JP2006322019A - THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa-CLASS H-SHAPE STEEL, AND ITS MANUFACTURING METHOD - Google Patents

THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa-CLASS H-SHAPE STEEL, AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2006322019A
JP2006322019A JP2005144533A JP2005144533A JP2006322019A JP 2006322019 A JP2006322019 A JP 2006322019A JP 2005144533 A JP2005144533 A JP 2005144533A JP 2005144533 A JP2005144533 A JP 2005144533A JP 2006322019 A JP2006322019 A JP 2006322019A
Authority
JP
Japan
Prior art keywords
less
steel
mpa
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005144533A
Other languages
Japanese (ja)
Other versions
JP3960341B2 (en
Inventor
Hiroshi Nakamura
浩史 中村
Akira Onishi
晶 大西
Horio Iwai
彫生 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005144533A priority Critical patent/JP3960341B2/en
Publication of JP2006322019A publication Critical patent/JP2006322019A/en
Application granted granted Critical
Publication of JP3960341B2 publication Critical patent/JP3960341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TMCP (thermo-mechanical control process) type 590 MPa-class H-shape steel requiring no particular special-purpose wire for welding. <P>SOLUTION: The TMCP type 590 MPa-class H-shape steel has a chemical composition consisting of, by mass, ≤0.041 to 0.06% C, 0.03 to 0.6% Si, 0.3 to 1.6% Mn, ≤0.03% P, ≤0.015% S, 0.1 to 0.5% Cu, 0.1 to 1.5% Ni, 0.11 to 1.0% Cr, 0 to 0.29% Mo, 0.005 to 0.10% V, 0.005 to 0.07% Nb, 0.005 to 0.03% Ti, 0 to 0.0005% B, 0.003 to 0.049% Al, ≤0.008% N, ≤0.004% O, ≤0.0001% H and the balance Fe with impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱加工制御型590MPa級H形鋼及びその製造方法に関し、詳しくは、建築、土木及び海洋構造物等の分野で使用され、熱加工制御(以下、「TMCP」という。)技術の適用によって、母材について、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性を有するとともに、母材及び溶接熱影響部(以下、「HAZ」という。)について、いずれも、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上の衝撃特性を有するTMCP型590MPa級H形鋼及びその製造方法に関する。   The present invention relates to a thermal processing control type 590 MPa class H-shaped steel and a method for producing the same, and more specifically, is used in the fields of architecture, civil engineering, marine structures, etc., and is a thermal processing control (hereinafter referred to as “TMCP”) technology. Depending on the application, the base material has a tensile strength characteristic with a yield point of 440 to 540 MPa, a tensile strength of 590 to 740 MPa, and a yield ratio of 80% or less, and the base material and the weld heat affected zone (hereinafter referred to as “HAZ”). .)) Each relates to a TMCP type 590 MPa class H-section steel having impact characteristics with Charpy absorbed energy at 0 ° C. of 47 J or more using a V-notch test piece and a method for producing the same.

近年、建築物の高層化や海洋構造物を始めとする各種構造物の大型化に伴って、従来よりも性能に優れたH形鋼が要求されている。すなわち、従来よりも高強度のH形鋼や、従来よりも高強度かつ断面内における機械的性質の変化が小さく溶接性にも優れたH形鋼に対する産業界からの要望が大きくなっている。   In recent years, with the increase in the height of buildings and the increase in size of various structures such as offshore structures, H-section steels that are superior in performance to conventional ones are required. That is, there is a growing demand from the industry for H-section steel with higher strength than before and H-section steel with higher strength than before and with less change in mechanical properties in the cross section and excellent weldability.

こうした要望に対して、特許文献1に、冷却ままで板厚方向の機械的性質の差が少ない肉厚40mm以上の厚肉H形鋼の製造方法として、特定の化学組成からなる鋼片に対して特定の条件での加熱、圧延及び冷却を施す「板厚方向の機械的特性差の小さいH形鋼の製造方法」が開示されている。   In response to such a request, Patent Document 1 discloses a method for manufacturing a thick H-section steel having a thickness of 40 mm or more with a small difference in mechanical properties in the thickness direction while being cooled, for a steel piece having a specific chemical composition. In particular, “a method for producing an H-section steel with a small difference in mechanical properties in the thickness direction” is disclosed in which heating, rolling and cooling under specific conditions are performed.

また、特許文献2に、圧延後の冷却速度に制約のない、フランジ厚み方向及びロット間などでの材質バラツキが少なく、しかも溶接性に優れた高強度高靱性のH形鋼の製造方法として、特定の化学組成からなる鋼素材を特定の条件で加熱、圧延や冷却を行う「材質ばらつきが少なくかつ溶接性に優れるH形鋼の製造方法」が開示されている。   Further, in Patent Document 2, as a method for producing a high-strength, high-toughness H-shaped steel that has no restrictions on the cooling rate after rolling, has little material variation in the flange thickness direction and between lots, and has excellent weldability, “A method for producing an H-section steel with little material variation and excellent weldability” is disclosed in which a steel material having a specific chemical composition is heated, rolled and cooled under specific conditions.

特開平6−145786号公報JP-A-6-145786

特開平10−72620号公報JP-A-10-72620

前述の特許文献1で提案された技術は、肉厚(1/4)t〜表面の硬さ上昇を制御することが肉厚方向の硬さ分布の均一化には重要であって、そのためには(1/4)t部の温度履歴を制御することが有効であるとの知見に基づくもので、降伏点が295〜415MPa、引張強さが490〜610MPa、降伏比が80%以下という引張強度特性が要求される490MPa級のH形鋼やそれを下回る強度レベルのH形鋼の製造には有効である。しかしながら、より大きな強度が要求される590MPa級のH形鋼の製造には適さないものであった。   In the technique proposed in the above-mentioned patent document 1, it is important to control the increase in the hardness of the surface from the thickness (1/4) t to the thickness distribution in the thickness direction. Is based on the knowledge that it is effective to control the temperature history of the (1/4) t part. The tensile strength is 295 to 415 MPa, the tensile strength is 490 to 610 MPa, and the yield ratio is 80% or less. It is effective for the production of 490 MPa class H-section steels that require strength characteristics and H-section steels with lower strength levels. However, it is not suitable for the production of 590 MPa class H-section steel, which requires higher strength.

特許文献2で提案された技術によれば、590MPa級のH形鋼を製造することができるものの、所望の特性を確保するために鋼が含有するC量を、0.001〜0.040質量%という極端に低い値に制限する必要があるので、溶接時に母材の希釈によって溶接金属の特性を確保することが難しくなる。したがって、溶接のための特殊な専用ワイヤが必要になってコストが嵩むという問題があった。   According to the technique proposed in Patent Document 2, although a 590 MPa class H-section steel can be produced, the amount of C contained in the steel in order to ensure desired characteristics is 0.001 to 0.040 mass. %, It is difficult to ensure the properties of the weld metal due to dilution of the base material during welding. Therefore, there is a problem that a special dedicated wire for welding is required and the cost is increased.

そこで、本発明の目的は、溶接のための特殊な専用ワイヤを必要としないTMCP型の590MPa級H形鋼及びその製造方法を提供することである。なお、上記の「590MPa級H形鋼」とは、機械的性質として、母材について、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性を有するとともに、母材及びHAZについて、いずれも、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上の衝撃特性を有するものを指す。   Therefore, an object of the present invention is to provide a TMCP type 590 MPa class H-section steel that does not require a special dedicated wire for welding and a method for manufacturing the same. In addition, said "590 MPa class H-section steel" has the tensile strength characteristic that a yield point is 440-540 MPa, tensile strength is 590-740 MPa, and yield ratio is 80% or less about a base material as a mechanical property. At the same time, both the base material and the HAZ indicate those having impact characteristics with Charpy absorbed energy at 0 ° C. using a V-notch test piece of 47 J or more.

本発明の他の目的は、溶接のための特殊な専用ワイヤを必要とせず、上記の機械的性質を有することに加えて、断面内における機械的性質の変化が小さく、しかも、溶接性にも優れたTMCP型の590MPa級H形鋼及びその製造方法を提供することである。   Another object of the present invention is that no special dedicated wire for welding is required, and in addition to having the above-mentioned mechanical properties, the change in mechanical properties in the cross section is small, and the weldability is also improved. It is an object to provide an excellent TMCP type 590 MPa class H-section steel and a method for producing the same.

なお、上記の「断面内における機械的性質の変化が小さい」とは、具体的にはHvmax及びHvminをそれぞれ、フランジ幅1/4の部位における厚さ方向でのビッカース硬さの最大値及び最小値として、「△Hv=Hvmax−Hvmin」で表される△Hvの値が50以下であることをいう。△Hvがこの条件を満たせば、本発明の対象とするH形鋼の断面内において、規定サイズの試験片採取が困難な板の最表層位置を含めて、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーで47J以上の衝撃特性を得ることが可能である。   Note that “the change in mechanical properties in the cross section is small” specifically means that Hvmax and Hvmin are the maximum value and the minimum value of the Vickers hardness in the thickness direction at the flange width ¼, respectively. As a value, it means that the value of ΔHv represented by “ΔHv = Hvmax−Hvmin” is 50 or less. If △ Hv satisfies this condition, the yield point is 440 to 540 MPa and the tensile strength is included in the cross section of the H-shaped steel as the object of the present invention, including the position of the outermost layer of the plate where it is difficult to collect a test piece of the specified size. It is possible to obtain a tensile strength characteristic of 590 to 740 MPa, a yield ratio of 80% or less, and an impact characteristic of 47 J or more with Charpy absorbed energy at 0 ° C. using a V-notch test piece.

また、「溶接性に優れる」とは、溶接割れが起こりにくいことに加えて、溶接欠陥が生じ難いことをいう。   In addition, “excellent weldability” means that weld cracks are unlikely to occur, and in addition, weld defects are less likely to occur.

本発明者らは、溶接のための特殊な専用ワイヤを必要とせず、しかも、前記した機械的性質を備える590MPa級H形鋼を得るために、種々の検討を行った。その結果、下記(a)〜(i)の知見を得た。   The inventors of the present invention have made various studies in order to obtain a 590 MPa class H-section steel that does not require a special dedicated wire for welding and has the mechanical properties described above. As a result, the following findings (a) to (i) were obtained.

(a)C、Si、Mn、Cu、Ni、Cr、V、Nb、Ti及びAlの含有量を厳密に制御するとともに、不純物としてのP、S、N、O(酸素)及びHの含有量を厳密に規制した鋼にTMCP技術を適用することによって、H形鋼に所望の機械的性質、つまり、440〜540MPaの降伏点、590〜740MPaの引張強さ、80%以下の降伏比という母材における引張強度特性、更には、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という母材及びHAZにおける衝撃特性を安定して具備させることができる。なお、上記の場合には、特殊な専用ワイヤを用いなくても所望の特性を確保することができる。   (A) The contents of C, Si, Mn, Cu, Ni, Cr, V, Nb, Ti and Al are strictly controlled, and the contents of P, S, N, O (oxygen) and H as impurities By applying TMCP technology to steels with strictly regulated properties, the desired mechanical properties of H-section steel are obtained: yield point of 440-540 MPa, tensile strength of 590-740 MPa, yield ratio of 80% or less. It is possible to stably provide tensile strength characteristics in the material, and further, impact characteristics in the base material and HAZ having Charpy absorbed energy at 0 ° C. of 47 J or more using a V-notch test piece. In the above case, desired characteristics can be ensured without using a special dedicated wire.

(b)上記不純物としてのHの含有量を厳密に規制することは、溶接欠陥の防止にも有効である。   (B) Strictly regulating the content of H as the impurity is also effective in preventing welding defects.

(c)良好な、母材の衝撃特性及び溶接部、なかでもHAZの衝撃特性を確保するためには、Nb及びTiの炭窒化物を分散させることが有効である。そして、前記不純物としてのOの含有量を厳密に規制することによって、上記炭窒化物の分散が促進される。   (C) It is effective to disperse Nb and Ti carbonitrides in order to ensure good impact characteristics of the base metal and welded parts, in particular, impact characteristics of HAZ. And dispersion | distribution of the said carbonitride is accelerated | stimulated by restrict | limiting strictly the content of O as said impurity.

(d)いわゆる「音響異方性」を劣化させずに所望の機械的性質を得るためには、主たる組織をベイナイト組織とするのがよく、そのためには、圧延中のオーステナイト組織の再結晶を抑制する元素である上述のNb、Tiに加えてMoやBなどの含有量も制御するのがよい。   (D) In order to obtain desired mechanical properties without deteriorating the so-called “acoustic anisotropy”, the main structure is preferably a bainite structure. For that purpose, recrystallization of the austenite structure during rolling is performed. In addition to the above-described Nb and Ti, which are elements to be suppressed, the content of Mo, B and the like is also preferably controlled.

なお、「音響異方性」とは、圧延方向と圧延直角方向とで材料内部の不健全部からの反射音波の伝播速度(すなわち、音速)が異なることをいう。建築構造物における溶接部の健全性を保証するための、JIS Z 3060(2002)等で規定された斜角法超音波探傷試験(以下、「斜角UST」という。)で測定される。この「音響異方性」が大きい場合、斜角USTにおける不健全部の位置及び大きさの判断に狂いが生じ、溶接部の合否判定の信頼性を損ね、また、溶接欠陥部の補修作業に支障をきたすことになる。   “Acoustic anisotropy” means that the propagation speed (that is, the speed of sound) of the reflected sound wave from the unhealthy part inside the material differs between the rolling direction and the direction perpendicular to the rolling direction. It is measured by an oblique angle ultrasonic flaw detection test (hereinafter referred to as “bevel angle UST”) defined by JIS Z 3060 (2002) or the like to guarantee the soundness of welds in a building structure. If this “acoustic anisotropy” is large, the judgment of the position and size of the unhealthy part at the oblique angle UST will be out of order, impairing the reliability of the pass / fail judgment of the welded part, and repairing the welded defective part. It will cause trouble.

(e)母材に所望の引張強度特性を一層安定して具備させるとともに、溶接割れを安定して防止するためには、既に述べた元素の含有量の制御に加えて下記(1)式で表されるPcmの値を制御するのがよい。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・・(1)。
(E) In order to provide the base material with the desired tensile strength characteristics more stably and to prevent weld cracks stably, in addition to the control of the element content already described, the following formula (1) It is better to control the value of Pcm expressed.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B 1).

(f)圧延によって伸延したA系介在物を少なくすることで、安定した母材の衝撃特性及び溶接部の衝撃特性を確保することができる。更に、A系介在物を少なくすることは溶接金属から拡散してくる水素のトラップサイトの減少につながるので、伸延したA系介在物の応力集中作用による溶接欠陥の発生抑止にも有効である。   (F) By reducing the number of A-based inclusions that have been extended by rolling, stable impact characteristics of the base material and impact characteristics of the welded portion can be ensured. Further, reducing the number of A-based inclusions leads to a reduction in trap sites of hydrogen diffusing from the weld metal, and is effective in suppressing the occurrence of welding defects due to the stress concentration effect of the elongated A-based inclusions.

(g)Nb及びTiの炭窒化物の分散状態を適正化し、また、TMCP技術を適用することによって、所望の機械的性質をH形鋼に安定して具備させるためには、特定の範囲の鋳込み速度で鋼塊を製造すればよい。   (G) By optimizing the dispersion state of Nb and Ti carbonitrides and applying the TMCP technology, the H-shaped steel can be stably provided with a desired mechanical property within a specific range. A steel ingot may be manufactured at a casting speed.

(h)特定の鋳込み速度で鋳込んだ鋼塊或いは前記鋼塊から作製した鋼片に対して、加熱温度、累積圧下率、圧延終了温度、冷却開始温度、冷却停止温度及び冷却速度を特定の条件としたTMCP技術を適用することによって、H形鋼に所望の機械的性質を極めて安定して具備させることができる。   (H) For a steel ingot cast at a specific casting speed or a steel piece produced from the steel ingot, a heating temperature, a cumulative rolling reduction, a rolling end temperature, a cooling start temperature, a cooling stop temperature, and a cooling rate are specified. By applying the TMCP technology as a condition, the H-shaped steel can be provided with desired mechanical properties extremely stably.

(i)本発明の対象とするH形鋼の断面内において、前記した△Hvの値が50以下であれば、本発明の対象とするH形鋼の断面内において、規定サイズの試験片採取が困難な板の最表層位置を含めて、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性及びVノッチ試験片を用いた0℃でのシャルピー吸収エネルギーで47J以上の衝撃特性を得ることが可能である。   (I) If the value of ΔHv is 50 or less in the cross section of the H-section steel that is the object of the present invention, a specimen having a specified size is collected in the cross section of the H-section steel that is the object of the present invention. Including the position of the outermost layer of the plate that is difficult to obtain, the yield point is 440 to 540 MPa, the tensile strength is 590 to 740 MPa, the yield ratio is 80% or less, and the Charpy at 0 ° C. using a V-notch test piece. It is possible to obtain an impact characteristic of 47 J or more with absorbed energy.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)及び(2)に示す熱加工制御型590MPa級H形鋼、並びに、(3)に示す熱加工制御型590MPa級H形鋼の製造方法にある。   The present invention has been completed based on the above findings, and the gist of the present invention is the thermal processing control type 590 MPa class H-section steel shown in the following (1) and (2), and the thermal processing shown in (3). It exists in the manufacturing method of a control type 590 MPa class H-section steel.

(1)質量%で、C:0.041〜0.06%、Si:0.03〜0.6%、Mn:0.3〜1.6%、P:0.03%以下、S:0.015%以下、Cu:0.1〜0.5%、Ni:0.1〜1.5%、Cr:0.11〜1.0%、Mo:0〜0.29%、V:0.005〜0.10%、Nb:0.005〜0.07%、Ti:0.005〜0.03%、B:0〜0.0005%、Al:0.003〜0.049%、N:0.008%以下、O:0.004%以下、H:0.0001%以下を含有し、残部はFe及び不純物からなる化学組成を有することを特徴とする熱加工制御型590MPa級H形鋼。   (1) By mass%, C: 0.041 to 0.06%, Si: 0.03 to 0.6%, Mn: 0.3 to 1.6%, P: 0.03% or less, S: 0.015% or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.11 to 1.0%, Mo: 0 to 0.29%, V: 0.005-0.10%, Nb: 0.005-0.07%, Ti: 0.005-0.03%, B: 0-0.0005%, Al: 0.003-0.049% , N: 0.008% or less, O: 0.004% or less, H: 0.0001% or less, the balance having a chemical composition comprising Fe and impurities, thermal processing control type 590 MPa class H-section steel.

(2)質量%で、C:0.041〜0.06%、Si:0.03〜0.6%、Mn:0.3〜1.6%、P:0.03%以下、S:0.015%以下、Cu:0.1〜0.5%、Ni:0.1〜1.5%、Cr:0.11〜1.0%、Mo:0〜0.29%、V:0.005〜0.10%、Nb:0.005〜0.07%、Ti:0.005〜0.03%、B:0〜0.0005%、Al:0.003〜0.049%、N:0.008%以下、O:0.004%以下、H:0.0001%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるPcmの値が0.15〜0.21である化学組成を有し、A系介在物の清浄度が0.04%以下、かつ組織に占めるベイナイトの割合が70〜100%で、しかも、下記(2)式で表される△Hvの値が50以下、下記(3)式で表されるVRの値が0.98〜1.02であることを特徴とする熱加工制御型590MPa級H形鋼。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・・(1)
△Hv=Hvmax−Hvmin・・・・(2)
VR=VL/VC・・・・(3)
なお、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。また、(2)式におけるHvmax及びHvminは、それぞれ、フランジ幅1/4の部位における厚さ方向でのビッカース硬さの最大値及び最小値を表す。更に、(3)式におけるVL及びVCは、それぞれ、フランジ幅1/4の部位における圧延方向の音速及びフランジ幅方向の音速を表す。
(2) By mass%, C: 0.041-0.06%, Si: 0.03-0.6%, Mn: 0.3-1.6%, P: 0.03% or less, S: 0.015% or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.11 to 1.0%, Mo: 0 to 0.29%, V: 0.005-0.10%, Nb: 0.005-0.07%, Ti: 0.005-0.03%, B: 0-0.0005%, Al: 0.003-0.049% , N: 0.008% or less, O: 0.004% or less, H: 0.0001% or less, with the balance being Fe and impurities, the value of Pcm represented by the following formula (1) being 0 It has a chemical composition of .15 to 0.21, the cleanliness of the A-based inclusions is 0.04% or less, the proportion of bainite in the structure is 70 to 100%, and the following formula (2) It is the △ value of Hv 50 or less, the following (3) thermal processing controlled 590MPa grade H-beams value of VR, represented is characterized in that 0.98 to 1.02 by the formula.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B 1)
ΔHv = Hvmax−Hvmin (2)
VR = VL / VC (3)
In addition, the element symbol in (1) Formula represents content in steel in the mass% of the element. Further, Hvmax and Hvmin in the expression (2) represent the maximum value and the minimum value of the Vickers hardness in the thickness direction at the flange width 1/4, respectively. Furthermore, VL and VC in the expression (3) represent the sound speed in the rolling direction and the sound speed in the flange width direction at the portion having the flange width ¼, respectively.

(3)0.5〜1m/minの鋳込み速度で鋳込んだ上記(1)又は(2)に記載の化学組成を有する鋼塊或いは前記鋼塊から作製した鋼片を1000〜1350℃の温度域の温度に加熱した後、フランジ幅1/4の部位における950℃以下の温度域における真歪での累積圧下率が0.3以上、熱間圧延終了温度が850〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度が850〜700℃、冷却停止温度が650〜200℃、冷却速度が0.5〜15℃/sとなるように冷却することを特徴とする熱加工制御型590MPa級H形鋼の製造方法。   (3) A steel ingot having the chemical composition according to the above (1) or (2) cast at a casting speed of 0.5 to 1 m / min or a steel slab produced from the steel ingot at a temperature of 1000 to 1350 ° C. After heating to the temperature of the region, the cumulative reduction ratio at the true strain in the temperature region of 950 ° C. or lower at the portion of the flange width ¼ is 0.3 or more, and the hot rolling end temperature is 850 to 700 ° C. After hot rolling so as to be at a temperature, cooling is performed so that the cooling start temperature is 850 to 700 ° C., the cooling stop temperature is 650 to 200 ° C., and the cooling rate is 0.5 to 15 ° C./s. The manufacturing method of the heat processing control type | mold 590MPa class H-section steel.

以下、上記 (1)及び(2)の熱加工制御型590MPa級H形鋼、並びに、(3)の熱加工制御型590MPa級H形鋼の製造方法に係る発明を、それぞれ、「本発明(1)」〜「本発明(3)」という。また、総称して「本発明」ということがある。   Hereinafter, the invention relating to the manufacturing method of the thermal processing control type 590 MPa class H-section steel of (1) and (2) and the thermal processing control type 590 MPa class H section steel of (3) are respectively referred to as “present invention ( 1) ”to“ present invention (3) ”. Also, it may be collectively referred to as “the present invention”.

なお、本発明でいうHの含有量は、昇温脱離ガス分析装置を用いて、10℃/minの昇温速度で測定した、常温から650℃までの放出水素量を指す。また、ビッカース硬さは、試験力を98.07Nとして圧延方向に垂直な断面上で、鋼の表面(圧延ロールと接触する面)からフランジ、ウェブの厚さ方向に1mmピッチで測定した場合の値を指す。なお、フランジ幅、ウェブ高さ方向のピッチは50mm以下とする。   The H content in the present invention refers to the amount of hydrogen released from room temperature to 650 ° C. measured at a temperature rising rate of 10 ° C./min using a temperature-programmed desorption gas analyzer. In addition, the Vickers hardness is measured when the test force is 98.07 N on a cross section perpendicular to the rolling direction at a 1 mm pitch from the steel surface (the surface in contact with the rolling roll) to the flange and web thickness directions. Points to the value. The pitch in the flange width and web height direction is 50 mm or less.

また、上記本発明でいう「熱加工制御型」(「TMCP型」)とは、低温域での圧下やオンラインでの冷却を活用することにより、通常よりも少ない合金元素量で所定の機械的性質を得て、溶接性にも優れていることを指す。   In addition, the “thermal processing control type” (“TMCP type”) in the present invention is a predetermined mechanical element amount less than usual by utilizing reduction in a low temperature range or on-line cooling. It refers to having properties and excellent weldability.

本発明のTMCP型590MPa級H形鋼は、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性を有するとともに、母材及びHAZについて、いずれも、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上の衝撃特性を有し、しかも、溶接のための特殊な専用ワイヤを必要としないので、高層建築物や海洋構造物を始めとする各種の大型構造物に用いることができる。このTMCP型590MPa級H形鋼は、本発明の製造方法によって、比較的容易に得ることができる。   The TMCP type 590 MPa class H-section steel of the present invention has a tensile strength characteristic with a yield point of 440 to 540 MPa, a tensile strength of 590 to 740 MPa, and a yield ratio of 80% or less, and for the base material and HAZ, Charpy absorbed energy at 0 ° C using a V-notch test piece has an impact characteristic of 47 J or more, and does not require a special wire for welding, so it can be used for high-rise buildings and offshore structures. It can be used for various large structures. This TMCP type 590 MPa class H-section steel can be obtained relatively easily by the production method of the present invention.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成
C:0.041〜0.06%
Cは、母材及び溶接部の強度を高める作用を有する。しかし、その含有量が0.041%未満では添加効果に乏しいばかりか、溶接時に母材の希釈によって溶接金属の特性を確保することが難しくなる。一方、Cの含有量が多くなり、特に、Cの含有量が0.06%を超えると、母材及び溶接部の靱性が低下し、また、溶接割れが発生しやすくなる。したがって、Cの含有量を0.041〜0.06%とした。
(A) Chemical composition C: 0.041 to 0.06%
C has the effect | action which raises the intensity | strength of a base material and a welding part. However, if the content is less than 0.041%, not only the effect of addition is poor, but it is difficult to ensure the characteristics of the weld metal due to dilution of the base material during welding. On the other hand, if the C content increases, and in particular, if the C content exceeds 0.06%, the toughness of the base material and the welded portion decreases, and weld cracks are likely to occur. Therefore, the content of C is set to 0.041 to 0.06%.

Si:0.03〜0.6%
Siは、母材及び溶接部の強度を確保する作用を有する。しかしながら、その含有量が0.03%未満では添加効果に乏しい。一方、Siの含有量が多くなり、特に、Siの含有量が0.6%を超えると、溶接割れの発生が多くなり、また、溶接部靱性の低下、なかでもHAZ靱性の低下をきたす。したがって、Siの含有量を0.03〜0.6%とした。
Si: 0.03-0.6%
Si has the effect | action which ensures the intensity | strength of a base material and a welding part. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, when the Si content increases, particularly when the Si content exceeds 0.6%, the occurrence of weld cracking increases, and the weld zone toughness decreases, particularly the HAZ toughness decreases. Therefore, the Si content is set to 0.03 to 0.6%.

Mn:0.3〜1.6%、
Mnは、母材及び溶接部の強度と靱性を確保する上で不可欠な元素である。しかしながら、Mnの含有量が0.3%未満では十分な添加効果が得られない。一方、Mnの含有量が多くなり、特に、Mnの含有量が1.6%を超えると、焼入れ性が高くなり過ぎて溶接性が低下し、また、溶接部靱性の低下、なかでもHAZ靱性の低下をきたす。したがって、Mnの含有量を0.3〜1.6%とした。
Mn: 0.3 to 1.6%
Mn is an indispensable element for ensuring the strength and toughness of the base material and the weld. However, if the Mn content is less than 0.3%, a sufficient addition effect cannot be obtained. On the other hand, if the Mn content increases, especially if the Mn content exceeds 1.6%, the hardenability becomes too high and the weldability decreases, and also the weld zone toughness decreases, especially the HAZ toughness. Will cause a decline. Therefore, the Mn content is set to 0.3 to 1.6%.

P:0.03%以下
Pは、不純物として鋼中に不可避的に存在する元素で、粒界に偏析して靱性の低下をきたし、更に、溶接時に高温割れを生じさせる。特に、その含有量が0.03%を超えると、靱性の低下と溶接時の高温割れ発生が著しくなる。したがって、Pの含有量を0.03%以下とした。なお、Pは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
P: 0.03% or less P is an element that is unavoidably present in steel as an impurity, segregates at the grain boundary to reduce toughness, and further causes hot cracking during welding. In particular, when its content exceeds 0.03%, the toughness is lowered and the occurrence of hot cracks during welding becomes significant. Therefore, the content of P is set to 0.03% or less. In addition, since P is a more preferable impurity as there are few P, the minimum is not prescribed | regulated in particular.

S:0.015%以下
Sは、多すぎると中心偏析を助長し、また、延伸したMnSの多量生成の原因となるので、母材の機械的性質及び溶接部、なかでもHAZの機械的性質の劣化を招く。特に、その含有量が0.015%を超えると、母材及び溶接部の機械的性質の劣化が著しくなる。したがって、Sの含有量を0.015%以下とした。なお、Sは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
S: not more than 0.015% S too much promotes center segregation and causes a large amount of stretched MnS, so the mechanical properties of the base material and the welded part, especially the mechanical properties of HAZ Cause deterioration. In particular, when the content exceeds 0.015%, the mechanical properties of the base material and the welded portion are significantly deteriorated. Therefore, the content of S is set to 0.015% or less. In addition, since it is a preferable impurity, so that there are few S, the minimum is not prescribed | regulated.

Cu:0.1〜0.5%
Cuは、強度及び耐食性を作用を有する。しかしながら、その含有量が0.1%未満では添加効果に乏しい。一方、Cuの含有量が0.5%を超えると熱間加工時の表面割れが起こりやすくなる。したがって、Cuの含有量を0.1〜0.5%とした。
Cu: 0.1 to 0.5%
Cu has an effect on strength and corrosion resistance. However, if the content is less than 0.1%, the effect of addition is poor. On the other hand, if the Cu content exceeds 0.5%, surface cracking during hot working tends to occur. Therefore, the Cu content is set to 0.1 to 0.5%.

Ni:0.1〜1.5%
Niは、母材の靱性を高める作用を有し、その含有量を0.1%以上とすれば、確実な母材の靱性向上効果が得られる。また、Niの含有量が0.1%以上の場合には、焼入れ性向上効果も得られる。しかし、その含有量が1.5%を超えると、鋼塊を鋳込む際に、なかでも、連続鋳造を行う際に、表面疵が発生しやすくなることがある。したがって、Niの含有量を0.1〜1.5%とした。なお、上述のとおり0.1〜0.5%のCuを含有させる本発明において、強度及び耐食性確保のために添加するCuの量が多く、特に含有量で0.2%以上になるような場合には、圧延時の表面割れを防止するために、Niの含有量を上記Cuの含有量の1/2以上とすることが望ましい。
Ni: 0.1 to 1.5%
Ni has the effect | action which raises the toughness of a base material, and if the content shall be 0.1% or more, the reliable toughness improvement effect of a base material will be acquired. Further, when the Ni content is 0.1% or more, the effect of improving hardenability is also obtained. However, when the content exceeds 1.5%, surface flaws are likely to occur during continuous casting, particularly when casting a steel ingot. Therefore, the Ni content is set to 0.1 to 1.5%. As described above, in the present invention containing 0.1 to 0.5% of Cu, the amount of Cu added for securing strength and corrosion resistance is large, and the content is particularly 0.2% or more. In some cases, in order to prevent surface cracking during rolling, the Ni content is desirably set to 1/2 or more of the Cu content.

Cr:0.11〜1.0%
Crは、焼入れ性を高める作用を有する。この効果を確実に得るためには、Crの含有量を0.11%以上とする必要がある。しかしながら、その含有量が1.0%を超えると、溶接部靱性、なかでもHAZ靱性の低下が生じる。したがって、Crの含有量を0.11〜1.0%とした。
Cr: 0.11 to 1.0%
Cr has the effect | action which improves hardenability. In order to obtain this effect reliably, the Cr content needs to be 0.11% or more. However, if the content exceeds 1.0%, the weld zone toughness, particularly the HAZ toughness, is lowered. Therefore, the content of Cr is set to 0.11 to 1.0%.

Mo:0〜0.29%
Moの添加は任意である。添加すれば、強度を高める作用を有する。しかしながら、Moの含有量が多くなり、特に、Moの含有量が0.29%を超えると、溶接性の低下を招いたり音響異方性が大きくなったりすることがある。したがって、Moの含有量を0〜0.29%とした。
Mo: 0 to 0.29%
The addition of Mo is optional. If added, it has the effect of increasing strength. However, the Mo content increases. In particular, when the Mo content exceeds 0.29%, weldability may be deteriorated and acoustic anisotropy may be increased. Therefore, the content of Mo is set to 0 to 0.29%.

V:0.005〜0.10%
Vは、強度を高める作用を有する。しかしながら、その含有量が0.005%未満では十分な強化作用が得られない。一方、Vの含有量が多くなり、特に、Vの含有量が0.10%を超えると、靱性及び溶接性の低下をきたす場合がある。したがって、Vの含有量を0.005〜0.10%とした。
V: 0.005-0.10%
V has an effect of increasing strength. However, if the content is less than 0.005%, sufficient reinforcing action cannot be obtained. On the other hand, if the V content increases, and in particular, if the V content exceeds 0.10%, the toughness and weldability may be deteriorated. Therefore, the content of V is set to 0.005 to 0.10%.

Nb:0.005〜0.07%
Nbは、強度及び靱性を向上させる作用を有する。しかしながら、その含有量が0.005%未満では前記の効果が得られない。一方、Nbの含有量が0.07%を超えると、母材における強度と靱性の向上効果が飽和するばかりか、溶接部靱性、なかでもHAZ靱性の著しい低下を招く。更に、音響異方性も極めて大きくなる。したがって、Nbの含有量を0.005〜0.07%とした。
Nb: 0.005 to 0.07%
Nb has an effect of improving strength and toughness. However, if the content is less than 0.005%, the above effect cannot be obtained. On the other hand, if the Nb content exceeds 0.07%, not only the effect of improving the strength and toughness of the base metal is saturated, but also the toughness of the welded portion, particularly the HAZ toughness, is significantly reduced. Furthermore, the acoustic anisotropy is extremely increased. Therefore, the Nb content is set to 0.005 to 0.07%.

Ti:0.005〜0.03%
Tiは、鋼塊、なかでも鋳片の表面性状を改善する作用を有する。Tiには、溶接部靱性、なかでもHAZ靱性を高める作用もある。これらの効果を得るためには、その含有量を0.005%以上とする必要がある。しかしながら、Tiの含有量が0.03%を超えると、母材の靱性低下が生じるし、溶接部靱性、なかでもHAZ靱性が却って低下する場合もある。更に、音響異方性が大きくなることもある。したがって、Tiの含有量を0.005〜0.03%とした。
Ti: 0.005 to 0.03%
Ti has the effect of improving the surface properties of steel ingots, especially slabs. Ti also has the effect of increasing weld toughness, in particular HAZ toughness. In order to obtain these effects, the content needs to be 0.005% or more. However, if the Ti content exceeds 0.03%, the toughness of the base metal is lowered, and the weld toughness, particularly the HAZ toughness, may be lowered. Furthermore, the acoustic anisotropy may be increased. Therefore, the content of Ti is set to 0.005 to 0.03%.

B:0〜0.0005%
Bの添加は任意である。添加すれば、焼入れ性を向上させて強度を高める作用を有する。しかしながら、その含有量が0.0005%を超えると、母材の靱性低下が生じたり、溶接部靱性、なかでもHAZ靱性が低下したりすることがある。更に、音響異方性が大きくなることもある。したがって、Bの含有量を0〜0.0005%とした。
B: 0 to 0.0005%
The addition of B is optional. If added, it has the effect of improving the hardenability and increasing the strength. However, if its content exceeds 0.0005%, the toughness of the base metal may be lowered, or the weld zone toughness, particularly the HAZ toughness may be lowered. Furthermore, the acoustic anisotropy may be increased. Therefore, the content of B is set to 0 to 0.0005%.

Al:0.003〜0.049%
Alは、製鋼時の脱酸に有効な元素である。Alには結晶粒の微細化作用もある。前記の効果はAlの含有量が0.003%以上で得られる。しかしながら、Alの含有量が多くなり、特に、Alの含有量が0.049%を超えると、介在物の生成量が多くなって靱性の低下をきたす。したがって、Alの含有量を0.003〜0.049%とした。
Al: 0.003 to 0.049%
Al is an element effective for deoxidation during steelmaking. Al also has the effect of refining crystal grains. The above effect is obtained when the Al content is 0.003% or more. However, if the Al content increases, and particularly if the Al content exceeds 0.049%, the amount of inclusions increases and the toughness decreases. Therefore, the content of Al is set to 0.003 to 0.049%.

N:0.008%以下
Nは、多量に存在すると溶接部靱性、なかでもHAZ靱性の低下を招く。特に、その含有量が0.008%を超えると、溶接部靱性の劣化ばかりか母材靱性の劣化も避けられない。したがって、Nの含有量を0.008%以下とした。なお、Nは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
N: 0.008% or less When N is present in a large amount, the weld toughness, particularly HAZ toughness, is lowered. In particular, if the content exceeds 0.008%, not only the weld joint toughness but also the base metal toughness is unavoidably deteriorated. Therefore, the N content is set to 0.008% or less. In addition, since N is a more preferable impurity as there are few, the minimum is not prescribed | regulated.

O:0.004%以下
O(酸素)は、鋼中に不可避的に含まれる不純物である。Oの含有量が多くなり、特に、Oの含有量が0.004%を超えると、母材及び溶接部の靱性や延性の低下を招く。したがって、Oの含有量を0.004%以下とした。なお、Oは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
O: 0.004% or less O (oxygen) is an impurity inevitably contained in steel. When the content of O increases, and particularly when the content of O exceeds 0.004%, the toughness and ductility of the base material and the welded portion are reduced. Therefore, the content of O is set to 0.004% or less. In addition, since O is a more preferable impurity as there are few, the minimum is not prescribed | regulated.

H:0.0001%以下
Hは、鋼中に不可避的に含まれる不純物であり、水素脆化や溶接欠陥の原因となる。Hの含有量が多くなり、特に、Hの含有量が0.0001%を超えると、水素脆化や溶接欠陥が発生しやすくなる。したがって、Hの含有量を0.0001%以下とした。Hは少ないほど好ましい不純物であるため、その下限は特に規定するものではない。
H: 0.0001% or less H is an impurity inevitably contained in steel, and causes hydrogen embrittlement and welding defects. When the H content increases, and particularly when the H content exceeds 0.0001%, hydrogen embrittlement and welding defects are likely to occur. Therefore, the H content is set to 0.0001% or less. Since H is a more preferable impurity, the lower limit is not particularly specified.

既に述べたように、本発明でいうHの含有量は、昇温脱離ガス分析装置を用いて、10℃/minの昇温速度で常温から650℃まで昇温した場合の放出水素量を指す。なお、上記の水素脆化は、鋼中のH濃度(H含有量)が鋼種や付加応力に依存する臨界水素濃度を超えた時に発生する現象である。   As described above, the H content in the present invention is the amount of hydrogen released when the temperature is increased from room temperature to 650 ° C. at a temperature increase rate of 10 ° C./min using a temperature-programmed desorption gas analyzer. Point to. The hydrogen embrittlement described above is a phenomenon that occurs when the H concentration (H content) in the steel exceeds the critical hydrogen concentration depending on the steel type and applied stress.

Pcm:0.15〜0.21
前記(1)式で表されるPcmの値が0.15以上の場合、母材に所望の引張強度特性、つまり、440〜540MPaの降伏点、590〜740MPaの引張強さ及び80%以下の降伏比という引張強度特性を安定して具備させることができる。なお、Pcmの値が大きすぎると、溶接割れが発生しやすくなるので、Pcmの値は、安定かつ確実に溶接割れの発生を防止するという観点から、0.21以下とすることが望ましい。
Pcm: 0.15-0.21
When the value of Pcm represented by the formula (1) is 0.15 or more, the desired tensile strength characteristics of the base material, that is, the yield point of 440 to 540 MPa, the tensile strength of 590 to 740 MPa, and 80% or less A tensile strength characteristic called a yield ratio can be stably provided. If the value of Pcm is too large, weld cracks are likely to occur. Therefore, the value of Pcm is preferably 0.21 or less from the viewpoint of stably and reliably preventing the occurrence of weld cracks.

上記の理由から、本発明(1)に係るTMCP型590MPa級H形鋼は、上述した範囲のCからHまでの元素を含有し、残部はFe及び不純物からなる化学組成を有することと規定した。   For the above reason, the TMCP type 590 MPa class H-section steel according to the present invention (1) contains the elements from C to H in the above-mentioned range, and the balance is defined as having a chemical composition composed of Fe and impurities. .

また、本発明(2)に係るTMCP型590MPa級H形鋼は、上述した範囲のCからHまでの元素を含有し、残部はFe及び不純物からなり、前記(1)式で表されるPcmの値が0.15〜0.21である化学組成を有することと規定した。   Further, the TMCP type 590 MPa class H-section steel according to the present invention (2) contains the elements from C to H in the above-mentioned range, the balance is Fe and impurities, and Pcm represented by the above formula (1) Of the chemical composition of 0.15 to 0.21.

(B)A系介在物
圧延によって伸延したA系介在物を少なくすることで、安定した母材の衝撃特性及び溶接部の衝撃特性を確保することができる。また、A系介在物を少なくすることは溶接金属から拡散してくる水素のトラップサイトの減少につながるため、伸延したA系介在物の応力集中作用による溶接欠陥の発生抑止にも有効である。特に、A系介在物の量がその清浄度で0.04%以下の場合に、安定した母材の衝撃特性及び溶接部の衝撃特性を確保することができ、また、溶接欠陥の発生を安定して抑止することが可能である。
(B) A-type inclusions By reducing the number of A-type inclusions that are extended by rolling, stable impact characteristics of the base material and impact characteristics of the welded portion can be ensured. Further, reducing the number of A-type inclusions leads to a reduction in trap sites of hydrogen diffusing from the weld metal, and is effective in suppressing the occurrence of welding defects due to the stress concentration effect of the elongated A-type inclusions. In particular, when the amount of inclusion A is 0.04% or less in terms of cleanliness, it is possible to secure stable impact characteristics of the base metal and impact characteristics of the welded portion, and stable generation of welding defects. Can be suppressed.

上記の理由から、本発明(2)に係るTMCP型590MPa級H形鋼は、A系介在物の清浄度を0.04%以下と規定した。   For the above reason, the TMCP type 590 MPa class H-section steel according to the present invention (2) defines the cleanliness of the A-based inclusions as 0.04% or less.

なお、A介在物の清浄度は、JIS G 0555(1998)の「鋼の非金属介在物の顕微鏡試験方法」に記載のように、測定視野数を60、倍率を400倍として光学顕微鏡観察するいわゆる「点算法」によって測定すればよい。   In addition, the cleanliness of the inclusion A is observed with an optical microscope at a measurement field number of 60 and a magnification of 400 times as described in “Microscopic test method for non-metallic inclusions in steel” of JIS G 0555 (1998). What is necessary is just to measure by what is called a "point calculation method".

(C)ミクロ組織
主たる組織をベイナイト組織とすることによって、音響異方性を劣化させることなく、本発明に係るTMCP型590MPa級H形鋼に所望の機械的性質を具備させることができる。特に、組織に占めるベイナイトの割合を70%以上とすることによって、音響異方性が小さく、しかも、所望の機械的性質、つまり、440〜540MPaの降伏点、590〜740MPaの引張強さ、80%以下の降伏比という母材における引張強度特性と、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という母材及び溶接部における衝撃特性とを安定して備えるTMCP型590MPa級H形鋼を得ることができる。なお、組織に占めるベイナイトの割合が100%、換言すれば、ベイナイトの単相組織であってもよい。
(C) Microstructure By making the main structure a bainite structure, the TMCP type 590 MPa class H-section steel according to the present invention can be provided with desired mechanical properties without deteriorating acoustic anisotropy. In particular, by setting the ratio of bainite in the structure to 70% or more, the acoustic anisotropy is small, and the desired mechanical properties, that is, the yield point of 440 to 540 MPa, the tensile strength of 590 to 740 MPa, 80 % TMCP type 590 MPa class with stable tensile strength characteristics in the base metal with a yield ratio of less than 10% and impact characteristics in the base metal and welds with Charpy absorbed energy at 0 ° C. of 47 J or more using a V-notch specimen H-section steel can be obtained. The proportion of bainite in the structure may be 100%, in other words, it may be a bainite single-phase structure.

上記の理由から、本発明(2)に係るTMCP型590MPa級H形鋼は、組織に占めるベイナイトの割合が70〜100%であることと規定した。   For the above reason, the TMCP type 590 MPa class H-section steel according to the present invention (2) stipulates that the proportion of bainite in the structure is 70 to 100%.

或る相が組織に占める体積割合は面積割合に等しいことが知られている。このため、上記の組織に占めるベイナイトの割合には、光学顕微鏡など通常のミクロ組織観察手段によって測定した面積割合を用いればよい。   It is known that the volume proportion of a phase in the tissue is equal to the area proportion. For this reason, what is necessary is just to use the area ratio measured by normal microstructure observation means, such as an optical microscope, for the ratio of the bainite to said structure | tissue.

なお、良好な、母材の衝撃特性及び溶接部、なかでもHAZの衝撃特性を確保するためには、Nb及びTiの炭窒化物を分散させることが有効であり、特に、厚さが200nmの薄膜試料の透過型電子顕微鏡による写真において、長辺の長さが10〜400nmの寸法のNb及びTiの炭窒化物の分布密度が105〜107個/mm2の範囲にある場合に前記の効果が大きい。 It is effective to disperse Nb and Ti carbonitrides in order to secure good impact characteristics of the base metal and welds, especially HAZ impact characteristics. When the distribution density of Nb and Ti carbonitrides having a long side length of 10 to 400 nm is in the range of 10 5 to 10 7 pieces / mm 2 in the transmission electron microscope photograph of the thin film sample, The effect is great.

(D)フランジ幅1/4の部位における厚さ方向でのビッカース硬さ
前記(2)式で表される△Hvの値が50以下の場合、機械的性質の変化が小さいTMCP型590MPa級H形鋼を得ることができる。
(D) Vickers hardness in the thickness direction at a portion having a flange width of 1/4. When the value of ΔHv represented by the above formula (2) is 50 or less, the TMCP type 590 MPa class H having a small change in mechanical properties. Shape steel can be obtained.

なお、厚さ方向のビッカース硬さをフランジ幅1/4の部位で測定するのは、JIS G 3136(2005)に規定された「建築構造用圧延鋼材」におけるH形鋼の試験片採取位置に準拠したものである。   In addition, the Vickers hardness in the thickness direction is measured at the part of the flange width 1/4 at the sampling position of the H-section steel specimen in the “rolled steel for building structure” defined in JIS G 3136 (2005). It is compliant.

上記の理由から、本発明(2)に係るTMCP型590MPa級H形鋼は、フランジ幅1/4の部位における厚さ方向でのビッカース硬さの最大値及び最小値の差である前記(2)式によって表される△Hvの値が50以下であることと規定した。   For the above reason, the TMCP type 590 MPa class H-section steel according to the present invention (2) is the difference between the maximum value and the minimum value of the Vickers hardness in the thickness direction at the portion of the flange width 1/4 (2 ) It was defined that the value of ΔHv represented by the formula was 50 or less.

なお、既に述べたように、ビッカース硬さは、試験力を98.07Nとして圧延方向に垂直な断面上で、鋼の表面(圧延ロールと接触する面)からフランジ、ウェブの厚さ方向に1mmピッチで測定した場合の値を指す。なお、フランジ幅、ウェブ高さ方向のピッチは50mm以下とする。   As already stated, the Vickers hardness is 1 mm in the thickness direction of the flange and web from the steel surface (surface in contact with the rolling roll) on the cross section perpendicular to the rolling direction with a test force of 98.07 N. The value when measured by pitch. The pitch in the flange width and web height direction is 50 mm or less.

(E)フランジ幅1/4の部位における音響異方性
本発明に係るH形鋼では、部位の違いによる音響異方性ばらつきも小さいので、代表位置として、フランジ幅1/4の部位における音響異方性を調査すれば良い。
(E) Acoustic anisotropy at a portion with a flange width of 1/4 In the H-section steel according to the present invention, the variation in acoustic anisotropy due to the difference in the portion is small. What is necessary is just to investigate anisotropy.

建築構造物における溶接部の健全性を保証するために、JIS Z 3060(2002)等で規定された斜角USTによって溶接欠陥の有無が調査されるが、素材に音響異方性が存在すると、溶接欠陥の診断が困難になってしまう。   In order to guarantee the soundness of the welded part in the building structure, the existence of welding defects is investigated by the oblique angle UST defined in JIS Z 3060 (2002), etc., but if there is acoustic anisotropy in the material, Diagnosis of welding defects becomes difficult.

しかしながら、本発明に係るH形鋼の場合には、通常の方法で圧延されたものであっても、その圧延形態から、フランジ幅1/4の部位における前記(3)式で表されるVRの値が0.98〜1.02を満たしておりさえすれば、全領域に亘る音響異方性が小さいので、建築構造物における溶接部の健全性を保証することができる。   However, in the case of the H-section steel according to the present invention, even if it is rolled by a normal method, VR expressed by the above-mentioned formula (3) in the portion of the flange width 1/4 from the rolling form. As long as the value satisfies 0.98 to 1.02, the acoustic anisotropy over the entire region is small, so that the soundness of the welded portion in the building structure can be ensured.

したがって、本発明(2)に係るTMCP型590MPa級H形鋼は、フランジ幅1/4の部位における圧延方向の音速VLとフランジ幅方向の音速VCとの比である前記(3)式で表されるVRの値が0.98〜1.02であることと規定した。   Therefore, the TMCP type 590 MPa class H-section steel according to the present invention (2) is expressed by the above formula (3), which is the ratio of the sonic velocity VL in the rolling direction and the sonic velocity VC in the flange width direction at the portion of the flange width 1/4. The value of VR to be applied is defined as 0.98 to 1.02.

なお、本発明(1)及び本発明(2)に係るTMCP型590MPa級H形鋼は、例えば、本発明(3)に係る製造方法によって製造することができる。   The TMCP type 590 MPa class H-section steel according to the present invention (1) and the present invention (2) can be manufactured, for example, by the manufacturing method according to the present invention (3).

(F)鋼の鋳込み
前述の(A)項で述べた化学組成を有する鋼を、0.5〜1m/minの鋳込み速度で鋳込むことによって、表面及び内部の性状の良好な鋼塊が得られ、また、適正なNb及びTiの炭窒化物の分散状態が得られる。そして、上記鋳込み速度で鋳込んだ鋼塊或いは前記鋼塊から作製した鋼片を素材とし、それにTMCP技術を適用することによって、本発明に係るTMCP型590MPa級H形鋼に所望の機械的性質を安定して具備させることができる。すなわち、440〜540MPaの降伏点、590〜740MPaの引張強さ、80%以下の降伏比という母材における引張強度特性と、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という母材及びHAZにおける衝撃特性とを安定して備えるTMCP型590MPa級H形鋼を得ることができる。
(F) Casting of steel By casting the steel having the chemical composition described in the above section (A) at a casting speed of 0.5 to 1 m / min, a steel ingot having good surface and internal properties can be obtained. In addition, a proper dispersion state of Nb and Ti carbonitrides can be obtained. And, by using a steel ingot cast at the above casting speed or a steel slab produced from the steel ingot as a raw material, and applying TMCP technology thereto, desired mechanical properties are obtained for the TMCP type 590 MPa class H-section steel according to the present invention. Can be provided stably. That is, the tensile strength characteristics in the base material of a yield point of 440 to 540 MPa, a tensile strength of 590 to 740 MPa, a yield ratio of 80% or less, and a Charpy absorbed energy at 0 ° C. using a V-notch test piece is 47 J or more. A TMCP type 590 MPa class H-section steel having stable base material and impact properties in HAZ can be obtained.

このため、本発明(3)に係るTMCP型590MPa級H形鋼の製造方法は、TMCP技術を適用する素材として、0.5〜1m/minの鋳込み速度で鋳込んだ前述の(A)項で述べた化学組成を有する鋼塊或いは前記鋼塊から作製した鋼片を用いることとした。   For this reason, the manufacturing method of the TMCP type 590 MPa class H-section steel according to the present invention (3) is the above-mentioned item (A) cast as a material to which the TMCP technology is applied at a casting speed of 0.5 to 1 m / min. It was decided to use a steel ingot having the chemical composition described in 1) or a steel piece produced from the steel ingot.

(G)TMCP条件
前記(F)項で述べた鋳込み速度で鋳込んだ鋼塊或いは前記鋼塊から作製した鋼片は、熱間圧延に際して、1000〜1350℃の温度域に加熱するのがよい。上記の加熱温度条件とすることで、Nb、Vなどが基地に固溶するので最終製品の強度増大が図れ、また、結晶粒の粗大化が防止されるので良好な靱性が確保される。
(G) TMCP condition A steel ingot cast at the casting speed described in the above section (F) or a steel piece produced from the steel ingot is preferably heated to a temperature range of 1000 to 1350 ° C. during hot rolling. . By setting the above heating temperature conditions, Nb, V and the like are dissolved in the base, so that the strength of the final product can be increased, and the coarsening of the crystal grains is prevented, so that good toughness is ensured.

上記の加熱後は、熱間圧延機にかけて所定の形状及び寸法に圧延して制御冷却する。この熱間圧延は、フランジ幅1/4の部位における950℃以下の温度域における真歪での累積圧下率が0.3以上、熱間圧延終了温度が850〜700℃の温度域の温度となるように行うのがよい。また、制御圧延は、冷却開始温度が850〜700℃、冷却停止温度が650〜200℃、冷却速度が0.5〜15℃/sとなるように行うのがよい。上記の条件で、圧延及び制御冷却することによって、製品に所望の機械的性質、つまり、440〜540MPaの降伏点、590〜740MPaの引張強さ、80%以下の降伏比という母材における引張強度特性と、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上という母材及びHAZにおける衝撃特性が安定して確保される。   After the above heating, the steel is rolled into a predetermined shape and size by a hot rolling mill and controlled and cooled. This hot rolling has a cumulative rolling reduction ratio of 0.3 or more at a true strain in a temperature range of 950 ° C. or lower at a portion having a flange width of 1/4, and a temperature in a temperature range of 850 to 700 ° C. It is better to do so. The controlled rolling is preferably performed such that the cooling start temperature is 850 to 700 ° C., the cooling stop temperature is 650 to 200 ° C., and the cooling rate is 0.5 to 15 ° C./s. By rolling and controlled cooling under the above conditions, the desired mechanical properties of the product, that is, the tensile strength in the base metal of yield point of 440-540 MPa, tensile strength of 590-740 MPa, yield ratio of 80% or less The characteristics and the impact characteristics of the base material and HAZ having Charpy absorbed energy at 0 ° C. of 47 J or more using a V-notch test piece are stably secured.

このため、本発明(3)に係るTMCP型590MPa級H形鋼の製造方法は、前記(F)項で述べた鋳込み速度で鋳込んだ鋼塊或いは前記鋼塊から作製した鋼片を1000〜1350℃の温度域の温度に加熱した後、フランジ幅1/4の部位におけるオーステナイト域での累積圧下率が50%以上、950℃以下の温度域における真歪での累積圧下率が0.3以上、熱間圧延終了温度が850〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度が850〜700℃、冷却停止温度が650〜200℃、冷却速度が0.5〜15℃/sとなるように冷却することとした。   For this reason, the manufacturing method of the TMCP type 590 MPa class H-section steel according to the present invention (3) uses a steel ingot cast at the casting speed described in the section (F) or a steel slab produced from the steel ingot at 1000 to 1000 After heating to a temperature in the temperature range of 1350 ° C., the cumulative reduction rate in the austenite region at the flange width of 1/4 is 50% or more, and the cumulative reduction rate in the true strain in the temperature range of 950 ° C. or less is 0.3%. As described above, after hot rolling so that the hot rolling end temperature is in the temperature range of 850 to 700 ° C., the cooling start temperature is 850 to 700 ° C., the cooling stop temperature is 650 to 200 ° C., and the cooling rate is 0.00. It was decided to cool so that it might become 5-15 ° C / s.

なお、既に述べたように、この本発明(3)の方法によって、TMCP型590MPa級H形鋼を比較的容易に得ることができる。   As already described, the TMCP type 590 MPa class H-section steel can be obtained relatively easily by the method of the present invention (3).

以下、実施例により本発明を更に詳しく説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

表1〜3に示す化学組成を有する鋼1〜57を転炉で溶製した。鋼1〜38は化学組成が本発明(1)で規定する範囲内にある本発明例の鋼、鋼39〜57は成分のいずれかが本発明(1)で規定する含有量の範囲から外れた比較例の鋼である。なお、表1〜3には前記(1)式で表されるPcmの値を併記した。   Steels 1 to 57 having chemical compositions shown in Tables 1 to 3 were melted in a converter. Steels 1 to 38 are steels according to examples of the present invention whose chemical composition is within the range specified in the present invention (1), and steels 39 to 57 are out of the content range defined in the present invention (1). It is a steel of a comparative example. In Tables 1 to 3, the value of Pcm represented by the formula (1) is also shown.

Figure 2006322019
Figure 2006322019

Figure 2006322019
Figure 2006322019

Figure 2006322019
Figure 2006322019

各鋼は溶製後、連続鋳造法によって表4及び表5に示す鋳込み速度で、厚さ250mmのスラブに鋳造した。   After melting, each steel was cast into a slab having a thickness of 250 mm at a casting speed shown in Tables 4 and 5 by a continuous casting method.

このようにして得たスラブを圧延開始前に表4及び表5に示す温度で加熱した。なお、スラブ全体がほぼ均一に加熱されているため、表4及び表5においては、加熱炉から抽出した際のスラブ側面中央での表面温度の測定値を「スラブ加熱温度」とした。   The slab thus obtained was heated at the temperatures shown in Tables 4 and 5 before the start of rolling. In addition, since the whole slab was heated substantially uniformly, in Table 4 and Table 5, the measured value of the surface temperature in the center of the slab side surface at the time of extracting from a heating furnace was made into "slab heating temperature."

加熱炉から抽出したスラブに、表4及び表5に示す条件で、孔型圧延を用いた粗圧延、エッジャー圧延機と粗ユニバーサル圧延機を用いた中間圧延、及び仕上ユニバーサル圧延機を用いた仕上圧延を行い、次いで、制御冷却を実施した。なお、制御冷却は水冷で行った。水冷開始温度、水冷パス回数、水冷停止温度及び冷却速度の詳細は、表4及び表5に示すとおりである。   The slab extracted from the heating furnace is subjected to rough rolling using perforated rolling, intermediate rolling using an edger rolling mill and a rough universal rolling mill, and finishing using a finishing universal rolling mill under the conditions shown in Table 4 and Table 5. Rolling was performed followed by controlled cooling. Control cooling was performed by water cooling. Details of the water cooling start temperature, the number of water cooling passes, the water cooling stop temperature, and the cooling rate are as shown in Tables 4 and 5.

なお、圧延時の温度には、フランジ幅1/4の部位におけるフランジ外表面温度の長手方向平均値を用いた。また、冷却速度は、水冷開始時の温度、水冷開始から水冷終了後に復熱を完了するまでの時間及び前記復熱を完了した時の温度から計算した。   In addition, the longitudinal direction average value of the flange outer surface temperature in the site | part of flange width 1/4 was used for the temperature at the time of rolling. The cooling rate was calculated from the temperature at the start of water cooling, the time from the start of water cooling to the completion of recuperation after the end of water cooling, and the temperature at the time of completion of the recuperation.

Figure 2006322019
Figure 2006322019

Figure 2006322019
Figure 2006322019

上記の制御冷却後、大気中放冷して表4及び表5に示す20〜80mmのフランジ厚さを有するH形鋼を製造した。なお、表6に、H形鋼のフランジ厚さに対する具体的な製品寸法を示す。   After the above controlled cooling, the steel was allowed to cool in the air, and H-section steels having a flange thickness of 20 to 80 mm shown in Tables 4 and 5 were produced. Table 6 shows specific product dimensions with respect to the flange thickness of the H-section steel.

Figure 2006322019
Figure 2006322019

このようにして得た各H形鋼について、組織、A系介在物の清浄度、音響異方性、機械的性質及び溶接性を調査した。   The structure, the cleanliness of the A-based inclusions, the acoustic anisotropy, the mechanical properties, and the weldability of each H-shaped steel thus obtained were investigated.

組織調査として、先ず、ベイナイトが組織に占める割合を測定した。すなわち、フランジ幅1/4の部位の厚さ方向1/4の位置から採取した試験片を、圧延方向とフランジ幅方向を含む面で鏡面研磨した後、ナイタルで腐食し、光学顕微鏡の倍率を500倍として、100μm×100μmの正方形の10視野を観察し、観察によって得られた像を画像解析することによって、組織に占めるベイナイトの割合を調査した。   As a structure survey, first, the proportion of bainite in the structure was measured. That is, a specimen taken from a position in the thickness direction 1/4 of a portion having a flange width of 1/4 is mirror-polished on a surface including the rolling direction and the flange width direction, and then corroded with a nital, and the magnification of the optical microscope is increased. The ratio of bainite occupying the tissue was investigated by observing 10 fields of a 100 μm × 100 μm square at 500 × and analyzing the image obtained by the observation.

組織調査として、次に、Nb及びTiの炭窒化物の分布密度を、透過型電子顕微鏡写真から求めることも行った。すなわち、フランジ幅1/4の部位の厚さ方向1/4の位置から採取した試験片を、厚さが200nmの薄膜試料に加工した後、透過型電子顕微鏡の倍率を100000倍として、500nm×500nmの正方形の10視野を写真撮影し、それらの写真を画像解析して、Nb及びTiの炭窒化物の分布密度を求めた。   Next, as a structural investigation, the distribution density of Nb and Ti carbonitrides was also determined from transmission electron micrographs. That is, after processing a test piece collected from a position in the thickness direction 1/4 of a portion having a flange width of 1/4 into a thin film sample having a thickness of 200 nm, the magnification of the transmission electron microscope is set to 100000 times, and 500 nm × Ten fields of view of a 500 nm square were photographed, and these photographs were subjected to image analysis to determine the distribution density of Nb and Ti carbonitrides.

A介在物の清浄度は、JIS G 0555(1998)の「鋼の非金属介在物の顕微鏡試験方法」に準拠して求めた。すなわち、フランジ幅1/4の部位から採取した試験片(厚さ方向20mm、幅方向10mm、圧延方向15mmの直方体。フランジ厚さが20mmの場合は、全厚。フランジ厚さが60mm、80mmの場合は厚さ方向1/4の位置から採取。)を圧延方向に平行な面積が300mm2の被検面について鏡面研磨し、測定視野数を60、倍率を400倍として光学顕微鏡観察することによって、A介在物の清浄度を測定した。 The cleanliness of inclusion A was determined in accordance with “Microscopic test method for nonmetallic inclusions in steel” of JIS G 0555 (1998). That is, a specimen taken from a portion having a flange width of 1/4 (a rectangular parallelepiped having a thickness direction of 20 mm, a width direction of 10 mm, and a rolling direction of 15 mm. When the flange thickness is 20 mm, the total thickness. The flange thickness is 60 mm and 80 mm. In this case, the sample is taken from a position of 1/4 in the thickness direction.) Is mirror-polished on a test surface having an area parallel to the rolling direction of 300 mm 2 and is observed with an optical microscope at a measurement field number of 60 and a magnification of 400 times. A cleanliness of inclusions was measured.

音響異方性は、JIS Z 3060(2002)「鋼溶接部の超音波探傷試験方法」に従って、H形鋼のフランジ幅1/4の部位における圧延方向の音速VL及びフランジ幅方向の音速VCの比を調査した。   In accordance with JIS Z 3060 (2002) “Ultrasonic flaw detection test method for steel welds”, the acoustic anisotropy is determined in accordance with the sonic velocity VL in the rolling direction and the sonic velocity VC in the flange width direction at the portion of the flange width 1/4 of H-shaped steel. The ratio was investigated.

機械的性質は、母材について、ビッカース硬さ、引張強度特性及び衝撃特性を調査し、また、溶接部について衝撃特性を調査した。   Regarding mechanical properties, Vickers hardness, tensile strength characteristics and impact characteristics were investigated for the base material, and impact characteristics were investigated for the welded portion.

すなわち、フランジ幅1/4の部位において、試験力を98.07Nとして厚さ方向に垂直な断面上で、鋼の表面(圧延ロールと接触する面)からフランジ、ウェブの厚さ方向に1mmピッチで、フランジ幅、ウェブ高さ方向のピッチは50mmで、ビッカース硬さを測定し、前記(2)式で表される△Hvを求めた。   That is, at a flange width of ¼, the test force is 98.07 N and the cross section perpendicular to the thickness direction is 1 mm pitch from the steel surface (the surface in contact with the rolling roll) to the flange and web thickness directions. The pitch in the flange width and web height directions was 50 mm, the Vickers hardness was measured, and ΔHv represented by the above equation (2) was obtained.

また、JIS Z 2201(1998)に記載の引張試験片を採取し、室温で引張試験を行って降伏点(YP。但し、0.2%耐力を用いた。)と引張強さ(TS)を測定し、降伏比(YR)を求めた。なお、フランジ厚さが60mmと80mmの場合、フランジ幅1/4の部位から圧延方向と平行に採取した4号試験片を用いた。また、フランジ厚さが20mmの場合、1A号試験片(全厚試験片)を用いた。   In addition, a tensile test piece described in JIS Z 2201 (1998) was collected and subjected to a tensile test at room temperature to determine the yield point (YP. However, 0.2% proof stress was used) and tensile strength (TS). The yield ratio (YR) was determined by measurement. In addition, when the flange thickness was 60 mm and 80 mm, No. 4 test piece taken in parallel with the rolling direction from a portion having a flange width of 1/4 was used. When the flange thickness was 20 mm, a No. 1A test piece (full thickness test piece) was used.

母材の衝撃特性は、フランジ幅1/4の部位の厚さ方向1/4の位置及びフィレット位置から、いずれも、圧延方向と平行にJIS Z 2242(2005)に記載のVノッチ試験片を採取し、0℃でシャルピー衝撃試験を行った場合の吸収エネルギーで評価した。   The impact characteristics of the base material are as follows. From the position in the thickness direction 1/4 and the fillet position of the part having a flange width of 1/4, the V notch test piece described in JIS Z 2242 (2005) is parallel to the rolling direction. The samples were collected and evaluated by the absorbed energy when the Charpy impact test was conducted at 0 ° C.

HAZの衝撃特性は、H形鋼のフランジ部と590MPa級用の溶接ワイヤを用いて、CO2ガスシールドのMAG溶接を実施して調査した。なお、継手形状は、45゜レ型開先の平継手とし、入熱が30kJ/cmで最大パス間温度が250℃及び入熱が50kJ/cmで最大パス間温度が550℃の各条件について、多パス溶接を実施した。上記の各条件で溶接後、レ型開先の垂直側の表面下10mmで、ボンド部から母材側に1mmの部位にノッチ先端が位置するVノッチ試験片を採取し、0℃でシャルピー衝撃試験を行った場合の吸収エネルギーによってHAZの衝撃特性を評価した。 The impact characteristics of HAZ were investigated by conducting MAG welding of a CO 2 gas shield using a flange portion of H-shaped steel and a welding wire for a 590 MPa class. The joint shape is a 45 ° grooved flat joint, for each condition where the heat input is 30 kJ / cm, the maximum interpass temperature is 250 ° C., the heat input is 50 kJ / cm, and the maximum interpass temperature is 550 ° C. Multi-pass welding was performed. After welding under the above conditions, a V-notch specimen with a notch tip located at a location of 1 mm from the bond part to the base metal side is taken 10 mm below the surface on the vertical side of the mold groove and subjected to Charpy impact at 0 ° C. The impact characteristics of the HAZ were evaluated based on the absorbed energy when the test was performed.

溶接性は、各H形鋼のフランジ部を切断して作成した鋼板を用いて、JIS Z 3158(1993)の規定に準拠した斜めy型溶接割れ試験を実施し、割れ発生の有無で各H形鋼の溶接割れ感受性を評価した。なお、溶接割れ試験はいずれも、590MPa級用の極低水素タイプの外径が4.0mmの溶接ワイヤを用い、SiO2が30%、CaOが15%、MgOが15%及びAl23が40%からなるフラックスを用いて、サブマージ溶接により、平均入熱を50kJ/cmとして溶接した。試験は温度25℃、湿度60%の雰囲気で、試験片初期温度25℃の条件で実施した。 Weldability was determined by conducting an oblique y-type weld cracking test in accordance with the provisions of JIS Z 3158 (1993) using steel sheets prepared by cutting the flanges of each H-section steel. The weld crack susceptibility of the shape steel was evaluated. In all of the weld cracking tests, a 590 MPa class ultra-low hydrogen type welding wire having an outer diameter of 4.0 mm was used, and SiO 2 was 30%, CaO was 15%, MgO was 15%, and Al 2 O 3. Using a flux composed of 40%, welding was performed by submerged welding with an average heat input of 50 kJ / cm. The test was performed in an atmosphere at a temperature of 25 ° C. and a humidity of 60% under the conditions of an initial test piece temperature of 25 ° C.

表7〜9に、上記の各試験結果を示す。なお、上記の表7〜9の「0℃での吸収エネルギー」欄において、母材については、フランジ幅1/4の部位の厚さ方向1/4の位置からVノッチ試験片を採取した場合及びフィレット位置からVノッチ試験片を採取した場合を、それぞれ、「vE0(B1)」及び「vE0(B2)」と表記した。また、HAZについては、溶接条件が、入熱が30kJ/cmで最大パス間温度が250℃の場合及び入熱が50kJ/cmで最大パス間温度が550℃の場合を、それぞれ、「vE0(W1)」及び「vE0(W2)」と表記した。   Tables 7 to 9 show the results of the above tests. In the “absorbed energy at 0 ° C.” column in Tables 7 to 9 above, for the base material, a V-notch test piece was taken from a position in the thickness direction 1/4 of a portion having a flange width of 1/4. When the V-notch test piece was collected from the fillet position, it was denoted as “vE0 (B1)” and “vE0 (B2)”, respectively. For HAZ, the welding conditions are “vE 0 ((E))” when the heat input is 30 kJ / cm and the maximum interpass temperature is 250 ° C., and when the heat input is 50 kJ / cm and the maximum interpass temperature is 550 ° C. W1) ”and“ vE0 (W2) ”.

Figure 2006322019
Figure 2006322019

Figure 2006322019
Figure 2006322019

Figure 2006322019
Figure 2006322019

表7〜9から、本発明のTMCP型H形鋼は、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性を有するとともに、母材及びHAZについて、いずれも、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上の衝撃特性を有しており、590MPa級H形鋼に要求される機械的性質を満たすことが明らかある。   From Tables 7 to 9, the TMCP type H-section steel of the present invention has a tensile strength characteristic with a yield point of 440 to 540 MPa, a tensile strength of 590 to 740 MPa, and a yield ratio of 80% or less, and the base metal and HAZ. In any case, the Charpy absorbed energy at 0 ° C. using a V-notch test piece has an impact characteristic of 47 J or more, and it is clear that the mechanical properties required for the 590 MPa class H-section steel are satisfied.

これに対して、比較例のTMCP型H形鋼は、590MPa級H形鋼に要求される機械的性質の少なくとも1つの特性に劣っている。   In contrast, the TMCP type H-section steel of the comparative example is inferior to at least one of the mechanical properties required for the 590 MPa class H-section steel.

本発明のTMCP型590MPa級H形鋼は、降伏点が440〜540MPa、引張強さが590〜740MPa、降伏比が80%以下の引張強度特性を有するとともに、母材及びHAZについて、いずれも、Vノッチ試験片を用いた0℃でのシャルピー吸収エネルギーが47J以上の衝撃特性を有し、しかも、溶接のための特殊な専用ワイヤを必要としないので、高層建築物や海洋構造物を始めとする各種の大型構造物に用いることができる。このTMCP型590MPa級H形鋼は、本発明の製造方法によって、比較的容易に得ることができる。
The TMCP type 590 MPa class H-section steel of the present invention has a tensile strength characteristic with a yield point of 440 to 540 MPa, a tensile strength of 590 to 740 MPa, and a yield ratio of 80% or less, and for the base material and HAZ, Charpy absorbed energy at 0 ° C using a V-notch test piece has an impact characteristic of 47 J or more, and does not require a special wire for welding, so it can be used for high-rise buildings and offshore structures. It can be used for various large structures. This TMCP type 590 MPa class H-section steel can be obtained relatively easily by the production method of the present invention.

Claims (3)

質量%で、C:0.041〜0.06%、Si:0.03〜0.6%、Mn:0.3〜1.6%、P:0.03%以下、S:0.015%以下、Cu:0.1〜0.5%、Ni:0.1〜1.5%、Cr:0.11〜1.0%、Mo:0〜0.29%、V:0.005〜0.10%、Nb:0.005〜0.07%、Ti:0.005〜0.03%、B:0〜0.0005%、Al:0.003〜0.049%、N:0.008%以下、O:0.004%以下、H:0.0001%以下を含有し、残部はFe及び不純物からなる化学組成を有することを特徴とする熱加工制御型590MPa級H形鋼。   In mass%, C: 0.041-0.06%, Si: 0.03-0.6%, Mn: 0.3-1.6%, P: 0.03% or less, S: 0.015 % Or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.11 to 1.0%, Mo: 0 to 0.29%, V: 0.005 -0.10%, Nb: 0.005-0.07%, Ti: 0.005-0.03%, B: 0-0.0005%, Al: 0.003-0.049%, N: Thermal processing control type 590 MPa class H-section steel containing 0.008% or less, O: 0.004% or less, H: 0.0001% or less, and the balance having a chemical composition composed of Fe and impurities . 質量%で、C:0.041〜0.06%、Si:0.03〜0.6%、Mn:0.3〜1.6%、P:0.03%以下、S:0.015%以下、Cu:0.1〜0.5%、Ni:0.1〜1.5%、Cr:0.11〜1.0%、Mo:0〜0.29%、V:0.005〜0.10%、Nb:0.005〜0.07%、Ti:0.005〜0.03%、B:0〜0.0005%、Al:0.003〜0.049%、N:0.008%以下、O:0.004%以下、H:0.0001%以下を含有し、残部はFe及び不純物からなり、下記(1)式で表されるPcmの値が0.15〜0.21である化学組成を有し、A系介在物の清浄度が0.04%以下、かつ組織に占めるベイナイトの割合が70〜100%で、しかも、下記(2)式で表される△Hvの値が50以下、下記(3)式で表されるVRの値が0.98〜1.02であることを特徴とする熱加工制御型590MPa級H形鋼。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・・(1)
△Hv=Hvmax−Hvmin・・・・(2)
VR=VL/VC・・・・(3)
なお、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。また、(2)式におけるHvmax及びHvminは、それぞれ、フランジ幅1/4の部位における厚さ方向でのビッカース硬さの最大値及び最小値を表す。更に、(3)式におけるVL及びVCは、それぞれ、フランジ幅1/4の部位における圧延方向の音速及びフランジ幅方向の音速を表す。
In mass%, C: 0.041-0.06%, Si: 0.03-0.6%, Mn: 0.3-1.6%, P: 0.03% or less, S: 0.015 % Or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.11 to 1.0%, Mo: 0 to 0.29%, V: 0.005 -0.10%, Nb: 0.005-0.07%, Ti: 0.005-0.03%, B: 0-0.0005%, Al: 0.003-0.049%, N: 0.008% or less, O: 0.004% or less, H: 0.0001% or less, the balance is made of Fe and impurities, and the value of Pcm represented by the following formula (1) is 0.15 to 0.15. It has a chemical composition of 0.21, the cleanliness of A inclusions is 0.04% or less, and the proportion of bainite in the structure is 70 to 100%, and is expressed by the following formula (2). △ value of Hv 50 or less, the following (3) thermal processing controlled 590MPa grade H-beams value of VR, represented is characterized in that 0.98 to 1.02 by the formula.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B 1)
ΔHv = Hvmax−Hvmin (2)
VR = VL / VC (3)
In addition, the element symbol in (1) Formula represents content in steel in the mass% of the element. Further, Hvmax and Hvmin in the expression (2) represent the maximum value and the minimum value of the Vickers hardness in the thickness direction at the flange width 1/4, respectively. Furthermore, VL and VC in the expression (3) represent the sound speed in the rolling direction and the sound speed in the flange width direction at the portion having the flange width ¼, respectively.
0.5〜1m/minの鋳込み速度で鋳込んだ請求項1又は2に記載の化学組成を有する鋼塊或いは前記鋼塊から作製した鋼片を1000〜1350℃の温度域の温度に加熱した後、フランジ幅1/4の部位における950℃以下の温度域における真歪での累積圧下率が0.3以上、熱間圧延終了温度が850〜700℃の温度域の温度となるように熱間圧延した後、冷却開始温度が850〜700℃、冷却停止温度が650〜200℃、冷却速度が0.5〜15℃/sとなるように冷却することを特徴とする熱加工制御型590MPa級H形鋼の製造方法。
A steel ingot having the chemical composition according to claim 1 or 2 cast at a casting speed of 0.5 to 1 m / min or a steel slab produced from the steel ingot was heated to a temperature in a temperature range of 1000 to 1350 ° C. Then, heat is applied so that the cumulative reduction ratio at the true strain in the temperature range of 950 ° C. or lower at the flange width ¼ portion is 0.3 or more and the hot rolling finish temperature is in the temperature range of 850 to 700 ° C. After hot rolling, the heat processing control type 590 MPa is characterized in that the cooling is started so that the cooling start temperature is 850 to 700 ° C., the cooling stop temperature is 650 to 200 ° C., and the cooling rate is 0.5 to 15 ° C./s. Class H-section steel manufacturing method.
JP2005144533A 2005-05-17 2005-05-17 Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof Expired - Fee Related JP3960341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144533A JP3960341B2 (en) 2005-05-17 2005-05-17 Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144533A JP3960341B2 (en) 2005-05-17 2005-05-17 Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006322019A true JP2006322019A (en) 2006-11-30
JP3960341B2 JP3960341B2 (en) 2007-08-15

Family

ID=37541910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144533A Expired - Fee Related JP3960341B2 (en) 2005-05-17 2005-05-17 Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3960341B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254063A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Ind Ltd Hot rolled t-shaped steel
JP2011106006A (en) * 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd Steel and method for producing rolled steel
CN102719745A (en) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 High-strength low-temperature steel with high hydrogen induced cracking (HIC) and sulfide stress corrosion cracking (SSC) resistance and manufacturing method thereof
CN103276301A (en) * 2013-05-17 2013-09-04 武汉钢铁(集团)公司 Low-temperature engineering steel with yield strength not lower than 550MPa and production method of engineering steel
CN105018861A (en) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 Low-cost normalizing rolling hot rolling H type steel and preparation method thereof
JP2018044224A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Rolled h shaped steel and manufacturing method therefor
EP3309276A4 (en) * 2016-04-28 2018-04-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
JP2018066042A (en) * 2016-10-19 2018-04-26 新日鐵住金株式会社 THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa CLASS H-SHAPED STEEL
WO2018169020A1 (en) 2017-03-15 2018-09-20 新日鐵住金株式会社 H-shaped steel and method for producing same
WO2020158823A1 (en) * 2019-01-31 2020-08-06 Jfeスチール株式会社 H-shaped steel having protrusions, and manufacturing method for same
CN112458364A (en) * 2020-11-04 2021-03-09 马鞍山钢铁股份有限公司 Ultra-thick hot-rolled H-shaped steel and production method thereof
CN113604735A (en) * 2021-07-20 2021-11-05 山东钢铁股份有限公司 Hot-rolled low-temperature-resistant H-shaped steel with yield strength of 420MPa and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
SG11201500113TA (en) * 2012-11-26 2015-03-30 Nippon Steel & Sumitomo Metal Corp H-section steel and method for procuding the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254063A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Ind Ltd Hot rolled t-shaped steel
JP2011106006A (en) * 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd Steel and method for producing rolled steel
CN102719745A (en) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 High-strength low-temperature steel with high hydrogen induced cracking (HIC) and sulfide stress corrosion cracking (SSC) resistance and manufacturing method thereof
CN103276301A (en) * 2013-05-17 2013-09-04 武汉钢铁(集团)公司 Low-temperature engineering steel with yield strength not lower than 550MPa and production method of engineering steel
CN105018861A (en) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 Low-cost normalizing rolling hot rolling H type steel and preparation method thereof
EP3309276A4 (en) * 2016-04-28 2018-04-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
JP2018044224A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Rolled h shaped steel and manufacturing method therefor
JP2018066042A (en) * 2016-10-19 2018-04-26 新日鐵住金株式会社 THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa CLASS H-SHAPED STEEL
WO2018169020A1 (en) 2017-03-15 2018-09-20 新日鐵住金株式会社 H-shaped steel and method for producing same
JPWO2018169020A1 (en) * 2017-03-15 2019-12-12 日本製鉄株式会社 H-section steel and manufacturing method thereof
US11041231B2 (en) 2017-03-15 2021-06-22 Nippon Steel Corporation H-section steel and method of producing the same
WO2020158823A1 (en) * 2019-01-31 2020-08-06 Jfeスチール株式会社 H-shaped steel having protrusions, and manufacturing method for same
JPWO2020158823A1 (en) * 2019-01-31 2021-02-18 Jfeスチール株式会社 H-shaped steel with protrusions and its manufacturing method
CN112458364A (en) * 2020-11-04 2021-03-09 马鞍山钢铁股份有限公司 Ultra-thick hot-rolled H-shaped steel and production method thereof
CN113604735A (en) * 2021-07-20 2021-11-05 山东钢铁股份有限公司 Hot-rolled low-temperature-resistant H-shaped steel with yield strength of 420MPa and preparation method thereof
CN113604735B (en) * 2021-07-20 2022-07-12 山东钢铁股份有限公司 Hot-rolled low-temperature-resistant H-shaped steel with yield strength of 420MPa and preparation method thereof

Also Published As

Publication number Publication date
JP3960341B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3960341B2 (en) Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof
JP5068645B2 (en) High-strength steel plate and high-strength welded steel pipe excellent in ductile fracture characteristics, and methods for producing them
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
US11299798B2 (en) Steel plate and method of producing same
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JPWO2006049036A1 (en) High strength welded steel pipe
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP4437972B2 (en) Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP3849244B2 (en) Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JP6720825B2 (en) Thermal processing control type 590 MPa class H-section steel
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP2000303147A (en) Tapered steel sheet and its production
JP3736495B2 (en) Manufacturing method for extra heavy steel

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3960341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees