   Hereinafter, embodiments of an optical scanning device according to the present invention will be described with reference to the accompanying drawings.

(実施例、図1〜図3参照)
本発明に係る光走査装置の一実施例について、図1に立体配置概念を示し、図2に光源部から偏向器までの光路構成を示し、図3に副走査断面を示す。
(See Examples, FIGS. 1-3)
FIG. 1 shows a concept of a three-dimensional arrangement, FIG. 2 shows an optical path configuration from a light source unit to a deflector, and FIG. 3 shows a sub-scan section.

この光走査装置は、タンデム方式の電子写真法による画像形成装置の露光走査ユニットとして構成され、図3に示すように、四つの感光体ドラム50(50Y,50M,50C,50K)上にそれぞれの色の画像を形成するように構成されている。なお、感光体ドラム50上に形成された4色の画像(静電潜像)はトナーにて現像された後、図示しない中間転写ベルト上に1次転写/合成され、記録材上に2次転写される。この種の画像形成プロセスは周知であり、その説明は省略する。   This optical scanning device is configured as an exposure scanning unit of an image forming apparatus based on tandem electrophotography, and has four photosensitive drums 50 (50Y, 50M, 50C, and 50K), as shown in FIG. A color image is formed. The four-color image (electrostatic latent image) formed on the photosensitive drum 50 is developed with toner, and then primary-transferred / combined on an intermediate transfer belt (not shown), and secondary-imaged on a recording material. Transcribed. This type of image forming process is well known and will not be described.

この光走査装置において、図2に示すように、光源部は四つのレーザダイオード1、コリメータレンズ2、シリンダレンズ3、ハーフミラー4から構成され、単一のポリゴンミラー5に入射する。即ち、各レーザダイオード1から放射されたビーム(拡散光)はコリメータレンズ2により平行光とされ、シリンダレンズ3により副走査方向Zにポリゴンミラー5の偏向面上で線状になるように変換される。その後、ビームはハーフミラー4により主走査方向Yでは合成され、ポリゴンミラー5に導かれる。   In this optical scanning device, as shown in FIG. 2, the light source unit is composed of four laser diodes 1, a collimator lens 2, a cylinder lens 3, and a half mirror 4, and enters a single polygon mirror 5. That is, the beam (diffused light) emitted from each laser diode 1 is converted into parallel light by the collimator lens 2 and converted by the cylinder lens 3 into a linear shape on the deflection surface of the polygon mirror 5 in the sub-scanning direction Z. The Thereafter, the beams are combined in the main scanning direction Y by the half mirror 4 and guided to the polygon mirror 5.

それぞれの光源部は、図2(B)に示すように、副走査方向Zにおいてポリゴンミラー5の主走査方向軸Y’に対して所定の傾斜角度θ/2で配置されている。即ち、各ビームはポリゴンミラー5の偏向面に副走査方向Zの面内で傾斜角度θ/2をもって斜入射している。   As shown in FIG. 2B, the respective light source sections are arranged at a predetermined inclination angle θ / 2 with respect to the main scanning direction axis Y ′ of the polygon mirror 5 in the sub-scanning direction Z. That is, each beam is obliquely incident on the deflection surface of the polygon mirror 5 with an inclination angle θ / 2 within the plane in the sub-scanning direction Z.

なお、光源部からのビームは必ずしもポリゴンミラー5に対して斜入射させる必要はないが、斜入射させるとポリゴンミラー5の厚みを増すことなく上側光路及び下側光路へのビームの分離が可能となる。   The beam from the light source unit does not necessarily need to be incident obliquely on the polygon mirror 5, but if it is incident obliquely, the beam can be separated into the upper optical path and the lower optical path without increasing the thickness of the polygon mirror 5. Become.

図1及び図3に示すように、ポリゴンミラー5で主走査方向Yに偏向された各ビームを各感光体ドラム50上に結像するための第1光学系を構成する第1レンズ11及び第2レンズ12と、該レンズ11,12を透過したビームを各感光体ドラム50に導くための複数枚の光路折返しミラー31〜38と、分離されたビームを各感光体ドラム50上に結像するための第2光学系を構成する第3レンズ13(13Y,13M,13C,13K)と、防塵用のウインドウガラス29Y,29M,29C,29Kが配置されている。   As shown in FIGS. 1 and 3, the first lens 11 and the first lens constituting the first optical system for imaging each beam deflected in the main scanning direction Y by the polygon mirror 5 on each photosensitive drum 50. Two lenses 12, a plurality of optical path folding mirrors 31 to 38 for guiding the beams transmitted through the lenses 11 and 12 to the photosensitive drums 50, and the separated beams are imaged on the photosensitive drums 50. The third lens 13 (13Y, 13M, 13C, 13K) constituting the second optical system for this purpose and the dust-proof window glasses 29Y, 29M, 29C, 29K are arranged.

第1及び第2レンズ11,12は、単一のポリゴンミラー5の回転軸5a(図3参照)を中心とする左右両側に光路折返しミラー31〜38の前段に同じ構成のものが配置され、かつ、面形状は副走査方向Zに対称とされている。即ち、図3において上下対称とされている。なお、面形状のデータに関しては後に説明する(表2〜4参照)。   The first and second lenses 11 and 12 having the same configuration are arranged in front of the optical path folding mirrors 31 to 38 on the left and right sides around the rotation axis 5a (see FIG. 3) of the single polygon mirror 5, In addition, the surface shape is symmetric in the sub-scanning direction Z. That is, it is symmetrical in the vertical direction in FIG. The surface shape data will be described later (see Tables 2 to 4).

第3レンズ13Y,13M,13C,13Kは、全て同じ金型によって成形された同一構成のものであり、その第1面(ビーム入射側)及び第2面(ビーム出射側)の面形状は主走査方向Yに対称である。また、レンズ13Y,13Mに関しては主走査方向Yに180°反転配置されている。即ち、図1においてレンズ13Y,13Mは同形のレンズであって端部a,bがそれぞれ主走査方向Yに180°反転された状態で配置されている。この関係はレンズ13K,13Cにおいても同様である。なお、面形状のデータに関しては後に説明する(表5参照)。   The third lenses 13Y, 13M, 13C, and 13K are all of the same configuration formed by the same mold, and the surface shapes of the first surface (beam incident side) and the second surface (beam output side) are mainly. Symmetric in the scanning direction Y. Further, the lenses 13Y and 13M are arranged 180 ° inverted in the main scanning direction Y. That is, in FIG. 1, the lenses 13Y and 13M are identical lenses, and are arranged in a state in which the end portions a and b are inverted 180 ° in the main scanning direction Y, respectively. This relationship is the same in the lenses 13K and 13C. The surface shape data will be described later (see Table 5).

光路折返しミラー31〜38の枚数に関して、感光体ドラム50の並び順に、即ち、図3に示すように、ポリゴンミラー5に対して左下側光路(イエロー露光用)の配置枚数をA、左上側光路(マゼンタ露光用)の配置枚数をB、右上側光路(シアン露光用)の配置枚数をC、右下側光路(ブラック露光用)の配置枚数をDとしたとき、第2光学系(第3レンズ13)の前段及び後段に分けると、以下の枚数で配置されている。   Regarding the number of optical path folding mirrors 31 to 38, the arrangement number of the photosensitive drums 50, that is, as shown in FIG. 3, the arrangement number of the lower left optical path (for yellow exposure) with respect to the polygon mirror 5 is A, and the upper left optical path. Assuming that the arrangement number of B (for magenta exposure) is B, the arrangement number of the upper right optical path (for cyan exposure) is C, and the arrangement number of the lower right optical path (for black exposure) is D, the second optical system (third When divided into the front and rear stages of the lens 13), they are arranged in the following number.

第2光学系の前段において、左側で上下に対応するAとBはそれぞれ2枚で、|A−B|は偶数、右側で上下に対応するCとDはそれぞれ1枚ずつで、|C−D|は偶数である。また、下側で左右に対応するAとDは2枚と1枚で偶数・奇数が異なり、|A−D|は奇数、上側で左右に対応するBとCは2枚と1枚で偶数・奇数が異なり、|B−C|は奇数である。   In the first stage of the second optical system, A and B corresponding to the upper and lower sides on the left side are two pieces, | A−B | is an even number, and C and D corresponding to the upper and lower sides on the right side are one piece and | C− D | is an even number. In addition, A and D corresponding to the left and right on the lower side are even and odd numbers different between two and one, | A−D | is an odd number, and B and C corresponding to the left and right on the upper side are even and two and one.・ Odd numbers are different, and | B−C | is an odd number.

第2光学系の後段において、左側で上下に対応するAとBは0枚と1枚で偶数・奇数が異なり、|A−B|は奇数、右側で上下に対応するCとDは1枚と0枚で偶数・奇数が異なり、|C−D|は奇数である。また、下側で左右に対応するAとDはそれぞれ0枚で、|A−D|は偶数、上側で左右に対応するBとCはそれぞれ1枚で、|B−C|は偶数である。   In the second stage of the second optical system, A and B corresponding to the top and bottom on the left side are 0 and 1, and even and odd numbers are different, | AB | is an odd number, and C and D corresponding to the top and bottom are one on the right side. Even and odd numbers are different between 0 and 0, and | CD | is odd. In addition, A and D corresponding to the left and right on the lower side are each 0, | A−D | is an even number, B and C corresponding to the left and right on the upper side are each one, and | B−C | is an even number. .

(ボウの湾曲方向、図4参照)
図4(A)は第2光学系(第3レンズ13Y,13M,13C,13K)上での走査ラインの副走査方向の湾曲(ボウ51Y,51M,51C,51K)に関する概念図、図4(B)は被走査面(感光体ドラム50Y,50M,50C,50K)上での走査ラインの副走査方向の湾曲(ボウ52Y,52M,52C,52K)に関する概念図である。
(Bow bow direction, see Fig. 4)
FIG. 4A is a conceptual diagram relating to the bending (bows 51Y, 51M, 51C, 51K) of the scanning line in the sub-scanning direction on the second optical system (third lenses 13Y, 13M, 13C, 13K). B) is a conceptual diagram relating to the bending (bows 52Y, 52M, 52C, 52K) of the scanning line on the scanned surface (photosensitive drums 50Y, 50M, 50C, 50K) in the sub-scanning direction.

第2光学系上での走査ラインは上側光路のボウ51M,51Cにおいて右側に湾曲し、下側光路のボウ51Y,51Kにおいて反転した状態で左側に湾曲している。ビームが第3レンズ13M,13Cを透過後に折り返しミラー33,37で反射されるとビームの軌跡が反転し、結果的に感光体ドラム50M,50C上での走査ラインのボウ52M、52Cは折返しミラーが配置されていないボウ52Y,52Kと湾曲方向が一致することになる。このように、折返しミラーの枚数を本願請求項1に記載の条件式を満足するように設定することにより、被走査面上でボウの湾曲方向が一致し、画像の色ずれを効果的に抑えることができる。   The scanning line on the second optical system is curved to the right at the bows 51M and 51C in the upper optical path, and is curved to the left while being inverted at the bows 51Y and 51K in the lower optical path. When the beam passes through the third lenses 13M and 13C and is reflected by the folding mirrors 33 and 37, the trajectory of the beam is reversed. As a result, the bows 52M and 52C of the scanning lines on the photosensitive drums 50M and 50C are turned on. The bows 52Y and 52K in which no is arranged do not coincide with the bending direction. In this way, by setting the number of folding mirrors so as to satisfy the conditional expression described in claim 1 of the present application, the bow bending directions coincide on the surface to be scanned, and color misregistration of the image is effectively suppressed. be able to.

第2光学系上では、ポリゴンミラーに近い側と遠い側で折り返しミラーの枚数が同じであるため、透過するビームの軌跡が反転しており、同じレンズ13をそのまま配置すると光学性能が悪化する。そこで、本実施例では、面形状が主走査方向Yに対称なレンズ13を主走査方向Yに反転配置することで、ビームの軌跡が反転していても光学性能の悪化を解消するようにした。しかし、その状態では、被走査面上ではボウの湾曲方向が揃わずに副走査方向Zの色ずれとなるため、レンズ13の後段にも前記条件式を満足する折返しミラーを配置することにより、結果的に被走査面上でのボウの湾曲方向を一致させ、副走査方向Zの色ずれを極力解消することができる。   On the second optical system, since the number of folding mirrors is the same on the side closer to the polygon mirror and the side far from the polygon mirror, the trajectory of the transmitted beam is reversed. If the same lens 13 is arranged as it is, the optical performance is deteriorated. Therefore, in this embodiment, the lens 13 whose surface shape is symmetric in the main scanning direction Y is reversely arranged in the main scanning direction Y, so that the deterioration of the optical performance is eliminated even if the beam trajectory is reversed. . However, in this state, the bow curve direction is not aligned on the surface to be scanned and the color shift is in the sub-scanning direction Z. Therefore, by arranging a folding mirror that satisfies the conditional expression at the rear stage of the lens 13, As a result, the bow bending directions on the surface to be scanned can be matched, and color misregistration in the sub-scanning direction Z can be eliminated as much as possible.

(ボウの補正、図5参照)
被走査面50上におけるボウは図5に示す補正手段25によって補正することができる。この補正手段25は、折返しミラー30に設けたねじ26を固定フレーム27に対して進退させることにより、折返しミラー30の主走査方向中央部分を矢印A方向に変形させることで該ミラー30の主走査方向Yにおける撓み量を調整する。折返しミラー30はその両端部が固定部39,39にて保持され、かつ、ねじ26の対向側には板ばね28が配置されている。
(Bow correction, see Fig. 5)
The bow on the scanned surface 50 can be corrected by the correcting means 25 shown in FIG. The correction means 25 moves the central portion of the folding mirror 30 in the main scanning direction by moving the screw 26 provided on the folding mirror 30 forward and backward with respect to the fixed frame 27, thereby deforming the main scanning of the mirror 30. The amount of deflection in the direction Y is adjusted. Both ends of the folding mirror 30 are held by fixing portions 39 and 39, and a leaf spring 28 is disposed on the opposite side of the screw 26.

ねじ26によって折返しミラー30の撓み量を調整することで被走査面50上のボウを補正することができる。設計的に大きなボウが残存した場合であってもこの補正手段25によってボウの補正が可能になる。このようにボウを補正した場合、折返しミラーの配置枚数に関する前記条件式はボウ(副走査方向の位置ずれの2次成分)補正後の副走査方向Zの位置ずれ残存分を揃えることになる。   The bow on the scanned surface 50 can be corrected by adjusting the amount of deflection of the folding mirror 30 with the screw 26. Even if a large bow remains in design, the correction means 25 can correct the bow. When the bow is corrected in this way, the conditional expression relating to the number of folding mirrors arranged is to align the remaining positional deviation in the sub-scanning direction Z after correcting bow (secondary component of positional deviation in the sub-scanning direction).

補正手段25は、任意の折返しミラーに設置すればよいが、4色の各光路においてそれぞれ1枚の折返しミラーに対して設置することが好ましい。各光路において複数の折返しミラーのいずれに設置するかは、光路設計上設置しやすいミラーを選択すればよいが、補正感度の高いミラーを選択することが好ましい。即ち、ビームが鈍角に入射するミラーのほうが、ミラーの撓み量に対してボウの変化量が大きくなる。   The correcting means 25 may be installed on any folding mirror, but it is preferable to install it on one folding mirror in each of the four color optical paths. As to which of the plurality of folding mirrors to be installed in each optical path, a mirror that is easy to install may be selected in terms of optical path design, but it is preferable to select a mirror with high correction sensitivity. In other words, the amount of change in the bow becomes larger with respect to the amount of deflection of the mirror in the mirror where the beam is incident at an obtuse angle.

(光学素子の配置、構成データ)
以下に示す表1に、前記実施例での光学素子の配置を示す。また、表2に第1面(第1レンズ11の第1面)の自由曲面係数データ、表3に第2面(第1レンズ11の第2面)の自由曲面係数データ、表4に第4面(第2レンズ12の第2面)の自由曲面係数データ、表5に第5面(第3レンズ13の第1面)の自由曲面係数データをそれぞれ示す。これらの自由曲面は式(1)に示す自由曲面式にて算出される。
(Optical element arrangement and configuration data)
Table 1 below shows the arrangement of the optical elements in the examples. Table 2 shows the free-form surface coefficient data of the first surface (the first surface of the first lens 11), Table 3 shows the free-form surface coefficient data of the second surface (the second surface of the first lens 11), and Table 4 shows the Table 4 shows the free-form surface coefficient data of four surfaces (the second surface of the second lens 12), and Table 5 shows the free-form surface coefficient data of the fifth surface (the first surface of the third lens 13). These free-form surfaces are calculated by the free-form surface equation shown in Equation (1).

そして、表4から分かるように、第4面は副走査方向Zには偶数字の係数しか使用しておらず、第1及び第2レンズ11,12は副走査方向Zに対称な面形状を有している。これにて、上側光路と下側光路とで共通のレンズを使用することができ、低コストになる。   As can be seen from Table 4, the fourth surface uses only even-numbered coefficients in the sub-scanning direction Z, and the first and second lenses 11 and 12 have symmetric surface shapes in the sub-scanning direction Z. Have. Thus, a common lens can be used for the upper optical path and the lower optical path, and the cost is reduced.

Figure 2006323279
Figure 2006323279

Figure 2006323279
Figure 2006323279

Figure 2006323279
Figure 2006323279

Figure 2006323279
Figure 2006323279

Figure 2006323279
Figure 2006323279

Figure 2006323279
Figure 2006323279

(他の実施例)
なお、本発明に係る光走査装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できることは勿論である。
(Other examples)
The optical scanning device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.

本発明に係る光走査装置の一実施例を示す立体配置概念図である。It is a three-dimensional arrangement conceptual diagram showing an example of an optical scanning device according to the present invention. 前記一実施例の光源部から偏向器までの光路構成を示し、(A)はX−Y平面図、(B)はX−Z側面図である。The optical path structure from the light source part of the said Example to a deflector is shown, (A) is a XY top view, (B) is a XZ side view. 前記一実施例の偏向器から被走査面までの光路構成を示すX−Z側面図である。It is a XZ side view which shows the optical path structure from the deflector of the said Example to a to-be-scanned surface. 前記一実施例において、第2光学系上及び被走査面上でのボウの湾曲方向を示す概念図である。In the said Example, it is a conceptual diagram which shows the curve direction of the bow on a 2nd optical system and a to-be-scanned surface. 被走査面上でのボウの補正手段を示し、(A)はX−Z側面図、(B)はX−Y平面図である。FIG. 3 shows a bow correcting means on the surface to be scanned, (A) is an XZ side view, and (B) is an XY plan view.

符号の説明Explanation of symbols

1…レーザダイオード
5…ポリゴンミラー
11,12…第1及び第2レンズ(第1光学系)
13…第3レンズ(第2光学系)
25…補正手段
29…ウインドウガラス
30〜38…折返しミラー
50…感光体ドラム(被走査面)
52Y,52M,52C,52K…被走査面上でのボウ
DESCRIPTION OF SYMBOLS 1 ... Laser diode 5 ... Polygon mirror 11, 12 ... 1st and 2nd lens (1st optical system)
13 ... Third lens (second optical system)
25 ... Correction means 29 ... Window glass 30-38 ... Folding mirror 50 ... Photosensitive drum (scanned surface)
52Y, 52M, 52C, 52K ... Bows on the scanned surface

Claims (4)

複数の光源と、該光源からのビームを主走査方向に偏向する偏向器と、該偏向器にて偏向されたビームを被走査面上に結像する第1光学系と、該第1光学系を透過したビームをそれぞれの被走査面に分離して導くための光路折返しミラーと、分離された各ビームを被走査面上に結像する第2光学系とを備えた光走査装置において、
前記偏向器は各光源に対して共通に設置されており、
前記第1光学系を構成するレンズは前記偏向器の左右両側に同じ構成のものが配置され、かつ、レンズの面形状は副走査方向に対称であり、
前記第2光学系を構成するレンズは全ての光路に関して同じ構成であり、かつ、レンズの面形状は主走査方向に対称であり、上側光路と下側光路とで主走査方向に180°反転配置されており、
前記光路折返しミラーの枚数に関して、前記偏向器に対して一方の下側光路の配置枚数をA、一方の上側光路の配置枚数をB、他方の上側光路の配置枚数をC、他方の下側光路の配置枚数をDとしたとき、以下の条件を満足すること、
第2光学系の前段では、
|A−B|=2×i
|C−D|=2×j
|A−D|=2×m+1
|B−C|=2×n+1
但し、i,j,m,nは0以上の整数
第2光学系の後段では、
|A−B|=2×i+1
|C−D|=2×j+1
|A−D|=2×m
|B−C|=2×n
但し、i,j,m,nは0以上の整数
を特徴とする光走査装置。
A plurality of light sources, a deflector for deflecting a beam from the light source in the main scanning direction, a first optical system for imaging the beam deflected by the deflector on a surface to be scanned, and the first optical system In an optical scanning device comprising: an optical path folding mirror for separating and guiding the beams transmitted through the respective scanned surfaces; and a second optical system for imaging each separated beam on the scanned surface;
The deflector is installed in common for each light source,
The lenses constituting the first optical system are arranged on the left and right sides of the deflector, and the surface shape of the lens is symmetrical in the sub-scanning direction.
The lenses constituting the second optical system have the same configuration for all the optical paths, and the lens surface shape is symmetrical in the main scanning direction, and the upper optical path and the lower optical path are inverted by 180 ° in the main scanning direction. Has been
With respect to the number of optical path folding mirrors, the number of arrangement of one lower optical path is A, the number of arrangement of one upper optical path is B, the number of arrangement of the other upper optical path is C, and the other lower optical path with respect to the deflector. Satisfying the following conditions, where D is the number of sheets arranged:
In the first stage of the second optical system,
| A−B | = 2 × i
| C−D | = 2 × j
| A−D | = 2 × m + 1
| B−C | = 2 × n + 1
However, i, j, m, and n are integers greater than or equal to 0. In the second stage of the second optical system,
| A−B | = 2 × i + 1
| C−D | = 2 × j + 1
| A−D | = 2 × m
| B-C | = 2 × n
However, i, j, m, and n are optical scanning devices characterized by an integer of 0 or more.
前記各光源から放射されたビームは前記偏向器へ副走査方向面内で所定の傾斜角度をもって入射することを特徴とする請求項1に記載の光走査装置。   2. The optical scanning device according to claim 1, wherein the beams emitted from the respective light sources are incident on the deflector at a predetermined inclination angle in a sub-scanning direction plane. 前記光路折返しミラーのうち少なくとも1枚に該ミラーを主走査方向において撓ませることで被走査面上での副走査方向の湾曲を補正する手段を設けたことを特徴とする請求項1又は請求項2に記載の光走査装置。   2. The apparatus according to claim 1, wherein at least one of the optical path folding mirrors is provided with means for correcting a curvature in the sub-scanning direction on the surface to be scanned by bending the mirror in the main scanning direction. 2. The optical scanning device according to 2. 前記補正手段はビームが鈍角に入射するミラーに対して設けられていることを特徴とする請求項3に記載の光走査装置。   4. The optical scanning device according to claim 3, wherein the correction means is provided for a mirror on which a beam is incident at an obtuse angle.
JP2005148196A 2005-05-20 2005-05-20 Optical scanning device Active JP5165189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148196A JP5165189B2 (en) 2005-05-20 2005-05-20 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148196A JP5165189B2 (en) 2005-05-20 2005-05-20 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2006323279A true JP2006323279A (en) 2006-11-30
JP5165189B2 JP5165189B2 (en) 2013-03-21

Family

ID=37542992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148196A Active JP5165189B2 (en) 2005-05-20 2005-05-20 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5165189B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031729A (en) * 2007-07-02 2009-02-12 Ricoh Co Ltd Curvature correction device, optical scanning unit and image forming apparatus
JP2009157154A (en) * 2007-12-27 2009-07-16 Ricoh Co Ltd Optical scanner and image forming device
JP2009294325A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228427A (en) * 2000-02-16 2001-08-24 Fuji Xerox Co Ltd Optical scanner and image forming device
JP2003149573A (en) * 2001-11-16 2003-05-21 Pentax Corp Scanning optical system
JP2005010358A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Optical scanner and tandem type image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228427A (en) * 2000-02-16 2001-08-24 Fuji Xerox Co Ltd Optical scanner and image forming device
JP2003149573A (en) * 2001-11-16 2003-05-21 Pentax Corp Scanning optical system
JP2005010358A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Optical scanner and tandem type image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031729A (en) * 2007-07-02 2009-02-12 Ricoh Co Ltd Curvature correction device, optical scanning unit and image forming apparatus
JP2009157154A (en) * 2007-12-27 2009-07-16 Ricoh Co Ltd Optical scanner and image forming device
JP2009294325A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP5165189B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4340515B2 (en) Optical scanning apparatus and image forming apparatus
JP6047107B2 (en) Optical scanning device and image forming apparatus having the same
JP2009069507A (en) Optical scanner and image forming apparatus
US7126735B1 (en) Optical scanning apparatus
JP5165189B2 (en) Optical scanning device
JP2006259671A (en) Optical scanning device and image forming apparatus
JP2006323278A (en) Optical scanner
US8791974B2 (en) Optical scanning apparatus and image forming apparatus
JP5364969B2 (en) Optical scanning device
JP5157042B2 (en) Correction method for optical scanning device
JP5098136B2 (en) Optical scanning device
US7016092B2 (en) Optical scanning apparatus and image forming apparatus using the same
JP2006323275A (en) Optical scanning device
JP5169337B2 (en) Laser beam scanning device
US20100091082A1 (en) Optical beam scanning apparatus and image forming apparatus
JP4747995B2 (en) Optical scanning device
JP4715418B2 (en) Optical scanning apparatus and image forming apparatus
JP2006064876A (en) Optical scanner and image forming apparatus
US8089675B2 (en) Optical beam scanning apparatus, optical beam scanning method, image forming apparatus and image forming method
JP2010072050A (en) Optical scanner and method of adjusting optical scanner
JP5168864B2 (en) Optical scanning device and image forming device
JP5364970B2 (en) Optical scanning device
JP4546118B2 (en) Optical scanning device and color image forming apparatus using the same
JP2007334203A (en) Optical scanner and image forming apparatus
US7609428B2 (en) Optical beam scanning device, optical beam scanning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350