JP2006323065A - Optical apparatus and image forming apparatus - Google Patents

Optical apparatus and image forming apparatus Download PDF

Info

Publication number
JP2006323065A
JP2006323065A JP2005145293A JP2005145293A JP2006323065A JP 2006323065 A JP2006323065 A JP 2006323065A JP 2005145293 A JP2005145293 A JP 2005145293A JP 2005145293 A JP2005145293 A JP 2005145293A JP 2006323065 A JP2006323065 A JP 2006323065A
Authority
JP
Japan
Prior art keywords
polygon mirror
heat
optical device
optical
rotating polygon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145293A
Other languages
Japanese (ja)
Other versions
JP4402009B2 (en
JP2006323065A5 (en
Inventor
Hiroshi Nakahata
浩志 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005145293A priority Critical patent/JP4402009B2/en
Publication of JP2006323065A publication Critical patent/JP2006323065A/en
Publication of JP2006323065A5 publication Critical patent/JP2006323065A5/ja
Application granted granted Critical
Publication of JP4402009B2 publication Critical patent/JP4402009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal influence from a rotating polygon mirror to an optical component, without having to partition the rotating polygon mirror and the optical component. <P>SOLUTION: The optical apparatus has the rotating polygon mirror 1, which rotates and deflects and scans a light beam, the optical component for focusing the deflected and scanned light beam on an image carrier, and a heat radiating member, which has an exposed part which is exposed to the outside of the optical apparatus, conducts heat from the inside of the optical apparatus to the exposed part and radiates the heat from the exposed part. At least a part of the heat radiating member for radiating the heat of an air flow, which is directed from the rotating polygon mirror to the optical component due to the rotation of the rotating polygon mirror, is arranged along the rotating polygon mirror on the upstream side of the air flow. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置で用いられる光学装置に関する。   The present invention relates to an optical device used in an image forming apparatus such as an electrophotographic copying machine, a printer, and a facsimile.

従来の技術を、図10〜図12を用いて説明する。図10はカラー画像をプリントする画像形成装置(プリンタ)である。   A conventional technique will be described with reference to FIGS. FIG. 10 shows an image forming apparatus (printer) for printing a color image.

画像形成装置は、イエロー、マゼンタ、シアン、ブラックの各色の画像を形成するための感光ドラム(像担持体)20を備える。感光ドラム20は導電体に感光層を塗布したものである。また、画像形成装置は、光学装置21、現像器22、中間転写ベルト23、シート(記録材;転写材)を格納する給紙カセット24、定着器25、排紙トレー26、帯電器27を備える。   The image forming apparatus includes a photosensitive drum (image carrier) 20 for forming an image of each color of yellow, magenta, cyan, and black. The photosensitive drum 20 is obtained by applying a photosensitive layer to a conductor. The image forming apparatus also includes an optical device 21, a developing device 22, an intermediate transfer belt 23, a paper feed cassette 24 for storing sheets (recording material; transfer material), a fixing device 25, a paper discharge tray 26, and a charger 27. .

画像形成動作は、次のように行われる。まず、帯電器27が感光ドラム20の表面を一様に帯電する。不図示の画像読取装置もしくはパーソナルコンピュータ等から入力された画像情報に基づいて、光学装置21がレーザ光を照射し、感光ドラム20上に静電潜像を形成する。次に現像器22が、摩擦帯電されたトナーを感光ドラム20上の静電潜像に付与することで、トナー像を形成する。4つの感光ドラム20でそれぞれ形成された各色のトナー像は、中間転写ベルト23上に順次転写される。このように重ね合わされたトナー像(未定着像)は、給紙カセット24から搬送されたシートに再転写され、定着器25から熱と圧力を付与されることでシート上に定着される。画像形成後のシートは排紙トレー26上に積載される。   The image forming operation is performed as follows. First, the charger 27 uniformly charges the surface of the photosensitive drum 20. Based on image information input from an image reading device (not shown) or a personal computer, the optical device 21 irradiates laser light to form an electrostatic latent image on the photosensitive drum 20. Next, the developing unit 22 applies the frictionally charged toner to the electrostatic latent image on the photosensitive drum 20 to form a toner image. The respective color toner images respectively formed by the four photosensitive drums 20 are sequentially transferred onto the intermediate transfer belt 23. The superposed toner images (unfixed images) are retransferred to the sheet conveyed from the paper feed cassette 24 and fixed on the sheet by applying heat and pressure from the fixing unit 25. The sheets after image formation are stacked on the paper discharge tray 26.

図11は図10の画像形成部を示した図である。図11の光学装置は、4つの感光ドラム(像担持体)を一括して露光する構成を有するものである。なお、この構成の他にも、1つの感光ドラムのみを露光する構成の光学装置や、2つの感光ドラムを露光する構成の光学装置等がある。   FIG. 11 is a diagram showing the image forming unit of FIG. The optical apparatus shown in FIG. 11 has a configuration in which four photosensitive drums (image carriers) are exposed at once. In addition to this configuration, there are an optical device configured to expose only one photosensitive drum, an optical device configured to expose two photosensitive drums, and the like.

一般に、光学装置は、レーザ光(光ビーム)を偏向走査するポリゴンミラー(回転多面鏡)29、レーザ光を等速走査および感光ドラム上でスポット結像させるfθレンズ30a,30b、レーザ光を所定の方向へ反射する反射ミラー31を有する。画像情報に基づいて光源から出射された光ビームは、ポリゴンミラー29、fθレンズ30a,30b、反射ミラー31を経て感光ドラム上に導かれる。ポリゴンミラー29は、ポリゴンモータ(不図示)に固定されており、ポリゴンモータによって回転駆動される。これらの部品は光学箱32内に収容されている。各部品はビスやバネで光学箱32に取り付けられている。光学箱32に上蓋33を取り付けることで光学装置内部を密閉し、塵埃の侵入を防いでいる。   In general, the optical apparatus includes a polygon mirror (rotating polygonal mirror) 29 that deflects and scans laser light (light beam), fθ lenses 30a and 30b that perform spot imaging on a photosensitive drum and constant speed scanning of the laser light, and predetermined laser light. It has the reflective mirror 31 which reflects in the direction. The light beam emitted from the light source based on the image information is guided onto the photosensitive drum through the polygon mirror 29, the fθ lenses 30a and 30b, and the reflection mirror 31. The polygon mirror 29 is fixed to a polygon motor (not shown) and is rotationally driven by the polygon motor. These parts are accommodated in the optical box 32. Each component is attached to the optical box 32 with screws or springs. By attaching an upper lid 33 to the optical box 32, the inside of the optical device is sealed to prevent intrusion of dust.

図12は光学装置を図11の矢印A方向から見た図である。図12では、反射ミラーおよび光学箱の図示が省略されている。画像形成時、ポリゴンミラー29は図中矢印a方向に回転し、光源34から出射された光ビームを偏向走査する。図12の光学装置では、2つのfθレンズ30a,30bが、ポリゴンミラーに対し対称配置されており、2つの光源34から出射した光ビームはそれぞれポリゴンミラー29によって偏向走査され、各光路専用のfθレンズ30a,30b及び反射ミラーを介して、感光ドラムへと導かれる。   12 is a view of the optical device as seen from the direction of arrow A in FIG. In FIG. 12, the reflection mirror and the optical box are not shown. At the time of image formation, the polygon mirror 29 rotates in the direction of arrow a in the figure, and deflects and scans the light beam emitted from the light source 34. In the optical apparatus of FIG. 12, two fθ lenses 30a and 30b are arranged symmetrically with respect to the polygon mirror, and light beams emitted from the two light sources 34 are deflected and scanned by the polygon mirror 29, respectively, and fθ dedicated to each optical path. The light is guided to the photosensitive drum through the lenses 30a and 30b and the reflecting mirror.

ポリゴンミラーを有する光学装置では、ポリゴンモータの発熱による昇温が問題となる
。モータの熱が周囲に配置されたレンズ等の光学部品を熱膨張させ、スポット変動、倍率変化、照射位置変動等を招き、画像品質を低下させるからである。
In an optical device having a polygon mirror, the temperature rise due to heat generated by the polygon motor becomes a problem. This is because the heat of the motor causes the optical components such as a lens disposed around to thermally expand, causing spot fluctuation, magnification change, irradiation position fluctuation, and the like, thereby reducing the image quality.

この問題に対して従来は次のような手法が提案されている。特許文献1に記載されているようにポリゴンモータの基板裏面に取り付けた鋼板によって基板の熱を吸熱し、その鋼板の他端部から熱を機外に放出するものである。   Conventionally, the following method has been proposed for this problem. As described in Patent Document 1, the heat of the substrate is absorbed by the steel plate attached to the back surface of the substrate of the polygon motor, and the heat is released from the other end of the steel plate to the outside of the machine.

このような構成であっても、ポリゴンモータ近傍では使用頻度によっては放熱する熱量よりも発熱する熱量が上回り、温度が上昇する。その結果、熱がポリゴンの回転に伴いレンズ等の光学部品に吹き付けられることになる。これにより、吹き付けられたレンズ等は熱膨張を生ずることになる。そのため、ポリゴンモータの使用頻度によらずポリゴンモータ近傍の熱の影響を小さくすることが好ましい。   Even with such a configuration, in the vicinity of the polygon motor, the amount of heat generated is greater than the amount of heat released depending on the frequency of use, and the temperature rises. As a result, heat is sprayed onto optical components such as lenses as the polygons rotate. As a result, the blown lens or the like undergoes thermal expansion. For this reason, it is preferable to reduce the influence of heat in the vicinity of the polygon motor regardless of the frequency of use of the polygon motor.

それに対して、ポリゴンモータからの熱がレンズ等に吹き付けられないようにするため、特許文献2、特許文献3に記載されているようにポリゴンミラー部をレンズ等の光学部品から仕切り、仕切り部の内部でポリゴンミラー部の熱を外部に放熱する構成がある。
特開平11−242177号公報 特開2000−2854号公報 特開平10−123447号公報
On the other hand, in order to prevent the heat from the polygon motor from being blown to the lens or the like, the polygon mirror part is partitioned from the optical parts such as the lens as described in Patent Document 2 and Patent Document 3, and There is a configuration in which the heat of the polygon mirror part is radiated to the outside.
JP 11-242177 A JP 2000-2854 A JP-A-10-123447

しかし、ポリゴンミラー部をレンズ等の光学部品等から仕切る構成にすると、新たに仕切るための部品が必要となり、部品点数が増えると共に、光学装置が大型化する問題が発生する。そのため、回転多面鏡であるポリゴンミラーを回りの光学部品から仕切らなくても、光学部品に対するポリゴンモータから発生する熱の影響を小さくすることが好ましい。   However, if the polygon mirror portion is configured to be partitioned from optical components such as lenses, a new partitioning component is required, which increases the number of components and increases the size of the optical device. Therefore, it is preferable to reduce the influence of heat generated from the polygon motor on the optical component without partitioning the polygon mirror, which is a rotating polygon mirror, from the surrounding optical components.

そこで本発明の目的は、回転多面鏡と光学部品とを仕切らなくとも、光学部品側の回転多面鏡からの熱の影響を小さくすることである。   Accordingly, an object of the present invention is to reduce the influence of heat from the rotary polygon mirror on the optical component side without partitioning the rotary polygon mirror and the optical component.

上記目的を達成するために本発明では、以下の構成を採用する。   In order to achieve the above object, the present invention employs the following configuration.

本発明の第1態様は、回転して光ビームを偏向走査する回転多面鏡と、偏向走査された光ビームを像担持体上に結像するための光学部品と、光学装置の外部に露出している露出部を有し、光学装置の内部からこの露出部に熱を伝導して露出部から放熱する放熱部材と、を有する光学装置において、回転多面鏡の回転により回転多面鏡から光学部品側に向かう空気流の熱を放熱するための放熱部材の少なくとも一部はこの空気流の上流側で回転多面鏡に沿って配置されることを特徴とする光学装置である。   According to a first aspect of the present invention, a rotary polygon mirror that rotates and deflects and scans a light beam, an optical component that forms an image of the deflected and scanned light beam on an image carrier, and an outside of the optical device are exposed. And a heat radiating member that conducts heat from the inside of the optical device to the exposed portion and dissipates heat from the exposed portion. At least a part of the heat dissipating member for dissipating the heat of the air flow toward the optical device is arranged along the rotary polygon mirror on the upstream side of the air flow.

本発明の第2態様は、回転して第一光ビームと第二光ビームを偏向走査する回転多面鏡と、偏向走査された第一光ビームを第一像担持体上に結像するための第一光学部品と、回転多面鏡に対して第一光学部品と反対側に配置され、偏向走査された第二光ビームを第二像担持体上に結像するための第二光学部品と、光学装置の内部から露出部に延伸しており、内部の熱がこの露出部に伝導して露出部から放熱する第一と第二の放熱部材と、を有する光学装置において、回転多面鏡の回転により回転多面鏡から光学部品側に向かう空気の熱を放熱するための第一と第二の放熱部材の少なくとも一部は回転多面鏡に対してそれぞれのレーザの走査が開始する側に対応して回転多面鏡に沿って配置され、第一放熱部材と第二放熱部材による放熱具合が異なることを特徴とする光学装置である。   According to a second aspect of the present invention, there is provided a rotary polygon mirror that rotates and deflects and scans the first light beam and the second light beam, and an image for forming the first light beam that has been deflected and scanned on the first image carrier. A first optical component, a second optical component disposed on the opposite side of the first optical component with respect to the rotary polygon mirror, and a second optical component for forming an image on the second image carrier, which is deflected and scanned; In an optical device having first and second heat dissipating members that extend from the inside of the optical device to the exposed portion, and the internal heat is conducted to the exposed portion and dissipated from the exposed portion, rotation of the rotating polygon mirror Therefore, at least a part of the first and second heat radiating members for radiating the heat of the air from the rotary polygon mirror toward the optical component side corresponds to the side where each laser scan starts with respect to the rotary polygon mirror. Arranged along the rotary polygon mirror, the heat dissipation by the first heat dissipation member and the second heat dissipation member An optical device characterized by comprising.

本発明の第3態様は、未定着像を形成する未定着像形成手段と、未定着像を記録材上に定着する定着手段と、を有する画像形成装置において、定着手段に近い光学部品の方に向かう空気の熱を放熱する放熱部材は他の放熱部材よりも放熱量が小さいことを特徴とする上記第2態様の光学装置を有する画像形成装置である。   According to a third aspect of the present invention, there is provided an image forming apparatus having an unfixed image forming unit that forms an unfixed image and a fixing unit that fixes an unfixed image on a recording material. The image forming apparatus having the optical device according to the second aspect is characterized in that the heat dissipating member that dissipates the heat of the air toward the heat dissipates less than other heat dissipating members.

本発明によれば、簡易な構成で、光学装置内部の熱の空気伝搬を抑制できるので、回転多面鏡と光学部品とを仕切らなくとも、光学部品側の回転多面鏡からの熱の影響を小さくすることができる。   According to the present invention, since the air propagation of heat inside the optical device can be suppressed with a simple configuration, the influence of heat from the rotary polygon mirror on the optical component side can be reduced without partitioning the rotary polygon mirror and the optical component. can do.

また、複数の光学系を備えた光学装置において、簡易な構成で、環境温度の偏りに起因する光学系毎の昇温度合の偏りを緩和し、色ズレの発生を抑制することができる。   In addition, in an optical device including a plurality of optical systems, it is possible to reduce the occurrence of color misregistration with a simple configuration by alleviating the uneven temperature increase due to the environmental temperature unevenness.

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。なお、以下に述べる光学装置は、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置に用いられる。画像形成装置の構成及び光学装置の全体構成については、図10、図11に示す構成の他、公知の構成を採用することができるので、ここでは説明を割愛する。   Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. The optical apparatus described below is used in an image forming apparatus such as an electrophotographic copying machine, a printer, or a facsimile. Regarding the configuration of the image forming apparatus and the entire configuration of the optical apparatus, a known configuration can be adopted in addition to the configurations shown in FIGS. 10 and 11, and thus description thereof is omitted here.

(第1実施形態)
図1は、本発明の第1実施形態に係る光学装置の要部を示す斜視図であり、図2は、ポリゴンミラー近傍の部品配置と風の流れを示す模式図であり、図3は、蓋及び冷却部材の構成を示す図である。
(First embodiment)
FIG. 1 is a perspective view showing the main part of the optical device according to the first embodiment of the present invention, FIG. 2 is a schematic view showing the arrangement of components near the polygon mirror and the flow of wind, and FIG. It is a figure which shows the structure of a cover and a cooling member.

この光学装置(走査光学装置)は、光ビームを偏向走査するポリゴンミラー1(回転多面鏡)と、ポリゴンミラー1で偏向走査された光ビームを感光ドラム(像担持体)上に結像するためのレンズ2(光学部品)と、これらを格納する光学箱4(筐体)及び蓋5と、ポリゴンミラー1の回転によりレンズ2に吹き付けられる空気流を冷却する放熱部材である冷却部材3と、を備える。   This optical device (scanning optical device) forms a polygon mirror 1 (rotating polygonal mirror) that deflects and scans a light beam and the light beam deflected and scanned by the polygon mirror 1 onto a photosensitive drum (image carrier). A lens 2 (optical component), an optical box 4 (housing) and lid 5 for storing them, a cooling member 3 that is a heat radiating member that cools an air flow blown to the lens 2 by rotation of the polygon mirror 1, Is provided.

この光学装置では、図2に示すように、ポリゴンミラー1が矢印a方向に回転し、レーザ光源から出射された光ビームXをY1からY2の範囲に偏向走査する。以下、レンズ2よりもポリゴンミラー1の回転方向上流側の領域を「走査開始側領域」、レンズ2よりもポリゴンミラー1の回転方向下流側の領域を「走査終了側領域」とよぶ。   In this optical apparatus, as shown in FIG. 2, the polygon mirror 1 rotates in the direction of arrow a, and the light beam X emitted from the laser light source is deflected and scanned in the range from Y1 to Y2. Hereinafter, the region upstream of the lens 2 in the rotational direction of the polygon mirror 1 is referred to as “scanning start side region”, and the region downstream of the lens 2 in the rotational direction of the polygon mirror 1 is referred to as “scanning end side region”.

ポリゴンミラー1の回転時には、ポリゴンミラー1の周囲に空気流が発生する(図2の「風の流れ」参照)。ポリゴンモータの回転駆動により発生する熱は、この空気流によって光学装置内部に拡散される。ポリゴンミラー1とレンズ2の間には仕切りが設けられていないため、ポリゴンミラー1の回転により温かい空気はレンズ2側にも流れ、その一部の空気はレンズ2に直接吹き付けられる。   When the polygon mirror 1 rotates, an air flow is generated around the polygon mirror 1 (see “wind flow” in FIG. 2). The heat generated by the rotational drive of the polygon motor is diffused inside the optical device by this air flow. Since no partition is provided between the polygon mirror 1 and the lens 2, warm air flows to the lens 2 side by the rotation of the polygon mirror 1, and a part of the air is blown directly onto the lens 2.

ポリゴンモータ自体の昇温や、その周囲の部品を介する熱伝導については、例えば、ポリゴンモータの軸部にヒートシンク等を取り付けることで抑制可能である。しかしながら、軸部を冷却しても、ポリゴンモータのコイルや駆動IC等から発生した熱が上記空気流により空気伝搬する昇温要因を解決することができない。   The temperature rise of the polygon motor itself and the heat conduction through the surrounding parts can be suppressed, for example, by attaching a heat sink or the like to the shaft portion of the polygon motor. However, even if the shaft portion is cooled, it is not possible to solve the temperature rise factor in which the heat generated from the coil of the polygon motor, the driving IC, etc. is propagated by the air flow.

そこで本実施形態では、このような熱の空気伝搬を抑制するために、走査開始側領域のポリゴンミラー1の近傍に、アルミ等の金属、また金属以外であっても熱伝導率の高い材
料で構成された冷却部材3を設けている。冷却部材3は、ポリゴンミラー1の近傍(つまり、ポリゴンミラー1の回転によりレンズ2に吹き付けられる空気流の中)に配置される冷却部と、光学箱4と蓋5からなる光学装置の外部に露出する露出部とを有する。露出部は光学装置内部よりも低温の空間に露出していることから、空気伝搬したポリゴンモータの熱(つまり、空気流の熱)が冷却部にて吸収され、露出部にて装置外に放熱される。冷却部材3の材質は熱伝導率が高いものであればよく、例えばアルミ板や鋼板といった単一材料でもよいし、ペルチェ素子のようなものであってもよい。
Therefore, in this embodiment, in order to suppress such heat air propagation, a metal such as aluminum or a material having high thermal conductivity is used in the vicinity of the polygon mirror 1 in the scanning start side region, even if it is other than a metal. A configured cooling member 3 is provided. The cooling member 3 is disposed outside the optical device including the cooling unit disposed in the vicinity of the polygon mirror 1 (that is, in the air flow blown to the lens 2 by the rotation of the polygon mirror 1), and the optical box 4 and the lid 5. And an exposed portion that is exposed. Since the exposed part is exposed to a lower temperature space than the inside of the optical device, the heat of the polygon motor that has propagated air (that is, the heat of the air flow) is absorbed by the cooling part and dissipated outside the apparatus by the exposed part. Is done. The material of the cooling member 3 should just be a thing with high heat conductivity, for example, may be a single material, such as an aluminum plate and a steel plate, and may be a thing like a Peltier device.

冷却部材3の配置について詳しく説明する。冷却部材3は、空気流による光学部品(レンズ2)への熱伝搬を抑制するものであるから、レンズ2に吹き付けられる空気流の中に設けられる。冷却部材3の一部(冷却部)はこの空気流の上流側でポリゴンミラー1に沿って配置される。具体的には、図2に示すように、ポリゴンミラー1及びポリゴンモータの側方、走査開始側領域に冷却部材3の冷却部が配置される。冷却部材3の冷却部は、ポリゴンミラー1が光ビームを反射する反射部の近傍までポリゴンミラー1の回転方向に延伸している。特に本実施形態では、ポリゴンミラー1の回転面内において、レンズ2の中心(光軸中心)とポリゴンミラー1の回転中心を結んだ線と、冷却部材3の中心とポリゴンミラー1の回転中心を結んだ線とが、略直交するような位置関係に、冷却部材3が配置されている。   The arrangement of the cooling member 3 will be described in detail. The cooling member 3 suppresses heat propagation to the optical component (lens 2) due to the air flow, and thus is provided in the air flow blown to the lens 2. A part (cooling part) of the cooling member 3 is disposed along the polygon mirror 1 on the upstream side of the air flow. Specifically, as shown in FIG. 2, the cooling unit 3 is disposed on the side of the polygon mirror 1 and the polygon motor, and in the scanning start side region. The cooling part of the cooling member 3 extends in the rotation direction of the polygon mirror 1 to the vicinity of the reflection part where the polygon mirror 1 reflects the light beam. In particular, in the present embodiment, the line connecting the center of the lens 2 (optical axis center) and the rotation center of the polygon mirror 1, the center of the cooling member 3, and the rotation center of the polygon mirror 1 in the rotation plane of the polygon mirror 1. The cooling member 3 is arranged in a positional relationship such that the connected lines are substantially orthogonal.

冷却部材3はポリゴンミラー1による空気流を冷却するため、ポリゴンミラー1から離れるほど冷却効果が小さくなる。また、ポリゴンモータの熱による影響が最も大きいのがレンズ2である。よって、冷却部材3の冷却部は、レンズ2よりもポリゴンミラー1の近くに配置されていることが好ましい。具体的には、図4に示すように、ポリゴンミラー1の回転中心と冷却部材3の間の距離をr1、ポリゴンミラー1の回転中心とレンズ2の有効走査範囲(破線部分)の間の最大距離をr2としたとき、r1<r2となるように冷却部材3が配置されているとよい。   Since the cooling member 3 cools the air flow generated by the polygon mirror 1, the cooling effect decreases as the distance from the polygon mirror 1 increases. Further, the lens 2 has the greatest influence by the heat of the polygon motor. Therefore, the cooling part of the cooling member 3 is preferably arranged closer to the polygon mirror 1 than the lens 2. Specifically, as shown in FIG. 4, the distance between the rotation center of the polygon mirror 1 and the cooling member 3 is r1, and the maximum between the rotation center of the polygon mirror 1 and the effective scanning range (dashed line portion) of the lens 2 is maximum. The cooling member 3 is preferably arranged so that r1 <r2 when the distance is r2.

このような配置によれば、レンズ2に向かう空気流がポリゴンミラー1と冷却部材3との間を流れることとなり、冷却部材3によって空気流の熱を効果的に吸収することができる。その結果、レンズ2の昇温を抑制できる。本実施形態では、冷却部がポリゴンミラー1の形状に倣う弧形状を有しているので、ポリゴンミラー周辺の熱を略均等に吸収でき、良好な冷却効果が得られる。なお、冷却部の形状は弧形状に限らず、平板状などでも構わない。   According to such an arrangement, the air flow toward the lens 2 flows between the polygon mirror 1 and the cooling member 3, and the heat of the air flow can be effectively absorbed by the cooling member 3. As a result, the temperature rise of the lens 2 can be suppressed. In this embodiment, since the cooling part has an arc shape that follows the shape of the polygon mirror 1, the heat around the polygon mirror can be absorbed substantially evenly, and a good cooling effect can be obtained. The shape of the cooling unit is not limited to the arc shape, and may be a flat plate shape.

冷却部材3の表面積が大きいほど冷却効果は高くなる。したがって、表面積をアップさせるために、冷却部材によってポリゴンミラー1の周囲の大部分を覆う構成であってもいい(例えば、走査開始側だけでなく、背面側あるいは走査終了側まで冷却部材を設ける。)。ただし、そのときには、少なくとも冷却部材の一部分は走査開始領域側のポリゴンミラーの近傍に配置されている必要がある。また、図5に示すように冷却部材3を複数の板状体から構成したり、図6に示すように冷却部材3の冷却部に複数のリブ(フィン)7を設けたりすることも好ましい。なお、リブは、空気の流れに平行に設けるとよい。   The cooling effect increases as the surface area of the cooling member 3 increases. Therefore, in order to increase the surface area, the cooling member may cover most of the periphery of the polygon mirror 1 (for example, the cooling member is provided not only on the scanning start side but also on the back side or the scanning end side). ). However, at that time, at least a part of the cooling member needs to be arranged in the vicinity of the polygon mirror on the scanning start region side. Further, it is also preferable that the cooling member 3 is composed of a plurality of plate-like bodies as shown in FIG. 5 or a plurality of ribs (fins) 7 are provided in the cooling part of the cooling member 3 as shown in FIG. The ribs are preferably provided in parallel with the air flow.

冷却部材3は、光学装置の蓋5もしくは光学箱4に取り付けられる。図3は、一例として、光学装置を密閉するために光学箱4に取り付けられる蓋5に、冷却部材3を一体的に設けた構成を示している。図3(a)は、蓋5のみを上方からみた斜視図であり、図3(b)は、図3(a)のA−A線における光学装置の模式的な断面図である。この例の冷却部材3は、インサート成形によって樹脂製の蓋5に一体化されており、その下端部(冷却部)が蓋5の内側に突き出し、上端部(露出部)が蓋5の外側に突き出している。この蓋5を光学箱4に固定することで、冷却部材5の下端部(冷却部)がポリゴンミラー1の近傍に配置される。   The cooling member 3 is attached to the lid 5 or the optical box 4 of the optical device. FIG. 3 shows, as an example, a configuration in which the cooling member 3 is integrally provided on the lid 5 attached to the optical box 4 in order to seal the optical device. FIG. 3A is a perspective view of only the lid 5 as viewed from above, and FIG. 3B is a schematic cross-sectional view of the optical device taken along the line AA in FIG. The cooling member 3 in this example is integrated with the resin lid 5 by insert molding, and the lower end portion (cooling portion) protrudes inside the lid 5 and the upper end portion (exposed portion) extends outside the lid 5. It sticks out. By fixing the lid 5 to the optical box 4, the lower end portion (cooling portion) of the cooling member 5 is disposed in the vicinity of the polygon mirror 1.

ただし、冷却部材の取付方法は図3の例に限らない。例えば、光学箱に冷却部材を固定し、蓋に設けた孔から冷却部材の上端部を装置外部に露出させる構成でもよい。また、インサート成形によって光学箱に冷却部材を一体化し、冷却部材の下端部を光学箱の底面や側壁から装置外部に露出させてもよい。あるいは、光学箱と蓋とで冷却部材を挟むことによって冷却部材を固定するようにしてもよい。また、放熱部材を蓋に一体的に取り付け、蓋全体または放熱部材が取り付けられている部分を放熱材料と同じ材料または熱伝導率の高い材料にして、その部分が放熱部材の露出部を兼ねる構成であっても問題ない。   However, the mounting method of the cooling member is not limited to the example of FIG. For example, the cooling member may be fixed to the optical box, and the upper end portion of the cooling member may be exposed to the outside of the apparatus through a hole provided in the lid. Alternatively, the cooling member may be integrated with the optical box by insert molding, and the lower end portion of the cooling member may be exposed to the outside of the apparatus from the bottom or side wall of the optical box. Alternatively, the cooling member may be fixed by sandwiching the cooling member between the optical box and the lid. In addition, the heat dissipation member is integrally attached to the lid, and the entire lid or the portion where the heat dissipation member is attached is made of the same material as the heat dissipation material or a material having high thermal conductivity, and that portion also serves as the exposed portion of the heat dissipation member But there is no problem.

冷却部材3の放熱効率を高めるために、冷却部材の露出部を強制冷却することも好ましい。例えば、図7に示すように、光学装置外部にダクト6(流路)を形成し、このダクト6内に冷却部材3の露出部が露出するようにし、ファン等の冷却風をダクト6に通して冷却部材3を強制冷却するとよい。これにより、冷却部材3の冷却効果がさらに向上する。なお、冷却部材3の露出部の形状は、必ずしも冷却部の形状と同じである必要は無く、図7に示すような平板状でもよい。また、冷却部材3の放熱を助けるために、露出部に複数のリブ(フィン)を設けることも好ましい。   In order to increase the heat dissipation efficiency of the cooling member 3, it is also preferable to forcibly cool the exposed portion of the cooling member. For example, as shown in FIG. 7, a duct 6 (flow path) is formed outside the optical device, the exposed portion of the cooling member 3 is exposed in the duct 6, and cooling air from a fan or the like is passed through the duct 6. Thus, the cooling member 3 may be forcibly cooled. Thereby, the cooling effect of the cooling member 3 further improves. The shape of the exposed portion of the cooling member 3 is not necessarily the same as the shape of the cooling portion, and may be a flat plate shape as shown in FIG. It is also preferable to provide a plurality of ribs (fins) in the exposed portion in order to assist heat dissipation of the cooling member 3.

以上述べたように本実施形態によれば、走査開始側領域に冷却部材3を設けるといった簡易な構成で、レンズ2に吹き付けられる空気流を効果的に冷却できるので、回転多面鏡と光学部品とを仕切らなくとも、光学部品側の回転多面鏡からの熱の影響を小さくすることができる。したがって、スポット変動、倍率変化、照射位置変動等を抑制でき、高品位な画像形成が可能となる。   As described above, according to the present embodiment, the air flow blown to the lens 2 can be effectively cooled with a simple configuration in which the cooling member 3 is provided in the scanning start side region. Even without partitioning, the influence of heat from the rotary polygon mirror on the optical component side can be reduced. Therefore, spot fluctuations, magnification changes, irradiation position fluctuations, and the like can be suppressed, and high-quality image formation is possible.

(第2実施形態)
図8は、本発明の第2実施形態に係る光学装置のポリゴンミラー近傍の部品配置と風の流れを示す図である。
(Second Embodiment)
FIG. 8 is a diagram showing the arrangement of components near the polygon mirror and the flow of wind in the optical device according to the second embodiment of the present invention.

本実施形態の光学装置は、光ビームX,X′を偏向走査するポリゴンミラー1(回転多面鏡)と、ポリゴンミラー1で偏向走査された光ビームY1〜Y2を感光ドラム(第一像担持体)上に結像させる第1レンズ2(第一光学部品)と、ポリゴンミラー1で偏向走査された光ビームY1′〜Y2′を他の感光ドラム(第二像担持体)上に結像させる第2レンズ2′(第二光学部品)と、ポリゴンミラー1、第1及び第2レンズ2,2′を格納する光学箱及び蓋と、ポリゴンミラー1の回転により第1レンズ2に吹き付けられる空気流を冷却する冷却部材3と、を備える。第2レンズ2′は、ポリゴンミラー1に対し第1レンズ2とポリゴンミラーに対して反対側の位置に配置されている。   The optical apparatus according to the present embodiment includes a polygon mirror 1 (rotating polygonal mirror) that deflects and scans light beams X and X ′, and light beams Y1 and Y2 that are deflected and scanned by the polygon mirror 1 as photosensitive drums (first image carrier). ) The first lens 2 (first optical component) to be imaged on and the light beams Y1 'to Y2' deflected and scanned by the polygon mirror 1 are imaged on another photosensitive drum (second image carrier). The second lens 2 ′ (second optical component), the polygon mirror 1, the optical box and lid for storing the first and second lenses 2, 2 ′, and the air blown to the first lens 2 by the rotation of the polygon mirror 1. And a cooling member 3 for cooling the flow. The second lens 2 ′ is disposed at a position opposite to the first lens 2 and the polygon mirror with respect to the polygon mirror 1.

この光学装置は、複数の感光ドラムを有する画像形成装置に適用される。複数のレーザ光源から出射された複数の光ビームX,X′(第一、第二光ビーム)は、単一のポリゴンミラー1によって偏向され、第1レンズ2もしくは第2レンズ2′を経て各々感光ドラムに導かれる。すなわち、図8中、ポリゴンミラーの左側の走査光学系では、a方向に回転するポリゴンミラー1が光ビームXをY1からY2の範囲に偏向走査し、ポリゴンミラーの右側の走査光学系では、ポリゴンミラー1が光ビームX′をY1′からY2′の範囲に偏向走査する。   This optical apparatus is applied to an image forming apparatus having a plurality of photosensitive drums. A plurality of light beams X and X ′ (first and second light beams) emitted from a plurality of laser light sources are deflected by a single polygon mirror 1 and respectively passed through a first lens 2 or a second lens 2 ′. Guided to a photosensitive drum. That is, in FIG. 8, in the scanning optical system on the left side of the polygon mirror, the polygon mirror 1 rotating in the direction a deflects and scans the light beam X in the range from Y1 to Y2, and in the scanning optical system on the right side of the polygon mirror, The mirror 1 deflects and scans the light beam X ′ in the range from Y1 ′ to Y2 ′.

ポリゴンミラー1の周囲に複数の光学系が配された光学装置では、光学系間の環境温度(周辺温度)の違いが色ズレの発生原因となる。図8の例では、光学装置の左方に定着器などの熱源が存在しており、装置右側に比べて左側のほうが環境温度が高くなっている(以下、熱源から遠く環境温度の低い側を「低温側」、熱源に近く環境温度の高い側を「高温側」とよぶ。)。このような環境温度の勾配により、高温側に配置された第1レンズ2は、低温側に配置された第2レンズ2′に比べて温度が高くなりやすい。そうすると、左
右の光学系間でスポット変動、倍率変化、照射位置変動等のバラツキが生じ、色ズレが発生するのである。
In an optical apparatus in which a plurality of optical systems are arranged around the polygon mirror 1, a difference in environmental temperature (ambient temperature) between the optical systems causes a color shift. In the example of FIG. 8, there is a heat source such as a fixing device on the left side of the optical device, and the environmental temperature is higher on the left side than on the right side of the optical device (hereinafter, the side where the environmental temperature is far from the heat source is low). The “low temperature side” and the high temperature side that is close to the heat source is called the “high temperature side”. Due to such an environmental temperature gradient, the temperature of the first lens 2 disposed on the high temperature side is likely to be higher than that of the second lens 2 ′ disposed on the low temperature side. Then, variations such as spot variation, magnification variation, irradiation position variation, and the like occur between the left and right optical systems, and color misregistration occurs.

そこで本実施形態では、空気流による熱の伝搬を抑制するとともに、上述したような光学系間の温度差を是正するために、第1レンズ2よりもポリゴンミラー1の回転方向上流側であって、且つ、第2レンズ2′よりもポリゴンミラー1の回転方向下流側に、冷却部材3を設けている。冷却部材3の構成は第1実施形態と同様である。   Therefore, in the present embodiment, in order to suppress the propagation of heat due to the air flow and to correct the temperature difference between the optical systems as described above, the polygon mirror 1 is upstream of the first lens 2 in the rotational direction. And the cooling member 3 is provided in the rotation direction downstream side of the polygon mirror 1 rather than 2nd lens 2 '. The configuration of the cooling member 3 is the same as that of the first embodiment.

上記構成により、高温側の第1レンズ2に吹き付けられる空気流が冷却されるため、第1レンズ2の昇温を抑制できる。しかも、高温側の空気流のみを冷却しているため、第1レンズ2と第2レンズ2′の間の温度の偏りが緩和される。よって、左右の光学系の温度差を十分小さくでき、倍率や照射位置等のバラツキを抑制し、色ズレの発生を抑制することが可能となる。   With the above configuration, the airflow blown to the first lens 2 on the high temperature side is cooled, so that the temperature rise of the first lens 2 can be suppressed. In addition, since only the high-temperature air flow is cooled, the temperature deviation between the first lens 2 and the second lens 2 'is alleviated. Therefore, the temperature difference between the left and right optical systems can be made sufficiently small, variations in magnification, irradiation position, and the like can be suppressed, and the occurrence of color misregistration can be suppressed.

(第3実施形態)
図9は、本発明の第3実施形態に係る光学装置のポリゴンミラー近傍の部品配置と風の流れを示す図である。
(Third embodiment)
FIG. 9 is a diagram showing the arrangement of components near the polygon mirror and the flow of wind in the optical device according to the third embodiment of the present invention.

第2実施形態では、高温側の第1レンズ2(第一光学部品)に吹き付けられる空気流を冷却する冷却部材3(第一放熱部材)だけを設けたが、第3実施形態では、低温側の第2レンズ2′(第二光学部品)に吹き付けられる空気流を冷却する第2冷却部材3′(第二放熱部材)をさらに設ける。それ以外の構成は第2実施形態のものと同様である。   In the second embodiment, only the cooling member 3 (first heat radiating member) that cools the air flow blown to the first lens 2 (first optical component) on the high temperature side is provided. However, in the third embodiment, the low temperature side is provided. A second cooling member 3 ′ (second heat radiating member) is further provided for cooling the air flow blown to the second lens 2 ′ (second optical component). The other configuration is the same as that of the second embodiment.

第2冷却部材3′は、図9に示すように、第2レンズ2′(第二光学部品)よりもポリゴンミラー1の回転方向上流側であって、且つ、第1レンズ2(第一光学部品)よりもポリゴンミラー1の回転方向下流側に配置されている。   As shown in FIG. 9, the second cooling member 3 ′ is upstream of the second lens 2 ′ (second optical component) in the rotational direction of the polygon mirror 1, and the first lens 2 (first optical component). It is arranged downstream of the component) in the rotation direction of the polygon mirror 1.

第1冷却部材と第2冷却部材のポリゴンミラーからの間隔はほぼ等しく、第2冷却部材3′の表面積は冷却部材3よりも小さくなっており、その結果、第2冷却部材3′の放熱具合が冷却部材3よりも小さくなっている。つまり、第1冷却部材3、第2冷却部材3′の冷却部は、ポリゴンミラー1に対してそれぞれの光レーザの走査が開始する側に対応してポリゴンミラー1に沿って配置されており、第1冷却部材3と第2冷却部材3′の放熱具合(放熱量、冷却効果)は互いに異なっている。両冷却部材3,3′の放熱具合の差は、上述した環境温度の勾配に起因する光学系間の温度差をちょうど無くすように、すなわち、定着器等の熱源に近い光学部品の方に向かう空気の熱を放熱する冷却部材3の放熱量が他方の冷却部材3′の放熱量よりも小さくなるように、設定されていることが好ましい。   The distances between the first cooling member and the second cooling member from the polygon mirror are substantially equal, and the surface area of the second cooling member 3 'is smaller than that of the cooling member 3. As a result, the heat dissipation condition of the second cooling member 3' is reduced. Is smaller than the cooling member 3. That is, the cooling portions of the first cooling member 3 and the second cooling member 3 ′ are arranged along the polygon mirror 1 corresponding to the side where the scanning of the respective optical lasers starts with respect to the polygon mirror 1, The first cooling member 3 and the second cooling member 3 ′ are different from each other in heat dissipation (heat dissipation amount, cooling effect). The difference in heat dissipation between the cooling members 3 and 3 ′ is such that the temperature difference between the optical systems due to the above-described gradient of the environmental temperature is eliminated, that is, toward the optical component close to the heat source such as a fixing device. It is preferable that the heat radiation amount of the cooling member 3 that radiates the heat of the air is set to be smaller than the heat radiation amount of the other cooling member 3 '.

上記構成により、左右の光学系の温度をほぼ等しくでき、色ズレの発生をより一層抑制することが可能となる。   With the above configuration, the temperatures of the left and right optical systems can be made substantially equal, and the occurrence of color shift can be further suppressed.

第2冷却部材3′の材質や形状についても、第1実施形態の冷却部材3と同様の構成を採用することで、同様の効果を得ることができる。   With respect to the material and shape of the second cooling member 3 ′, the same effect can be obtained by adopting the same configuration as the cooling member 3 of the first embodiment.

なお、本実施例では、放熱部材の表面積を異ならせることで放熱部材による放熱具合(放熱量)を異ならせる構成であったが、その他に、放熱部材の回転多面鏡からの距離(間隔)を異ならせることで、同じ構成の放熱部材であっても放熱具合を異ならせることができる。   In addition, in this example, the heat dissipation condition (heat dissipation amount) by the heat dissipation member was made different by changing the surface area of the heat dissipation member, but in addition, the distance (interval) of the heat dissipation member from the rotating polygon mirror was changed. By making it different, even if it is the heat radiating member of the same structure, a heat radiating condition can be varied.

以上、本発明により、回転多面鏡と光学部品とを仕切らなくとも、光学部品側の回転多
面鏡からの熱の影響を小さくすることができる。
As described above, according to the present invention, the influence of heat from the rotating polygon mirror on the optical component side can be reduced without partitioning the rotating polygon mirror and the optical component.

第1実施形態に係る光学装置の要部を示す斜視図。The perspective view which shows the principal part of the optical apparatus which concerns on 1st Embodiment. 第1実施形態に係る光学装置のポリゴンミラー近傍の部品配置と風の流れを示す模式図。The schematic diagram which shows the components arrangement | positioning of the polygon mirror vicinity of the optical apparatus which concerns on 1st Embodiment, and the flow of a wind. 第1実施形態に係る光学装置の蓋及び冷却部材の構成を示す図。The figure which shows the structure of the cover and cooling member of the optical apparatus which concern on 1st Embodiment. ポリゴンミラー、レンズ、冷却部材の位置関係を示す図。The figure which shows the positional relationship of a polygon mirror, a lens, and a cooling member. 冷却部材の変形例を示す図。The figure which shows the modification of a cooling member. 冷却部材の変形例を示す図。The figure which shows the modification of a cooling member. 冷却部材を強制冷却するための構成例を示す図。The figure which shows the structural example for forcibly cooling a cooling member. 第2実施形態に係る光学装置のポリゴンミラー近傍の部品配置と風の流れを示す模式図。The schematic diagram which shows the components arrangement | positioning of the polygon mirror vicinity of the optical apparatus which concerns on 2nd Embodiment, and the flow of a wind. 第3実施形態に係る光学装置のポリゴンミラー近傍の部品配置と風の流れを示す模式図。The schematic diagram which shows the components arrangement | positioning of the polygon mirror vicinity of the optical apparatus which concerns on 3rd Embodiment, and the flow of a wind. 画像形成装置の構成を示す図。1 is a diagram illustrating a configuration of an image forming apparatus. 従来の光学装置の構成を示す図。The figure which shows the structure of the conventional optical apparatus. 従来の光学装置のポリゴンミラー近傍の部品配置と風の流れを示す模式図。The schematic diagram which shows the components arrangement | positioning of the polygon mirror vicinity of the conventional optical apparatus, and the flow of a wind.

符号の説明Explanation of symbols

1 ポリゴンミラー(回転多面鏡)
2 レンズ(光学部品、第一光学部品)
2′ 第2レンズ(第二光学部品)
3 冷却部材(放熱部材、第一放熱部材)
3′ 第2冷却部材(第二放熱部材)
4 光学箱
5 蓋
6 ダクト
7 リブ(フィン)
1 Polygon mirror (rotating polygon mirror)
2 Lens (optical component, first optical component)
2 'Second lens (second optical component)
3 Cooling member (heat radiating member, first heat radiating member)
3 'second cooling member (second heat dissipation member)
4 Optical box 5 Lid 6 Duct 7 Rib (fin)

Claims (10)

回転して光ビームを偏向走査する回転多面鏡と、偏向走査された光ビームを像担持体上に結像するための光学部品と、光学装置の外部に露出している露出部を有し、光学装置の内部からこの露出部に熱を伝導して露出部から放熱する放熱部材と、を有する光学装置において、
回転多面鏡の回転により回転多面鏡から光学部品側に向かう空気流の熱を放熱するための放熱部材の少なくとも一部はこの空気流の上流側で回転多面鏡に沿って配置されることを特徴とする光学装置。
A rotating polygon mirror that rotates and deflects and scans the light beam, an optical component that images the deflected and scanned light beam on the image carrier, and an exposed portion that is exposed to the outside of the optical device, In an optical device having a heat radiating member that conducts heat from the inside of the optical device to the exposed portion and dissipates heat from the exposed portion,
At least a part of the heat radiating member for radiating the heat of the air flow from the rotary polygon mirror toward the optical component side by the rotation of the rotary polygon mirror is disposed along the rotary polygon mirror upstream of the air flow. An optical device.
前記放熱部材が、前記光学部品よりも前記回転多面鏡の近くに配置されていることを特徴とする請求項1に記載の光学装置。   The optical device according to claim 1, wherein the heat radiating member is disposed closer to the rotary polygon mirror than the optical component. 前記放熱部材が、前記回転多面鏡の形状に倣う弧形状を有することを特徴とする請求項1から2のいずれかに記載の光学装置。   The optical device according to claim 1, wherein the heat radiating member has an arc shape that follows the shape of the rotary polygon mirror. 放熱部材は、回転多面鏡が光ビームを反射する反射部の近傍まで回転多面鏡の回転方向に延伸していることを特徴とする請求項1から3のいずれかに記載の光学装置。   The optical device according to any one of claims 1 to 3, wherein the heat dissipating member extends in the rotation direction of the rotating polygon mirror to the vicinity of the reflecting portion where the rotating polygon mirror reflects the light beam. 光学装置は筐体に蓋が取り付けられるユニットであり、蓋は放熱部材の一部であることを特徴とする請求項1から4のいずれかに記載の光学装置。   The optical device according to any one of claims 1 to 4, wherein the optical device is a unit in which a lid is attached to a housing, and the lid is a part of a heat dissipation member. 回転して第一光ビームと第二光ビームを偏向走査する回転多面鏡と、偏向走査された第一光ビームを第一像担持体上に結像するための第一光学部品と、回転多面鏡に対して第一光学部品と反対側に配置され、偏向走査された第二光ビームを第二像担持体上に結像するための第二光学部品と、光学装置の内部から露出部に延伸しており、内部の熱がこの露出部に伝導して露出部から放熱する第一と第二の放熱部材と、を有する光学装置において、
回転多面鏡の回転により回転多面鏡から光学部品側に向かう空気の熱を放熱するための第一と第二の放熱部材の少なくとも一部は回転多面鏡に対してそれぞれのレーザの走査が開始する側に対応して回転多面鏡に沿って配置され、第一放熱部材と第二放熱部材による放熱具合が異なることを特徴とする光学装置。
A rotating polygon mirror that rotates and deflects and scans the first light beam and the second light beam, a first optical component that forms an image of the deflected and scanned first light beam on the first image carrier, and a rotating polygon A second optical component disposed on the side opposite to the first optical component with respect to the mirror, for imaging the second light beam that has been deflected and scanned on the second image carrier, and from the inside of the optical device to the exposed portion In the optical device having the first and second heat radiating members that are stretched and the internal heat is conducted to the exposed portion and radiated from the exposed portion,
At least a part of the first and second heat dissipating members for radiating the heat of the air from the rotating polygon mirror toward the optical component side by the rotation of the rotating polygon mirror starts scanning of the laser with respect to the rotating polygon mirror. An optical device, wherein the optical device is arranged along a rotary polygon mirror corresponding to the side, and the heat radiation by the first heat radiation member and the second heat radiation member is different.
未定着像を形成する未定着像形成手段と、未定着像を記録材上に定着する定着手段と、を有する画像形成装置において、定着手段に近い光学部品の方に向かう空気の熱を放熱する放熱部材は他の放熱部材よりも放熱量が小さいことを特徴とする請求項6に記載の光学装置を有する画像形成装置。   In an image forming apparatus having an unfixed image forming unit for forming an unfixed image and a fixing unit for fixing an unfixed image on a recording material, heat of air directed toward an optical component close to the fixing unit is radiated. The image forming apparatus having an optical device according to claim 6, wherein the heat dissipating member has a smaller heat dissipating amount than other heat dissipating members. 第一放熱部材と第二放熱部材とは表面積が異なることを特徴とする請求項6に記載の光学装置。   The optical device according to claim 6, wherein the first heat radiating member and the second heat radiating member have different surface areas. 第一放熱部材と回転多面鏡の間隔と第二放熱部材と回転多面鏡との間隔が異なることを特徴とする請求項6または8に記載の光学装置。   The optical device according to claim 6 or 8, wherein a distance between the first heat radiating member and the rotating polygon mirror is different from a distance between the second heat radiating member and the rotating polygon mirror. 回転して光ビームを偏向走査する回転多面鏡と、偏向走査された光ビームを像担持体上に結像するための光学部品と、光学装置の外部に露出している露出部を有し、光学装置の内部からこの露出部に熱を伝導して露出部から放熱する放熱部材と、を有する光学装置において、
回転多面鏡の回転により回転多面鏡から光学部品側に向かう空気流の熱を放熱するための放熱部材の少なくとも一部は回転多面鏡に対してレーザの走査が開始する側に回転多面鏡に沿って配置されることを特徴とする光学装置。
A rotating polygon mirror that rotates and deflects and scans the light beam, an optical component that images the deflected and scanned light beam on the image carrier, and an exposed portion that is exposed to the outside of the optical device, In an optical device having a heat radiating member that conducts heat from the inside of the optical device to the exposed portion and dissipates heat from the exposed portion,
At least a part of the heat radiating member for radiating the heat of the air flow from the rotating polygon mirror toward the optical component side by the rotation of the rotating polygon mirror is along the rotating polygon mirror on the side where laser scanning starts with respect to the rotating polygon mirror. An optical device characterized by being arranged.
JP2005145293A 2005-05-18 2005-05-18 Optical apparatus and image forming apparatus Expired - Fee Related JP4402009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145293A JP4402009B2 (en) 2005-05-18 2005-05-18 Optical apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145293A JP4402009B2 (en) 2005-05-18 2005-05-18 Optical apparatus and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2006323065A true JP2006323065A (en) 2006-11-30
JP2006323065A5 JP2006323065A5 (en) 2007-08-16
JP4402009B2 JP4402009B2 (en) 2010-01-20

Family

ID=37542809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145293A Expired - Fee Related JP4402009B2 (en) 2005-05-18 2005-05-18 Optical apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4402009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132640A (en) * 2017-02-15 2018-08-23 キヤノン株式会社 Optical scanner, housing, and image formation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230305A (en) * 1993-02-04 1994-08-19 Canon Inc Deflecting device
JPH11249056A (en) * 1998-03-04 1999-09-17 Konica Corp Laser exposure device
JP2004101603A (en) * 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Optical deflector and optical scanner
JP2005010357A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230305A (en) * 1993-02-04 1994-08-19 Canon Inc Deflecting device
JPH11249056A (en) * 1998-03-04 1999-09-17 Konica Corp Laser exposure device
JP2004101603A (en) * 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Optical deflector and optical scanner
JP2005010357A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132640A (en) * 2017-02-15 2018-08-23 キヤノン株式会社 Optical scanner, housing, and image formation device
JP7005150B2 (en) 2017-02-15 2022-01-21 キヤノン株式会社 Optical scanning device and image forming device

Also Published As

Publication number Publication date
JP4402009B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US8791975B2 (en) Optical scanning device and image forming apparatus
JP4402009B2 (en) Optical apparatus and image forming apparatus
JP2006326901A (en) Optical housing, optical scanner and image forming apparatus
JP2008020589A (en) Optical scanner and image forming apparatus
JP2012168469A (en) Scanner unit, laser scanning optical device, and image forming apparatus
JP2007240940A (en) Optical scanner, image forming apparatus, and sealing unit for optical scanner
JP6170461B2 (en) Optical scanning device and image forming apparatus including the optical scanning device
JP5061178B2 (en) Optical scanning apparatus and image forming apparatus
JP4890954B2 (en) Optical writing apparatus and image forming apparatus
JP5589108B2 (en) Optical scanning apparatus and image forming apparatus
JPH1152267A (en) Light deflecting scanner and image forming device loaded therewith
JP6137605B2 (en) Optical scanning apparatus and image forming apparatus
JP5238732B2 (en) Optical scanning apparatus and image forming apparatus
JP5605257B2 (en) Laser scanning optical apparatus and image forming apparatus
JP5693690B2 (en) Optical scanning device and image forming apparatus having the same
JP5450558B2 (en) Optical scanning device and image forming apparatus having the same
JP4591144B2 (en) Image forming apparatus
JP5151899B2 (en) Scanning apparatus and image forming apparatus
JP6600768B2 (en) Scanning optical apparatus and image forming apparatus
JP4387260B2 (en) Optical writing apparatus and image forming apparatus
JP2009042429A (en) Image forming apparatus
JP5588945B2 (en) Optical scanning device and image forming apparatus
JP5978410B2 (en) Image forming apparatus
JP6503972B2 (en) Scanning optical device
JP2008310142A (en) Scanning optical apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees