JP5157042B2 - Correction method for optical scanning device - Google Patents

Correction method for optical scanning device Download PDF

Info

Publication number
JP5157042B2
JP5157042B2 JP2005148194A JP2005148194A JP5157042B2 JP 5157042 B2 JP5157042 B2 JP 5157042B2 JP 2005148194 A JP2005148194 A JP 2005148194A JP 2005148194 A JP2005148194 A JP 2005148194A JP 5157042 B2 JP5157042 B2 JP 5157042B2
Authority
JP
Japan
Prior art keywords
scanning direction
lens
sub
optical
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005148194A
Other languages
Japanese (ja)
Other versions
JP2006323277A (en
Inventor
誠 大木
博喜 木下
良樹 杉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005148194A priority Critical patent/JP5157042B2/en
Publication of JP2006323277A publication Critical patent/JP2006323277A/en
Application granted granted Critical
Publication of JP5157042B2 publication Critical patent/JP5157042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光走査装置、特に、画像データに基づいて変調された複数のビームを単一の偏向器を用いてそれぞれの被走査面上を走査する光走査装置の補正方法に関する。 The present invention relates to an optical scanning device, in particular, each relating to correction method of the optical scanning equipment to scan the scanned surface on a plurality of beams using a single deflector that is modulated based on image data.

近年、フルカラーの複写機やプリンタなどの画像形成装置にあっては、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色に対応して四つの感光体を並置し、各感光体上に形成された各色の画像を中間転写ベルトに転写して合成するタンデム方式が主流となっている。そして、この種のタンデム方式の画像形成装置には、例えば、各感光体上に単一の偏向器(ポリゴンミラー)を用いて4本のビームを同時に走査して画像を描画する光走査装置が搭載されている。   In recent years, in an image forming apparatus such as a full-color copying machine or printer, four photoconductors are juxtaposed corresponding to each color of Y (yellow), M (magenta), C (cyan), and K (black). The tandem method in which images of the respective colors formed on the respective photoconductors are transferred to an intermediate transfer belt and synthesized is the mainstream. In this type of tandem image forming apparatus, for example, there is an optical scanning apparatus that draws an image by simultaneously scanning four beams on each photoconductor using a single deflector (polygon mirror). It is installed.

ところで、この種の光走査装置においては、感光体上の描画ラインが副走査方向に湾曲する(以下、ボウと称する)不具合が不可避的に生じる。ボウの発生はビームを偏向器へ副走査方向に傾斜角度をもって入射させる場合により顕著である。   By the way, in this type of optical scanning device, there is an inevitable problem that the drawing line on the photosensitive member is curved in the sub-scanning direction (hereinafter referred to as bow). The bow is more prominent when the beam is incident on the deflector in the sub-scanning direction with an inclination angle.

ボウが大きいと走査ラインが弓なりになり画像が劣化する。また、タンデム方式で画像を形成する場合には、各色ごとに発生するボウの相対差が大きいと、色ずれとなりさらに画像が劣化する。そのため、副走査方向の位置ずれ量は絶対値を小さく、各色ごとの相対差を小さくする必要がある。しかし、副走査方向の位置ずれを小さくしようとすると、逆にビーム形状が悪化してしまい、画像品質の低下につながる。   If the bow is large, the scanning line becomes bowed and the image deteriorates. Further, when an image is formed by the tandem method, if the relative difference between the bows generated for each color is large, a color shift occurs and the image is further deteriorated. Therefore, it is necessary to make the absolute value of the positional deviation amount in the sub-scanning direction small and to make the relative difference for each color small. However, if an attempt is made to reduce the positional deviation in the sub-scanning direction, the beam shape deteriorates, leading to a reduction in image quality.

そこで、特許文献1には、温度変化に伴うハウジングの線膨張変化によるボウの湾曲方向を揃えるため、折返しミラーを偏向器の左右では偶数・奇数で異なる枚数、上下では偶数・奇数で一致した枚数で構成した光走査装置が開示されている。この装置では、ハウジングの線膨張変化によるボウの湾曲方向を揃えることができるものの、設計的に残存するボウの湾曲方向を4色で揃えることはできないという問題点を有している。   Therefore, in Patent Document 1, in order to align the bow bending direction due to the linear expansion change of the housing due to the temperature change, the number of folding mirrors is different for even and odd numbers on the left and right sides of the deflector, and the number is the same for even and odd numbers on the upper and lower sides. An optical scanning device constituted by the above is disclosed. This device has the problem that although the bow bending direction due to the linear expansion change of the housing can be aligned, the bow bending direction of the remaining design cannot be aligned with four colors.

また、特許文献2には、偏向器の片側のみで偏向させる構成を採用し、副走査方向に関する走査位置のずれ方向を揃える部材を備えた光走査装置が開示されている。但し、この光走査装置は、偏向器の片側のみでビームを偏向するものであり、タンデム方式に適用することは何ら意図しておらず、仮に適用するとしても二つの偏向器を搭載することになるので、コストが大きく上昇してしまう。
特開2002−202472号公報 特開昭64−909号公報
Further, Patent Document 2 discloses an optical scanning device that employs a configuration in which deflection is performed only on one side of a deflector and includes a member that aligns the scanning direction shift direction with respect to the sub-scanning direction. However, this optical scanning device deflects the beam only on one side of the deflector, and is not intended to be applied to the tandem method at all. As a result, the cost increases significantly.
JP 2002-202472 A Japanese Unexamined Patent Publication No. 64-909

そこで、本発明の目的は、タンデム方式で画像を形成する際の各色ごとの副走査方向の位置ずれ高次成分相対差を小さくし、副走査方向の色ずれを抑えて高品位な画像を形成することのできる光走査装置の補正方法を提供することにある。 Accordingly, an object of the present invention is to form a high-quality image by reducing the positional deviation high-order component relative difference in the sub-scanning direction for each color when forming an image by the tandem method, and suppressing the color shift in the sub-scanning direction. and to provide a correction method for an optical scanning equipment that can be.

以上の目的を達成するため、発明は、
複数の光源と、該光源からのビームを主走査方向に偏向する偏向器と、該偏向器にて偏向されたビームを被走査面上に結像するレンズと、該レンズを透過したビームを被走査面に導くための光路折返しミラーとを備えた光走査装置の補正方法において、
前記偏向器は各光源に対して共通に設置されており、
前記レンズは前記偏向器の左右両側に配置され、主走査断面における該レンズの光軸とビーム入射方向との角度である入射開角が互いに異なるように配置された複数の前記光源からのビームであって前記偏向器にて偏向された少なくとも二つのビームの一方が副走査方向の上側面を、他方が下側面をそれぞれ透過し、
上側面及び下側面で少なくとも1面異なる面形状を有し、設計的に以下の式(1)及び以下の式(2)を満足するレンズを用いた、
光走査装置に対して、
前記光路折返しミラーのうち少なくとも1枚に該ミラーを主走査方向において撓ませることで、被走査面上での副走査方向の湾曲を補正する手段により、以下の式(1)の左辺が小さくなるように補正すること、
主走査方向の有効画像長さを±L、そのときの偏向角を±θSとするとき、i=1,2で、
|[K(i,θS)+K(i,−θS)]/2−K(i,0)|>(25.4/W)…(1)
任意の偏向角θにおいて、
|KK(1,θ)−KK(2,θ)|<(25.4/W)/2 …(2)
但し、偏向角θにおける副走査方向の位置ずれ量をK(i,θ)とし、i=1はレンズの上側面を透過する場合、i=2はレンズの下側面を透過する場合とし、K(i,θ)に含まれる3次以上の高次成分の量をKK(i,θ)とすると、
KK(i,θ)=K(i,θ)−[A(i)θ2+B(i)θ+C(i)]
ここで、A(i),B(i),C(i):θ=0,±θNにおいてKK(i,θ)が0になる係数、Nは画像上の任意の値とする、
Wは書込み解像度(dot/inch)、25.4の単位は(mm/inch)である、
を特徴とする。
In order to achieve the above object, the present invention provides:
A plurality of light sources, a deflector for deflecting the beam from the light source in the main scanning direction, a lens for forming an image of the beam deflected by the deflector on the surface to be scanned, and a beam transmitted through the lens In a correction method for an optical scanning device comprising an optical path folding mirror for guiding to a scanning surface,
The deflector is installed in common for each light source,
The lenses are arranged on both the left and right sides of the deflector, and are beams from a plurality of the light sources arranged so that incident open angles, which are angles between the optical axis of the lens and a beam incident direction in the main scanning section, are different from each other. One of at least two beams deflected by the deflector passes through the upper side in the sub-scanning direction and the other passes through the lower side,
A lens that has at least one surface shape different between the upper side surface and the lower side surface and that satisfies the following formula (1) and the following formula (2) in design is used.
For optical scanning device
By bending at least one of the optical path folding mirrors in the main scanning direction, the left side of the following formula (1) is reduced by means for correcting the curvature in the sub scanning direction on the surface to be scanned. To correct,
When the effective image length in the main scanning direction is ± L and the deflection angle at that time is ± θS, i = 1,
| [K (i, θS) + K (i, −θS)] / 2−K (i, 0) |> (25.4 / W) (1)
At any deflection angle θ
| KK (1, θ) −KK (2, θ) | <(25.4 / W) / 2 (2)
However, the amount of displacement in the sub-scanning direction at the deflection angle θ is K (i, θ), i = 1 is transmitted through the upper surface of the lens, i = 2 is transmitted through the lower surface of the lens, and K If the amount of the third or higher order component included in (i, θ) is KK (i, θ),
KK (i, θ) = K (i, θ) − [A (i) θ 2 + B (i) θ + C (i)]
Here, A (i), B (i), C (i): a coefficient at which KK (i, θ) becomes 0 at θ = 0, ± θN, and N is an arbitrary value on the image.
W is the writing resolution (dot / inch), and the unit of 25.4 is (mm / inch).
It is characterized by.

本発明に係る光走査装置の補正方法において、偏向器の左右両側とは、偏向器の回転軸を中心とする左右対称な両側をいう。また、下側光路とは偏向器にて変更されたビームが前記レンズの光軸を中心として被走査面側を進行する光路をいい、上側光路とは被走査面とは反対側を進行する光路をいう。 In the correction method of the optical scanning equipment according to the present invention, the left and right sides of the deflector means a symmetrical sides about the axis of rotation of the deflector. The lower optical path is an optical path in which the beam changed by the deflector travels on the scanned surface side about the optical axis of the lens, and the upper optical path travels on the opposite side of the scanned surface. Say.

前記(1)は副走査方向の位置ずれの2次成分(ボウ)を表しており、この式(1)を満足することは副走査方向の位置ずれの2次成分が大きいことを意味している。また、(2)は光路ごと(各色ごと)の副走査方向の位置ずれの3次以上の高次成分相対差を表しており、この(2)を満足することは高次成分相対差が小さいことを表している。 The equation (1) represents the secondary component (bow) of the positional deviation in the sub-scanning direction, and satisfying this equation (1) means that the secondary component of the positional deviation in the sub-scanning direction is large. ing. Equation (2) represents the third-order or higher-order relative component difference of the positional deviation in the sub-scanning direction for each optical path (each color), and satisfying this equation (2) indicates that the higher-order component relative difference is satisfied. Is small.

副走査方向の位置ずれの2次成分を無理に小さくしようとすると、他の収差が悪化してかえって画像品質の低下を招来する。そこで、本発明では、(2)を満足させることで各光路ごとの高次成分相対差を小さくし、副走査方向の色ずれを抑えて高品位な画像を形成する。 If the secondary component of the positional deviation in the sub-scanning direction is forcibly reduced, other aberrations are deteriorated, leading to a decrease in image quality. Therefore, in the present invention, by satisfying the expression (2), the high-order component relative difference for each optical path is reduced, and color deviation in the sub-scanning direction is suppressed to form a high-quality image.

本発明に係る光走査装置の補正方法においては、光路折返しミラーのうち少なくとも1枚に該ミラーを主走査方向において撓ませることで、式(1)の左辺により定義される被走査面上での副走査方向の湾曲を小さくする補正手段を設けたため、設計的に残存したボウの補正が可能になる。 In the correction method of the optical scanning equipment according to the present invention, the mirror in at least one of the optical path folding mirror that deflects in the main scanning direction, on the scanning surface defined by the left-hand side of the formula (1) Since the correction means for reducing the curvature in the sub-scanning direction is provided, it is possible to correct the bow remaining by design.

また、レンズを、偏向器に近い第1レンズ及び該第1レンズの後段に配置された第2レンズにて構成し、該第2レンズの被走査面側の面が副走査方向の上側及び下側で少なくとも1面異なる面形状を有し、第2レンズと被走査面との間に配置された折返しミラーの枚数に関して、上側を透過する光路の配置枚数をP、下側を透過する光路の配置枚数をQとしたとき、以下の式(3)を満足するように設定することができる。
|P−Q|=2j+1 …(3)
但し、jは0以上の整数
Further, the lens is composed of a first lens close to the deflector and a second lens disposed downstream of the first lens, and the surface of the second lens on the surface to be scanned is above and below in the sub-scanning direction. With respect to the number of folding mirrors having at least one different surface shape on the side and disposed between the second lens and the surface to be scanned, the number of optical paths arranged on the upper side is P, and the number of the optical paths transmitting on the lower side is When the number of arranged sheets is Q, it can be set so as to satisfy the following expression (3).
| PQ | = 2j + 1 (3)
Where j is an integer greater than or equal to 0

このように、第2レンズの被走査面側の面が副走査方向の上側及び下側で少なくとも1面異なる面形状を有することにより、少ないレンズ枚数で済む。   As described above, since the surface of the second lens on the surface to be scanned has a surface shape that differs by at least one surface on the upper side and the lower side in the sub-scanning direction, the number of lenses can be reduced.

そして、レンズの上側を透過するビームと下側を透過するビームとで副走査方向の位置ずれの高次成分は光路の主走査断面に対して対称な形状を有している。前記式(3)を満足することにより、上側光路と下側光路とで反射回数が1回ずれることになり、ミラーで折り返された後の被走査面上での描画ラインのボウの湾曲方向を揃えることができ、色ずれを効果的に抑えることができる。   The high-order component of the positional deviation in the sub-scanning direction between the beam passing through the upper side of the lens and the beam passing through the lower side has a symmetrical shape with respect to the main scanning section of the optical path. By satisfying the expression (3), the number of reflections in the upper optical path and the lower optical path is shifted by one, and the bow curve direction of the drawing line on the surface to be scanned after being folded by the mirror is changed. The color misregistration can be effectively suppressed.

また、レンズの少なくとも1面が、副走査方向の上側を透過する光路領域及び下側を透過する光路領域でそれぞれ独立した収差補正力を有することにより、高次成分相対差を容易に低減することができる。同様の効果は、走査レンズの少なくとも1面において、副走査方向の上側を透過する光路領域及び下側を透過する光路領域で面を定義する式の係数を異ならせることによっても達成できる。   Further, at least one surface of the lens has an independent aberration correction power in the optical path region that transmits the upper side in the sub-scanning direction and the optical path region that transmits the lower side, thereby easily reducing the high-order component relative difference. Can do. A similar effect can also be achieved by making the coefficients of the equations defining the surfaces different in the optical path region transmitting the upper side in the sub-scanning direction and the optical path region transmitting the lower side in at least one surface of the scanning lens.

以下、本発明に係る光走査装置の補正方法の実施例について、添付図面を参照して説明する。 Hereinafter, an embodiment of the optical scanning equipment of the correction method according to the present invention will be described with reference to the accompanying drawings.

(第1及び第2実施例)
本発明に係る光走査装置の第1実施例について、図1に立体配置概念を示し、図2に光源部を示し、図9に副走査断面を示す。また、図10に第2実施例の副走査断面を示す。
(First and second embodiments)
As for the first embodiment of the optical scanning device according to the present invention, FIG. 1 shows a three-dimensional arrangement concept, FIG. 2 shows a light source section, and FIG. 9 shows a sub-scanning section. FIG. 10 shows a sub-scan section of the second embodiment.

この光走査装置は、タンデム方式の電子写真法による画像形成装置の露光走査ユニットとして構成され、図1に示すように、四つの感光体ドラム50(50Y,50M,50C,50K)上にそれぞれの色の画像を形成するように構成されている。なお、感光体ドラム50上に形成された4色の画像(静電潜像)はトナーにて現像された後、図示しない中間転写ベルト上に1次転写/合成され、記録材上に2次転写される。この種の画像形成プロセスは周知であり、その説明は省略する。   This optical scanning device is configured as an exposure scanning unit of an image forming apparatus based on tandem electrophotography, and has four photosensitive drums 50 (50Y, 50M, 50C, and 50K), as shown in FIG. A color image is formed. The four-color image (electrostatic latent image) formed on the photosensitive drum 50 is developed with toner, and then primary-transferred / combined on an intermediate transfer belt (not shown), and secondary-imaged on a recording material. Transcribed. This type of image forming process is well known and will not be described.

この光走査装置において、図2に示すように、光源部は四つのレーザダイオード1(1M,1Y,1C,1K)からなり、図示しないコリメータレンズ、シリンダレンズ、ハーフミラーを備えている。各レーザダイオード1から放射されたビームはポリゴンミラー5の偏向面に入射する。この入射ビームは図示しないシリンダレンズによって副走査方向Zにポリゴンミラー5の偏向面上で線状に変換されている。   In this optical scanning device, as shown in FIG. 2, the light source section includes four laser diodes 1 (1M, 1Y, 1C, and 1K), and includes a collimator lens, a cylinder lens, and a half mirror (not shown). The beam emitted from each laser diode 1 enters the deflection surface of the polygon mirror 5. This incident beam is converted into a linear shape on the deflection surface of the polygon mirror 5 in the sub-scanning direction Z by a cylinder lens (not shown).

ポリゴンミラー5に対して、右上側のレーザダイオード1Cのビームが偏向面に入射開角90°、右下側のレーザダイオード1Kのビームが入射開角80°、左上側のレーザダイオード1Mのビームが入射開角80°、左下側のレーザダイオード1Yのビームが入射開角90°でそれぞれ偏向面に斜入射する。   With respect to the polygon mirror 5, the beam of the upper right laser diode 1C is incident on the deflection surface at an incident opening angle of 90 °, the beam of the lower right laser diode 1K is incident at an opening angle of 80 °, and the beam of the upper left laser diode 1M The beam of the lower left laser diode 1Y is incident obliquely on the deflecting surface at an incident open angle of 80 ° and an incident open angle of 90 °.

なお、光源部からのビームは必ずしもポリゴンミラー5に対して斜入射させる必要はないが、斜入射させるとポリゴンミラー5の厚みを増すことなく上側光路及び下側光路へのビームの分離が可能となる。   The beam from the light source unit does not necessarily need to be incident obliquely on the polygon mirror 5, but if it is incident obliquely, the beam can be separated into the upper optical path and the lower optical path without increasing the thickness of the polygon mirror 5. Become.

図1及び図9に示すように、ポリゴンミラー5で主走査方向Yに偏向された各ビームを各感光体ドラム50上に結像するための第1レンズ11及び第2レンズ12と、該レンズ11,12を透過したビームを各感光体ドラム50に導くための複数枚の光路折返しミラー31〜38と、防塵用のウインドウガラス29Y,29M,29C,29Kが配置されている。   As shown in FIGS. 1 and 9, a first lens 11 and a second lens 12 for imaging each beam deflected in the main scanning direction Y by the polygon mirror 5 on each photosensitive drum 50, and the lens A plurality of optical path folding mirrors 31 to 38 for guiding the beams transmitted through 11 and 12 to each photosensitive drum 50 and dust-proof window glasses 29Y, 29M, 29C, and 29K are arranged.

第1及び第2レンズ11,12は、単一のポリゴンミラー5の回転軸5a(図9及び図10参照)を中心とする左右両側に光路折返しミラー31〜38の前段に配置されている。第2レンズ12の出射側の面形状は、図3に示すように、副走査方向Zの上側12a及び下側12bで異なる面形状とされている。即ち、第2レンズ12の上側12aを透過する光路領域と下側12bを透過する光路領域とで面を定義する式の係数が異なり、それぞれの面12a,12bで独立した収差補正力を有している。なお、面形状のデータに関しては後に説明する(表2〜5参照)。   The first and second lenses 11 and 12 are arranged in front of the optical path folding mirrors 31 to 38 on the left and right sides with the rotation axis 5a (see FIGS. 9 and 10) of the single polygon mirror 5 as the center. As shown in FIG. 3, the surface shape on the emission side of the second lens 12 is a surface shape different between the upper side 12 a and the lower side 12 b in the sub-scanning direction Z. That is, the coefficients of the equations that define the surface are different between the optical path region that transmits the upper side 12a of the second lens 12 and the optical path region that transmits the lower side 12b, and each of the surfaces 12a and 12b has independent aberration correction power. ing. The surface shape data will be described later (see Tables 2 to 5).

図4に本第1実施例における折返しミラー31〜38を図示しない状態での展開光路を示し、図4(A)は主走査断面、図4(B)は副走査断面である。ここで、図5に示すように、第1及び第2レンズ11,12の光軸Pとポリゴンミラー5で反射されたビームのなす角度を偏向角θと定義する。   FIG. 4 shows a developed optical path in a state where the folding mirrors 31 to 38 in the first embodiment are not shown, FIG. 4A is a main scanning section, and FIG. 4B is a sub-scanning section. Here, as shown in FIG. 5, an angle formed by the optical axis P of the first and second lenses 11 and 12 and the beam reflected by the polygon mirror 5 is defined as a deflection angle θ.

ところで、ポリゴンミラー5で偏向されたビームによる感光体ドラム50上での描画ラインは、図6に示すように、副走査方向Zに対して湾曲した位置ずれを生じる特性を有している。図6では横軸を主走査方向Yとして表しており、この主走査方向Yを偏向角θで表した位置ずれを図7及び図8に示す。   By the way, the drawing line on the photosensitive drum 50 by the beam deflected by the polygon mirror 5 has a characteristic of causing a positional deviation curved with respect to the sub-scanning direction Z as shown in FIG. In FIG. 6, the horizontal axis is represented as the main scanning direction Y. FIGS. 7 and 8 show the positional deviation in which the main scanning direction Y is represented by the deflection angle θ.

本第1実施例において、ポリゴンミラー5は4本のビームに対して共通に設置されており、第1及び第2レンズ11,12はポリゴンミラー5の左右両側に配置され、副走査方向Zの上側及び下側で異なる面形状を有している。このような構成において、偏向角をθとし、設計上のθにおける副走査方向Zの位置ずれ量をK(i,θ)とする。ビームがレンズ11,12の上側面を透過する場合をi=1、下側面を透過する場合をi=2とし、K(i,θ)に含まれる3次以上の高次成分の量をKK(i,θ)とする。   In the first embodiment, the polygon mirror 5 is installed in common for the four beams, and the first and second lenses 11 and 12 are arranged on both the left and right sides of the polygon mirror 5 and are arranged in the sub-scanning direction Z. The upper and lower sides have different surface shapes. In such a configuration, the deflection angle is θ, and the positional deviation amount in the sub-scanning direction Z at the designed θ is K (i, θ). When the beam is transmitted through the upper side surfaces of the lenses 11 and 12, i = 1, and when the beam is transmitted through the lower side surface, i = 2, and the amount of the third or higher order component included in K (i, θ) is KK. Let (i, θ).

この場合、高次成分KK(i,θ)は以下の式で示される。
KK(i,θ)=K(i,θ)−[A(i)θ2+B(i)θ+C(i)]
ここで、A(i),B(i),C(i):θ=0,±θNにおいてKK(i,θ)が0になる係数、Nは画像上の任意の値とする、
In this case, the higher-order component KK (i, θ) is expressed by the following equation.
KK (i, θ) = K (i, θ) − [A (i) θ 2 + B (i) θ + C (i)]
Here, A (i), B (i), C (i): a coefficient at which KK (i, θ) becomes 0 at θ = 0, ± θN, and N is an arbitrary value on the image.

主走査方向Yの有効画像長さを±L、そのときの偏向角を±θSとするとき、i=1,2の少なくともいずれか一方で、以下の条件式(1)を満足することが好ましい。
|[K(i,θS)+K(i,−θS)]/2−K(i,0)|>(25.4/W) …(1)
When the effective image length in the main scanning direction Y is ± L and the deflection angle at that time is ± θS, it is preferable that at least one of i = 1 and 2 satisfies the following conditional expression (1). .
| [K (i, θS) + K (i, −θS)] / 2−K (i, 0) |> (25.4 / W) (1)

さらに、任意の偏向角θにおいて、以下の条件式(2)を満足することが好ましい。
|KK(1,θ)−KK(2,θ)|<(25.4/W)/2 …(2)
Wは書込み解像度(dot/inch)、25.4の単位は(mm/inch)である。従って条件式(1),(2)の右辺の単位は(mm/dot)となり、1dotが何mmであるかを表している。
Furthermore, it is preferable that the following conditional expression (2) is satisfied at an arbitrary deflection angle θ.
| KK (1, θ) −KK (2, θ) | <(25.4 / W) / 2 (2)
W is the writing resolution (dot / inch), and the unit of 25.4 is (mm / inch). Therefore, the unit of the right side of the conditional expressions (1) and (2) is (mm / dot), and represents how many mm is 1 dot.

前記条件式(1)は副走査方向Zの位置ずれの2次成分(位置ずれ)を表しており、この式(1)を満足することは副走査方向Zの位置ずれの2次成分が大きいことを意味している。また、前記条件式(2)は光路ごと(各色ごと)の副走査方向Zの位置ずれの3次以上の高次成分相対差を表しており、この条件式(2)を満足することは高次成分相対差が小さいことを表している。   The conditional expression (1) represents the secondary component (positional deviation) of the positional deviation in the sub-scanning direction Z, and satisfying this formula (1) has a large secondary component of the positional deviation in the sub-scanning direction Z. It means that. Further, the conditional expression (2) represents a third-order or higher-order relative component difference in positional deviation in the sub-scanning direction Z for each optical path (each color), and satisfying this conditional expression (2) is high. It represents that the relative difference of the next component is small.

副走査方向Zの位置ずれの2次成分を無理に小さくしようとすると、他の収差が悪化してかえって画像品質の低下を招来する。それに代えて、条件式(2)を満足させることで各光路ごとの高次成分相対差を小さくし、副走査方向の色ずれを抑えて高品位な画像を形成することができる。   If the secondary component of the positional deviation in the sub-scanning direction Z is forcibly reduced, other aberrations are deteriorated, leading to a reduction in image quality. Instead, by satisfying the conditional expression (2), it is possible to reduce the high-order component relative difference for each optical path, and to suppress the color shift in the sub-scanning direction and form a high-quality image.

図7は偏向角θと副走査方向の位置ずれ量K(i,θ)との関係を示し、設計状態で下側ビーム(i=2)の副走査方向の位置ずれ量が25.4/Wを越えている。一方、図8は偏向角θと副走査方向の位置ずれ量の高次成分KK(i,θ)との関係を示している。副走査方向の位置ずれ量K(i,θ)から3点補正分(3点を結ぶ2次曲線)を除いたものが高次成分KK(i,θ)である。設計状態で上側ビーム(i=1)と下側ビーム(i=2)の副走査方向の位置ずれ量高次成分の差が(25.4/W)/2を下回っている。図7及び図8ではポリゴンミラー5に対して右側のレンズ11,12の設計性能を示しているので、i=1の入射開角は90°、i=2の入射開角は80°である。   FIG. 7 shows the relationship between the deflection angle θ and the positional deviation amount K (i, θ) in the sub-scanning direction. In the designed state, the positional deviation amount in the sub-scanning direction of the lower beam (i = 2) is 25.4 /. W is exceeded. On the other hand, FIG. 8 shows the relationship between the deflection angle θ and the higher-order component KK (i, θ) of the positional deviation amount in the sub-scanning direction. The high-order component KK (i, θ) is obtained by removing the three-point correction (second-order curve connecting the three points) from the positional deviation amount K (i, θ) in the sub-scanning direction. In the designed state, the difference between the higher-order components of the positional deviation amount in the sub scanning direction between the upper beam (i = 1) and the lower beam (i = 2) is less than (25.4 / W) / 2. 7 and 8 show the design performance of the lenses 11 and 12 on the right side with respect to the polygon mirror 5, the incident opening angle when i = 1 is 90 °, and the incident opening angle when i = 2 is 80 °. .

(折返しミラーの配置枚数)
光路折返しミラー31〜38の枚数に関しては、図9に示すように、ポリゴンミラー5に対して一方の上側光路(マゼンタ露光用)の配置枚数は3、一方の下側光路(イエロー露光用)の配置枚数は2、他方の下側光路(ブラック露光用)の配置枚数は1、他方の上側光路(シアン露光用)の配置枚数は2とされている。
(Number of folding mirrors)
As for the number of the optical path folding mirrors 31 to 38, as shown in FIG. 9, the number of arranged one upper optical path (for magenta exposure) is 3, and one lower optical path (for yellow exposure) with respect to the polygon mirror 5. The number of arrangement is 2, the number of arrangement of the other lower optical path (for black exposure) is 1, and the number of arrangement of the other upper optical path (for cyan exposure) is 2.

即ち、折返しミラーの配置枚数は、ポリゴンミラー5の左側で上下で対応する光路では3枚と2枚で偶数・奇数が異なり、右側で上下で対応する光路では2枚と1枚で偶数・奇数が異なっている。また、第1及び第2レンズ11,12の上側を透過する光路では3枚と2枚で偶数・奇数が異なり、下側を透過する光路では2枚と1枚で偶数・奇数が異なっている。   In other words, the number of folding mirrors arranged in the upper and lower optical paths on the left side of the polygon mirror 5 is different even and odd in the three and two optical paths, and the even and odd numbers are in the right and upper corresponding optical paths on the right and left. Are different. Further, in the optical path that transmits the upper side of the first and second lenses 11 and 12, the even number and the odd number are different between three and two, and in the optical path that transmits the lower side, the even number and the odd number are different between two and one. .

一方、第2実施例においては、図10に示すように、光路折返しミラー41〜46の枚数に関して、ポリゴンミラー5に対して一方の上側光路(イエロー露光用)の配置枚数は1、一方の下側光路(マゼンタ露光用)の配置枚数は2、他方の下側光路(ブラック露光用)の配置枚数は1、他方の上側光路(シアン露光用)の配置枚数は2とされている。   On the other hand, in the second embodiment, as shown in FIG. 10, with respect to the number of the optical path folding mirrors 41 to 46, the arrangement number of one upper optical path (for yellow exposure) is 1 with respect to the polygon mirror 5, The number of side optical paths (for magenta exposure) is 2, the number of the other lower optical path (for black exposure) is 1, and the number of the other upper optical path (for cyan exposure) is 2.

即ち、第2実施例での折返しミラーの配置枚数は、ポリゴンミラー5の左側で上下で対応する光路では1枚と2枚で偶数・奇数が異なり、右側で上下で対応する光路では2枚と1枚で偶数・奇数が異なっている。また、第1及び第2レンズ11,12の上側を透過する光路では1枚と2枚で偶数・奇数が異なり、下側を透過する光路では2枚と1枚で偶数・奇数が異なっている。   In other words, the number of folding mirrors in the second embodiment is such that the even and odd numbers of the optical paths corresponding to the upper and lower sides on the left side of the polygon mirror 5 are different even and odd, and two on the right and the corresponding optical paths. Even number and odd number are different in one sheet. In addition, even and odd numbers are different between one and two optical paths through the upper side of the first and second lenses 11 and 12, and even and odd numbers are different between two and one optical path through the lower side. .

なお、図10に示す第2実施例において他の構成は図1〜図9に示した第1実施例と同様であり、同じ部材には同じ符号を付し、重複した説明は省略する。 10 is the same as that of the first embodiment shown in FIGS . 1 to 9 , the same members are denoted by the same reference numerals, and a duplicate description is omitted.

ところで、第2レンズ12と被走査面(感光体ドラム50)との間に配置された折返しミラーの枚数に関して、上側を透過する光路の配置枚数をP、下側を透過する光路の配置枚数をQとしたとき、以下の式(3)を満足するように設定することが好ましい。
|P−Q|=2j+1 …(3)
但し、jは0以上の整数
By the way, regarding the number of folding mirrors disposed between the second lens 12 and the surface to be scanned (photosensitive drum 50), the number of optical paths disposed on the upper side is P, and the number of disposed optical paths is illustrated on the lower side. When Q is set, it is preferable to set so as to satisfy the following expression (3).
| PQ | = 2j + 1 (3)
Where j is an integer greater than or equal to 0

第1及び第2レンズ11,12の上側を透過するビームと下側を透過するビームとで副走査方向Zの位置ずれの高次成分は光路の主走査断面に対して対称な形状を有している。そして、前記式(3)を満足することにより、上側光路と下側光路とで反射回数が1回ずれることになり、ミラーで折り返された後の被走査面上での描画ラインのボウの湾曲方向を揃えることができ、色ずれを効果的に抑えることができる。   The higher-order component of the positional deviation in the sub-scanning direction Z is symmetrical with respect to the main-scan section of the optical path between the beam that passes through the upper side of the first and second lenses 11 and 12 and the beam that passes through the lower side. ing. When the expression (3) is satisfied, the number of reflections is shifted by one between the upper optical path and the lower optical path, and the bow of the drawing line on the surface to be scanned after being folded by the mirror is curved. The directions can be aligned, and color misregistration can be effectively suppressed.

第1実施例における折返しミラー31〜38の配置枚数を前記式(3)に当てはめると、ポリゴンミラー5の左側ではP=2、Q=3、右側ではP=2、Q=1であり、|P−Q|は奇数となって式(3)を満足している。また、第2実施例における折返しミラー41〜46の配置枚数を前記式(3)に当てはめると、ポリゴンミラー5の左側ではP=1、Q=2、右側ではP=2、Q=1であり、|P−Q|は奇数となって式(3)を満足している。   When the arrangement number of the folding mirrors 31 to 38 in the first embodiment is applied to the equation (3), P = 2 and Q = 3 on the left side of the polygon mirror 5, P = 2 and Q = 1 on the right side, PQ | is an odd number and satisfies the expression (3). Further, when the number of the folding mirrors 41 to 46 in the second embodiment is applied to the equation (3), P = 1 and Q = 2 on the left side of the polygon mirror 5, and P = 2 and Q = 1 on the right side. , | PQ | is an odd number and satisfies Expression (3).

(ボウの補正)
被走査面50上における副走査方向の位置ずれは図11に示す補正手段25によって補正することができる。この補正手段25は、折返しミラー30に設けたねじ26を固定フレーム27に対して進退させることにより、折返しミラー30の主走査方向中央部分を矢印A方向に変形させることで該ミラー30の主走査方向Yにおける撓み量を調整する。折返しミラー30はその両端部が固定部39,39にて保持され、かつ、ねじ26の対向側には板ばね28が配置されている。
(Bow correction)
The positional deviation in the sub-scanning direction on the surface to be scanned 50 can be corrected by the correcting means 25 shown in FIG. The correction means 25 moves the central portion of the folding mirror 30 in the main scanning direction by moving the screw 26 provided on the folding mirror 30 forward and backward with respect to the fixed frame 27, thereby deforming the main scanning of the mirror 30. The amount of bending in the direction Y is adjusted. Both ends of the folding mirror 30 are held by fixed portions 39 and 39, and a leaf spring 28 is disposed on the opposite side of the screw 26.

ねじ26によって折返しミラー30の撓み量を調整することで被走査面50上の位置ずれを補正することができる。設計的に大きな位置ずれが残存した場合であってもこの補正手段25によってその補正が可能になる。このように位置ずれを補正した場合、折返しミラーの配置枚数に関する前記式(3)は副走査方向の位置ずれの2次成分を補正後の副走査方向Zの位置ずれ残存分を揃えることになる。   By adjusting the deflection amount of the folding mirror 30 with the screw 26, it is possible to correct the positional deviation on the scanned surface 50. Even when a large misalignment remains in design, the correction means 25 can correct it. When the misregistration is corrected in this way, the equation (3) relating to the number of folding mirrors arranged is to align the residual misalignment in the subscanning direction Z after correcting the secondary component of the misregistration in the subscanning direction. .

補正手段25は、任意の折返しミラーに設置すればよいが、4色の各光路においてそれぞれ1枚の折返しミラーに対して設置することが好ましい。各光路において複数の折返しミラーのいずれに設置するかは、光路設計上設置しやすいミラーを選択すればよいが、補正感度の高いミラーを選択することが好ましい。即ち、ビームが鈍角に入射するミラーのほうが、ミラーの撓み量に対して位置ずれの変化量が大きくなる。   The correcting means 25 may be installed on any folding mirror, but it is preferable to install it on one folding mirror in each of the four color optical paths. As to which of the plurality of folding mirrors to be installed in each optical path, a mirror that is easy to install may be selected in terms of optical path design, but it is preferable to select a mirror with high correction sensitivity. In other words, the amount of change in the positional deviation is greater with respect to the amount of deflection of the mirror in the mirror where the beam is incident at an obtuse angle.

(光学素子の配置、構成データ)
以下に示す表1に、前記第1及び第2実施例での光学素子の配置を示す。また、表2〜5に第1及び第2レンズ11,12の自由曲面係数データを示す。これらの自由曲面は式(4)に示す自由曲面式にて算出される。
(Optical element arrangement and configuration data)
Table 1 below shows the arrangement of the optical elements in the first and second examples. Tables 2 to 5 show the free-form surface coefficient data of the first and second lenses 11 and 12. These free-form surfaces are calculated by the free-form surface equation shown in Equation (4).

Figure 0005157042
Figure 0005157042

Figure 0005157042
Figure 0005157042

Figure 0005157042
Figure 0005157042

Figure 0005157042
Figure 0005157042

Figure 0005157042
Figure 0005157042

Figure 0005157042
Figure 0005157042

(他の実施例)
なお、本発明に係る光走査装置の補正方法は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できることは勿論である。
(Other examples)
The correction method of the optical scanning equipment according to the present invention is not limited to the above embodiments, it is of course possible change in various ways within the scope of the invention.

本発明に係る光走査装置の第1実施例を示す立体配置概念図である。It is a three-dimensional arrangement conceptual diagram showing a first example of an optical scanning device according to the present invention. 前記第1実施例の光源部の光路構成を示し、(A)はX−Y平面図、(B)はX−Z側面図である。The optical path structure of the light source part of the said 1st Example is shown, (A) is a XY top view, (B) is a XZ side view. 第2レンズを示す斜視図である。It is a perspective view which shows a 2nd lens. 前記第1実施例の偏向器から被走査面までの展開光路を示し、(A)はX−Y平面図、(B)はX−Z側面図である。The developed optical path from the deflector of the first embodiment to the surface to be scanned is shown, (A) is an XY plan view, and (B) is an XZ side view. 偏向角を示すX−Y平面図である。It is an XY plan view showing a deflection angle. ボウの発生を示す斜視図である。It is a perspective view which shows generation | occurrence | production of a bow. 偏向角と位置ずれ量K(i,θ)との関係を示すグラフである。It is a graph which shows the relationship between a deflection angle and position shift amount K (i, (theta)). 偏向角と位置ずれ量の高次成分KK(i,θ)との関係を示すグラフである。It is a graph which shows the relationship between a deflection angle and the higher-order component KK (i, (theta)) of positional offset amount. 前記第1実施例の偏向器から被走査面までの光路構成を示すX−Z側面図である。FIG. 3 is an XZ side view showing an optical path configuration from the deflector of the first embodiment to the surface to be scanned. 本発明に係る光走査装置の第2実施例において、偏向器から被走査面までの光路構成を示すX−Z側面図である。FIG. 6 is an XZ side view showing an optical path configuration from a deflector to a scanned surface in the second embodiment of the optical scanning device according to the present invention. 被走査面上でのボウの補正手段を示し、(A)はX−Z側面図、(B)はX−Y平面図である。FIG. 3 shows a bow correcting means on the surface to be scanned, (A) is an XZ side view, and (B) is an XY plan view.

符号の説明Explanation of symbols

1…レーザダイオード
5…ポリゴンミラー
11,12…レンズ
25…補正手段
29…ウインドウガラス
30〜38…折返しミラー
41〜46…折返しミラー
50…感光体ドラム(被走査面)
DESCRIPTION OF SYMBOLS 1 ... Laser diode 5 ... Polygon mirror 11, 12 ... Lens 25 ... Correction | amendment means 29 ... Window glass 30-38 ... Folding mirror 41-46 ... Folding mirror 50 ... Photosensitive drum (scanned surface)

Claims (1)

複数の光源と、該光源からのビームを主走査方向に偏向する偏向器と、該偏向器にて偏向されたビームを被走査面上に結像するレンズと、該レンズを透過したビームを被走査面に導くための光路折返しミラーとを備えた光走査装置の補正方法において、
前記偏向器は各光源に対して共通に設置されており、
前記レンズは前記偏向器の左右両側に配置され、主走査断面における該レンズの光軸とビーム入射方向との角度である入射開角が互いに異なるように配置された複数の前記光源からのビームであって前記偏向器にて偏向された少なくとも二つのビームの一方が副走査方向の上側面を、他方が下側面をそれぞれ透過し、
上側面及び下側面で少なくとも1面異なる面形状を有し、設計的に以下の式(1)及び以下の式(2)を満足するレンズを用いた、
光走査装置に対して、
前記光路折返しミラーのうち少なくとも1枚に該ミラーを主走査方向において撓ませることで、被走査面上での副走査方向の湾曲を補正する手段により、以下の式(1)の左辺が小さくなるように補正すること、
主走査方向の有効画像長さを±L、そのときの偏向角を±θSとするとき、i=1,2で、
|[K(i,θS)+K(i,−θS)]/2−K(i,0)|>(25.4/W)…(1)
任意の偏向角θにおいて、
|KK(1,θ)−KK(2,θ)|<(25.4/W)/2 …(2)
但し、偏向角θにおける副走査方向の位置ずれ量をK(i,θ)とし、i=1はレンズの上側面を透過する場合、i=2はレンズの下側面を透過する場合とし、K(i,θ)に含まれる3次以上の高次成分の量をKK(i,θ)とすると、
KK(i,θ)=K(i,θ)−[A(i)θ2+B(i)θ+C(i)]
ここで、A(i),B(i),C(i):θ=0,±θNにおいてKK(i,θ)が0になる係数、Nは画像上の任意の値とする、
Wは書込み解像度(dot/inch)、25.4の単位は(mm/inch)である、
を特徴とする光走査装置の補正方法。
A plurality of light sources, a deflector for deflecting the beam from the light source in the main scanning direction, a lens for forming an image of the beam deflected by the deflector on the surface to be scanned, and a beam transmitted through the lens In a correction method for an optical scanning device comprising an optical path folding mirror for guiding to a scanning surface,
The deflector is installed in common for each light source,
The lenses are arranged on both the left and right sides of the deflector, and are beams from a plurality of the light sources arranged so that incident open angles, which are angles between the optical axis of the lens and a beam incident direction in the main scanning section, are different from each other. One of at least two beams deflected by the deflector passes through the upper side in the sub-scanning direction and the other passes through the lower side,
A lens that has at least one surface shape different between the upper side surface and the lower side surface and that satisfies the following formula (1) and the following formula (2) in design is used.
For optical scanning device
By bending at least one of the optical path folding mirrors in the main scanning direction, the left side of the following formula (1) is reduced by means for correcting the curvature in the sub scanning direction on the surface to be scanned. To correct,
When the effective image length in the main scanning direction is ± L and the deflection angle at that time is ± θS, i = 1,
| [K (i, θS) + K (i, −θS)] / 2−K (i, 0) |> (25.4 / W) (1)
At any deflection angle θ
| KK (1, θ) −KK (2, θ) | <(25.4 / W) / 2 (2)
However, the amount of displacement in the sub-scanning direction at the deflection angle θ is K (i, θ), i = 1 is transmitted through the upper surface of the lens, i = 2 is transmitted through the lower surface of the lens, and K If the amount of the third or higher order component included in (i, θ) is KK (i, θ),
KK (i, θ) = K (i, θ) − [A (i) θ 2 + B (i) θ + C (i)]
Here, A (i), B (i), C (i): a coefficient at which KK (i, θ) becomes 0 at θ = 0, ± θN, and N is an arbitrary value on the image.
W is the writing resolution (dot / inch), and the unit of 25.4 is (mm / inch).
And a correction method for an optical scanning device.
JP2005148194A 2005-05-20 2005-05-20 Correction method for optical scanning device Expired - Fee Related JP5157042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148194A JP5157042B2 (en) 2005-05-20 2005-05-20 Correction method for optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148194A JP5157042B2 (en) 2005-05-20 2005-05-20 Correction method for optical scanning device

Publications (2)

Publication Number Publication Date
JP2006323277A JP2006323277A (en) 2006-11-30
JP5157042B2 true JP5157042B2 (en) 2013-03-06

Family

ID=37542990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148194A Expired - Fee Related JP5157042B2 (en) 2005-05-20 2005-05-20 Correction method for optical scanning device

Country Status (1)

Country Link
JP (1) JP5157042B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850774B (en) * 2015-07-30 2021-03-26 京瓷办公信息系统株式会社 Optical scanning device and image forming apparatus
JP6409996B2 (en) * 2016-03-29 2018-10-24 京セラドキュメントソリューションズ株式会社 Optical scanning device and image forming apparatus having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619672B2 (en) * 1998-06-04 2005-02-09 株式会社リコー Multi-beam scanning device
JP4500385B2 (en) * 1999-10-04 2010-07-14 株式会社リコー Optical scanning apparatus and color recording apparatus
JP3899769B2 (en) * 2000-02-16 2007-03-28 富士ゼロックス株式会社 Optical scanning apparatus and image forming apparatus
JP2004070108A (en) * 2002-08-08 2004-03-04 Canon Inc Optical scanner and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2006323277A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP3824528B2 (en) Multi-beam scanning optical system and image forming apparatus
JP4616118B2 (en) Optical scanning apparatus and image forming apparatus
JP5037837B2 (en) Optical scanning apparatus and image forming apparatus
JP4997516B2 (en) Optical scanning apparatus and image forming apparatus
JP2008052247A (en) Optical scanner and image forming apparatus
JP6047107B2 (en) Optical scanning device and image forming apparatus having the same
JP2009069507A (en) Optical scanner and image forming apparatus
US7126735B1 (en) Optical scanning apparatus
JP2004070108A (en) Optical scanner and image forming apparatus using the same
JP5157042B2 (en) Correction method for optical scanning device
JP5165189B2 (en) Optical scanning device
KR101329743B1 (en) Light scanning system and image forming apparatus
US8791974B2 (en) Optical scanning apparatus and image forming apparatus
JP4747995B2 (en) Optical scanning device
JP2006323278A (en) Optical scanner
JP2007316115A (en) Optical scanner and image forming apparatus using the same
JP5364969B2 (en) Optical scanning device
US20100091082A1 (en) Optical beam scanning apparatus and image forming apparatus
JP2006323275A (en) Optical scanning device
JP5098136B2 (en) Optical scanning device
JP2010072050A (en) Optical scanner and method of adjusting optical scanner
JP2007334203A (en) Optical scanner and image forming apparatus
JP5364970B2 (en) Optical scanning device
JP4813068B2 (en) Optical scanning device
JP4890966B2 (en) Optical scanning device and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees