JP2006322583A - Belt-type continuously variable transmission and method for regulating pressure exerted on belt - Google Patents

Belt-type continuously variable transmission and method for regulating pressure exerted on belt Download PDF

Info

Publication number
JP2006322583A
JP2006322583A JP2005147974A JP2005147974A JP2006322583A JP 2006322583 A JP2006322583 A JP 2006322583A JP 2005147974 A JP2005147974 A JP 2005147974A JP 2005147974 A JP2005147974 A JP 2005147974A JP 2006322583 A JP2006322583 A JP 2006322583A
Authority
JP
Japan
Prior art keywords
belt
pulley
continuously variable
variable transmission
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005147974A
Other languages
Japanese (ja)
Other versions
JP4910307B2 (en
Inventor
Hidenori Sakai
秀則 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005147974A priority Critical patent/JP4910307B2/en
Publication of JP2006322583A publication Critical patent/JP2006322583A/en
Application granted granted Critical
Publication of JP4910307B2 publication Critical patent/JP4910307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain contact area as desired between a pulley and a CVT belt by inhibiting occurrence of a phenomenon in which the CVT belt is arched outward. <P>SOLUTION: The CVT belt 5 is passed between a driving pulley 1 and a driven pulley 3. When the belt is being run, a roller 19 is pressed by a hydraulic cylinder 23 to the CVT belt 5 in the part running from the pulley 1 to the pulley 3 thereby to inhibit occurrence of the arching phenomenon in which the CVT belt 5 is displaced in the above stated part so as to bulge out. The press force exerted by the roller 19 on the CVT belt 5 is changed in response to a transmission gear ratio, engine load (input torque), and input revolutions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一対のプーリ相互間に巻き付けるCVTベルトを備えたベルト式無断変速装置およびそのベルト調圧方法に関する。   The present invention relates to a belt-type continuously variable transmission device including a CVT belt wound between a pair of pulleys and a belt pressure adjusting method thereof.

ベルト式無断変速装置として、板状のエレメントを板厚方向に複数積層して環状に形成し、この環状に形成したものをリング部材により保持して組み付けてCVTベルトとし、このCVTベルトを一対のプーリ相互間に巻き付けて構成するものがある。   As a belt-type continuously variable transmission, a plurality of plate-like elements are laminated in the thickness direction to form a ring, and the ring-shaped element is held and assembled by a ring member to form a CVT belt. Some are configured by winding them between pulleys.

この際、一対のプーリは、それぞれ溝幅を無段階に変えられるよう側板相互が互いに接近離反する方向に移動可能であり、溝幅を変えることでCVTベルトの各プーリに対する巻き付け半径が変わり、これにより駆動側と従動側との間の回転数比、すなわち変速比が連続的無段階に変化することとなる。   At this time, the pair of pulleys can move in a direction in which the side plates approach and separate from each other so that the groove width can be changed steplessly. By changing the groove width, the winding radius of each pulley of the CVT belt changes As a result, the rotational speed ratio between the driving side and the driven side, that is, the gear ratio changes continuously and continuously.

なお、ベルト式無断変速装置としては、例えば下記特許文献1,2に記載されたものがある。
特開平5−106700号公報 特開平7−103299号公報
In addition, as a belt-type continuously variable transmission, there exist some which were described in the following patent documents 1, 2, for example.
JP-A-5-106700 JP 7-103299 A

ところで、このようなベルト式無断変速装置においては、一対のプーリのうち一方の駆動側プーリの回転により他方の従動側プーリに向けて移動する部分のCVTベルトが、前記プーリの軸方向に直交する方向でかつベルト外側へ膨らむよう変位して、いわゆる弓なり現象が発生する。   By the way, in such a belt-type continuously variable transmission, the CVT belt of the part which moves toward the other driven pulley by the rotation of one driving pulley among the pair of pulleys is orthogonal to the axial direction of the pulley. The so-called bowing phenomenon occurs by displacing in the direction and bulging outward of the belt.

これは、多数積層したエレメントがベルト巻き付け部にてトルク伝達を行うために、移動方向後側のエレメントが同前側のエレメントを押す力の分力が、半径方向外側に向くためである。   This is because a large number of stacked elements transmit torque at the belt winding portion, and the component force of the force that the element on the rear side in the movement direction presses the element on the front side is directed outward in the radial direction.

これにより、プーリとCVTベルトとの接触面積が減少し、プーリとCVTベルトとの間で滑り発生して伝達トルクが低下するという問題がある。   As a result, the contact area between the pulley and the CVT belt decreases, and there is a problem that slippage occurs between the pulley and the CVT belt, resulting in a decrease in transmission torque.

そこで、本発明は、CVTベルトの弓なり現象を抑えることで、プーリとCVTベルトとの接触面積を所望に維持することを目的としている。   Accordingly, an object of the present invention is to maintain a desired contact area between the pulley and the CVT belt by suppressing the bowing phenomenon of the CVT belt.

本発明は、板状のエレメントを板厚方向に複数積層して環状に形成し、この環状に形成したものをリング部材により保持して組み付けたCVTベルトを、一対のプーリ相互間に巻き付けてなるベルト式無断変速装置において、前記一対のプーリのうち一方の駆動側の回転により他方の従動側のプーリに向けて移動する部分の前記CVTベルトに対し、前記プーリの軸方向に交差する方向でかつベルト外側方向への変位に対抗してベルト内側へ向けて押圧する押圧手段を設けたことを最も主要な特徴とする。   In the present invention, a plurality of plate-like elements are laminated in the plate thickness direction to form an annular shape, and the CVT belt, which is formed by holding the annular shape and held by a ring member, is wound between a pair of pulleys. In the belt-type continuously variable transmission, in a direction intersecting the axial direction of the pulley with respect to the CVT belt of the portion of the pair of pulleys that moves toward the other driven pulley by rotation on one driving side, and The most important feature is that a pressing means for pressing the belt toward the inside of the belt against displacement in the belt outer direction is provided.

本発明によれば、駆動側プーリから従動側プーリに向けて移動する部分のCVTベルトに対し、プーリの軸方向に直交する方向でかつベルト外側方向への変位に対抗してベルト内側へ押圧する押圧手段を設けたので、CVTベルトのベルト外側へ変位する弓なり現象を防止でき、この結果プーリとCVTベルトとの接触面積を所望に維持して、これら相互間の滑りを防止し、伝達トルク低下を防止することができる。   According to the present invention, the portion of the CVT belt that moves from the driving pulley toward the driven pulley is pressed toward the inside of the belt in a direction orthogonal to the axial direction of the pulley and against displacement in the belt outward direction. Since the pressing means is provided, it is possible to prevent the bowing phenomenon that the CVT belt is displaced to the outside of the belt, and as a result, the contact area between the pulley and the CVT belt is maintained as desired to prevent slippage between them and the transmission torque is reduced. Can be prevented.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係わるベルト式無断変速装置の概略を示す全体構成図である。このベルト式無断変速装置は、一対のプーリを構成する駆動側プーリ1と従動側プーリ3とをそれぞれ備え、これら両プーリ1,3相互間にCVTベルト5を巻き付けている。   FIG. 1 is an overall configuration diagram showing an outline of a belt-type continuously variable transmission according to an embodiment of the present invention. This belt-type continuously variable transmission includes a driving pulley 1 and a driven pulley 3 constituting a pair of pulleys, and a CVT belt 5 is wound between the pulleys 1 and 3.

上記した各プーリ1,3は、それぞれ溝幅を無段階に変えられるよう側板相互が互いに接近離反する方向(図1中で紙面に直交する方向)に移動可能であり、溝幅を変えることでCVTベルト5の各プーリ1,3に対する巻き付け半径が変わり、これにより駆動側と従動側との間の回転数比、すなわち変速比が連続的無段階に変化することとなる。   Each of the pulleys 1 and 3 described above can be moved in a direction in which the side plates approach and separate from each other (a direction perpendicular to the paper surface in FIG. 1) so that the groove width can be changed steplessly. The winding radii of the CVT belt 5 around the pulleys 1 and 3 change, whereby the rotation speed ratio between the driving side and the driven side, that is, the gear ratio changes continuously and continuously.

CVTベルト5は、図2に詳細に示すように、板状のエレメント7を板厚方向に複数積層して環状に形成している。エレメント7は、図2のA−A矢視図に相当する図3に示すように、外周側の頭部9と内周側の肩部11とを首部13にて連結した形状を呈し、首部13の両側の頭部9と肩部11との間にリング挿入溝15を形成している。   As shown in detail in FIG. 2, the CVT belt 5 is formed in an annular shape by laminating a plurality of plate-like elements 7 in the plate thickness direction. As shown in FIG. 3 corresponding to the AA arrow view of FIG. 2, the element 7 has a shape in which a head portion 9 on the outer peripheral side and a shoulder portion 11 on the inner peripheral side are connected by a neck portion 13. A ring insertion groove 15 is formed between the head portion 9 and the shoulder portion 11 on both sides of 13.

上記したエレメント7を複数積層した状態の各リング挿入溝15で構成される環状の溝に、図4に示すように、リング部材としての帯状のリング17を嵌め込み、これにより前記環状に形成した複数のエレメント7とリング17とを一体化してCVTベルト5を形成する。なお、図4では図中で下部側のリング挿入溝15にのみリング17を挿入した状態を示しており、同上部側のリング挿入溝15へのリング17の挿入は省略している。   As shown in FIG. 4, a band-shaped ring 17 as a ring member is fitted into an annular groove constituted by each ring insertion groove 15 in a state in which a plurality of the elements 7 are stacked, and thereby a plurality of annularly formed elements are formed. The element 7 and the ring 17 are integrated to form the CVT belt 5. 4 shows a state in which the ring 17 is inserted only into the ring insertion groove 15 on the lower side in the drawing, and the insertion of the ring 17 into the ring insertion groove 15 on the upper side is omitted.

ここで、上記したエレメント7は、図2に示すように、頭部9における、矢印Fで示す回転移動方向前方側の面に凸部9aを設け、これと反対側の背面には、前記凸部9aが入り込む凹部9b(図3)を設けている。   Here, as shown in FIG. 2, the element 7 is provided with a convex portion 9a on the front surface of the head 9 on the front side in the rotational movement direction indicated by the arrow F, and on the back surface on the opposite side, the convex portion 9a is provided. A recess 9b (FIG. 3) into which the portion 9a enters is provided.

そして、図1に示すように、CVTベルト5の図1中で上部側、すなわち一対のプーリ1,3のうち一方の駆動側プーリ1の回転により、駆動側プーリ1から他方の従動側プーリ3に向けて移動する部分のCVTベルト5に対し、プーリ1,3の軸方向(図1中で紙面に直交する方向)に交差する方向でかつベルト外側方向への変位に対抗して、ベルト内側へ向けて押圧する押圧手段としてのローラ19を設けている。   As shown in FIG. 1, the upper side of the CVT belt 5 in FIG. 1, that is, one of the pair of pulleys 1, 3 rotates by one of the driving pulleys 1, and the other of the driven pulleys 3. For the CVT belt 5 that moves toward the belt, the inner side of the belt against displacement in the direction crossing the axial direction of the pulleys 1 and 3 (direction perpendicular to the paper surface in FIG. 1) and in the belt outer direction. A roller 19 is provided as a pressing means for pressing toward the head.

ローラ19は、図1中で紙面に直交する方向に延びる回転支持軸21に回転可能に支持され、回転支持軸21は、その軸方向両端を、油圧シリンダ23内のピストン25から下方に延びるピストンロッド27の二股に分岐した下端に連結している。   The roller 19 is rotatably supported by a rotation support shaft 21 extending in a direction orthogonal to the paper surface in FIG. 1, and the rotation support shaft 21 has a piston extending downward from a piston 25 in the hydraulic cylinder 23 at both ends in the axial direction. The rod 27 is connected to the lower end branched into two branches.

油圧シリンダ23の図1中で上部の作動油室29には、オイルポンプ31から調圧弁33を経て作動油を供給する。調圧弁33は、円筒形状のハウジング35内に弁体37を図1中で左右方向に移動可能に収容しており、弁体37は、ハウジング35内に形成した図1中で左側の第1室39内のスプリング41により、図1中で右方向に押圧されている。   The hydraulic oil is supplied from the oil pump 31 through the pressure regulating valve 33 to the upper hydraulic oil chamber 29 of the hydraulic cylinder 23 in FIG. The pressure regulating valve 33 accommodates a valve body 37 in a cylindrical housing 35 so as to be movable in the left-right direction in FIG. 1, and the valve body 37 is formed in the housing 35 on the left side in FIG. The spring 41 in the chamber 39 is pressed rightward in FIG.

上記した第1室39は、前記したオイルポンプ31にオイル入口通路43を介して連通し、オイル入口通路43には、第1室39に作用する油圧を調整するソレノイドバルブ45を設けている。第1室39の図1中で右側に形成した第2室47には、オイル入口通路43から分岐した入口分岐通路49を接続する。   The first chamber 39 communicates with the oil pump 31 via the oil inlet passage 43, and the oil inlet passage 43 is provided with a solenoid valve 45 that adjusts the hydraulic pressure acting on the first chamber 39. An inlet branch passage 49 branched from the oil inlet passage 43 is connected to the second chamber 47 formed on the right side of the first chamber 39 in FIG.

また、第2室47の図1中でさらに右側に形成した第3室51と、前記した油圧シリンダ23の作動油室29とは、オイル出口通路53により連通する。オイル出口通路53と上記した第2室47とは、出口分岐通路55で連通する。   Further, the third chamber 51 formed on the right side of the second chamber 47 in FIG. 1 and the hydraulic oil chamber 29 of the hydraulic cylinder 23 communicate with each other through an oil outlet passage 53. The oil outlet passage 53 and the above-described second chamber 47 communicate with each other through an outlet branch passage 55.

なお、第1室39と第2室47との間のドレン室57には、ドレン通路59を接続する。   A drain passage 59 is connected to the drain chamber 57 between the first chamber 39 and the second chamber 47.

前記したソレノイドバルブ45は、ベルト式無断変速装置を制御するオートマチックトランスミッション用コントロールユニット(ATCU)61によって通電制御される。ATCU61は、変速比,エンジン負荷(駆動側プーリ1への入力トルク),駆動側プーリ1への入力回転数の各信号の入力を受け、これら各入力値に基づいてソレノイドバルブ45を制御する。   The solenoid valve 45 is energized and controlled by an automatic transmission control unit (ATCU) 61 that controls the belt type continuously variable transmission. The ATCU 61 receives signals of a gear ratio, an engine load (input torque to the driving pulley 1), and an input rotational speed to the driving pulley 1, and controls the solenoid valve 45 based on these input values.

次に作用を説明する。図示しないエンジンの駆動力によって駆動側プーリ1が回転し、この回転力をCVTベルト5が従動側プーリ3に伝達して従動側プーリ3を回転させ、図示しない車軸を回転駆動する。   Next, the operation will be described. The driving pulley 1 is rotated by a driving force of an engine (not shown), and the CVT belt 5 transmits the rotational force to the driven pulley 3 to rotate the driven pulley 3 to rotate the axle (not shown).

ところで、このような動作過程でのCVTベルト5において、従動側プーリ3とエレメント7との間の摩擦力は、図4に示すように、従動側プーリ3を軸方向に押す油圧力P1によるプーリシープ角をα1としたときのエレメント押付力N1と、エレメント7と従動側プーリ3との接触面積および接触半径r1とで決定される。   By the way, in the CVT belt 5 in such an operation process, the frictional force between the driven pulley 3 and the element 7 is, as shown in FIG. 4, a pulley sheep due to the oil pressure P1 pushing the driven pulley 3 in the axial direction. It is determined by the element pressing force N1 when the angle is α1, the contact area between the element 7 and the driven pulley 3, and the contact radius r1.

同様に、駆動側プーリ1とエレメント7との間の摩擦力は、駆動側プーリ1を軸方向に押す油圧力P2が、プーリシープ角をα2としたときのリング引張力Tとなり、このリング引張力Tがプーリシープ角をα2としたときの駆動側プーリ1とエレメント7との間の押付力N2となり、この押付力N2と、エレメント7と駆動側プーリ1との接触面積および接触半径r2とで決定される。   Similarly, the frictional force between the driving pulley 1 and the element 7 is the ring tension T when the oil pressure P2 pushing the driving pulley 1 in the axial direction becomes α2 as the pulley sheep angle. T is the pressing force N2 between the driving pulley 1 and the element 7 when the pulley sheep angle is α2, and is determined by the pressing force N2, the contact area between the element 7 and the driving pulley 1, and the contact radius r2. Is done.

このため、図1に示す変速比Lowのとき、従動側プーリ3に比較して、CVTベルト5の巻き付け半径が小さく、エレメント7との接触面積および接触半径が小さい駆動側プーリ1側でCVTベルト5の許容伝達トルクが決定される。   For this reason, when the transmission gear ratio is low as shown in FIG. 1, the winding radius of the CVT belt 5 is smaller than that of the driven pulley 3, and the contact area with the element 7 and the contact radius are small. An allowable transmission torque of 5 is determined.

前記した図2のように、CVTベルト5は多数のエレメント7を積層して構成しているため、伝達トルクが大きくなるに従って、図5に示すように、プーリへの巻き付け部では、エレメント7に対しプーリ半径方向外側へ働く分力(移動方向後側のエレメントが同前側のエレメントを押す力Pと、押す力Pの反力Qとの分力)Mが大きくなる。   As shown in FIG. 2, the CVT belt 5 is formed by laminating a large number of elements 7. Therefore, as the transmission torque increases, as shown in FIG. On the other hand, the component force M acting on the outer side in the pulley radial direction (the component force of the force P that the element on the rear side in the movement direction pushes the element on the front side and the reaction force Q of the push force P) increases.

なお、図5(b)は、図5(a)のB部を拡大した図である。   FIG. 5B is an enlarged view of a portion B in FIG.

このため、図6のように、CVTベルト5は、駆動側プーリ1に巻き付いた状態でプーリ出口に近づく程、プーリ半径方向外側に膨らみ、巻き付け半径が徐々に大きくなる。また、駆動側プーリ1から従動側プーリ3に移動する間のCVTベルト5の直線部では、移動方向前側のエレメントが同後側のエレメントに押されることによって座屈力が働く。   Therefore, as shown in FIG. 6, the CVT belt 5 swells outward in the pulley radial direction as the pulley exits in the state of being wound around the driving pulley 1, and the winding radius gradually increases. Further, in the linear portion of the CVT belt 5 during the movement from the driving pulley 1 to the driven pulley 3, a buckling force is exerted by pressing the element on the front side in the moving direction against the element on the rear side.

これらの要因で、駆動側プーリ1から従動側プーリ3に移動する間のCVTベルト5は、プーリの軸方向に交差する方向でかつベルト外側方向へ膨らむような変位によって、図6中で二点鎖線で示すような弓なり状態となる。この結果、駆動側プーリ1とCVTベルト5とが接触する円周方向長さに対応する接触角度が、変位しない場合の接触角度θ2から角度Δθだけ短くなり、伝達トルクの低下を招く。   Due to these factors, the CVT belt 5 during the movement from the driving pulley 1 to the driven pulley 3 has two points in FIG. It becomes a bowed state as shown by the chain line. As a result, the contact angle corresponding to the circumferential length at which the driving pulley 1 and the CVT belt 5 contact each other is shortened by the angle Δθ from the contact angle θ2 when not displaced, resulting in a decrease in transmission torque.

なお、図6中でハッチング部分が、このときのCVTベルト5とプーリ1,3との接触範囲であり、駆動側プーリ1の範囲Lにおいては、CVTベルト5が駆動側プーリ1の半径方向外側に変位しているが、駆動側プーリ1における軸方向両側の側板を回転支持軸にリジッドに固定しているわけではなく、側板相互の平行状態が崩れているので、上記した範囲Lでは駆動側プーリ1とCVTベルト5とが接触した状態にある。   6, the hatched portion is the contact range between the CVT belt 5 and the pulleys 1 and 3 at this time. In the range L of the driving pulley 1, the CVT belt 5 is radially outward of the driving pulley 1. However, the side plates on both sides in the axial direction of the driving pulley 1 are not rigidly fixed to the rotation support shaft, and the parallel state between the side plates is broken. The pulley 1 and the CVT belt 5 are in contact with each other.

上記したようなCVTベルト5の弓なり現象を抑えるために、図1に示したように、ローラ19を用い、駆動側プーリ1から従動側プーリ3に移動する間のCVTベルト5をベルト内側に向けて押圧する。   In order to suppress the bowing phenomenon of the CVT belt 5 as described above, as shown in FIG. 1, the roller 19 is used and the CVT belt 5 is directed inward of the belt while moving from the driving pulley 1 to the driven pulley 3. And press.

図7は、(a)がローラ19によりCVTベルト5に対して押圧力を付与していない状態を示し、(b)がローラ19によりCVTベルト5に対して押圧力を付与している状態を示す。   7A shows a state in which no pressing force is applied to the CVT belt 5 by the roller 19, and FIG. 7B shows a state in which the pressing force is applied to the CVT belt 5 by the roller 19. Show.

図7(a)では、ATCU61によるソレノイドバルブ45への指令電圧がゼロで、調圧弁33内の第1室39に付与する油圧が大気圧と同程度であり、したがって弁体37はスプリング41の弾性力によってのみ右方向に押圧され、この弾性力とバランスするように、オイルポンプ31から第2室47を通して第3室51に低圧の油圧が作用し、この油圧が油圧シリンダ23の作動油室29にも作用し、このときローラ19はCVTベルト5を押圧しない。   In FIG. 7A, the command voltage to the solenoid valve 45 by the ATCU 61 is zero, and the hydraulic pressure applied to the first chamber 39 in the pressure regulating valve 33 is about the same as the atmospheric pressure. Low pressure hydraulic pressure acts on the third chamber 51 from the oil pump 31 through the second chamber 47 so as to be pressed to the right only by the elastic force and to be balanced with the elastic force, and this hydraulic pressure is applied to the hydraulic oil chamber of the hydraulic cylinder 23. The roller 19 does not press the CVT belt 5 at this time.

一方図7(b)では、ATCU61によるソレノイドバルブ45への指令電圧がある場合で、第1室39に作用する油圧が大気圧を超え、この油圧とスプリング41の弾性力とを加算した力と釣り合うように、オイルポンプ31から第2室47を通して第3室51に図7(a)のときより高い油圧が作用し、この高い油圧が油圧シリンダ23の作動油室29に作用してローラ19をCVTベルト5に押し付ける。   On the other hand, in FIG. 7B, when there is a command voltage to the solenoid valve 45 by the ATCU 61, the oil pressure acting on the first chamber 39 exceeds the atmospheric pressure, and the force obtained by adding this oil pressure and the elastic force of the spring 41 is In order to balance, a higher hydraulic pressure acts on the third chamber 51 from the oil pump 31 through the second chamber 47 than in FIG. 7A, and this higher hydraulic pressure acts on the hydraulic oil chamber 29 of the hydraulic cylinder 23 and the roller 19. Is pressed against the CVT belt 5.

この際、ATCU61からソレノイドバルブ45への指令により、前記した変速比,エンジン負荷(入力トルク),入力回転数に応じて、図8に示すように、油圧シリンダ23の作動油室29に作用する油圧を制御する。すなわち、変速比(出力/入力),エンジン負荷(入力トルク),入力回転数が、いずれも高くなるに従って弓なり現象が顕著となるので、これら各値が高くなるに従って油圧を高く設定し、CVTベルト5に対する押圧力を高める。   At this time, in response to a command from the ATCU 61 to the solenoid valve 45, it acts on the hydraulic oil chamber 29 of the hydraulic cylinder 23 as shown in FIG. 8 according to the gear ratio, engine load (input torque), and input rotational speed. Control hydraulic pressure. That is, as the gear ratio (output / input), engine load (input torque), and input rotational speed all increase, the bowing phenomenon becomes more prominent. Therefore, the hydraulic pressure is set higher as these values increase, and the CVT belt Increase the pressing force against 5.

これにより、変速比,エンジン負荷(入力トルク),入力回転数に応じて発生するCVTベルト5の前記図6に示したような弓なり現象を防止する。この結果、駆動側プーリ1とCVTベルト5とが接触する円周方向長さに対応する接触角度が、図1のようにθ2となって図6の接触角度(θ2−Δθ)に比較して大きくなり、接触面積を所望に維持して駆動側プーリ1とCVTベルト5との間の滑りを防止し、伝達トルク低下を防止することができる。   This prevents the bowing phenomenon as shown in FIG. 6 of the CVT belt 5 that occurs according to the gear ratio, engine load (input torque), and input rotational speed. As a result, the contact angle corresponding to the circumferential length of contact between the drive pulley 1 and the CVT belt 5 is θ2 as shown in FIG. 1 and compared with the contact angle (θ2−Δθ) shown in FIG. The contact area can be maintained as desired to prevent slippage between the driving pulley 1 and the CVT belt 5 and to prevent a reduction in transmission torque.

また、従動側プーリ3においても、CVTベルト5と接触する円周方向長さに対応する接触角度が、図1のようにθ1となって図6の接触角度に比較して大きくなっている。   In the driven pulley 3 as well, the contact angle corresponding to the circumferential length in contact with the CVT belt 5 is θ1 as shown in FIG. 1 and is larger than the contact angle shown in FIG.

この場合、弓なり現象を抑えるために、各プーリ1,3を軸方向に押す油圧力を大きくする必要がなく、したがって油圧力を大きくした場合でのリング17に発生する応力の過大化を防ぎ、リング17の耐久性低下を防止することができる。また、油圧力を大きくすると、駆動側プーリ1に設定してある図示しないオイルポンプのフリクションが増加して、燃費の悪化を招くが、上記したローラ19によってCVTベルト5を押圧することで、油圧力を大きくする必要がなく、したがって燃費の悪化を防ぐことができる。   In this case, in order to suppress the bowing phenomenon, it is not necessary to increase the oil pressure for pushing the pulleys 1 and 3 in the axial direction, and therefore, excessive stress generated in the ring 17 when the oil pressure is increased is prevented. A decrease in durability of the ring 17 can be prevented. Further, when the oil pressure is increased, the friction of an oil pump (not shown) set in the driving pulley 1 is increased and fuel consumption is deteriorated. However, when the CVT belt 5 is pressed by the roller 19 described above, It is not necessary to increase the pressure, and therefore deterioration of fuel consumption can be prevented.

図9は、入力トルクに対する駆動側プーリ1とCVTベルト5との間のスリップ率(1−入力トルク作用時での従動側プーリ5の回転数/入力トルクゼロ時での従動側プーリ5の回転数)を、本実施形態と従来とを比較して示している。これによれば、許容されるスリップ率Sにおける許容トルクが、上記した本実施形態のほうが、従来に比較してHだけ向上していることがわかる。   9 shows the slip ratio between the driving pulley 1 and the CVT belt 5 with respect to the input torque (1−the rotational speed of the driven pulley 5 when the input torque is applied / the rotational speed of the driven pulley 5 when the input torque is zero. ) In comparison with the present embodiment and the prior art. According to this, it can be seen that the permissible torque at the permissible slip ratio S is improved by H in the above-described embodiment as compared with the prior art.

本発明の一実施形態に係わるベルト式無断変速装置の概略を示す全体構成図である。1 is an overall configuration diagram showing an outline of a belt-type continuously variable transmission according to an embodiment of the present invention. 図1のベルト式無断変速装置に使用するCVTベルトの詳細を示す概略図である。It is the schematic which shows the detail of the CVT belt used for the belt-type continuously variable transmission of FIG. 図2のCVTベルトの構成要素であるエレメントを示す、図2のA−A矢視図である。FIG. 3 is an AA arrow view of FIG. 2 showing elements that are components of the CVT belt of FIG. 2. 図2のCVTベルトを一対のプーリに巻き付けた状態を示す一部省略した平面図である。FIG. 3 is a partially omitted plan view showing a state in which the CVT belt of FIG. 2 is wound around a pair of pulleys. 図2のCVTベルトのプーリへの巻き付け部におけるエレメントへのプーリ半径方向に働く力を示す動作説明図である。It is operation | movement explanatory drawing which shows the force which acts on the pulley radial direction to the element in the winding part to the pulley of the CVT belt of FIG. CVTベルトに弓なり現象が発生した状態を示す説明図である。It is explanatory drawing which shows the state in which the bowing phenomenon generate | occur | produced in the CVT belt. (a)はローラによりCVTベルトに押圧力を付与していない状態を、(b)はローラによりCVTベルトに押圧力を付与している状態を、それぞれ示す油圧系統の動作説明図である。(A) is an operation explanatory view of the hydraulic system showing a state in which no pressing force is applied to the CVT belt by a roller, and (b) is a state in which a pressing force is applied to the CVT belt by a roller. 図1の油圧シリンダに供給する油圧と、変速比,エンジン負荷(入力トルク),入力回転数との相関図である。FIG. 2 is a correlation diagram of hydraulic pressure supplied to the hydraulic cylinder of FIG. 1, gear ratio, engine load (input torque), and input rotation speed. 入力トルクに対する駆動側プーリとCVTベルトとの間のスリップ率を、本実施形態と従来とを比較して示す説明図である。It is explanatory drawing which shows the slip ratio between the drive side pulley and CVT belt with respect to input torque by comparing this embodiment with the conventional one.

符号の説明Explanation of symbols

1 駆動側プーリ
3 従動側プーリ
5 CVTベルト
7 エレメント
17 リング(リング部材)
19 ローラ(押圧手段)
DESCRIPTION OF SYMBOLS 1 Drive side pulley 3 Driven side pulley 5 CVT belt 7 Element 17 Ring (ring member)
19 Roller (Pressing means)

Claims (4)

板状のエレメントを板厚方向に複数積層して環状に形成し、この環状に形成したものをリング部材により保持して組み付けたCVTベルトを、一対のプーリ相互間に巻き付けてなるベルト式無断変速装置において、前記一対のプーリのうち一方の駆動側の回転により他方の従動側のプーリに向けて移動する部分の前記CVTベルトに対し、前記プーリの軸方向に交差する方向でかつベルト外側方向への変位に対抗してベルト内側へ向けて押圧する押圧手段を設けたことを特徴とするベルト式無断変速装置。   A belt-type continuously variable transmission in which a plurality of plate-like elements are laminated in the plate thickness direction to form an annular shape, and the annularly formed CVT belt is held by a ring member and wound between a pair of pulleys. In the apparatus, with respect to the portion of the CVT belt that moves toward the other driven pulley by the rotation of one driving side of the pair of pulleys, in the direction intersecting the axial direction of the pulley and toward the belt outer side. A belt-type continuously variable transmission comprising a pressing means for pressing the belt toward the inside of the belt against the displacement of the belt. 前記押圧手段は、変速比、前記駆動側プーリへの入力トルク,前記駆動側プーリへの入力回転数のうち、少なくとも一つに応じて押圧力を変化させることを特徴とする請求項1に記載のベルト式無断変速装置。   The pressing means changes the pressing force according to at least one of a gear ratio, an input torque to the driving pulley, and an input rotational speed to the driving pulley. Belt-type continuously variable transmission. 前記押圧手段は、油圧シリンダによって作動することを特徴とする請求項1または2に記載のベルト式無断変速装置。   The belt-type continuously variable transmission according to claim 1 or 2, wherein the pressing means is operated by a hydraulic cylinder. 板状のエレメントを板厚方向に複数積層して環状に形成し、この環状に形成したものをリング部材により保持して組み付けたCVTベルトを、一対のプーリ相互間に巻き付けてなるベルト式無断変速装置のベルト調圧方法において、前記一対のプーリのうち一方の駆動側の回転により他方の従動側のプーリに向けて移動する部分の前記CVTベルトに対し、押圧手段により、前記プーリの軸方向に交差する方向でかつベルト外側方向への変位に対抗してベルト内側へ向けて押圧することを特徴とするベルト式無断変速装置のベルト調圧方法。   A belt-type continuously variable transmission in which a plurality of plate-like elements are laminated in the plate thickness direction to form an annular shape, and the annularly formed CVT belt is held by a ring member and wound between a pair of pulleys. In the belt pressure adjusting method of the apparatus, a portion of the pair of pulleys that moves toward the other driven pulley by the rotation of one driving side is pressed against the pulley in the axial direction by the pressing means. A belt pressure adjusting method for a belt-type continuously variable transmission, characterized in that the belt-type continuously variable transmission is pressed toward the inside of the belt against the displacement in the crossing direction and the belt outside direction.
JP2005147974A 2005-05-20 2005-05-20 Belt type continuously variable transmission and belt pressure regulating method thereof Expired - Fee Related JP4910307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147974A JP4910307B2 (en) 2005-05-20 2005-05-20 Belt type continuously variable transmission and belt pressure regulating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147974A JP4910307B2 (en) 2005-05-20 2005-05-20 Belt type continuously variable transmission and belt pressure regulating method thereof

Publications (2)

Publication Number Publication Date
JP2006322583A true JP2006322583A (en) 2006-11-30
JP4910307B2 JP4910307B2 (en) 2012-04-04

Family

ID=37542412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147974A Expired - Fee Related JP4910307B2 (en) 2005-05-20 2005-05-20 Belt type continuously variable transmission and belt pressure regulating method thereof

Country Status (1)

Country Link
JP (1) JP4910307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249838A (en) * 2011-06-03 2012-12-20 Daiichi Shokai Co Ltd Game machine
CN103282694A (en) * 2010-12-29 2013-09-04 赵闰奎 Chain belt-type variable transmission
CN105114568A (en) * 2015-09-14 2015-12-02 张英华 CVT stepless speed changer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163356A (en) * 1986-01-13 1987-07-20 Toshiba Corp Manufacture of semiconductor device
JP2001330094A (en) * 2000-05-19 2001-11-30 Daihatsu Motor Co Ltd Continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163356A (en) * 1986-01-13 1987-07-20 Toshiba Corp Manufacture of semiconductor device
JP2001330094A (en) * 2000-05-19 2001-11-30 Daihatsu Motor Co Ltd Continuously variable transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282694A (en) * 2010-12-29 2013-09-04 赵闰奎 Chain belt-type variable transmission
JP2012249838A (en) * 2011-06-03 2012-12-20 Daiichi Shokai Co Ltd Game machine
CN105114568A (en) * 2015-09-14 2015-12-02 张英华 CVT stepless speed changer

Also Published As

Publication number Publication date
JP4910307B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4762875B2 (en) Shift control device for belt type continuously variable transmission
JP4755970B2 (en) Shift control device for belt type continuously variable transmission
JP6020720B2 (en) Belt type continuously variable transmission
JP2007100899A (en) Transmission gear ratio control device for belt type continuously variable transmission
US20150105194A1 (en) Element for metallic belt
JP3552411B2 (en) V-belt type continuously variable transmission
JP2021148272A (en) Driven pulley device
JP4910307B2 (en) Belt type continuously variable transmission and belt pressure regulating method thereof
JP5877900B2 (en) Metal belt element
US20180003298A1 (en) Belt type continuously variable transmission
JP4505316B2 (en) Belt for continuously variable transmission
US20110053732A1 (en) Friction type transmission device and pressing force control method for friction type transmission device
JP2011127620A (en) Power transmission device
JP4462164B2 (en) Hydraulic control device
JP4809526B2 (en) Belt type continuously variable transmission
JP6845093B2 (en) Winding transmission device
JP2010276153A (en) Continuously variable transmission for vehicle
JP3675329B2 (en) Belt type continuously variable transmission
JP2010071453A (en) Pulley for belt-type continuously variable transmission, and the belt-type continuously variable transmission
JP2020024001A (en) Belt-type continuous variable transmission
JPH10252881A (en) V-belt type continuously variable transmission
JP2007155095A (en) Transmission ring type continuously variable transmission
WO2012131965A1 (en) Continuously variable transmission
JP4221099B2 (en) Shift control device
JP2006527829A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees