JP2006322901A - Surface shape detection method and painting method for building panel - Google Patents

Surface shape detection method and painting method for building panel Download PDF

Info

Publication number
JP2006322901A
JP2006322901A JP2005148525A JP2005148525A JP2006322901A JP 2006322901 A JP2006322901 A JP 2006322901A JP 2005148525 A JP2005148525 A JP 2005148525A JP 2005148525 A JP2005148525 A JP 2005148525A JP 2006322901 A JP2006322901 A JP 2006322901A
Authority
JP
Japan
Prior art keywords
building panel
groove
pattern
height position
reference height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148525A
Other languages
Japanese (ja)
Other versions
JP4203669B2 (en
Inventor
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005148525A priority Critical patent/JP4203669B2/en
Publication of JP2006322901A publication Critical patent/JP2006322901A/en
Application granted granted Critical
Publication of JP4203669B2 publication Critical patent/JP4203669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface shape detection method capable of easily and precisely detecting the surface shape of a building panel, and to provide a painting method for performing high precision painting on the surface of the building panel based on the detection result of the surface shape detection method. <P>SOLUTION: The building panel 1 or a laser displacement sensor 4 for measuring the surface level of the building panel 1 is relatively moved in the direction between a pair of facing ends of the building panel 1. The surface level of the building panel 1 is measured on a straight line spanning between the pair of facing ends of the building panel 1 by the laser displacement sensor 4. A joint groove position specifying means 5 obtains the position of each joint groove 2 between ends of the facing building panels 1, on the basis of measurement data D by the laser displacement sensor 4. A joint inter-groove distance detection means 6 detects each distance between respective adjacent joint grooves 2 on the basis of the joint groove position data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建築パネルの表面形状検出方法及び建築パネルの塗装方法に関するものである。   The present invention relates to a method for detecting the surface shape of a building panel and a method for painting a building panel.

従来から、外装材等に用いられる建築パネルの表面には、建築物の外観を向上させるために、プレス等で凹凸形状をつけて塗装を施すなどして表面意匠を形成することが行われている。このような建築パネルを製造するにあたっては、正確な凹凸形状を確認する品質検査のため、または凹凸形状をつけた後に所定の塗装を行うために、建築パネルの表面形状の検出が不可欠である。建築パネルの表面形状の検出方法としては、特許文献1にあるように建築パネルの表面形状を撮影して撮像データを得て、この撮像データと予め設定されたサンプル画像データを比較して表面形状を検出するといった方法が一般的であった。しかしながら、この表面形状検出方法では、得られる撮像データのデータ量が大きくてサンプル画像データとの比較等の処理に時間がかかったり、建築パネルの表面への照明光の当たり具合によって得られる撮像データにバラツキが生じてしまって良好な精度を確保できないものであった。   Conventionally, in order to improve the appearance of a building, the surface of a building panel used for an exterior material or the like has been formed with a surface design by applying an uneven shape with a press or the like. Yes. In manufacturing such a building panel, detection of the surface shape of the building panel is indispensable for quality inspection for confirming an accurate uneven shape or for performing predetermined coating after applying the uneven shape. As a method for detecting the surface shape of the building panel, as disclosed in Patent Document 1, the surface shape of the building panel is photographed to obtain imaging data, and the imaging data is compared with preset sample image data to obtain the surface shape. The method of detecting is common. However, in this surface shape detection method, the amount of image data to be obtained is large, and it takes time for processing such as comparison with sample image data, or the image data obtained by the illumination light hitting the surface of the building panel As a result, there was a variation in the thickness, and good accuracy could not be ensured.

特に近年では、意匠への高度なニーズにより建築パネルの表面に施す表面意匠は年々複雑化する傾向にある。具体的には、たとえば建築物の外観には規則性のある人工的な外観を極力排して自然調の外観にすることが好まれる傾向にあり、この自然調の外観を建築物に付与するには、たとえば長尺パネルの長手方向に複数の目地溝と柄用突部とが交互に配設されると共に2以上の柄用突部における上記長手方向の長さ寸法が異なるように形成された凹凸パターンを連続して繰り返し長尺パネルの表面に施し、この長尺パネルを長手方向の任意位置で切断して塗装して各別に異なる表面意匠を有する建築パネルを形成し、これらの異なる表面意匠を有した建築パネル同士を任意に組み合わせることで行うことができる。   In particular, in recent years, the surface design applied to the surface of an architectural panel tends to become more complex year by year due to the advanced needs for the design. Specifically, for example, there is a tendency to favor the appearance of a building to a natural appearance by eliminating a regular artificial appearance as much as possible, and this natural appearance is given to the building. For example, a plurality of joint grooves and pattern protrusions are alternately arranged in the longitudinal direction of the long panel, and the length dimensions in the longitudinal direction of the two or more pattern protrusions are different. The uneven surface pattern is continuously and repeatedly applied to the surface of the long panel, and this long panel is cut and coated at an arbitrary position in the longitudinal direction to form an architectural panel having a different surface design. This can be done by arbitrarily combining building panels having designs.

このような建築パネルは凹凸パターンが施された長尺パネルをその長手方向の任意位置で切断して形成されるからその表面形状は各建築パネル毎に異なっているものの、各表面形状には基本となる、建築パネルの対向する一対の端部間に複数の目地溝と柄用突部とが交互に配設されると共に複数の柄用突部のうちの2以上の柄用突部における上記建築パネルの対向する一対の端部間の方向の長さ寸法が異なるように形成された凹凸パターンを、それぞれ有することから、建築パネルの表面への塗装にあっては、建築パネルへの塗装開始位置を建築パネルの表面形状に合わせることができれば、上記凹凸パターンに対応する塗装パターンで塗装を施すようにした塗装装置を用いて生産性良く行うことが可能である。   Such a building panel is formed by cutting a long panel with a concavo-convex pattern at an arbitrary position in the longitudinal direction, so the surface shape is different for each building panel. The plurality of joint grooves and the pattern protrusions are alternately arranged between a pair of opposing ends of the building panel, and the two or more pattern protrusions of the plurality of pattern protrusions Since it has uneven patterns formed so that the length dimension in the direction between a pair of opposite ends of the building panel is different, the painting on the surface of the building panel is started. If the position can be matched with the surface shape of the building panel, it is possible to perform with good productivity using a coating apparatus that applies a coating pattern corresponding to the uneven pattern.

しかしながら、上記建築パネルへの塗装開始位置を建築パネルの表面形状に合わせるためには建築パネルの表面形状の高精度の検出が不可欠であり、そして上述のように現状では高精度の建築パネルの表面形状の検出は困難であるために、塗装の高精度の仕上りを確保できないものであった。なお、この建築パネルは、凹凸パターンを共通して有するものの切断端面と凹凸パターンとの位置関係が無関係であることから、特許文献1にある表面形状検出方法を用いてこの建築パネルの表面形状を検出しようとすると、各建築パネル毎にサンプル画像データと比較する撮像データを得るために撮影ポイントをずらさねばならなく、手間がかかると共に照明との関係で検出精度の低下が助長されてしまうという問題もある。
特開2005−95747号公報
However, in order to match the coating start position on the building panel with the surface shape of the building panel, it is essential to detect the surface shape of the building panel with high accuracy. Since it is difficult to detect the shape, it is impossible to ensure a highly accurate finish of the coating. In addition, although this building panel has a concavo-convex pattern in common, since the positional relationship between the cut end face and the concavo-convex pattern is irrelevant, the surface shape of the building panel is determined using the surface shape detection method disclosed in Patent Document 1. When trying to detect, it is necessary to shift the shooting point in order to obtain imaging data to be compared with the sample image data for each building panel, which is troublesome and reduces detection accuracy in relation to lighting. There is also.
JP 2005-95747 A

本発明は上記の従来の問題点に鑑みて為したものであって、建築パネルの表面形状を簡易且つ高精度に検出できる表面形状検出方法を提供することを第1の課題とし、上記表面形状検出方法の検出結果に基いて建築パネルの表面に高精度の塗装を行う塗装方法を提供することを第2の課題とするものである。   The present invention was made in view of the above-described conventional problems, and a first object of the present invention is to provide a surface shape detection method that can easily and accurately detect the surface shape of a building panel. A second problem is to provide a coating method for performing high-precision coating on the surface of a building panel based on the detection result of the detection method.

上記課題を解決するために本発明の請求項1に係る建築パネルの表面形状検出方法は、建築パネル1の対向する一対の端部間に複数の目地溝2と柄用突部3とが交互に配設されると共に複数の柄用突部3のうちの2以上の柄用突部3における上記建築パネル1の対向する一対の端部間の方向の長さ寸法が異なるように形成された凹凸パターンを、表面に施してなる建築パネル1の表面形状検出方法であって、上記建築パネル1の対向する一対の端部間の方向に建築パネル1又は建築パネル1の表面レベルを測定するためのレーザー変位センサ4を相対的に移動させ、このレーザー変位センサ4によって建築パネル1の表面レベルを上記建築パネル1の対向する一対の端部間に亙って一直線上に測定し、目地溝位置特定手段5によって上記レーザー変位センサ4による測定データDに基いて上記対向する建築パネル1の端部間における各目地溝2の位置をそれぞれ求め、目地溝間距離検出手段6によって上記目地溝位置データに基いて隣接する各目地溝2間の距離を各々検出するようにしたことを特徴とする。   In order to solve the above-mentioned problem, the method for detecting the surface shape of a building panel according to claim 1 of the present invention has a plurality of joint grooves 2 and pattern protrusions 3 alternately between a pair of opposite ends of the building panel 1. The two or more pattern projections 3 of the plurality of pattern projections 3 are formed to have different length dimensions in the direction between a pair of opposing ends of the building panel 1. A method for detecting the surface shape of a building panel 1 having a concavo-convex pattern on the surface thereof, in order to measure the surface level of the building panel 1 or the building panel 1 in the direction between a pair of opposing ends of the building panel 1. The laser displacement sensor 4 is relatively moved, and the surface level of the building panel 1 is measured in a straight line across a pair of opposite ends of the building panel 1 by the laser displacement sensor 4. The above-mentioned label The position of each joint groove 2 between the ends of the opposing building panel 1 is obtained based on the measurement data D by the displacement sensor 4, and the joint groove distance detection means 6 adjoins based on the joint groove position data. The distance between each joint groove 2 is detected, respectively.

これによると、レーザー変位センサ4によって建築パネル1の表面レベルを上記建築パネル1の対向する一対の端部間に亙って一直線上に測定しているので、得られたレーザー変位センサ4の測定データDは従来の撮像データに比べてデータ量は小さく且つ照明の当たり具合によるバラツキも無くて誤差を小さくできたものであり、そして、目地溝位置特定手段5によって上記レーザー変位センサ4による測定データDに基いて上記対向する建築パネル1の端部間における各目地溝2の位置をそれぞれ求め、目地溝間距離検出手段6によって上記目地溝位置データに基いて隣接する各目地溝2間の距離を各々算出するようにすることで建築パネル1の表面形状の検出を行っているので、簡易且つ高精度の建築パネル1の表面形状の検出が可能にされている。特に、建築パネル1の対向する一対の端部間に複数の目地溝2と柄用突部3とが交互に配設されると共に複数の柄用突部3のうちの2以上の柄用突部3における上記建築パネル1の対向する一対の端部間の方向の長さ寸法が異なる凹凸パターンを表面に有する建築パネル1にあって、施された凹凸パターンの範囲が異なる複数の建築パネル1の表面形状を順々に検出するような場合にも、検出された建築パネル1の表面形状データと上記凹凸パターンとを各々目地溝2の位置及び目地溝2間の距離に基いて比較することで、建築パネル1に施された凹凸パターンの範囲を簡単に認識することができて、その後に行う品質検査や塗装を精度良く行わせることができる。   According to this, since the surface level of the building panel 1 is measured in a straight line across the pair of opposite ends of the building panel 1 by the laser displacement sensor 4, the measurement of the obtained laser displacement sensor 4 is performed. The data D has a smaller data amount than the conventional imaging data and has no variation due to the lighting condition, so that the error can be reduced, and the measurement data obtained by the laser displacement sensor 4 by the joint groove position specifying means 5 is obtained. The position of each joint groove 2 between the ends of the opposing building panel 1 is obtained based on D, and the distance between adjacent joint grooves 2 based on the joint groove position data by the joint groove distance detection means 6. Since the surface shape of the building panel 1 is detected by calculating each of the values, the surface shape of the building panel 1 can be detected easily and with high accuracy. It is. In particular, a plurality of joint grooves 2 and pattern protrusions 3 are alternately disposed between a pair of opposed end portions of the building panel 1, and two or more pattern protrusions out of the plurality of pattern protrusions 3. A plurality of building panels 1 having different concavo-convex pattern ranges on the surface thereof, having a concavo-convex pattern having different length dimensions in the direction between a pair of opposing ends of the building panel 1 in the portion 3. Even in the case where the surface shape of the building is sequentially detected, the detected surface shape data of the building panel 1 and the uneven pattern are compared based on the position of the joint groove 2 and the distance between the joint grooves 2 respectively. Thus, the range of the uneven pattern applied to the building panel 1 can be easily recognized, and the subsequent quality inspection and painting can be performed with high accuracy.

また、請求項2に係る建築パネルの表面形状検出方法は、請求項1において、目地溝位置特定手段5によって、建築パネル1の目地溝2内の任意高さ位置に基準高さ位置Hを設定し、レーザー変位センサ4によって建築パネル1の対向する一対の端部間に亙って表面レベルを測定して得られた測定データDと基準高さ位置Hとを比較して、基準高さ位置Hを上回っていたレーザー変位センサ4による測定データDが上記基準高さ位置Hを下回った箇所を溝始端位置aとし、この溝始端位置aから継続して基準高さ位置Hを下回っていた上記測定データDが基準高さ位置Hを越えた箇所を溝終端位置bとし、上記溝始端位置aと溝終端位置bとの間隔を暫定溝幅Aとし、この暫定溝幅Aが上記基準高さ位置Hに対応して予め設定している基準溝幅A´の許容範囲内にある場合に、暫定溝幅Aを含む建築パネル1の凹状部位を目地溝2として判定し、上記目地溝2と判定された建築パネル1の凹状部位における基準高さ位置Hより下方に凹没した部位の断面積Bを求めると共にこの断面積Bの重心位置Cを求めるようにし、目地溝間距離検出手段6によって、この重心位置Cを各々基準として隣接する各目地溝2間の距離を各々特定するようにしたことを特徴とする。   Moreover, the surface shape detection method of the building panel which concerns on Claim 2 sets the reference | standard height position H to the arbitrary height position in the joint groove 2 of the construction panel 1 by the joint groove position specific | specification means 5 in Claim 1. Then, the measurement data D obtained by measuring the surface level across the pair of opposite ends of the building panel 1 by the laser displacement sensor 4 and the reference height position H are compared, and the reference height position A position where the measurement data D by the laser displacement sensor 4 that has exceeded H falls below the reference height position H is defined as a groove start end position a, and continues from the groove start end position a to below the reference height position H. A location where the measurement data D exceeds the reference height position H is defined as a groove end position b, a distance between the groove start end position a and the groove end position b is defined as a provisional groove width A, and the provisional groove width A is defined as the reference height. Reference groove set in advance corresponding to position H When it is within the allowable range of A ′, the concave portion of the building panel 1 including the provisional groove width A is determined as the joint groove 2, and the reference height position in the concave portion of the building panel 1 determined as the joint groove 2 The cross-sectional area B of the part recessed below H is obtained, and the center of gravity position C of the cross-sectional area B is obtained, and the joint groove adjacent to each other with the center of gravity position C as a reference by the joint groove distance detection means 6. Each of the distances between the two is specified.

これによると、目地溝位置特定手段5によって、基準高さ位置Hに基く暫定溝幅Aをパラメータとして数ある建築パネル1の凹状部位の中から目地溝2を精度良く判定することができると共に、目地溝2と判定された建築パネル1の凹状部位の基準高さ位置Hより下方に凹没した部位の断面積Bの重心位置Cを目地溝2の位置に決定することで上記凹状部位の溝形状に製造誤差があっても上記製造誤差の影響を極力排して正確な目地溝2の位置を特定することができるのであり、そして、目地溝間距離検出手段6によって、上記得られた目地溝2の位置を基準にすることで隣接する各目地溝2間の距離を正確に各々特定することができるのであり、つまり、建築パネル1の表面形状の検出精度の向上が図られているのである。   According to this, the joint groove position specifying means 5 can accurately determine the joint groove 2 from among a number of concave portions of the building panel 1 with the provisional groove width A based on the reference height position H as a parameter. By determining the center of gravity C of the cross-sectional area B of the part recessed below the reference height position H of the concave part of the building panel 1 determined as the joint groove 2, the groove of the concave part is determined as the joint groove 2 position. Even if there is a manufacturing error in the shape, the influence of the manufacturing error can be eliminated as much as possible and the exact position of the joint groove 2 can be specified. By using the position of the ditches 2 as a reference, the distances between the adjacent joint ditches 2 can be accurately specified, that is, the detection accuracy of the surface shape of the building panel 1 is improved. is there.

また、請求項3に係る建築パネルの表面形状検出方法は、請求項1において、目地溝位置特定手段5によって、建築パネル1の目地溝2内の任意高さ位置に基準高さ位置Hを設定し、レーザー変位センサ4によって建築パネル1の対向する一対の端部間に亙って表面レベルを測定して得られた測定データDと基準高さ位置Hとを比較して、基準高さ位置Hを上回っていたレーザー変位センサ4による測定データDが上記基準高さ位置Hを下回った箇所を溝始端位置aとし、この溝始端位置aから継続して基準高さ位置Hを下回っていた上記測定データDが基準高さ位置Hを越えた箇所を溝終端位置bとし、上記溝始端位置aと溝終端位置bとの間隔を暫定溝幅Aとし、暫定溝幅A内において基準高さ位置Hと基準高さ位置Hを下回る上記測定データDとの差を暫定溝深さEとし、建築パネル1の凹状部位における基準高さ位置Hより下方に凹没した部位の暫定断面積Bを求め、これら暫定溝幅A、暫定溝深さE及び暫定断面積Bがそれぞれ、上記基準高さ位置Hに対応して予め設定している基準溝幅A´、基準溝深さE´及び基準断面積B´の範囲内にある場合にのみ、暫定溝幅Aを含む建築パネル1の凹状部位を目地溝2として判定し、上記目地溝2と判定された建築パネル1の凹状部位における暫定断面積Bの重心位置Cを求めるようにし、目地溝間距離検出手段6によって、上記重心位置Cを各々基準として隣接する各目地溝2間の距離を各々特定するようにしたことを特徴とする。   Moreover, the surface shape detection method of the building panel which concerns on Claim 3 sets the reference | standard height position H to the arbitrary height position in the joint groove 2 of the construction panel 1 by the joint groove position specific | specification means 5 in Claim 1. Then, the measurement data D obtained by measuring the surface level across the pair of opposite ends of the building panel 1 by the laser displacement sensor 4 and the reference height position H are compared, and the reference height position A position where the measurement data D by the laser displacement sensor 4 that has exceeded H falls below the reference height position H is defined as a groove start end position a, and continues from the groove start end position a to below the reference height position H. The location where the measurement data D exceeds the reference height position H is defined as the groove end position b, the interval between the groove start end position a and the groove end position b is defined as the provisional groove width A, and the reference height position within the provisional groove width A. Above measurement below H and reference height position H The provisional groove depth E is defined as the difference from the data D, and the provisional cross-sectional area B of the portion recessed below the reference height position H in the concave portion of the building panel 1 is obtained. When the height E and the provisional cross-sectional area B are within the ranges of the reference groove width A ′, the reference groove depth E ′, and the reference cross-sectional area B ′ set in advance corresponding to the reference height position H, respectively. Only, the concave part of the building panel 1 including the provisional groove width A is determined as the joint groove 2, and the center of gravity C of the provisional cross-sectional area B in the concave part of the building panel 1 determined as the joint groove 2 is obtained. The distance between the joint grooves 2 is specified by the inter-groove distance detection means 6 with the center of gravity position C as a reference, respectively.

これによると、目地溝位置特定手段5によって、基準高さ位置Hに基く暫定溝幅A、暫定溝深さE及び暫定断面積Bをパラメータとして数ある建築パネル1の凹状部位の中から目地溝2を正確に判定することができると共に、目地溝2と判定された建築パネル1の凹状部位の基準高さ位置Hより下方に凹没した部位の断面積Bの重心位置Cを目地溝2の位置に決定することで上記凹状部位の溝形状に製造誤差があっても上記製造誤差の影響を極力排して正確な目地溝2の位置を特定することができるのであり、そして、目地溝間距離検出手段6によって、上記得られた目地溝2の基準位置を基準にすることで隣接する各目地溝2間の距離を正確に各々特定することができるのであり、つまり、建築パネル1の表面形状の検出精度の向上が図られているのである。   According to this, by the joint groove position specifying means 5, the joint groove is selected from among the concave portions of the building panel 1 having a number of provisional groove width A, provisional groove depth E and provisional cross-sectional area B based on the reference height position H as parameters. 2 can be accurately determined, and the center of gravity C of the cross-sectional area B of the part recessed below the reference height position H of the concave part of the building panel 1 determined as the joint groove 2 is By determining the position, even if there is a manufacturing error in the groove shape of the concave portion, it is possible to specify the exact position of the joint groove 2 by eliminating the influence of the manufacturing error as much as possible, and between the joint grooves The distance between the adjacent joint grooves 2 can be accurately specified by the distance detection means 6 by using the obtained reference position of the joint groove 2 as a reference, that is, the surface of the building panel 1. Improved shape detection accuracy And is're.

また、請求項4に係る建築パネル1の塗装方法は、長尺パネルの長手方向に複数の目地溝2と柄用突部3とが交互に配設されると共に2以上の柄用突部3における上記長手方向の長さ寸法が異なるように形成された凹凸パターンを連続して繰り返し表面に施してなる長尺パネルを、その長手方向の任意位置で切断して形成した建築パネル1の表面に、上記凹凸パターンに対応する塗装パターンで塗装を施す塗装手段10を備えた塗装装置9を用いて、所定の塗装を施すようにする建築パネル1の塗装方法であって、切断端面を進行方向に向けて搬送される建築パネル1の塗装装置9への搬入前に、建築パネル1の表面レベルをその搬送方向に亙ってレーザー変位センサ4にて測定するようにして請求項1乃至3のいずれかに記載の表面形状検出方法を用いて建築パネル1の搬送方向における各目地溝2の位置及び隣接する各目地溝2間の距離に基く表面形状データを検出し、塗装装置9に設けた差分検出部11にて、上記表面形状検出方法にて得られた表面形状データと塗装パターンデータを比較し、塗装パターン内における建築パネル1の進行側切断端面の位置を特定して建築パネル1の表面の凹凸パターンと塗装パターンとの搬送方向におけるズレ幅を検出し、塗装装置9に設けた初期位置調整部12にて、上記差分検出部11で検出したズレ幅分をずらして塗装手段10の塗装パターンの塗装開始位置を設定し、塗装手段10にて、上記初期位置調整部12で設定された塗装開始位置の塗装パターンから建築パネル1の表面に対して塗装を施すことを特徴とする。   Further, in the method for painting the building panel 1 according to claim 4, a plurality of joint grooves 2 and pattern protrusions 3 are alternately arranged in the longitudinal direction of the long panel, and two or more pattern protrusions 3 are provided. On the surface of the building panel 1 formed by cutting a long panel formed by continuously and repeatedly applying the uneven pattern formed so that the length dimension in the longitudinal direction is different at an arbitrary position in the longitudinal direction. The coating method of the building panel 1 is to apply a predetermined coating using the coating device 9 provided with the coating means 10 for coating with the coating pattern corresponding to the uneven pattern, with the cut end face in the traveling direction. Any one of claims 1 to 3, wherein the surface level of the building panel 1 is measured by the laser displacement sensor 4 in the conveying direction before the building panel 1 conveyed toward the coating apparatus 9 is carried in. Surface shape inspection Using the method, surface shape data based on the position of each joint groove 2 in the conveyance direction of the building panel 1 and the distance between adjacent joint grooves 2 is detected, and the difference detection unit 11 provided in the coating apparatus 9 The surface shape data obtained by the surface shape detection method is compared with the paint pattern data, and the position of the cutting end surface of the building panel 1 in the paint pattern is specified to determine the uneven pattern on the surface of the building panel 1 and the paint pattern. The initial position adjustment unit 12 provided in the coating apparatus 9 detects the shift width in the transport direction of the sheet and shifts the shift width detected by the difference detection unit 11 to set the coating start position of the coating pattern of the coating means 10. Then, the coating means 10 performs coating on the surface of the building panel 1 from the coating pattern at the coating start position set by the initial position adjusting unit 12.

これによると、塗装装置9に搬入される前段階で、建築パネル1の表面形状を請求項1乃至3のいずれかに記載の表面形状検出方法によって検出することで、高精度の隣接する各目地溝2間の各々の距離データを得ることができるのであり、そして差分検出部11によって、上記得られた高精度の隣接する各目地溝2間の各々の距離データと塗装手段10の塗装パターンにおける各目地溝2間の距離データとを比較し、塗装パターン内における建築パネル1の進行側切断面の位置を特定して建築パネル1の表面の凹凸パターンと塗装パターンとの搬送方向におけるズレ幅を検出し、初期位置調整部12によって、上記差分検出部11で検出したズレ幅分をずらして塗装手段10の塗装パターンの塗装開始位置を設定して、塗装手段10によって、上記初期位置調整部12で設定された塗装開始位置の塗装パターンから建築パネル1の表面に対して塗装を施すようにしたことで、建築パネル1の表面の凹凸パターンに合わせた高精度の塗装仕上を確保することができたものである。   According to this, by detecting the surface shape of the building panel 1 by the surface shape detection method according to any one of claims 1 to 3 before being carried into the coating apparatus 9, each adjacent eye with high accuracy is detected. The respective distance data between the grabens 2 can be obtained, and the difference detection unit 11 obtains the distance data between the adjacent joint grooves 2 with high accuracy and the paint pattern of the painting means 10. The distance data between the joint grooves 2 is compared, the position of the cut surface of the building panel 1 in the painting pattern is specified, and the deviation width in the conveying direction between the uneven pattern on the surface of the building panel 1 and the painting pattern is determined. Then, the initial position adjustment unit 12 sets the coating start position of the coating pattern of the coating unit 10 by shifting the deviation width detected by the difference detection unit 11. By applying the coating to the surface of the building panel 1 from the coating pattern at the coating start position set by the initial position adjusting unit 12, high-precision coating according to the uneven pattern on the surface of the building panel 1 The finish could be secured.

本発明は、建築パネルの表面形状の検出を簡易且つ高精度で行うことができたものであり、その後に行う品質検査や塗装を精度良く行わせることができるといった利点を有する。特に凹凸パターンと対応する塗装パターンで塗装を施す場合には、精度良く行われた建築パネルの表面形状の検出データに基いて、建築パネルの表面形状に合わせて塗装パターンの塗装開始位置を設定できるから、精度良く塗装を行うことができる利点を有する。   The present invention can detect the surface shape of a building panel easily and with high accuracy, and has an advantage that quality inspection and painting performed thereafter can be performed with high accuracy. In particular, when painting with a coating pattern corresponding to the uneven pattern, it is possible to set the painting start position of the painting pattern according to the surface shape of the building panel based on the accurate detection data of the surface shape of the building panel. Therefore, there is an advantage that the coating can be performed with high accuracy.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

本例の建築パネル1は、図1(a)のように、建物の外装材、浴室内壁、内装材等に用いられる窯業系(セメント系)の建築パネル1であって、押出し成形や抄造にて製造した原板となる長尺パネルの表面にローラプレスや押圧プレス等のプレスにて目地溝2と柄用突部3とからなる凹凸パターンをその長手方向に繰り返し施し、この長尺パネルをその長手方向の任意位置で切断することで形成されている。上記凹凸パターンは、上面視では、目地溝2で区分けされた異なる大きさのブロック状の柄用突部3が複数配置されて形成されているが、長尺パネルの長手方向の垂直断面では、複数の目地溝2と柄用突部3とが交互に配設されると共に2以上の柄用突部3における上記長手方向の長さ寸法が異なるような凹凸形状とされている。更に言うと、柄用突部3には微少な凹凸による柄模様が形成されている。つまり、この建築パネル1は長尺パネルの長手方向の任意位置で切断されて形成されたことで、その表面には繰り返す凹凸パターンのうちの任意範囲の形状が形成されているのであり、具体的に建築パネル1の対向する一対の切断端面間の垂直断面では、複数の目地溝2と柄用突部3とが交互に配設されると共に、複数の柄用突部3のうちの2以上の柄用突部3における上記建築パネル1の対向する一対の切断端面間の方向の長さ寸法が異なるような凹凸形状が形成されているのである。   As shown in FIG. 1A, the building panel 1 of this example is a ceramic-based (cement-based) building panel 1 used for building exterior materials, bathroom inner walls, interior materials, etc., and is used for extrusion molding and papermaking. An uneven pattern consisting of joint grooves 2 and pattern protrusions 3 is repeatedly applied in the longitudinal direction on the surface of a long panel as an original plate manufactured by a roller press or a press press. It is formed by cutting at an arbitrary position in the longitudinal direction. In the top view, the concavo-convex pattern is formed by arranging a plurality of block-shaped pattern projections 3 having different sizes divided by the joint grooves 2, but in the vertical cross section in the longitudinal direction of the long panel, A plurality of joint grooves 2 and pattern protrusions 3 are alternately arranged, and the two or more pattern protrusions 3 have an uneven shape in which the length in the longitudinal direction is different. More specifically, a pattern with fine irregularities is formed on the pattern protrusion 3. That is, the building panel 1 is formed by being cut at an arbitrary position in the longitudinal direction of the long panel, so that an arbitrary range of shapes of repeated concavo-convex patterns is formed on the surface. In addition, in the vertical cross section between a pair of opposed end faces of the building panel 1, the plurality of joint grooves 2 and the pattern protrusions 3 are alternately arranged, and two or more of the plurality of pattern protrusions 3 An uneven shape is formed such that the length dimension in the direction between the pair of cut end faces facing each other of the building panel 1 in the pattern protrusion 3 is different.

この窯業系の建築パネル1にあっては、半硬化状態の長尺パネルに施した凹凸パターンは製造誤差が生じ易く、その後、その凹凸形状が定格寸法通りに形成されているか否かを調べる品質検査工程や、表面に塗装を施して仕上げを行う塗装工程に流されるのであるが、いずれの工程でも建築パネル1の表面形状の検出データが必要であり、本例では下記のようにして建築パネル1の表面形状を検出している。   In this ceramic building panel 1, the uneven pattern formed on the semi-cured long panel is likely to cause a manufacturing error, and then the quality of checking whether the uneven pattern is formed according to the rated dimension. It is sent to the inspection process and the painting process where the surface is painted and finished, but in any process, the detection data of the surface shape of the building panel 1 is necessary. In this example, the building panel is as follows. 1 surface shape is detected.

建築パネル1の表面形状を検出するには図3のような表面形状検出装置7を用いる。この表面形状検出装置7は、下方を通過した建築パネル1の表面形状の表面レベルを測定するためのレーザー変位センサ4と、このレーザー変位センサ4が接続されたデータ処理端末機8とで構成されており、このデータ処理端末機8には、上記レーザー変位センサ4による測定データDに基いて各目地溝2の位置を求める目地溝位置特定手段5や、上記目地溝位置データに基いて隣接する各目地溝2間の距離を各々検出する目地溝間距離検出手段6が備えられている。なお、本例のレーザー変位センサ4は固定状態にあって搬送される建築パネル1の表面レベルを測定するようにされているが、レーザー変位センサ4が移動可能で建築パネル1が固定状態であってもよく、レーザー変位センサ4又は建築パネル1が水平方向で且つ建築パネル1の切断端面間の方向に相対的に移動できるものであればよい。つまり、レーザー変位センサ4は建築パネル1の切断端面間に亙る一直線上の表面レベルを測定するようにされている。   In order to detect the surface shape of the building panel 1, a surface shape detection device 7 as shown in FIG. 3 is used. The surface shape detection device 7 includes a laser displacement sensor 4 for measuring the surface level of the surface shape of the building panel 1 that has passed below, and a data processing terminal 8 to which the laser displacement sensor 4 is connected. The data processing terminal 8 is adjacent to the joint groove position specifying means 5 for determining the position of each joint groove 2 based on the measurement data D by the laser displacement sensor 4 and based on the joint groove position data. Inter-groove distance detection means 6 for detecting the distance between the joint grooves 2 is provided. The laser displacement sensor 4 of this example is in a fixed state and measures the surface level of the building panel 1 being conveyed. However, the laser displacement sensor 4 is movable and the building panel 1 is in a fixed state. The laser displacement sensor 4 or the building panel 1 may be moved in the horizontal direction and relatively in the direction between the cut end faces of the building panel 1. That is, the laser displacement sensor 4 measures the surface level on a straight line extending between the cut end faces of the building panel 1.

本例では、建築パネル1の表面形状を検出するには、図4にあるように、まず、レーザー変位センサ4によって建築パネル1の切断端面間に亙る一直線上の表面レベルを測定する。たとえば図1(a)の建築パネル1の切断端面間に亙る一直線上の表面レベルを測定すると(図中太線がレーザー変位センサ4の走査線である)、データ処理端末機8に送られるレーザー変位センサ4の測定データDは図1(b)のようになる。つまり、レーザー変位センサ4の測定データDは、建築パネル1の切断端面間に亙る方向における建築パネル1の位置をx軸成分とすると共に上記建築パネル1の位置での表面レベルをy軸成分としてプロットして形成されたデータであり、建築パネル1の表面の凸状部位ではデータ値は高いレベルを指し、建築パネル1の表面の凹状部位ではデータ値は低いレベルを指すようになる。   In this example, in order to detect the surface shape of the building panel 1, as shown in FIG. 4, first, the surface level on a straight line extending between the cut end faces of the building panel 1 is measured by the laser displacement sensor 4. For example, when the surface level on a straight line extending between the cut end faces of the building panel 1 in FIG. 1A is measured (the thick line in the figure is the scanning line of the laser displacement sensor 4), the laser displacement sent to the data processing terminal 8 is measured. The measurement data D of the sensor 4 is as shown in FIG. That is, the measurement data D of the laser displacement sensor 4 uses the position of the building panel 1 in the direction extending between the cut end faces of the building panel 1 as the x-axis component and the surface level at the position of the building panel 1 as the y-axis component. In the data formed by plotting, the data value indicates a high level in the convex portion on the surface of the building panel 1, and the data value indicates a low level in the concave portion on the surface of the building panel 1.

次に、このレーザー変位センサ4の測定データDに基き、目地溝位置特定手段5によって目地溝2を判定する。具体的には、まず、建築パネル1の目地溝2内の任意高さ位置に基準高さ位置Hを設定する。この基準高さ位置Hは、本例では、測定データDから建築パネル1全体の平均厚みを求めてこの平均厚みから予め設定されている一定値を引いた高さ位置で且つ目地溝2内に位置する高さ位置に設定されているが、たとえば、別個に厚み測定装置を設けてこの厚み測定装置で建築パネルの厚みを測定して得られた厚みデータに基いて上記のように算出してもよい。また、本例では、一の長尺パネルから複数の建築パネルを製造した場合においても、製造した建築パネル毎に基準高さ位置Hを算出して適用しているが、複数の建築パネルのうちの一の建築パネルの平均厚みから求めた基準高さ位置Hを複数の建築パネルのうちの他の建築パネルにも適用することも好ましい。   Next, based on the measurement data D of the laser displacement sensor 4, the joint groove 2 is determined by the joint groove position specifying means 5. Specifically, first, a reference height position H is set at an arbitrary height position in the joint groove 2 of the building panel 1. In this example, the reference height position H is the height position obtained by calculating the average thickness of the building panel 1 from the measurement data D and subtracting a predetermined value from the average thickness, and in the joint groove 2. The height position is set, but for example, a thickness measuring device is provided separately and calculated as described above based on the thickness data obtained by measuring the thickness of the building panel with this thickness measuring device. Also good. Moreover, in this example, even when a plurality of building panels are manufactured from one long panel, the reference height position H is calculated and applied for each manufactured building panel. It is also preferable to apply the reference height position H obtained from the average thickness of one building panel to other building panels among the plurality of building panels.

次に、図1(c)や図2のように、レーザー変位センサ4の測定データDと基準高さ位置Hとを比較して、基準高さ位置Hを上回っていたレーザー変位センサ4による測定データDが上記基準高さ位置Hを下回った箇所(建築パネル1の切断端面間に亙る方向の位置)を溝始端位置aとし、この溝始端位置aから継続して基準高さ位置Hを下回っていた上記測定データDが基準高さ位置Hを越えた箇所(建築パネル1の切断端面間に亙る方向の位置)を溝終端位置bとし、上記溝始端位置aと溝終端位置bとの間隔を暫定溝幅Aとし、この暫定溝幅Aが上記基準高さ位置Hに対応して予め設定している基準溝幅A´の許容範囲内にある場合に、暫定溝幅Aを含む建築パネル1の凹状部位を目地溝2として判定する。ここで、基準溝幅A´は定格の建築パネル1における上記基準高さ位置Hに対応した溝幅寸法に寸法許容差を加えた寸法である。上記のように基準高さ位置Hに基く暫定溝幅Aをパラメータとして目地溝2を判定したことで、数ある建築パネル1の凹状部位の中から目地溝2を精度良く判定することができる。   Next, as shown in FIG. 1C and FIG. 2, the measurement data D of the laser displacement sensor 4 and the reference height position H are compared, and the measurement by the laser displacement sensor 4 that exceeds the reference height position H is performed. A location where the data D falls below the reference height position H (position in a direction extending between the cut end faces of the building panel 1) is defined as a groove start end position a, and continues below the reference height position H from the groove start end position a. The location where the measured data D is above the reference height position H (the position in the direction between the cut end surfaces of the building panel 1) is defined as the groove end position b, and the distance between the groove start position a and the groove end position b. Is a provisional groove width A, and the provisional groove width A is within the allowable range of the reference groove width A ′ set in advance corresponding to the reference height position H, the building panel including the provisional groove width A 1 is determined as a joint groove 2. Here, the reference groove width A ′ is a dimension obtained by adding a dimensional tolerance to the groove width dimension corresponding to the reference height position H in the rated building panel 1. By determining the joint groove 2 using the provisional groove width A based on the reference height position H as a parameter as described above, the joint groove 2 can be accurately determined from among the concave portions of the building panel 1.

なお、目地溝2を判定するためのパラメータを上記暫定溝幅Aの他に加えることも、目地溝2の検出精度の向上のためには好ましい。具体的に、図6の例では、先例同様に暫定溝幅Aを求めた後に、この暫定溝幅A内において基準高さ位置Hと基準高さ位置Hを下回る上記測定データDとの差分を暫定溝深さEとし、建築パネル1の凹状部位における基準高さ位置Hより下方に凹没した部位の暫定断面積Bを求め、これら暫定溝幅A、暫定溝深さE及び暫定断面積Bがそれぞれ、上記基準高さ位置Hに対応して予め設定している基準溝幅A´、基準溝深さE´及び基準断面積B´の範囲内にある場合にのみ、暫定溝幅Aを含む建築パネル1の凹状部位を目地溝2として判定するようにしている。ここで、基準溝深さE´は定格の建築パネル1における上記基準高さ位置Hに対応した溝深さ寸法に寸法許容差を加えた寸法であり、基準断面積B´は定格の建築パネル1における上記基準高さ位置Hに対応した断面積Bに寸法許容差を加えた面積である。具体的に本例の暫定溝深さEは基準高さ位置Hを下回る上記測定データDと基準高さ位置Hとの最大差分であり、この暫定溝深さEを上記基準高さ位置Hに対応して予め設定している最大の基準溝深さE´と比較しているが、暫定溝幅A内における測定データDのプロット位置毎の暫定溝深さEと上記プロット点毎に予め設定している基準溝深さE´とを比較して目地溝2を判定してもよく、この場合にはより精密に目地溝2を判定することができる。このように、目地溝2を判定するためのパラメータを増やすことで、たとえば目地溝2と間違い易い凹状部位が形成された建築パネル1においても、数ある建築パネル1の凹状部位の中から目地溝2を精度良く判定することができるのである。無論、建築パネル1の表面形状に応じて、暫定溝幅A、暫定溝深さE及び暫定断面積Bの本例や先例以外の適宜の組み合わせで、目地溝2の判定を行ってもよいのは言うまでもない。   It is also preferable to add a parameter for determining the joint groove 2 in addition to the provisional groove width A in order to improve the detection accuracy of the joint groove 2. Specifically, in the example of FIG. 6, after obtaining the provisional groove width A as in the previous example, the difference between the reference height position H and the measurement data D below the reference height position H within the provisional groove width A is calculated. The provisional groove depth E is determined, and the provisional cross-sectional area B of the portion recessed below the reference height position H in the concave portion of the building panel 1 is obtained, and these provisional groove width A, provisional groove depth E, and provisional cross-sectional area B Are only within the ranges of the reference groove width A ′, the reference groove depth E ′, and the reference cross-sectional area B ′ set in advance corresponding to the reference height position H, the temporary groove width A is The concave part of the building panel 1 to be included is determined as the joint groove 2. Here, the reference groove depth E ′ is a dimension obtained by adding a dimensional tolerance to the groove depth dimension corresponding to the reference height position H in the rated building panel 1, and the reference sectional area B ′ is a rated building panel. 1 is an area obtained by adding a dimensional tolerance to the cross-sectional area B corresponding to the reference height position H in FIG. Specifically, the provisional groove depth E in this example is the maximum difference between the measurement data D below the reference height position H and the reference height position H, and the provisional groove depth E is set to the reference height position H. Correspondingly, it is compared with the maximum reference groove depth E ′ set in advance, but is set in advance for each provisional groove depth E at each plot position of the measurement data D within the provisional groove width A and each plot point. The reference groove depth E ′ may be compared to determine the joint groove 2. In this case, the joint groove 2 can be determined more precisely. In this way, by increasing the parameters for determining the joint groove 2, for example, in the building panel 1 in which the recessed portion that is easily mistaken for the joint groove 2 is formed, the joint groove is selected from among the recessed portions of the building panel 1. 2 can be accurately determined. Of course, according to the surface shape of the building panel 1, the joint groove 2 may be determined by an appropriate combination of the provisional groove width A, the provisional groove depth E, and the provisional cross-sectional area B other than the present example and the precedent. Needless to say.

次に、上記のように目地溝2と判定された建築パネル1の凹状部位における基準高さ位置Hより下方に凹没した部位の断面積B(上記暫定断面積Bと同じ)を求めると共に、この断面積Bの建築パネル1の切断端面間に亙る方向における重心位置Cを求める。たとえば、上記断面積Bはx軸方向の単位プロット幅毎の測定データDのy軸成分から基準高さ位置Hを引いた各差分の加算で求められ、重心位置は溝始端位置aを原点とした座標におけるx軸方向の単位プロット幅毎の測定データDのx軸成分及びy軸成分の積算分を加算した後に断面積Bで除算することで求められる。この建築パネル1の切断端面間に亙る方向における重心位置Cは目地溝2の中心位置Fとして認定されるものであって、目地溝2の定格溝幅Mの中心と合わせることで目地溝2の位置範囲が認識され、隣接する目地溝2の間の部位が柄用突部3の位置範囲として認識される。ここで、上記目地溝2の定格溝幅Mは定格の建築パネル1における目地溝2の定格の溝幅寸法である。このように建築パネル1の切断端面間に亙る方向における重心位置Cを目地溝2の中心位置Fとすることで、目地溝2や柄用突部3の正確な位置範囲を特定することができるのである。詳しくは、製造された建築パネル1の目地溝2となる凹状部位は、図1(c)のように定格の建築パネル1の目地溝2の形状に近い形状のみならず、半硬化状態の長尺パネルに凹凸パターンをプレスにて施すという製造上の理由で生じ易い製造誤差や、柄用突部3の微少な凹凸の柄模様の位置関係によって、図2のように定格の建築パネル1の目地溝2の形状から多少くずれた形状になる場合もあるが、上述のように建築パネル1の切断端面間に亙る方向における重心位置Cを目地溝2の中心位置Fとすることで、実際の製造された凹状部位の形状に基いているも上記製造誤差や柄用突部3の微少な凹凸の柄模様の影響を極力抑制できた正確な目地溝2の中心位置F、ひいては目地溝2や柄用突部3の正確な位置範囲を特定することができるのである。次に、目地溝間距離検出手段6によって、この重心位置Cを各々基準として隣接する各目地溝2間の距離を各々特定する。これにより、建築パネル1の切断端面間に亙る方向における各目地溝2の位置データ及び隣接する各目地溝2間の距離データに基いた、建築パネル1の切断端面間に亙る方向における高精度の表面形状データを得ることができるのである。   Next, while calculating | requiring the cross-sectional area B (same as the said provisional cross-sectional area B) of the site | part recessed below the reference | standard height position H in the concave site | part of the building panel 1 determined as the joint groove 2 as mentioned above, A center-of-gravity position C in a direction extending between the cut end faces of the building panel 1 having the cross-sectional area B is obtained. For example, the cross-sectional area B is obtained by adding each difference obtained by subtracting the reference height position H from the y-axis component of the measurement data D for each unit plot width in the x-axis direction. The sum of the x-axis component and the y-axis component of the measurement data D for each unit plot width in the x-axis direction at the coordinate obtained is added and then divided by the cross-sectional area B. The center-of-gravity position C in the direction extending between the cut end faces of the building panel 1 is recognized as the center position F of the joint groove 2, and is aligned with the center of the rated groove width M of the joint groove 2. The position range is recognized, and the portion between the adjacent joint grooves 2 is recognized as the position range of the pattern protrusion 3. Here, the rated groove width M of the joint groove 2 is a rated groove width dimension of the joint groove 2 in the rated building panel 1. Thus, by setting the center of gravity C in the direction extending between the cut end faces of the building panel 1 as the center position F of the joint groove 2, it is possible to specify the exact position range of the joint groove 2 and the pattern protrusion 3. It is. Specifically, the concave portion to be the joint groove 2 of the manufactured building panel 1 is not only a shape close to the shape of the joint groove 2 of the rated building panel 1 as shown in FIG. Depending on the manufacturing error that is likely to occur due to manufacturing reasons such as applying a concavo-convex pattern to the scale panel with a press, and the positional relationship of the minute concavo-convex pattern of the pattern projection 3, as shown in FIG. Although it may become a shape slightly deviated from the shape of the joint groove 2, the center of gravity C in the direction extending between the cut end faces of the building panel 1 is set as the center position F of the joint groove 2 as described above. Although it is based on the shape of the manufactured concave part, the accurate center position F of the joint groove 2 that can suppress the above-described manufacturing error and the influence of the minute uneven pattern of the projection for projection 3 as much as possible. An accurate position range of the pattern protrusion 3 can be specified. It is. Next, the distance between the joint grooves 2 adjacent to each other is specified by the inter-groove distance detecting means 6 with the center of gravity C as a reference. Thereby, based on the position data of each joint groove 2 in the direction extending between the cut end faces of the building panel 1 and the distance data between the adjacent joint grooves 2, high accuracy in the direction extending between the cut end faces of the building panel 1. Surface shape data can be obtained.

上記の建築パネル1の表面形状検出方法によると、レーザー変位センサ4によって建築パネル1の表面レベルを上記建築パネル1の対向する一対の端部間に亙って一直線上に測定しているので、得られたレーザー変位センサ4の測定データDは、従来の建築パネル1の表面を撮影して得る撮像データに比べてそのデータ量を小さくでき、且つ照明の当たり具合によるバラツキも無くすることができて誤差を小さくできたものであり、そして、目地溝位置特定手段5によって上記レーザー変位センサ4による測定データDに基いて上記対向する建築パネル1の端部間における各目地溝2の位置をそれぞれ求め、目地溝間距離検出手段6によって上記目地溝位置データに基いて隣接する各目地溝2間の距離を各々算出するようにすることで建築パネル1の表面形状の検出を行っているので、従来に比べて簡易且つ高精度の建築パネル1の表面形状の検出が可能にされているのである。特に、窯業系(セメント系)の長尺パネルにプレスにて施された凹凸形状は上述のように製造誤差等が生じ易いのであり、従来の撮像データでは照明との関係で上記製造誤差が過敏に反映されることもあって、この撮像データに基いて認定された目地溝2の中心位置は上記製造誤差の影響を過大に受けて通常凹状部位の形状から求められるべき位置からズレてしまうこともあるが、本発明の表面検出方法の目地溝2の中心位置は、目地溝2と判定された建築パネル1の凹状部位における基準高さ位置Hより下方に凹没した部位の断面積Bの重心位置Cとされており、上述のように重心位置Cを目地溝2の中心位置とすることで製造誤差等の影響を極力排除できることから、高精度の建築パネル1の表面形状の検出が可能にされているのである。   According to the method for detecting the surface shape of the building panel 1, the surface level of the building panel 1 is measured in a straight line across the pair of opposite ends of the building panel 1 by the laser displacement sensor 4. The obtained measurement data D of the laser displacement sensor 4 can reduce the amount of data compared to the image data obtained by photographing the surface of the conventional building panel 1 and can eliminate variations due to lighting conditions. The position of each joint groove 2 between the ends of the opposing building panel 1 is determined by the joint groove position specifying means 5 based on the measurement data D by the laser displacement sensor 4. The distance between the adjacent joint grooves 2 is calculated on the basis of the joint groove position data by the joint groove distance detection means 6 and is calculated. Since detection is performed of the surface shape of Le 1 is the detection of the surface shape of the building panel 1 of a simple and highly accurate as compared to conventionally been possible. In particular, the uneven shape formed by pressing a ceramic-based (cement-based) long panel is prone to manufacturing errors as described above, and in conventional imaging data, the above manufacturing errors are sensitive to illumination. The center position of the joint groove 2 that is recognized based on this imaging data is excessively influenced by the manufacturing error, and is displaced from the position that should normally be obtained from the shape of the concave portion. However, the center position of the joint groove 2 in the surface detection method of the present invention is the cross-sectional area B of the part recessed below the reference height position H in the concave part of the building panel 1 determined to be the joint groove 2. Since the center of gravity position C is set as the center position of the joint groove 2 as described above, the influence of manufacturing errors and the like can be eliminated as much as possible, so that the surface shape of the building panel 1 can be detected with high accuracy. It is done

上述のようにして得た建築パネル1の切断端面間に亙る方向における表面形状データは、たとえば定格の建築パネル1における凹凸パターンデータと比較することで、表面形状が定格寸法通りに形成されているか否かを調べる品質検査を行うことができるのであり、また、たとえば下記のように塗装工程においても有効に使用することができる。   Whether the surface shape data in the direction extending between the cut end faces of the building panel 1 obtained as described above is compared with the uneven pattern data in the rated building panel 1, for example, so that the surface shape is formed according to the rated dimension. It is possible to perform a quality inspection to check whether or not, and for example, it can be used effectively in the painting process as described below.

塗装工程で用いる塗装装置9は、図5のように、長尺パネルに施された凹凸パターンと同様の塗装パターンで塗装を施すようにした塗装手段10を有し、また、上述の表面形状検出装置7にて得られた表面形状データと塗装パターンデータを比較して塗装パターン内における建築パネル1の進行側切断端面の位置を特定して建築パネル1の表面の凹凸パターンと塗装パターンとの搬送方向におけるズレ幅を検出するための差分検出部11、上記差分検出部11で検出したズレ幅分をずらして塗装手段10の塗装パターンの塗装開始位置を設定するための初期位置調整部12を備えている。ここで、塗装手段10としては、塗装パターンデータに基いて適宜インクを建築パネル1の表面に向けて噴射させるようなインクジェット装置でも、周面が印刷面とされて建築パネル1の表面に圧接することで建築パネル1の表面に塗装パターンが印刷されるような印刷ロール装置であってもよい。   As shown in FIG. 5, the coating apparatus 9 used in the painting process has a coating means 10 for applying a coating pattern similar to the uneven pattern applied to the long panel, and the surface shape detection described above. The surface shape data obtained by the apparatus 7 and the paint pattern data are compared, the position of the cutting end surface of the building panel 1 in the paint pattern is specified, and the uneven pattern and the paint pattern on the surface of the building panel 1 are conveyed. A difference detection unit 11 for detecting a deviation width in the direction, and an initial position adjustment unit 12 for setting the painting start position of the painting pattern of the painting means 10 by shifting the deviation width detected by the difference detection unit 11 are provided. ing. Here, as the coating means 10, even an ink jet apparatus that appropriately ejects ink toward the surface of the building panel 1 based on the coating pattern data, the peripheral surface is set as a printing surface and is pressed against the surface of the building panel 1. The printing roll apparatus by which a coating pattern is printed on the surface of the construction panel 1 by this.

切断端面を進行方向に向けて搬送される建築パネル1は塗装装置9の搬入前に表面形状検出装置7によってその表面形状が検出されるのであり、つまり、建築パネル1の搬送方向における各目地溝2位置及び隣接する各目地溝2間の距離に基いた表面形状データが得られるのである。この表面形状データは塗装装置9の差分検出部11に送られて塗装パターンデータと比較される。詳しくは、この塗装パターンデータは塗装パターンに基いたレーザー変位センサ4の走査線と同線上の凹凸形状データであり、つまりこの塗装パターンデータには定格の建築パネル1における各目地溝2位置及び隣接する各目地溝2間の距離に係るデータが包含されている。そして具体的には、表面形状データと塗装パターンデータとの比較は、表面形状データの各目地溝2位置及び隣接する各目地溝2間の距離にかかるデータと、塗装パターンデータの各目地溝2位置及び隣接する各目地溝2間の距離にかかるデータとを比較することで行われている。これにより、塗装パターン内における建築パネル1の進行側の切断端面の位置を特定でき、建築パネル1の表面の凹凸パターンと塗装パターンとの搬送方向におけるズレ幅を検出することができる。次に、初期位置調整部12にて、上記差分検出部11で検出したズレ幅分をずらして塗装手段10の塗装パターンの塗装開始位置を設定し、塗装手段10にて、上記初期位置調整部12で設定された塗装開始位置の塗装パターンから建築パネル1の表面に対して塗装を施すことで、建築パネル1の表面形状に応じた塗装を高い精度で行わせることができるのである。なお、本例では各々の柄用突部3で異なる色又は柄の塗装を施すようにしており、詳しくは目地溝2との境界部分から柄用突部3の表面が塗装されるようになっている。無論、差分検出部11では、表面形状データと塗装パターンデータとの比較によって塗装パターン内における建築パネル1の逆進行側の切断端面の位置も特定できて塗装手段10の塗装パターンの塗装終了位置も設定できるから、建築パネル1の表面形状に応じて塗装手段10の塗装を終了させて製造の無駄を省くことも可能とされている。   The building panel 1 conveyed with the cut end face directed in the traveling direction is detected by the surface shape detection device 7 before the coating device 9 is carried in, that is, each joint groove in the conveying direction of the building panel 1. Surface shape data based on the distance between the two positions and the adjacent joint grooves 2 can be obtained. This surface shape data is sent to the difference detection unit 11 of the coating apparatus 9 and compared with the coating pattern data. Specifically, this paint pattern data is uneven shape data on the same line as the scanning line of the laser displacement sensor 4 based on the paint pattern. That is, the paint pattern data includes the position of each joint groove 2 in the rated building panel 1 and the adjacent one. Data relating to the distance between the joint grooves 2 is included. Specifically, the comparison between the surface shape data and the coating pattern data is performed by comparing the data concerning the positions of the joint grooves 2 in the surface shape data and the distances between the adjacent joint grooves 2 and the joint grooves 2 in the coating pattern data. This is done by comparing the data concerning the position and the distance between adjacent joint grooves 2. Thereby, the position of the cutting end surface on the traveling side of the building panel 1 in the painting pattern can be specified, and the deviation width in the conveying direction between the uneven pattern on the surface of the building panel 1 and the painting pattern can be detected. Next, the initial position adjusting unit 12 sets the coating start position of the coating pattern of the coating unit 10 by shifting the deviation width detected by the difference detecting unit 11, and the coating unit 10 sets the initial position adjusting unit. By coating the surface of the building panel 1 from the coating pattern at the coating start position set in 12, the coating according to the surface shape of the building panel 1 can be performed with high accuracy. In this example, each pattern projection 3 is painted with a different color or pattern, and more specifically, the surface of the pattern projection 3 is painted from the boundary with the joint groove 2. ing. Of course, the difference detection unit 11 can also identify the position of the cut end surface on the reverse side of the building panel 1 in the painting pattern by comparing the surface shape data and the painting pattern data, and also the painting end position of the painting pattern of the painting means 10. Since it can be set, according to the surface shape of the building panel 1, it is possible to finish the coating of the coating means 10 and to eliminate the waste of manufacturing.

このように、上記塗装方法によると、凹凸パターンを表面に施した長尺パネルをその長手方向の任意位置で切断して形成された各々の建築パネル1を順々に塗装する場合に特に有効に、凹凸パターンに対応した塗装パターンで塗装を施す塗装装置9によって生産性良く且つ、表面形状検出装置7による表面形状データに基いて各々の建築パネル1の表面形状に応じた高精度の塗装を行わせることができるのである。   As described above, according to the above-described coating method, it is particularly effective when sequentially coating each building panel 1 formed by cutting a long panel having a concavo-convex pattern on its surface at an arbitrary position in the longitudinal direction. The coating device 9 for coating with a coating pattern corresponding to the uneven pattern is highly productive and performs high-precision coating according to the surface shape of each building panel 1 based on the surface shape data by the surface shape detection device 7. It can be made.

なお、上述の実施形態では窯業系(セメント系)の建築パネル1について説明したが、本発明の表面形状測定方法及び塗装方法は金属系の建築パネル1に対しても適用できるのは言うまでもない。   In the above-described embodiment, the ceramic-based (cement-based) building panel 1 has been described, but it is needless to say that the surface shape measuring method and the coating method of the present invention can be applied to the metal-based building panel 1.

本発明の実施の形態の例であり、(a)は建築パネルの表面のレーザー変位センサの測定を説明する図面であり、(b)は(a)の建築パネルに対応するレーザー変位センサの測定データであり、(c)は(b)のI部分の拡大図である。It is an example of embodiment of this invention, (a) is drawing explaining the measurement of the laser displacement sensor of the surface of a building panel, (b) is the measurement of the laser displacement sensor corresponding to the building panel of (a). (C) is an enlarged view of the I part of (b). 図1(b)のJ部分の拡大図である。FIG. 2 is an enlarged view of a portion J in FIG. 同上の表面形状検出装置の概略構成図である。It is a schematic block diagram of the surface shape detection apparatus same as the above. 同上の要部のフローチャートである。It is a flowchart of the principal part same as the above. 同上の塗装方法における塗装装置の概略構成図である。It is a schematic block diagram of the coating device in the same coating method. 本発明の実施の形態の他例の要部のフローチャートである。It is a flowchart of the principal part of the other example of embodiment of this invention.

符号の説明Explanation of symbols

1 建築パネル
2 目地溝
3 柄用突部
4 レーザー変位センサ
5 目地溝位置特定手段
6 目地溝間距離検出手段
7 表面形状検出装置
8 データ処理端末機
9 塗装装置
10 塗装手段
11 差分検出部
12 初期位置調整部
A 暫定溝幅
B 暫定断面積
C 重心位置
D 測定データ
E 暫定溝深さ
F 目地溝の中心位置
H 基準高さ位置
M 定格溝幅
DESCRIPTION OF SYMBOLS 1 Architectural panel 2 Joint groove 3 Projection part 4 Laser displacement sensor 5 Joint groove position identification means 6 Inter-groove distance detection means 7 Surface shape detection device 8 Data processing terminal 9 Coating device 10 Coating means 11 Difference detection part 12 Initial Position adjustment part A Temporary groove width B Temporary cross-sectional area C Center of gravity position D Measurement data E Temporary groove depth F Joint groove center position H Reference height position M Rated groove width

Claims (4)

建築パネルの対向する一対の端部間に複数の目地溝と柄用突部とが交互に配設されると共に複数の柄用突部のうちの2以上の柄用突部における上記建築パネルの対向する一対の端部間の方向の長さ寸法が異なるように形成された凹凸パターンを、表面に施してなる建築パネルの表面形状検出方法であって、上記建築パネルの対向する一対の端部間の方向に建築パネル又は建築パネルの表面レベルを測定するためのレーザー変位センサを相対的に移動させ、このレーザー変位センサによって建築パネルの表面レベルを上記建築パネルの対向する一対の端部間に亙って一直線上に測定し、目地溝位置特定手段によって上記レーザー変位センサによる測定データに基いて上記対向する建築パネルの端部間における各目地溝の位置をそれぞれ求め、目地溝間距離検出手段によって上記目地溝位置データに基いて隣接する各目地溝間の距離を各々検出するようにしたことを特徴とする建築パネルの表面形状検出方法。   A plurality of joint grooves and pattern protrusions are alternately arranged between a pair of opposing ends of the building panel, and the building panel in the two or more pattern protrusions of the plurality of pattern protrusions A method for detecting the surface shape of a building panel, wherein a concave-convex pattern formed so as to have different length dimensions in a direction between a pair of opposing ends is provided on the surface, the pair of opposing ends of the building panel A laser displacement sensor for measuring a building panel or a surface level of the building panel is relatively moved in the direction between the two, and the surface level of the building panel is moved between a pair of opposite ends of the building panel by the laser displacement sensor. Measured on a straight line, and determined the position of each joint groove between the ends of the opposing building panel based on the measurement data by the laser displacement sensor by the joint groove position specifying means, Surface shape detection method of building panels, characterized in that in order to detect each of the distances between the eye Graben adjacent on the basis of the first Graben position data by inter-groove distance detecting means. 目地溝位置特定手段によって、建築パネルの目地溝内の任意高さ位置に基準高さ位置を設定し、レーザー変位センサによって建築パネルの対向する一対の端部間に亙って表面レベルを測定して得られた測定データと基準高さ位置とを比較して、基準高さ位置を上回っていたレーザー変位センサによる測定データが上記基準高さ位置を下回った箇所を溝始端位置とし、この溝始端位置から継続して基準高さ位置を下回っていた上記測定データが基準高さ位置を越えた箇所を溝終端位置とし、上記溝始端位置と溝終端位置との間隔を暫定溝幅とし、この暫定溝幅が上記基準高さ位置に対応して予め設定している基準溝幅の許容範囲内にある場合に、暫定溝幅を含む建築パネルの凹状部位を目地溝として判定し、上記目地溝と判定された建築パネルの凹状部位における基準高さ位置より下方に凹没した部位の断面積を求めると共にこの断面積の重心位置を求めるようにし、目地溝間距離検出手段によって、この重心位置を各々基準として隣接する各目地溝間の距離を各々特定するようにしたことを特徴とする請求項1記載の建築パネルの表面形状検出方法。   The reference height position is set at an arbitrary height position in the joint groove of the building panel by the joint groove position specifying means, and the surface level is measured across a pair of opposite ends of the building panel by the laser displacement sensor. The measurement data obtained in this step and the reference height position are compared, and the position where the measurement data by the laser displacement sensor that has exceeded the reference height position is below the reference height position is defined as the groove start position. The position where the measurement data that was continuously below the reference height position from the position exceeds the reference height position is defined as the groove end position, and the interval between the groove start position and the groove end position is defined as the provisional groove width. When the groove width is within the allowable range of the reference groove width set in advance corresponding to the reference height position, the concave portion of the building panel including the temporary groove width is determined as a joint groove, and the joint groove and Determined building panel The cross-sectional area of the concave portion is recessed below the reference height position, and the center of gravity of the cross-sectional area is obtained. 2. The method of detecting the surface shape of a building panel according to claim 1, wherein the distance between the grabens is specified. 目地溝位置特定手段によって、建築パネルの目地溝内の任意高さ位置に基準高さ位置を設定し、レーザー変位センサによって建築パネルの対向する一対の端部間に亙って表面レベルを測定して得られた測定データと基準高さ位置とを比較して、基準高さ位置を上回っていたレーザー変位センサによる測定データが上記基準高さ位置を下回った箇所を溝始端位置とし、この溝始端位置から継続して基準高さ位置を下回っていた上記測定データが基準高さ位置を越えた箇所を溝終端位置とし、上記溝始端位置と溝終端位置との間隔を暫定溝幅とし、暫定溝幅内において基準高さ位置と基準高さ位置を下回る上記測定データとの差を暫定溝深さとし、建築パネルの凹状部位における基準高さ位置より下方に凹没した部位の暫定断面積を求め、これら暫定溝幅、暫定溝深さ及び暫定断面積がそれぞれ、上記基準高さ位置に対応して予め設定している基準溝幅、基準溝深さ及び基準溝断面積の範囲内にある場合にのみ、暫定溝幅を含む建築パネルの凹状部位を目地溝として判定し、上記目地溝と判定された建築パネルの凹状部位における暫定断面積の重心位置を求めるようにし、目地溝間距離検出手段によって、上記重心位置を各々基準として隣接する各目地溝間の距離を各々特定するようにしたことを特徴とする請求項1記載の建築パネルの表面形状検出方法。   The reference height position is set at an arbitrary height position in the joint groove of the building panel by the joint groove position specifying means, and the surface level is measured across a pair of opposite ends of the building panel by the laser displacement sensor. The measurement data obtained in this step and the reference height position are compared, and the position where the measurement data by the laser displacement sensor that has exceeded the reference height position is below the reference height position is defined as the groove start position. The location where the measurement data that was continuously below the reference height position from the position exceeds the reference height position is defined as the groove end position, and the interval between the groove start position and the groove end position is defined as the provisional groove width. The difference between the reference height position and the measurement data below the reference height position within the width is the provisional groove depth, and the provisional cross-sectional area of the part recessed below the reference height position in the concave part of the building panel is obtained, these Only when the constant groove width, provisional groove depth and provisional cross-sectional area are within the preset reference groove width, reference groove depth and reference groove cross-sectional area corresponding to the reference height position, respectively. The concave part of the building panel including the provisional groove width is determined as a joint groove, the center of gravity position of the provisional cross-sectional area in the concave part of the building panel determined as the joint groove is obtained, and the joint groove distance detection means, 2. The method for detecting the surface shape of a building panel according to claim 1, wherein the distance between adjacent joint grooves is specified with the position of the center of gravity as a reference. 長尺パネルの長手方向に複数の目地溝と柄用突部とが交互に配設されると共に2以上の柄用突部における上記長手方向の長さ寸法が異なるように形成された凹凸パターンを連続して繰り返し表面に施してなる長尺パネルを、その長手方向の任意位置で切断して形成した建築パネルの表面に、上記凹凸パターンに対応する塗装パターンで塗装を施す塗装手段を備えた塗装装置を用いて、所定の塗装を施すようにする建築パネルの塗装方法であって、切断端面を進行方向に向けて搬送される建築パネルの塗装装置への搬入前に、建築パネルの表面レベルをその搬送方向に亙ってレーザー変位センサにて測定するようにして請求項1乃至3のいずれかに記載の表面形状検出方法を用いて建築パネルの搬送方向における各目地溝の位置及び隣接する各目地溝間の距離に基く表面形状データを検出し、塗装装置に設けた差分検出部にて、上記表面形状検出方法にて得られた表面形状データと塗装パターンデータを比較し、塗装パターン内における建築パネルの進行側切断端面の位置を特定して建築パネルの表面の凹凸パターンと塗装パターンとの搬送方向におけるズレ幅を検出し、塗装装置に設けた初期位置調整部にて、上記差分検出部で検出したズレ幅分をずらして塗装手段の塗装パターンの塗装開始位置を設定し、塗装手段にて、上記初期位置調整部で設定された塗装開始位置の塗装パターンから建築パネルの表面に対して塗装を施すことを特徴とする建築パネルの塗装方法。   A concavo-convex pattern formed such that a plurality of joint grooves and pattern protrusions are alternately arranged in the longitudinal direction of the long panel and the length dimension in the longitudinal direction of two or more pattern protrusions is different. Coating with a coating means for coating the surface of a building panel formed by cutting a long panel formed on the surface continuously and repeatedly at an arbitrary position in the longitudinal direction with a coating pattern corresponding to the above uneven pattern A method of painting a building panel that uses a device to apply a predetermined coating, and before bringing the building panel into the painting device that is transported with the cut end face in the direction of travel, the surface level of the building panel is adjusted. The position of each joint groove in the conveyance direction of the building panel and each adjacent one using the surface shape detection method according to any one of claims 1 to 3 so as to be measured by a laser displacement sensor over the conveyance direction. The surface shape data based on the distance between the grabens is detected, the difference detector provided in the coating device compares the surface shape data obtained by the above surface shape detection method with the coating pattern data, and the building within the coating pattern The position of the cutting end surface of the panel is specified to detect the deviation width in the conveying direction between the uneven pattern on the surface of the building panel and the coating pattern, and at the initial position adjustment unit provided in the coating apparatus, the difference detection unit Set the coating start position of the painting pattern of the painting means by shifting the detected deviation width, and paint on the surface of the building panel from the coating pattern at the painting start position set by the initial position adjustment unit with the painting means. A method of painting an architectural panel characterized by applying
JP2005148525A 2005-05-20 2005-05-20 Method for detecting surface shape of building panel and method for painting building panel Active JP4203669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148525A JP4203669B2 (en) 2005-05-20 2005-05-20 Method for detecting surface shape of building panel and method for painting building panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148525A JP4203669B2 (en) 2005-05-20 2005-05-20 Method for detecting surface shape of building panel and method for painting building panel

Publications (2)

Publication Number Publication Date
JP2006322901A true JP2006322901A (en) 2006-11-30
JP4203669B2 JP4203669B2 (en) 2009-01-07

Family

ID=37542679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148525A Active JP4203669B2 (en) 2005-05-20 2005-05-20 Method for detecting surface shape of building panel and method for painting building panel

Country Status (1)

Country Link
JP (1) JP4203669B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072856A (en) * 2011-09-29 2013-04-22 Kmew Co Ltd Pattern measuring device and pattern measuring method
JP2013246126A (en) * 2012-05-29 2013-12-09 Jfe Steel Corp Surface shape measurement method and surface shape measurement device
JP2014219256A (en) * 2013-05-08 2014-11-20 ケイミュー株式会社 Pattern measuring method
JP2015042956A (en) * 2013-08-26 2015-03-05 株式会社パスコ Device, method and program of data analysis
JPWO2015041082A1 (en) * 2013-09-18 2017-03-02 株式会社シーパーツ Tire management system, tire data collection device, and tire data collection method.
CN113188460A (en) * 2021-06-30 2021-07-30 浙江永诚建设工程管理有限公司 Real-time monitoring system for building deformation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072856A (en) * 2011-09-29 2013-04-22 Kmew Co Ltd Pattern measuring device and pattern measuring method
JP2013246126A (en) * 2012-05-29 2013-12-09 Jfe Steel Corp Surface shape measurement method and surface shape measurement device
JP2014219256A (en) * 2013-05-08 2014-11-20 ケイミュー株式会社 Pattern measuring method
JP2015042956A (en) * 2013-08-26 2015-03-05 株式会社パスコ Device, method and program of data analysis
JPWO2015041082A1 (en) * 2013-09-18 2017-03-02 株式会社シーパーツ Tire management system, tire data collection device, and tire data collection method.
CN113188460A (en) * 2021-06-30 2021-07-30 浙江永诚建设工程管理有限公司 Real-time monitoring system for building deformation

Also Published As

Publication number Publication date
JP4203669B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP4203669B2 (en) Method for detecting surface shape of building panel and method for painting building panel
EP3486638B1 (en) Inspection method, inspection and reporting method, manufacturing method including the inspection method, inspection apparatus, and manufacturing apparatus
CN100527375C (en) Testing wafer and testing method for edge bead removal
CA2750731C (en) Manufacturing of tongue and groove profiles on hardwood floorboards
JP5858524B2 (en) Method for detecting the paint color of cosmetics
EP1712897A1 (en) Method of inspecting a broad article
JP5702636B2 (en) Appearance inspection method
IT201800006225A1 (en) METHOD AND MACHINE FOR THE SURFACE DECORATION OF A BASIC ARTICLE OF THE CERAMIC PROCESSING INDUSTRY
JP2008151604A (en) Foreign matter detection device of plate material
CN110514110B (en) Platform leveling control method
WO2005064410A8 (en) Lithographic apparatus and method of calibration
JP2006326508A (en) Method for manufacturing building panel
CN111928796B (en) Part high-precision identification and detection system based on 3D scanning and laser manufacturing
KR100846757B1 (en) Method of manufacturing sheet
JP6483942B2 (en) Method for measuring pattern of building material and method for manufacturing building material
CN108928147B (en) Debugging method of ink-jet printing process
JP5874403B2 (en) Coating width measurement method
CN111609795B (en) Quality parameter detection method and system for cutting hot rolled steel plate
JP4238105B2 (en) Paint misalignment detection method
JP4402421B2 (en) Coating film forming method and coating film forming apparatus
JP5933948B2 (en) Pattern measuring device and pattern measuring method
IT202100013526A1 (en) Detector device, for measuring the caliber of ceramic tiles or slabs
CN110645896B (en) Strip steel fiber strip length measuring method and measuring device
JP3657141B2 (en) Pattern measuring device for ceramic products
JP2002213941A (en) Method of inspecting thickness of building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4203669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350