JP2006322098A - Method for producing polyethylene naphthalate fiber - Google Patents
Method for producing polyethylene naphthalate fiber Download PDFInfo
- Publication number
- JP2006322098A JP2006322098A JP2005145207A JP2005145207A JP2006322098A JP 2006322098 A JP2006322098 A JP 2006322098A JP 2005145207 A JP2005145207 A JP 2005145207A JP 2005145207 A JP2005145207 A JP 2005145207A JP 2006322098 A JP2006322098 A JP 2006322098A
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene naphthalate
- roller
- fiber
- preheating
- spinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 58
- -1 polyethylene naphthalate Polymers 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 title claims abstract description 33
- 239000011112 polyethylene naphthalate Substances 0.000 title claims abstract description 33
- 238000009987 spinning Methods 0.000 claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 238000002074 melt spinning Methods 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims abstract description 6
- 229920006240 drawn fiber Polymers 0.000 claims 1
- 238000000034 method Methods 0.000 description 24
- 208000012886 Vertigo Diseases 0.000 description 12
- 239000002253 acid Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012770 industrial material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- FGTYTUFKXYPTML-UHFFFAOYSA-N 2-benzoylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 FGTYTUFKXYPTML-UHFFFAOYSA-N 0.000 description 1
- XCSGHNKDXGYELG-UHFFFAOYSA-N 2-phenoxyethoxybenzene Chemical compound C=1C=CC=CC=1OCCOC1=CC=CC=C1 XCSGHNKDXGYELG-UHFFFAOYSA-N 0.000 description 1
- GMOYUTKNPLBTMT-UHFFFAOYSA-N 2-phenylmethoxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OCC1=CC=CC=C1 GMOYUTKNPLBTMT-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- CCQPAEQGAVNNIA-UHFFFAOYSA-N cyclobutane-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCC1 CCQPAEQGAVNNIA-UHFFFAOYSA-N 0.000 description 1
- FDKLLWKMYAMLIF-UHFFFAOYSA-N cyclopropane-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CC1 FDKLLWKMYAMLIF-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000010036 direct spinning Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- YXTFRJVQOWZDPP-UHFFFAOYSA-M sodium;3,5-dicarboxybenzenesulfonate Chemical compound [Na+].OC(=O)C1=CC(C(O)=O)=CC(S([O-])(=O)=O)=C1 YXTFRJVQOWZDPP-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
本発明はポリエチレンナフタレート繊維の製造方法に関し、さらに詳しくは、生産性が良好で工業用資材に最適に用いられるポリエチレンナフタレート繊維の製造方法に関する。 The present invention relates to a method for producing polyethylene naphthalate fiber, and more particularly to a method for producing polyethylene naphthalate fiber which has good productivity and is optimally used for industrial materials.
ポリエチレンナフタレート繊維は、汎用的に産業資材用繊維として使用されているポリエチレンテレフタレート繊維の製造設備をほぼそのまま流用でき、特殊な製造工程や製造設備を必要としないことから比較的低コストでの生産が可能であるため、近年その応用分野は飛躍的に拡大している。たとえば、ポリエチレンナフタレート繊維の優れた特性である、高強度、高モジュラス、耐熱性及び耐化学薬品性、寸法安定性などを活かした、各種産業資材、特にタイヤコード、伝動用ベルト、ゴムホース、搬送用ベルトなどの補強材として好適に使用されている。 Polyethylene naphthalate fiber can be used for production of polyethylene terephthalate fiber, which is widely used as a fiber for industrial materials, and can be used almost as it is. In recent years, its application fields have expanded dramatically. For example, various industrial materials, especially tire cords, power transmission belts, rubber hoses, and conveyances that take advantage of the excellent properties of polyethylene naphthalate fibers, such as high strength, high modulus, heat resistance and chemical resistance, and dimensional stability. It is suitably used as a reinforcing material for a belt for use.
しかしながら、ポリエチレンナフタレートは分子鎖が剛直で、ポリエチレンテレフタレート繊維に比べてガラス転移温度も高く、さらにはガラス状態では非常に脆いという特性を有するが故に、延伸が非常に難しいという問題があった。合成繊維は延伸工程で分子の配向を揃えて物性を向上させるので、延伸が困難なポリエチレンナフタレートポリマーは、元来有する高い性能に比して、性能および生産性がポリエチレンテレフタレート繊維対比不十分となるという問題があった。 However, polyethylene naphthalate has a problem that the molecular chain is rigid, has a glass transition temperature higher than that of polyethylene terephthalate fiber, and is very brittle in the glass state, so that it is very difficult to stretch. Synthetic fibers improve the physical properties by aligning the molecular orientation in the drawing process, so the polyethylene naphthalate polymer, which is difficult to draw, has insufficient performance and productivity compared to the high performance inherent in polyethylene terephthalate fibers. There was a problem of becoming.
特に近年のポリエステル繊維の製造方法では、生産性の高い、紡糸工程と延伸工程が連続してなる直接紡糸延伸法が採用されることが多いが、この場合延伸速度が早く延伸負荷が高まるために、溶融紡糸後に一旦巻取りその後延伸する別延伸法に比較して、延伸時の糸切れがより多く発生するという問題が発生してきている。 In particular, in recent polyester fiber production methods, a high-productivity direct spinning drawing method in which a spinning process and a drawing process are continuous is often employed. In this case, the drawing speed is high and the drawing load increases. As compared with another stretching method in which the yarn is once wound after melt spinning and then stretched, there has been a problem that more yarn breakage occurs during stretching.
一方、従来よりポリエチレンナフタレート繊維の紡糸段階に関する提案は数多くなされている。例えば特許文献1には溶融紡糸直後の加熱筒の温度および長さを調節して高タフネスを得る方法が、特許文献2には3段以上の延伸を行って高温雰囲気下の弾性率を向上させる方法が開示されている。しかしいずれの方法も、最適条件を取ったときの繊維の物性を向上する目的は達しているものの、延伸時の糸切れ等安定した生産には問題があり、ポリエチレンナフタレートポリマーの有する高いポテンシャルを常に発揮させることができないという問題があった。 On the other hand, many proposals regarding the spinning stage of polyethylene naphthalate fiber have been made. For example, Patent Document 1 discloses a method of obtaining high toughness by adjusting the temperature and length of a heating cylinder immediately after melt spinning, and Patent Document 2 performs stretching of three or more stages to improve the elastic modulus in a high temperature atmosphere. A method is disclosed. However, although both methods have achieved the purpose of improving the physical properties of the fiber when the optimum conditions are taken, there are problems in stable production such as yarn breakage during drawing, and the high potential of polyethylene naphthalate polymer is high. There was a problem that it could not always be demonstrated.
本発明はこのような現状に鑑み、高強度のポリエチレンナフタレート繊維を安定して紡糸、延伸できる製造方法を提供することにある。 In view of such a current situation, the present invention is to provide a production method capable of stably spinning and stretching high-strength polyethylene naphthalate fibers.
本発明のポリエチレンナフタレート繊維の製造方法は、ポリエチレンナフタレートを主成分とする高分子を溶融紡糸して得た繊維を、表面平均温度が170〜190℃であって、該表面の温度の最大偏差が7℃以下である予熱ローラーにて1.50〜2.50秒間予熱した後に、延伸することを特徴とする。さらには延伸する工程が多段延伸であり、1段目の延伸倍率が4.5〜6.0倍であること、紡糸速度が450〜1200m/分であること、巻取速度が2500m/分以上であることや、延伸後の繊維の単糸繊度が4.0〜8.0dtexであり、総繊度が560〜2200dtexであることが好ましい。また、使用する予熱ローラーが熱媒封入式ジャケットローラーであることや、予熱ローラーの直径が150〜250mmであることが好ましい。 The method for producing polyethylene naphthalate fiber according to the present invention comprises a fiber obtained by melt spinning a polymer mainly composed of polyethylene naphthalate, having a surface average temperature of 170 to 190 ° C., the maximum temperature of the surface. The film is stretched after preheating for 1.50 to 2.50 seconds with a preheating roller having a deviation of 7 ° C. or less. Furthermore, the drawing process is multistage drawing, the first stage draw ratio is 4.5 to 6.0 times, the spinning speed is 450 to 1200 m / min, and the winding speed is 2500 m / min or more. It is preferable that the single yarn fineness of the fiber after drawing is 4.0 to 8.0 dtex and the total fineness is 560 to 2200 dtex. Moreover, it is preferable that the preheating roller to be used is a heat medium enclosure type jacket roller, and the diameter of a preheating roller is 150-250 mm.
本発明によれば、高強度のポリエチレンナフタレート繊維を安定して紡糸、延伸できる製造方法が提供される。 According to the present invention, there is provided a production method capable of stably spinning and stretching high-strength polyethylene naphthalate fibers.
本発明の製造方法は、高分子を溶融紡糸して得た合成繊維を、予熱した後に延伸する方法に関する。
ここで本発明に用いられる溶融紡糸される高分子は、ポリエチレンナフタレートを主成分とするものであれば特に制限は無く、一般にはエチレン−2,6−ナフタレートを繰り返し単位とするものであり、好ましくは全繰り返し単位中の80モル%以上、さらには90モル%以上をエチレン−2,6−ナフタレートが占めることが好ましい。本発明で用いられるポリエチレンナフタレートは、一般にはナフタレン−2,6−ジカルボン酸またはそのエステル形成性誘導体を触媒の存在下適当な反応条件のもとにエチレングリコールと重縮合させることによって合成される。このようなポリエチレンナフタレート以外に少量ならば他の成分を含む共重合体であっても良く、共重合させる適当な他の成分としては、(a)2個のエステル形成官能基を有する化合物;例えばシュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸などの脂肪族ジカルボン酸;シクロプロパンジカルボン酸、シクロブタンジカルボン酸、ヘキサヒドロテレフタル酸などの脂環族ジカルボン酸;フタル酸、イソフタル酸、ナフタレン−2,7−ジカルボン酸、ジフェニルジカルボン酸などの芳香族ジカルボン酸;ジェフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、3,5−ジカルボキシベンゼンスルホン酸ナトリウムなどのカルボン酸;グリコール酸、p−オキシ安息香酸、p−オキシエトキシ安息香酸などのオキシカルボン酸;プロピレングリコール、トリメチレングリコール、ジエチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチレングリコール、p−キシレングリコール、1,4−シクロヘキサンジメタノール、ビスフェノールA、などのオキシ化合物、あるいはその機能的誘導体:前記カルボン酸類、オキシカルボン酸類、オキシ化合物類またはその機能的誘導体から誘導される高重合度化合物などや、(b)1個のエステル形成官能基を有する化合物、例えば安息香酸、ベンゾイル安息香酸、ベンジルオキシ安息香酸、メトキシポリアルキレングリコールなどが挙げられる。さらに、(c)3個以上のエステル形成官能基を有する化合物、例えばグリセリン、ペンタエリスリトール、トリメチルなども重合体が実質的に線状である範囲内で使用可能である。また前記ポリエステル中に二酸化チタンなどの艶消し剤や、リン酸、亜リン酸及びそれらのエステルなどの安定剤が含まれても良いことは言うまでもない。
The production method of the present invention relates to a method in which a synthetic fiber obtained by melt spinning a polymer is preheated and then drawn.
Here, the melt-spun polymer used in the present invention is not particularly limited as long as it has polyethylene naphthalate as a main component, and generally has ethylene-2,6-naphthalate as a repeating unit, Preferably, ethylene-2,6-naphthalate occupies 80 mol% or more, more preferably 90 mol% or more of all repeating units. The polyethylene naphthalate used in the present invention is generally synthesized by polycondensing naphthalene-2,6-dicarboxylic acid or an ester-forming derivative thereof with ethylene glycol in the presence of a catalyst under appropriate reaction conditions. . If it is a small amount, it may be a copolymer containing other components in addition to such polyethylene naphthalate. Suitable other components to be copolymerized include (a) a compound having two ester-forming functional groups; For example, aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid and dimer acid; alicyclic dicarboxylic acids such as cyclopropanedicarboxylic acid, cyclobutanedicarboxylic acid and hexahydroterephthalic acid; phthalic acid, isophthalic acid and naphthalene Aromatic dicarboxylic acids such as -2,7-dicarboxylic acid and diphenyldicarboxylic acid; carboxylic acids such as diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid and sodium 3,5-dicarboxybenzenesulfonate; Glycolic acid, p-oxybenzoic acid, p Oxycarboxylic acids such as oxyethoxybenzoic acid; propylene glycol, trimethylene glycol, diethylene glycol, tetramethylene glycol, hexamethylene glycol, neopentylene glycol, p-xylene glycol, 1,4-cyclohexanedimethanol, bisphenol A, etc. An oxy compound, or a functional derivative thereof: a carboxylic acid, an oxycarboxylic acid, a compound having a high degree of polymerization derived from the oxy compound or a functional derivative thereof, or (b) a compound having one ester-forming functional group, For example, benzoic acid, benzoylbenzoic acid, benzyloxybenzoic acid, methoxypolyalkylene glycol and the like can be mentioned. Furthermore, (c) a compound having three or more ester-forming functional groups, such as glycerin, pentaerythritol, and trimethyl, can be used within the range where the polymer is substantially linear. It goes without saying that matting agents such as titanium dioxide and stabilizers such as phosphoric acid, phosphorous acid and esters thereof may be contained in the polyester.
本発明の製造方法で用いるポリエチレンナフタレートを主成分とする高分子は溶融紡糸する前に、固相重合して固有粘度を高めた高分子を用いることが好ましい。特に高強度が要求される産業資材用の繊維とする場合には、高強度、高弾性率、高耐久性などの性能が要求されるので、固相重合を行う必要が高く、高分子の固有粘度が0.65〜0.90の範囲であることが好ましい。固有粘度が0.65より小さい場合には、産業資材用途としては十分な強度、タフネスが得られにくい傾向にあり、逆に0.90より高い場合には溶融時の粘度が著しく高くなるため、紡糸時の糸切れが増加する傾向にある。 The polymer mainly composed of polyethylene naphthalate used in the production method of the present invention is preferably a polymer whose intrinsic viscosity is increased by solid phase polymerization before melt spinning. In particular, when using fibers for industrial materials that require high strength, performance such as high strength, high elastic modulus, and high durability is required. The viscosity is preferably in the range of 0.65 to 0.90. When the intrinsic viscosity is less than 0.65, it tends to be difficult to obtain sufficient strength and toughness for industrial materials, and conversely, when it is higher than 0.90, the viscosity at the time of melting becomes extremely high. There is a tendency for yarn breakage during spinning to increase.
固相重合の方法としては、従来公知の手法を用いることができる。この方法は大別してバッチ式と連続式の2種類の方式があるが必要に応じて適宜選択することができ、前者は比較的小ロットの生産をロスなく行える点で好ましく、後者は大ロットの生産を効率よく行える点で好ましい。 A conventionally known method can be used as the method of solid phase polymerization. This method is broadly divided into two types, batch type and continuous type, which can be selected as needed. The former is preferable in that it can produce a relatively small lot without any loss, and the latter is preferable for a large lot. This is preferable because production can be performed efficiently.
得られた高分子の溶融紡糸されるが、この方法は従来公知の方法を用いることができる。たとえばエクストルーダーで融点以上の温度にポリエチレンナフタレートのチップを溶融した後、紡糸口金より吐出する。このときの紡糸速度としては450〜1200m/分であることが好ましい。この紡糸された繊維はさらに油剤を付与した後、一旦巻き取ることなく引き続き延伸して延伸糸条とすることが好ましい。 The polymer obtained is melt-spun, and a conventionally known method can be used for this method. For example, a polyethylene naphthalate chip is melted to a temperature equal to or higher than the melting point by an extruder and then discharged from a spinneret. The spinning speed at this time is preferably 450 to 1200 m / min. It is preferable that the spun fiber is further drawn without being wound up and then drawn into a drawn yarn after further applying an oil agent.
そして本発明のポリエチレンナフタレート繊維の製造方法は、このように溶融紡糸して得た繊維を、表面平均温度が170〜190℃であって、該表面の温度の最大偏差が7℃以下である予熱ローラーにて1.50〜2.50秒間予熱した後に、延伸することを必須とする方法である。 And the manufacturing method of the polyethylene naphthalate fiber of this invention is the surface average temperature of 170-190 degreeC, and the maximum deviation of the surface temperature is 7 degrees C or less about the fiber obtained by melt-spinning in this way. This is a method in which stretching is essential after preheating with a preheating roller for 1.50 to 2.50 seconds.
このとき本発明の製造方法においては、予熱ローラーの表面温度分布を厳密に制御することが極めて重要であり、表面の温度の最大偏差が7℃以下、好ましくは5℃以下であることが必要である。温度の最大偏差が7℃より大きくなり、例えばローラーの長手方向の温度分布が局所的に高くなると、その領域を通過する糸条の結晶化を生じやすくなり、工程での断糸の原因となる。また、断糸が起こりにくいように、最高温度の部分を最適温度なるように平均温度を設定すると、十分な予熱が行われないために延伸倍率を上げることができず、繊維の強度が不足するか、無理に延伸して断糸が発生する原因となる。繊維は複数回予熱ローラー上を通過するために、本発明の製造方法においては、特に長手方向の温度偏差が重要であり、長手方向では温度偏差が5℃以内であることが好ましい。 At this time, in the production method of the present invention, it is extremely important to strictly control the surface temperature distribution of the preheating roller, and the maximum deviation of the surface temperature must be 7 ° C. or less, preferably 5 ° C. or less. is there. When the maximum temperature deviation is greater than 7 ° C., for example, when the temperature distribution in the longitudinal direction of the roller is locally high, crystallization of the yarn passing through the region is likely to occur, which may cause yarn breakage in the process. . Also, if the average temperature is set so that the highest temperature is the optimum temperature so that yarn breakage is unlikely to occur, the draw ratio cannot be increased due to insufficient preheating, resulting in insufficient fiber strength. Or it may cause the yarn to break by forcibly drawing. Since the fiber passes a plurality of times on the preheating roller, the temperature deviation in the longitudinal direction is particularly important in the production method of the present invention, and the temperature deviation in the longitudinal direction is preferably within 5 ° C.
ローラーの表面温度分布を均一にする方法としては、熱媒を封入したヒートパイプをローラー軸に平衡に複数本配設する技術が一般的に用いられるが、温度偏差を7℃以内とするためには、さらにローラー内部に熱媒を封入したジャケット室を設けることが好ましい。熱媒の種類はその使用温度範囲に合わせて適宜選択することが出来るが、水(水蒸気)を使用することが一般的である。さらにローラーの温度分布をさらに均一なものとするために、ローラーを断熱性の高い保温ボックスで囲んだり、保温ボックス内に加熱源を配して内部温度を積極的に高めることも好ましい手段である。 As a method for making the surface temperature distribution of the roller uniform, a technique of arranging a plurality of heat pipes enclosing a heat medium in a balanced manner on the roller shaft is generally used, but in order to keep the temperature deviation within 7 ° C. It is preferable to further provide a jacket chamber in which a heat medium is sealed inside the roller. The type of the heat medium can be appropriately selected according to the use temperature range, but water (water vapor) is generally used. Furthermore, in order to make the temperature distribution of the roller even more uniform, it is also a preferable means to enclose the roller in a heat insulating box with high heat insulation or to increase the internal temperature positively by arranging a heating source in the heat insulating box. .
本発明においてはこのように温度制御がされた予熱ローラーで未延伸糸を、170〜190℃の高温で、かつ1.50〜2.50秒もの長い時間予熱することを必須とする。190℃よりも高い温度では結晶化を誘発し、結晶化した部分では延伸しにくくなるため、繊維が長さ方向にわたって部分的に延伸程度が異なる結果となり、断糸の発生頻度が増加する。また、170℃より低い温度では分子鎖のすべりが不足し、延伸時の分子の配向度が上がらないため延伸による繊維物性の向上が得られない。また予熱時間が1.5秒よりも短い場合、繊維糸条を構成するフィラメント間、及び長さ方向での予熱の状態にバラツキが大きく、延伸時に繊維の直径が局所的に減少する箇所であるネック点が移動し、ネック点の固定がスムーズでなくなるために、部分的に延伸程度が異なる結果となり、断糸の発生頻度が増加する。他方2.5秒よりも長い時間、上記の温度範囲で加熱すると、高温の時と同じく、結晶化を誘発するために断糸の発生頻度が増加する。 In the present invention, it is essential that the undrawn yarn is preheated at a high temperature of 170 to 190 ° C. and for a time as long as 1.50 to 2.50 seconds with the temperature-controlled preheating roller. Crystallization is induced at a temperature higher than 190 ° C., and the crystallized portion is difficult to be stretched. As a result, the fiber is partially stretched in the length direction, and the frequency of yarn breakage increases. Further, when the temperature is lower than 170 ° C., the slip of the molecular chain is insufficient, and the degree of molecular orientation at the time of stretching does not increase, so that improvement of fiber physical properties due to stretching cannot be obtained. Further, when the preheating time is shorter than 1.5 seconds, there is a large variation in the preheating state between the filaments constituting the fiber yarn and in the length direction, and the diameter of the fiber is locally reduced at the time of drawing. Since the neck point moves and the fixing of the neck point is not smooth, the stretching degree is partially different, and the frequency of occurrence of yarn breakage increases. On the other hand, when heating in the above-mentioned temperature range for a time longer than 2.5 seconds, the occurrence frequency of yarn breakage increases to induce crystallization, as in the case of high temperature.
予熱時間は、予熱ローラーへの糸条の捲回数とロールの周速によって調整することができる。しかし、ローラーの周速は延伸倍率や巻取速度による制約が多いため、捲回数を増減する方法が好ましい。したがって予熱ローラーにはネルソンローラーを用いることが好ましく、ネルソンローラーを用いる場合、左右のローラーの角度を変えることによって一定範囲内で捲回数を変えることができる。しかしながら本発明のような長い予熱時間を確保するには、ローラーの角度調整だけでは糸ピッチが狭くなりすぎるため、通常ポリエステル繊維の製造に使用されるローラーの中でも大型のローラーを採用することが好ましい。例えば直径としては150〜250mmが好ましく、また長さとしては300〜1000mmであることが好ましい。 The preheating time can be adjusted by the number of yarns wound on the preheating roller and the peripheral speed of the roll. However, since the peripheral speed of the roller is largely limited by the draw ratio and the winding speed, a method of increasing / decreasing the number of wrinkles is preferable. Therefore, it is preferable to use a Nelson roller as the preheating roller. When the Nelson roller is used, the number of wrinkles can be changed within a certain range by changing the angles of the left and right rollers. However, in order to ensure a long preheating time as in the present invention, it is preferable to employ a large roller among the rollers usually used for the production of polyester fiber, because the thread pitch becomes too narrow just by adjusting the angle of the roller. . For example, the diameter is preferably 150 to 250 mm, and the length is preferably 300 to 1000 mm.
本発明者らは、ポリエチレンナフタレート繊維の延伸性における予熱条件の重要性が汎用繊維であるポリエチレンテレフタレート繊維とは比較にならないほど大きく、本発明の製造方法では、予熱条件として非常に狭い範囲に最適点があることを見出し本発明に到達したものである。ポリエチレンナフタレート繊維はガラス転移温度が約113℃と、ポリエチレンテレフタレート繊維よりも高く、高温まで糸条を予熱する必要があるにもかかわらず、剛直であるポリエチレンナフタレート分子の配向した未延伸糸は、ガラス転移温度以上の温度では、ポリエチレンテレフタレート分子と比べ非常に結晶化を起こしやすいのである。 In the production method of the present invention, the preheating conditions are so narrow that the importance of preheating conditions in the stretchability of polyethylene naphthalate fibers is not so large as that of polyethylene terephthalate fibers, which are general-purpose fibers. The inventors have found that there is an optimum point and have reached the present invention. Polyethylene naphthalate fiber has a glass transition temperature of about 113 ° C., which is higher than that of polyethylene terephthalate fiber. Even though it is necessary to preheat the yarn to a high temperature, the oriented undrawn yarn of polyethylene naphthalate molecules that are rigid is At temperatures above the glass transition temperature, crystallization is very likely to occur compared to polyethylene terephthalate molecules.
本発明の製造方法では、この延伸する工程が多段延伸であり、1段目の延伸倍率が4.5〜6.0倍であることが好ましく、さらには4.8〜5.5倍であることが好ましい。このように高い倍率で延伸することによりネック延伸を1段目で終了し未延伸部分を無くすことができるため、高強度の繊維を得やすい傾向にある。さらにこの1段目の延伸後の単糸間強度ばらつき(CV%)が10%未満であることが好ましい。本発明の製造方法によって充分に各単繊維を延伸した場合、このように単糸間の強度ばらつきを減少させることができ、弱い強度の単糸が存在しないために延伸工程での糸切れを減少させることが可能になった。 In the production method of the present invention, the stretching step is multi-stage stretching, and the first stage draw ratio is preferably 4.5 to 6.0 times, and more preferably 4.8 to 5.5 times. It is preferable. By stretching at such a high magnification, neck stretching can be completed in the first stage and the unstretched portion can be eliminated, so that high-strength fibers tend to be easily obtained. Furthermore, it is preferable that the variation in strength (CV%) between the single yarns after the first stage drawing is less than 10%. When each single fiber is sufficiently drawn by the production method of the present invention, it is possible to reduce the strength variation between the single yarns in this way, and since there is no weak single yarn, the yarn breakage in the drawing process is reduced. It became possible to make it.
また、充分な繊維強度を得るためには全延伸倍率は5.0〜6.0倍であることが好ましい。最終的な巻取速度は2500m/分以上であることが好ましい。上限としては5000m/分以下、通常は3500m/分以下が用いられる。このように高速で紡糸、延伸する場合には糸切れ回数は増加する傾向にあるため、特に本発明が効果が顕著に現れる。 In order to obtain sufficient fiber strength, the total draw ratio is preferably 5.0 to 6.0 times. The final winding speed is preferably 2500 m / min or more. The upper limit is 5000 m / min or less, and usually 3500 m / min or less. Thus, when spinning and drawing at high speed, the number of yarn breaks tends to increase, and thus the present invention is particularly effective.
また、最終的に得られる延伸後の繊維の単糸繊度としては、4.0〜8.0dtexの範囲であり、総繊度は560〜2200dtexの範囲であることが好ましく、糸条を構成するフィラメント数は120〜300フィラメントであることが好ましい。このようなマルチフィラメントから構成されるフィラメントの場合、本発明を適用することによってさらに効果的に製造工程での断糸を防止することが可能となる。繊維強度としては7cN/dtex以上であることが好ましく、さらには8〜12cN/dtexの範囲が好ましい。 Moreover, as the single yarn fineness of the finally obtained fiber after drawing, it is preferably in the range of 4.0 to 8.0 dtex, and the total fineness is preferably in the range of 560 to 2200 dtex, and the filament constituting the yarn The number is preferably 120 to 300 filaments. In the case of such a filament composed of multifilaments, it is possible to more effectively prevent yarn breakage in the manufacturing process by applying the present invention. The fiber strength is preferably 7 cN / dtex or more, and more preferably in the range of 8 to 12 cN / dtex.
このような本発明の製造方法を用いた場合、延伸条件が極めて均一に制御されるために、得られる繊維の強度が得られることはもちろん、製造工程、特に2段目以降での延伸工程での糸切れ回数を減少させることができる。 When such a production method of the present invention is used, the stretching conditions are controlled to be very uniform, so that the strength of the resulting fiber can be obtained, of course, in the production process, particularly in the stretching process in the second and subsequent stages. The number of thread breaks can be reduced.
以下実施例により、本発明を具体的に説明するが、本発明はこれらの具体例により限定されるものではない。なお、本発明の評価に用いた測定法は以下の通りである。
(1)固有粘度
樹脂あるいは繊維をフェノールとオルトジクロロベンゼンとの混合溶媒(容量比6:4)に溶解し、35℃で測定した粘度から求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these specific examples. In addition, the measuring method used for evaluation of this invention is as follows.
(1) Intrinsic viscosity The resin or fiber was dissolved in a mixed solvent of phenol and orthodichlorobenzene (volume ratio 6: 4), and the viscosity was determined from the viscosity measured at 35 ° C.
(2)強度および単糸強度ばらつき
JIS L−1070に準拠し、島津製作所製オートグラフにて測定した。
単糸強度ばらつきは同一箇所のマルチフィラメントの中から50本の単糸を取り出して強度を測定し、その標準偏差をもとにCV%を算出した。サンプリングは途中工程である1段延伸後あるいは、延伸工程終了後の2箇所で行った。
(2) Strength and single yarn strength variation Measured with an autograph manufactured by Shimadzu Corporation in accordance with JIS L-1070.
For the single yarn strength variation, 50 single yarns were taken out from multifilaments at the same location, the strength was measured, and CV% was calculated based on the standard deviation. Sampling was performed at two points after the one-stage stretching, which is an intermediate step, or after the stretching step.
(3)ローラー表面温度
全長500mmのローラーのうち、ローラー表面の繊維に接する部分である有効長450mm部分を50mm間隔で10点、円周上90度おきに4点の、10×4の計40点の表面温度を熱電対温度計で測定し、平均温度及び最大偏差(最大値と最小値の差)を計算した。
(3) Roller surface temperature Among the rollers having a total length of 500 mm, an effective length 450 mm portion which is a portion in contact with the fiber on the roller surface is 10 points at intervals of 50 mm and 4 points every 90 degrees on the circumference. The surface temperature of the points was measured with a thermocouple thermometer, and the average temperature and the maximum deviation (difference between the maximum value and the minimum value) were calculated.
[実施例1]
固有粘度0.76のポリエチレン−2,6−ナフタレートチップを、孔数250、孔径0.6mmの円形紡糸孔を有する紡糸口金から、ポリマー温度=316℃、吐出量=333g/分で吐出し、冷風で冷却固化した後紡糸油剤を付与して484m/分の速度で引き取った。得られた未延伸糸を一旦巻き取ることなく連続して延伸工程に供給し、表面温度偏差が3℃の熱媒として水を封入した熱媒封入式ジャケットローラーからなるネルソンローラー(予熱ローラー)で所定の時間予熱した後、1段倍率を5.0倍、全延伸倍率が6.2倍となるように2段延伸した。その後240℃で熱固定し、3000m/分の巻取速度で巻取り、1100dtex/250フィラメントの延伸糸を得た。
このときの1段目の延伸後の単繊維強度ばらつきはCV%が8%であった。予熱条件、延伸糸の強度、単繊維強度ばらつき、単位生産量当たりの糸切れ回数を表1に示す。
[Example 1]
A polyethylene-2,6-naphthalate chip having an intrinsic viscosity of 0.76 is discharged from a spinneret having a circular spinning hole with 250 holes and a hole diameter of 0.6 mm at a polymer temperature of 316 ° C. and a discharge amount of 333 g / min. Then, after cooling and solidifying with cold air, a spinning oil agent was applied and taken up at a speed of 484 m / min. The obtained undrawn yarn is continuously supplied to the drawing process without being wound once, and is a Nelson roller (preheating roller) composed of a heating medium enclosing jacket roller in which water is enclosed as a heating medium having a surface temperature deviation of 3 ° C. After preheating for a predetermined time, the film was stretched in two stages so that the one-stage magnification was 5.0 times and the total stretching ratio was 6.2 times. Thereafter, it was heat-set at 240 ° C. and wound at a winding speed of 3000 m / min to obtain a drawn yarn of 1100 dtex / 250 filament.
At this time, the CV% of the single fiber strength variation after the first-stage drawing was 8%. Table 1 shows preheating conditions, drawn yarn strength, single fiber strength variation, and the number of yarn breaks per unit production.
[実施例2]
予熱温度と時間を変更した以外は、実施例1と同様に紡糸延伸した。
予熱条件、延伸糸の強度、単繊維強度ばらつき、単位生産量当たりの糸切れ回数を表1に併せて示す。
[Example 2]
Spinning and drawing were performed in the same manner as in Example 1 except that the preheating temperature and time were changed.
Table 1 shows preheating conditions, drawn yarn strength, single fiber strength variation, and number of yarn breaks per unit production.
[比較例1]
予熱温度を変更した以外は、実施例1と同様に紡糸延伸した。
このときの1段目の延伸後の単繊維強度ばらつきはCV%が11%であった。予熱条件、延伸糸の強度、単繊維強度ばらつき、単位生産量当たりの糸切れ回数を表1に併せて示す。
[Comparative Example 1]
Spinning and drawing were performed in the same manner as in Example 1 except that the preheating temperature was changed.
At this time, the CV% of the single fiber strength variation after the first-stage drawing was 11%. Table 1 shows preheating conditions, drawn yarn strength, single fiber strength variation, and number of yarn breaks per unit production.
[比較例2、3]
予熱温度と時間を変更した以外は、実施例1と同様に紡糸延伸した。
予熱条件、延伸糸の強度、単繊維強度ばらつき、単位生産量当たりの糸切れ回数を表1に併せて示す。
[Comparative Examples 2 and 3]
Spinning and drawing were performed in the same manner as in Example 1 except that the preheating temperature and time were changed.
Table 1 shows preheating conditions, drawn yarn strength, single fiber strength variation, and number of yarn breaks per unit production.
[比較例4]
予熱ローラーとして温度180℃、表面の温度偏差15℃の通常の予熱ローラーを用いる以外は実施例1と同様の条件で延伸糸を得た。
予熱条件、延伸糸の強度、単繊維強度ばらつき、単位生産量当たりの糸切れ回数を表1に併せて示す。
[Comparative Example 4]
A drawn yarn was obtained under the same conditions as in Example 1 except that a normal preheating roller having a temperature of 180 ° C. and a surface temperature deviation of 15 ° C. was used as the preheating roller.
Table 1 shows preheating conditions, drawn yarn strength, single fiber strength variation, and number of yarn breaks per unit production.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005145207A JP2006322098A (en) | 2005-05-18 | 2005-05-18 | Method for producing polyethylene naphthalate fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005145207A JP2006322098A (en) | 2005-05-18 | 2005-05-18 | Method for producing polyethylene naphthalate fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006322098A true JP2006322098A (en) | 2006-11-30 |
Family
ID=37541981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005145207A Pending JP2006322098A (en) | 2005-05-18 | 2005-05-18 | Method for producing polyethylene naphthalate fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006322098A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105297A1 (en) * | 2007-02-28 | 2008-09-04 | Teijin Fibers Limited | Polyethylene naphthalate fiber and method for production thereof |
-
2005
- 2005-05-18 JP JP2005145207A patent/JP2006322098A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105297A1 (en) * | 2007-02-28 | 2008-09-04 | Teijin Fibers Limited | Polyethylene naphthalate fiber and method for production thereof |
JP2008208504A (en) * | 2007-02-28 | 2008-09-11 | Teijin Fibers Ltd | Polyethylene naphthalate fiber for industrial material and method for producing the same |
US8028509B2 (en) | 2007-02-28 | 2011-10-04 | Teijin Fibers Limted | Polyethylene naphthalate fiber and method for producing the same |
TWI422719B (en) * | 2007-02-28 | 2014-01-11 | Teijin Fibers Ltd | Polyethylene naphthalate fiber and its manufacturing method |
KR101399153B1 (en) | 2007-02-28 | 2014-05-27 | 데이진 화이바 가부시키가이샤 | Polyethylene naphthalate fiber and method for production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4928308B2 (en) | Polyethylene naphthalate fiber for industrial materials and production method thereof | |
KR101537131B1 (en) | Polyethylene naphthalate fiber and process for producing the polyethylene naphthalate fiber | |
KR101537132B1 (en) | Polyethylene naphthalate fiber and process for producing the polyethylene naphthalate fiber | |
US5397527A (en) | High modulus polyester yarn for tire cords and composites | |
KR100571214B1 (en) | Polyester multifilamentary yarn for tire cords, dipped cord and production thereof | |
JP3133177B2 (en) | Polyethylene naphthalate fiber excellent in heat stability and method for producing the same | |
JP5098692B2 (en) | Method for producing liquid crystal polyester fiber | |
JP2629075B2 (en) | High modulus polyester yarn for tire cords and composites | |
JP2011058116A (en) | Tire cord and tire produced by using the same | |
JPH06128810A (en) | Production of high-strength polyethylene naphthalate fiber | |
JP2006322098A (en) | Method for producing polyethylene naphthalate fiber | |
JPS62156312A (en) | Polyester fiber | |
KR100996845B1 (en) | Method for Manufacturing Polyethylene-2,6-naphthalate fibers having improved indexes of evenness | |
KR0140230B1 (en) | Manufacturing method of dimensional stability polyester yarn | |
JPH04194021A (en) | Naphthalate polyester fiber and its production | |
JP2006322110A (en) | Method for producing polyethylene naphthalate fiber | |
JP2011207597A (en) | Winding method and winding package of single yarn thick fineness multifilament | |
JP2011058115A (en) | Cord for reinforcing hose and hose using the same | |
JPH06108311A (en) | Core-sheath type conjugate fiber and its production | |
JP5108938B2 (en) | Polyethylene naphthalate fiber and method for producing the same | |
JP2007332517A (en) | Method for melt-spinning polyethylene naphthalate fibers | |
JP2011058126A (en) | Fiber for resin hose reinforcement and resin hose using the same | |
JP2011058113A (en) | Belt-reinforcing fiber material and belt employing it | |
JP4660937B2 (en) | Method for producing polyester fiber | |
JP4681348B2 (en) | Method for producing polyethylene naphthalate fiber |