JP2006321646A - Method for preventing spontaneous ignition in coal storage silo - Google Patents

Method for preventing spontaneous ignition in coal storage silo Download PDF

Info

Publication number
JP2006321646A
JP2006321646A JP2005148518A JP2005148518A JP2006321646A JP 2006321646 A JP2006321646 A JP 2006321646A JP 2005148518 A JP2005148518 A JP 2005148518A JP 2005148518 A JP2005148518 A JP 2005148518A JP 2006321646 A JP2006321646 A JP 2006321646A
Authority
JP
Japan
Prior art keywords
coal
methane concentration
silo
storage silo
hold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148518A
Other languages
Japanese (ja)
Other versions
JP4823567B2 (en
Inventor
Tasuku Takahashi
佐 高橋
Koichi Hoshino
剛一 星野
Wakafumi Araya
若文 新家
Kenji Miyazaki
健二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBELCO LOGISTICS Ltd
Kobe Steel Ltd
Original Assignee
KOBELCO LOGISTICS Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBELCO LOGISTICS Ltd, Kobe Steel Ltd filed Critical KOBELCO LOGISTICS Ltd
Priority to JP2005148518A priority Critical patent/JP4823567B2/en
Publication of JP2006321646A publication Critical patent/JP2006321646A/en
Application granted granted Critical
Publication of JP4823567B2 publication Critical patent/JP4823567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ship Loading And Unloading (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spontaneous ignition preventive method for reliably preventing spontaneous ignition while preventing the heat generation of coal and degradation of the handling property of coal caused by excessive humidification without excessively increasing the equipment cost in a coal storage silo. <P>SOLUTION: Coal is unloaded by an unloader 2 from a plurality of holds 6 of a coal carrier 1, the coal is humidified as necessary by a water sprinkling device 4 on a belt conveyor 3, and immediately charged and stored in a coal storage silo 5. Either or each countermeasures of reduction of the unloading rate and increase of the humidification is performed for the coal in holds 6A, 6C and 6E in which the maximum methane concentration during the navigation (transport) exceeds the predetermined value (for example, 30% LEL). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石炭火力発電所、石炭ガス化プラント、微粉炭吹込み高炉など大量の石炭を使用する設備に併設された貯炭サイロにおける自然発火防止技術に関する。   The present invention relates to a technology for preventing spontaneous ignition in a coal storage silo installed in a facility that uses a large amount of coal such as a coal-fired power plant, a coal gasification plant, and a pulverized coal injection blast furnace.

石炭を貯炭サイロ(以下、単に「サイロ」ともいう。)内に貯蔵していると石炭がサイロ内への侵入空気により酸化して発熱し、自然発火を起こすおそれがある。このような自然発火が発生すると大きな火災事故につながる場合があり、また被害が軽微な場合でも石炭が変質して使用できなくなることが多い。そこで、自然発火を防止するため、従来技術として以下のような方法が提案ないし実施されている。   When coal is stored in a coal storage silo (hereinafter also simply referred to as a “silo”), the coal is oxidized by the air entering the silo and generates heat, which may cause spontaneous ignition. If such spontaneous ignition occurs, it may lead to a large fire accident, and even if the damage is minor, the coal is often altered and cannot be used. In order to prevent spontaneous ignition, the following methods have been proposed or implemented as conventional techniques.

(1)サイロ上部空間内に設置した湿度計で湿度を測定し、この湿度を所定値に保持する ように、サイロ内へ散水、水噴霧、蒸気吹込みなどを行う方法(特許文献1,2参 照)。
(2)サイロ上部空間内にそれぞれ複数の検温センサーと散水ノズルとを格子状に設置し 、異常昇温を検知した部位に集中的に散水を行う方法(特許文献3参照)。
(3)サイロに、電磁波を用いた水分検出器と複数個の散水口とを設け、水分検出器で石 炭の水分分布状態を常時測定し、乾燥部分が検出されたとき、その乾燥部分の上方 の散水口から集中的に散水を行う方法(特許文献4参照)。
(4)サイロ内に異常昇温を検出したとき、石炭をいったんサイロ外に払い出して冷却し たのち、再度サイロに装入する方法。
(5)サイロへの装入前に、あらかじめ石炭に散水しておく方法。
(1) Method of measuring humidity with a hygrometer installed in the silo upper space, and performing watering, water spraying, steam blowing, etc. into the silo so as to keep this humidity at a predetermined value (Patent Documents 1 and 2) See).
(2) A method in which a plurality of temperature sensing sensors and watering nozzles are installed in a lattice shape in the silo upper space, respectively, and watering is concentrated on a site where abnormal temperature rise is detected (see Patent Document 3).
(3) The silo is equipped with a moisture detector using electromagnetic waves and a plurality of water spouts, and when the moisture distribution state of coal is constantly measured by the moisture detector and a dry part is detected, A method in which water is intensively sprayed from the upper water spout (see Patent Document 4).
(4) A method in which when an abnormal temperature rise is detected in the silo, the coal is once discharged out of the silo, cooled, and then recharged into the silo.
(5) A method of pre-watering coal before charging into the silo.

しかしながら、上記(1)の方法は、石炭層が局部的に乾燥した場合であっても、石炭層全体に一律に散水等を行うので、必要以上の水を使うことになり、石炭の発熱量が低下したり、石炭の切出し等が困難になったりする問題がある。   However, in the method (1), even if the coal bed is locally dried, water is uniformly sprayed over the entire coal bed, so that more water than necessary is used, and the calorific value of the coal. There is a problem that it is difficult to cut out or to cut coal.

また、上記(2)および(3)の方法は、乾燥部分に集中的に散水を行うので、上記(1)の方法の問題点は解消されうるが、現象がある程度進んでから対処する方法であり、大型サイロのように応答性に劣る設備には不適当である。さらに、サイロ内に多くの計測器を設ける必要があり、設備コストが上昇する問題がある。   In addition, since the methods (2) and (3) perform water spray intensively in the dry part, the problem of the method (1) can be solved, but the method is to cope with the phenomenon after a certain degree of progress. It is unsuitable for equipment with poor response, such as large silos. Furthermore, it is necessary to provide many measuring instruments in the silo, and there is a problem that the equipment cost increases.

また、上記(4)の方法は、既存の設備で行えるので設備コストを節約できる利点があるが、サイロからの払い出しおよび再度の装入の間は下流の設備に石炭を供給できず、稼働率が低下する問題がある。   In addition, the method (4) above has the advantage of saving equipment costs because it can be done with existing equipment, but it cannot supply coal to the downstream equipment during payout from the silo and recharging, and the operating rate There is a problem that decreases.

また、上記(5)の方法は、石炭をサイロへ装入した後は、計測や加湿等を不要とするので、設備コストを節約できる利点があるが、緊急時以外は基本的にサイロ内で加湿を行わないため、サイロ内の石炭層に乾燥部分が生じないよう、安全をみて多めに散水してから石炭をサイロに装入する必要がある。このため、上記(1)と同様に必要以上の水を使うことになり、石炭の発熱量が低下したり、石炭の切出し不良等ハンドリング性が悪化したりする問題がある。
特開昭59−142981号公報(特許請求の範囲など) 特開昭58−188237号公報(特許請求の範囲など) 特開平7−61546号公報(特許請求の範囲など) 特公平2−58165号公報(特許請求の範囲など)
In addition, the method (5) has the advantage of saving equipment costs because it does not require measurement, humidification, etc. after charging coal into the silo. Since humidification is not performed, it is necessary to spray the coal into the silo after spraying a large amount of water for safety so that a dry portion does not occur in the coal bed in the silo. For this reason, like the above (1), more than necessary water is used, and there is a problem that the calorific value of coal is reduced and handling properties such as coal cutting failure are deteriorated.
JP 59-142981 A (Claims etc.) JP-A-58-188237 (Claims etc.) JP 7-61546 A (claims, etc.) Japanese Patent Publication No. 2-58165 (claims, etc.)

そこで本発明の目的は、貯炭サイロにおいて、設備コストを上昇させることなく、過度の加湿による石炭の発熱量や石炭のハンドリング性の低下を防止しつつ、確実に自然発火を防止しうる自然発火防止方法を提供することにある。   Accordingly, an object of the present invention is to prevent spontaneous ignition in a coal storage silo that can reliably prevent spontaneous ignition while preventing deterioration of coal calorific value and coal handling property due to excessive humidification without increasing equipment costs. It is to provide a method.

本発明者らは、上記従来技術(4)および(5)の方法で用いている、サイロ外での石炭の冷却および石炭への加湿という手段は簡便で設備コストを節約できる利点を有することから、これらの手段をうまく取り入れた新たな方法を開発することにより上記課題を解決できると考え、以下のような検討を行った。   The present inventors have the advantage that the method of cooling the coal outside the silo and humidifying the coal used in the methods of the prior arts (4) and (5) is simple and can save equipment costs. We thought that the above problem could be solved by developing a new method that successfully incorporated these measures, and conducted the following studies.

石炭運搬船は通常、複数の区分された船倉を有しており、これら船倉内で石炭が自然発火するのを防止するため、積み地で積み込み前に該石炭に散水して湿潤状態にしておくことが行われている。しかしながら、石炭は輸送中船倉内で時間の経過とともに、その粒度分布や空気流路等の局所的特性に応じて酸化発熱反応が進行して乾燥部分が発生し自然発火に至ることがある。このため、石炭の乾燥状態を検知する一手段として各船倉内のメタン濃度を監視し、メタン濃度が許容値を超えたときは、当該船倉内に不活性ガスを導入したり、散水を行ったりして自然発火を防止している。   Coal carriers usually have a plurality of separate holds, and in order to prevent spontaneous ignition of coal in these holds, water must be sprinkled on the coal before loading at the loading site. Has been done. However, over time, coal undergoes an oxidative exothermic reaction in accordance with local characteristics such as the particle size distribution and air flow path, and a dry portion may be generated, resulting in spontaneous ignition. For this reason, the methane concentration in each hold is monitored as a means of detecting the dry state of coal, and when the methane concentration exceeds the allowable value, an inert gas is introduced into the hold or watering is performed. To prevent spontaneous ignition.

ところで、上記従来技術(5)の方法では、輸送中における船倉ごとのメタン濃度の高低に関わらず、全船倉から荷揚げされた石炭に対し区別することなく一律に加湿を行い、貯炭サイロに装入していた。   By the way, in the method of the above prior art (5), regardless of the level of methane in each cargo hold during transportation, the coal unloaded from all cargo holds is uniformly humidified and charged into a coal storage silo. Was.

このように、輸送中における船倉ごとのメタン濃度に関わらず、全船倉から荷揚げされた石炭に対して一律に加湿を行うと、どうしても安全をみて多めに加湿を行うことになり、石炭の発熱量の低下やハンドリング性の悪化を招くことになってしまう。かといって、石炭の発熱量やハンドリング性を維持しようとして加湿量を節約すると、高いメタン濃度が検知された船倉から荷揚げされた石炭は、加湿が不十分となり、所要の貯蔵日数経過前にサイロ内で乾燥部分が発生してしまい、ひどい場合には自然発火に至ってしまうと考えられる。   In this way, regardless of the methane concentration of each cargo hold during transportation, uniform humidification of coal unloaded from all cargo holds will result in excessive humidification for safety reasons, and the calorific value of coal. Will result in a decrease in handling and deterioration in handling. However, if the amount of humidification is saved in an attempt to maintain the calorific value and handling of the coal, the coal unloaded from the hold where a high methane concentration has been detected will be insufficiently humidified, and the silo will be removed before the required storage days. It is thought that a dry portion is generated in the inside, and in a severe case, spontaneous ignition occurs.

そこで、まず本発明者らは、輸送中における船倉内のメタン濃度とサイロ内における石炭の乾燥進行度合いとの関係を明らかにするため、以下の実験を実施した。すなわち、事前に、輸送中における船倉ごとの最高メタン濃度の情報を入手し、荷揚げ時に、最高メタン濃度が20%LEL(爆発下限界)を超えた船倉から荷揚げされた石炭を一つのサイロに、同濃度が20%LEL以下であった船倉から荷揚げされた石炭を別のサイロに分けて、別々に貯蔵し、それぞれのサイロ内の石炭層の温度変化を調査した。なお、いずれの石炭に対しても荷揚げ後サイロへの装入前に加湿を行わなかった。図4に示す測定結果の比較から明らかなように、高いメタン濃度が検知された船倉から荷揚げされた石炭は、低いメタン濃度が検知された船倉から荷揚げされた石炭に比べ、サイロ内の石炭層の温度は、サイロへの装入時点においてすでに高く、かつ、昇温速度も著しく大きい。したがって、高いメタン濃度が検知された船倉に保持されていた石炭は、荷揚げ時にすでに乾燥が相当程度進行しており、サイロ内において短期間で自然発火に至る可能性が高いことが判明した。   Therefore, first, the present inventors conducted the following experiment in order to clarify the relationship between the methane concentration in the hold during transportation and the degree of coal drying in the silo. In other words, information on the maximum methane concentration for each cargo hold during transportation is obtained in advance, and coal unloaded from the hold whose maximum methane concentration exceeds 20% LEL (lower explosion limit) at the time of unloading is stored in one silo. The coal unloaded from the hold where the same concentration was 20% LEL or less was divided into separate silos and stored separately, and the temperature change of the coal bed in each silo was investigated. In addition, no humidification was performed on any of the coals before unloading into the silo after unloading. As is clear from the comparison of the measurement results shown in FIG. 4, the coal unloaded from the hold where a high methane concentration was detected was compared to the coal unloaded from the hold where a low methane concentration was detected. The temperature of is already high at the time of charging into the silo, and the rate of temperature increase is significantly high. Therefore, it was found that the coal retained in the hold where a high methane concentration was detected had already dried to a considerable extent at the time of unloading and was likely to spontaneously ignite in a short period in the silo.

なお、荷揚げ時における各船倉内の石炭の乾燥状態は、各船倉から荷揚げする際ごとにサンプルを採取して水分分析を行うことによって把握することも理論上は可能である。しかしながら、現状、全船倉から荷揚げした石炭全体を一括して平均値として水分分析を行っているのに対し、各船倉から荷揚げした石炭ごとに水分分析するとなると、サンプル数が一挙に数倍に増加し、縮分操作や分析の手間が過大となるうえ、分析結果が得られるまでにこれまで以上に長期間を要することになるため、その分析結果に基づいてサイロへの装入前に対策を行うことは、実際上不可能である。   It is theoretically possible to grasp the dry state of the coal in each hold at the time of unloading by collecting a sample and performing a moisture analysis every time it is unloaded from each hold. However, at present, moisture analysis is performed on average for all coal unloaded from all holds, but when moisture analysis is performed for each coal unloaded from each hold, the number of samples increases several times at a time. However, it takes a lot of time to perform the reduction operation and analysis, and it takes a longer time than before to obtain the analysis results, so measures should be taken before loading into the silo based on the analysis results. It is practically impossible to do.

そこで、本発明者らは、上記知見等に基づき、事前に入手した航海時(輸送時)における各船倉内のメタン濃度の情報に基づいて荷揚げ時における各船倉内の石炭の乾燥状態を把握し、乾燥が相当程度進行している石炭にのみ貯炭サイロへの装入前に所要の対策を施すことが最も有効かつ現実的と判断し、本発明を完成するに至った。   Therefore, the present inventors grasped the dry state of the coal in each cargo hold at the time of unloading based on the methane concentration information in each cargo hold at the time of voyage (transport) based on the above knowledge and the like. Therefore, it was judged that it was most effective and practical to take necessary measures before charging coal storage silos only to coal whose drying was considerably advanced, and the present invention was completed.

請求項1に記載の発明は、石炭運搬船の複数の船倉から石炭を荷揚げし、この石炭に必要に応じて加湿した後、直ちに貯炭サイロに装入して貯蔵するに際し、輸送中における各船倉内の最高メタン濃度に応じて、各船倉内の石炭ごとに、その荷揚げ速度および加湿量のいずれかまたは双方を調整することを特徴とする貯炭サイロにおける自然発火防止方法である。   In the invention according to claim 1, when unloading coal from a plurality of holds of a coal carrier, humidifying the coal as necessary, and immediately storing it in a coal storage silo, This is a method for preventing spontaneous ignition in a coal storage silo, in which either or both of the unloading speed and the humidification amount are adjusted for each coal in each hold according to the maximum methane concentration.

請求項2に記載の発明は、石炭運搬船の複数の船倉から石炭を荷揚げし、この石炭に必要に応じて加湿した後、直ちに貯炭サイロに装入して貯蔵するに際し、輸送中における最高メタン濃度が所定濃度を超えた船倉内の石炭につき、その荷揚げ速度の低下および加湿量の増加のいずれかまたは双方の対策を行うことを特徴とする貯炭サイロにおける自然発火防止方法である。   The invention according to claim 2 is the highest methane concentration during transportation when unloading coal from a plurality of holds of a coal carrier, humidifying the coal as necessary, and immediately storing it in a coal storage silo. Is a method for preventing spontaneous ignition in a coal storage silo, in which either or both of a reduction in the unloading speed and an increase in the humidification amount are taken for coal in a hold where the concentration exceeds a predetermined concentration.

請求項3に記載の発明は、石炭運搬船から荷揚げされ、必要に応じて加湿された後、直ちに貯炭サイロに貯蔵される石炭の自然発火を防止する装置であって、以下の(a)および/または(b)の装置を備えたことを特徴とする貯炭サイロにおける自然発火防止装置である。
(a)輸送中における石炭運搬船の各船倉内の最高メタン濃度に基づいて前記石炭の荷揚げ速度を演算する荷揚げ速度演算手段と、前記荷揚げ速度で前記石炭を前記貯炭サイロへ搬送する搬送手段とを備えた石炭搬送装置
(b)輸送中における石炭運搬船の各船倉内の最高メタン濃度に基づいて前記石炭の加湿量を演算する加湿量演算手段と、前記加湿量の水分を供給する水分供給手段とを備えた石炭加湿装置
The invention described in claim 3 is an apparatus for preventing spontaneous ignition of coal immediately after being unloaded from a coal carrier and humidified as necessary, and then immediately stored in a coal storage silo. Or it is the spontaneous combustion prevention apparatus in the coal storage silo characterized by including the apparatus of (b).
(A) Unloading speed calculating means for calculating the coal unloading speed based on the maximum methane concentration in each cargo hold of the coal carrier during transportation, and conveying means for conveying the coal to the coal storage silo at the unloading speed. (B) a humidification amount calculating means for calculating the humidification amount of the coal based on the maximum methane concentration in each hold of the coal carrier during transportation; and a moisture supply means for supplying moisture of the humidification amount; Humidifier with coal

本発明によれば、石炭の荷揚げ速度およびサイロ外での加湿量のいずれかまたは双方を調整するだけでよいので、既存の設備のみで対処可能であり、設備コストを上昇させることがない。さらに、石炭への加湿が必要な場合でも、船倉ごとの最高メタン濃度の情報に応じて、必要な石炭にのみ加湿を行うので、過度の加湿を防止でき、石炭の発熱量や石炭のハンドリング性を維持しつつ、確実に自然発火を防止することができる。   According to the present invention, it is only necessary to adjust either or both of the coal unloading speed and the amount of humidification outside the silo, so that it is possible to cope with only existing equipment and the equipment cost is not increased. In addition, even when it is necessary to humidify the coal, only the necessary coal is humidified according to the information on the maximum methane concentration in each hold, so that excessive humidification can be prevented, and the calorific value of the coal and the handling of the coal While maintaining the above, it is possible to reliably prevent spontaneous ignition.

以下、本発明の実施の形態について図を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔実施形態〕
実施形態の一例を図1に示す。同図(a)に示すように、海外等の積み地から石炭運搬船1で海上輸送されてきた石炭は、揚げ地でアンローダ2により荷揚げされ、必要に応じてベルトコンベア(搬送手段)3上で散水装置(水分供給手段)4にて加湿されたのち、直ちに貯炭サイロ5に装入され貯蔵される。
Embodiment
An example of the embodiment is shown in FIG. As shown in FIG. 2A, coal that has been transported by sea from a coal carrier 1 from an overseas loading site is unloaded by an unloader 2 at a landing site, and on a belt conveyor (conveying means) 3 as necessary. After being humidified by the watering device (moisture supply means) 4, it is immediately charged and stored in the coal storage silo 5.

図1(b)に示すように、石炭運搬船1は複数に区分された船倉(「ホールド」ともいう。)6を有しており(本例では6A〜6Fの6ホールド)、ホールド6ごとにメタン濃度を測定するガス検知器(図示せず)が備えられている。そして、航海中(輸送中)、各ホールド6内のメタン濃度が定期的に測定され、各ホールド6内における最高メタン濃度の値が揚げ地に報告される。   As shown in FIG. 1B, the coal carrier 1 has a plurality of compartments (also referred to as “holds”) 6 (in this example, 6 holds of 6A to 6F). A gas detector (not shown) for measuring the methane concentration is provided. During voyage (during transportation), the methane concentration in each hold 6 is periodically measured, and the value of the maximum methane concentration in each hold 6 is reported to the landing site.

航海中における各ホールド6内の最高メタン濃度の値の報告を受けた揚げ地では、最高メタン濃度が所定濃度(例えば30%LEL(爆発下限界))を超えたホールド6(図1では6A、6C、6E)内に保持されていた石炭(以下、「高メタン濃度石炭」という。)に対して、最高メタン濃度が所定濃度(30%LEL)以下のホールド6(図1では6B、6D、6F)内に保持されていた石炭(以下、「低メタン濃度石炭」という。)より、荷揚げ速度を下げて荷揚げするとともに、散水量(加湿量)を増やして散水する。なお、上記高メタン濃度石炭に対する加湿量の増加には、低メタン濃度石炭には加湿を行わずに、高メタン濃度石炭にのみ加湿を行うことも含まれる。そして、上記対策を施した高メタン濃度石炭は、低メタン濃度石炭と同じサイロ5に装入する。   In landing sites that have received reports of the maximum methane concentration value in each hold 6 during the voyage, hold 6 (6A in FIG. 1), where the maximum methane concentration exceeds a predetermined concentration (for example, 30% LEL (lower explosion limit)). 6C, 6E) with respect to the coal (hereinafter referred to as “high methane concentration coal”), hold 6 (6B, 6D, FIG. 1) having a maximum methane concentration of a predetermined concentration (30% LEL) or less. 6F) From the coal held in 6F) (hereinafter referred to as “low methane concentration coal”), the unloading speed is lowered and the water is discharged while the watering amount (humidification amount) is increased. In addition, the increase in the humidification amount with respect to the said high methane density | concentration coal also includes humidifying only a high methane density | concentration coal, without humidifying a low methane density | concentration coal. And the high methane density | concentration coal which performed the said countermeasure is inserted into the same silo 5 as a low methane density | concentration coal.

ここで、上記所定濃度としては、船倉内におけるメタン濃度の警報上限値である30%LEL(爆発下限界)を例示したが、サイロ5内に通常より長期に貯蔵する必要がある場合等さらに自然発火が生じやすい場合は、上記所定濃度を20%LEL、さらには10%LELのように、より低い値に設定してもよい。   Here, as the above-mentioned predetermined concentration, 30% LEL (lower explosion limit), which is an upper limit alarm value of methane concentration in the hold, is exemplified, but it is more natural if it is necessary to store in the silo 5 for a longer period than usual. If ignition is likely to occur, the predetermined concentration may be set to a lower value, such as 20% LEL or even 10% LEL.

また、高メタン濃度石炭に対する荷揚げ速度の低下の度合いおよび散水量(加湿量)の増加の度合いは、例えば以下のようにして決定することができる。   Moreover, the degree of decrease in the unloading speed and the degree of increase in the amount of water spray (humidification amount) for high methane concentration coal can be determined as follows, for example.

すなわち、荷揚げ速度の低下の度合いについては、事前に、高メタン濃度石炭に対して荷揚げ速度を種々変更してサイロ5に装入し、サイロ5内における石炭層の初期温度および昇温速度を測定する実験を行う。そして、この初期温度および昇温速度が、低メタン濃度石炭を通常の荷揚げ速度で荷揚げしてサイロ5に装入して形成される石炭層の初期温度および昇温速度と同程度となるような荷揚げ速度を求め、これより荷揚げ速度の低下の度合いを決定することができる。   That is, regarding the degree of decrease in the unloading speed, the unloading speed is changed variously with respect to the high methane concentration coal, and the silo 5 is charged in advance, and the initial temperature and the heating rate of the coal bed in the silo 5 are measured. Perform an experiment. And this initial temperature and temperature rising rate become comparable to the initial temperature and temperature rising rate of the coal bed formed by unloading low methane concentration coal at a normal unloading speed and charging it into the silo 5. The unloading speed can be obtained, and the degree of decrease in the unloading speed can be determined from this.

散水量(加湿量)の低下の度合いについても、上記荷揚げ速度と同様に、事前に、高メタン濃度石炭に対して散水量(加湿量)を種々変更してサイロ5に装入し、サイロ5内の石炭層の初期温度および昇温速度の変化を測定する実験を行う。そして、この初期温度および昇温速度が、低メタン濃度石炭を通常の散水量(加湿量)で加湿してからサイロ5に装入して形成される石炭層の昇温速度と同程度となるような散水量(加湿量)を求め、これより散水量(加湿量)の増加の度合いを決定することができる。   As for the degree of decrease in the amount of water spray (humidification amount), in the same manner as the unloading speed, the water spray amount (humidification amount) was changed in advance for high methane concentration coal and charged into the silo 5 in advance. Experiments are conducted to measure changes in the initial temperature and heating rate of the inner coal bed. And this initial temperature and temperature rising rate become comparable with the temperature rising rate of the coal bed formed by humidifying the low methane concentration coal with the normal watering amount (humidification amount) and then charging it into the silo 5. Such a watering amount (humidification amount) is obtained, and from this, the degree of increase in the watering amount (humidification amount) can be determined.

荷揚げ速度の調整は、荷揚げ速度演算手段(図示せず)と搬送手段(ベルトコンベア3)とを備えた石炭搬送装置で行えばよい。荷揚げ速度演算手段は、各船倉内の最高メタン濃度が入力されると上記実験で求めた関係式に基づいて荷揚げ速度を演算するように構成する。そして、搬送手段(ベルトコンベア3)は、荷揚げ速度演算手段で演算された荷揚げ速度に相当する搬送速度となるように変速機にて調整するように構成すればよい。   The adjustment of the unloading speed may be performed by a coal conveying device provided with an unloading speed calculating means (not shown) and a conveying means (belt conveyor 3). The unloading speed calculating means is configured to calculate the unloading speed based on the relational expression obtained in the above experiment when the maximum methane concentration in each hold is input. The conveying means (belt conveyor 3) may be configured to be adjusted by the transmission so that the conveying speed corresponds to the unloading speed calculated by the unloading speed calculating means.

また、散水量(加湿量)の調整は、加湿量演算手段(図示せず)と水分供給手段(散水装置4)とを備えた石炭加湿装置で行えばよい。加湿量演算手段は、各船倉内の最高メタン濃度が入力されると上記実験で求めた関係式に基づいて加湿量を演算するように構成する。そして、水分供給手段(散水装置4)は、加湿量演算手段で演算された加湿量に相当する水分量を、流量調節弁にて調節し供給するように構成すればよい。なお、上記荷揚げ速度演算手段および加湿量演算手段は、既存のプロセスコンピュータなどを用いて容易に構成することができる。   Moreover, what is necessary is just to perform adjustment of a watering amount (humidification amount) with the coal humidification apparatus provided with the humidification amount calculating means (not shown) and the water | moisture-content supply means (watering apparatus 4). The humidification amount calculating means is configured to calculate the humidification amount based on the relational expression obtained in the above experiment when the maximum methane concentration in each hold is input. The water supply means (watering device 4) may be configured to adjust and supply the moisture amount corresponding to the humidification amount calculated by the humidification amount calculation means using the flow rate control valve. The unloading speed calculation means and the humidification amount calculation means can be easily configured using an existing process computer or the like.

上記のように、石炭の荷揚げ速度およびベルトコンベア3上での加湿量を調整するだけでよいので、アンローダ2や散水装置4、プロセスコンピュータなど既存の設備のみで対処可能であり、新たな装置を必要としないので、設備コストを上昇させることがない。さらに、石炭への加湿が必要な場合でも、ホールド(船倉)ごとの最高メタン濃度の情報に応じて、真に必要な石炭にのみ加湿を行うので、必要最小限の加湿量で確実に乾燥を防止できる。この結果、石炭の発熱量が過度に低下したり、切出し等のハンドリングが困難になったりすることなく、確実に自然発火を防止できる。   As described above, since it is only necessary to adjust the coal unloading speed and the amount of humidification on the belt conveyor 3, it can be handled only by existing equipment such as the unloader 2, the watering device 4, and the process computer. Since it is not necessary, the equipment cost is not increased. Furthermore, even when humidification is required for coal, only the truly necessary coal is humidified according to the information on the maximum methane concentration for each hold (funakura), so drying can be performed with the minimum amount of humidification. Can be prevented. As a result, spontaneous combustion can be reliably prevented without excessively reducing the calorific value of coal or making handling such as cutting difficult.

(変形例)
上記実施形態では、高メタン濃度石炭と低メタン濃度石炭とを区別せずに同じサイロに貯蔵する例を示したが、高メタン濃度石炭と低メタン濃度石炭とを別々のサイロに分けて貯蔵するようにしてもよい。この場合、高メタン濃度石炭を貯蔵したサイロから先に使用するようにすれば、高メタン濃度石炭の荷揚げ速度の低下幅や加湿量の増加幅を少なくしても自然発火を防止でき、荷揚げ時間の短縮やさらなる加質量の低減効果が得られるので、より好ましい。
(Modification)
In the above embodiment, an example is shown in which high methane concentration coal and low methane concentration coal are stored in the same silo without being distinguished, but high methane concentration coal and low methane concentration coal are stored separately in separate silos. You may do it. In this case, if the silo storing the high methane concentration coal is used first, spontaneous ignition can be prevented even if the unloading rate of the high methane concentration coal is reduced or the increase in the humidification amount is reduced. And a further effect of reducing the added mass can be obtained.

また、上記実施形態では、高メタン濃度石炭に対し、荷揚げ速度の低下と加湿量の増加の双方の対策を同時に実施する例を示したが、いずれか一方の対策のみ実施してもよい。特に、上記のように、高メタン濃度石炭と低メタン濃度石炭とを別のサイロに分けて貯蔵する場合は、高メタン濃度石炭を優先的に使用できるので、必ずしも双方の対策を同時に取る必要はない。   Moreover, in the said embodiment, although the example which implements simultaneously the countermeasure of both the fall of unloading speed and the increase in the humidification quantity with respect to high methane concentration coal was shown, you may implement only any one countermeasure. In particular, as described above, when storing high methane concentration coal and low methane concentration coal separately in separate silos, high methane concentration coal can be used preferentially, so it is not always necessary to take both measures simultaneously. Absent.

また、上記実施形態では、高メタン濃度石炭に対する対策実施の閾値である所定濃度として、1つの値(本例では30%LEL)のみを用いる例を示したが、複数の値を用いてもよい。所定濃度として例えば20%LELと30%LELの2つの値を用い、20%LEL超え30%LEL以下のサイロ内の石炭と、30%LEL超えのサイロ内の石炭とに対しては、異なる荷揚げ速度および/または異なる加湿量を適用するようにしてもよい。あるいは、前者の石炭に対しては、荷揚げ速度の低下と加湿量の増加のいずれか一方の対策のみを行い、後者の石炭に対しては、双方の対策を同時に行うようにしてもよい。   Moreover, in the said embodiment, although the example which uses only one value (this example 30% LEL) was shown as a predetermined density | concentration which is a threshold value of countermeasure implementation with respect to high methane density | concentration coal, you may use several values. . For example, two values of 20% LEL and 30% LEL are used as the predetermined concentration, and different discharges are applied to coal in silos exceeding 20% LEL and below 30% LEL and coal in silos exceeding 30% LEL. Speed and / or different humidification amounts may be applied. Alternatively, for the former coal, only one of the countermeasures for reducing the unloading speed and increasing the humidification amount may be performed, and for the latter coal, both countermeasures may be performed simultaneously.

本発明方法適用の効果を把握するため、石炭火力発電所に併設された12基の貯炭サイロ(1基当りの貯蔵容量3万トン)に、石炭運搬船(輸送能力6〜8.8万トン、船倉数6〜7)から荷揚げした石炭(KP炭)を貯蔵する場合において、以下のような実験を実施した。   In order to grasp the effect of the application of the method of the present invention, 12 coal storage silos (storage capacity 30,000 tons per unit) installed in a coal-fired power plant are connected to a coal carrier (transport capacity 60 to 88,000 tons, In the case of storing coal (KP coal) unloaded from the number of holds 6-7), the following experiment was conducted.

まず、本実施例では、高メタン濃度石炭に対し、加湿量の増加のみの対策を実施した場合についての効果の確認を行った。   First, in the present Example, the effect about the case where the countermeasure only of the increase in humidification amount was implemented with respect to high methane concentration coal was confirmed.

すなわち、荷揚げ速度は、各船倉内のメタン濃度の高低に関わらず、通常の荷揚げ速度である3000t/h一定とした。そして、最高メタン濃度が30%LEL以下の船倉の石炭(低メタン濃度石炭)と、30%LELを超えた船倉の石炭(高メタン濃度石炭)とに分け、低濃度メタン石炭に対しては加湿を行わずに、そのまま第1のサイロに貯蔵した。高メタン濃度石炭は、さらに2つに分け、その一方の石炭に対しては加湿を行わずに、そのまま第2のサイロに貯蔵し、他方の石炭に対しては、ベルトコンベア上で石炭水分量0.4質量%相当の散水を行って加湿した後、第3のサイロに貯蔵した。なお、第1〜第3の各サイロ内の石炭の貯蔵量は同じとした。そして、第1〜第3の各サイロ内の石炭層の温度変化を測定した。   That is, the unloading speed was constant at 3000 t / h, which is a normal unloading speed, regardless of the level of methane concentration in each hold. And it is divided into Funakura coal (low methane concentration coal) whose maximum methane concentration is 30% LEL or less and Funakura coal (high methane concentration coal) exceeding 30% LEL, and humidification is applied to low concentration methane coal. Without being carried out, it was stored in the first silo as it was. The high methane concentration coal is further divided into two, one of the coals is not humidified and stored in the second silo as it is, and the other coal is coal moisture on the belt conveyor. Watering was performed at a rate equivalent to 0.4% by mass, and the mixture was humidified and stored in a third silo. The amount of coal stored in each of the first to third silos was the same. And the temperature change of the coal bed in each 1st-3rd silo was measured.

図2に各サイロ内の石炭層の温度変化を比較して示す。同図に示すように、高濃度石炭を、低メタン濃度石炭と同一の荷揚げ速度で、かつ低メタン濃度石炭と同じく加湿も行わないでサイロに貯蔵すると、石炭層の温度上昇速度が明らかに大きくなっている。これに対し、低メタン濃度石炭と同一の荷揚げ速度であっても、高メタン濃度石炭に加湿を行ってサイロに貯蔵すると、石炭層の温度上昇速度は、加湿を行わない低メタン濃度石炭とほぼ同程度に抑制されることがわかる。   FIG. 2 shows a comparison of the temperature change of the coal bed in each silo. As shown in the figure, when high concentration coal is stored in a silo at the same unloading speed as low methane concentration coal and not humidified, the rate of temperature rise of the coal bed is clearly large. It has become. On the other hand, even if the unloading speed is the same as that of the low methane concentration coal, if the high methane concentration coal is humidified and stored in a silo, the temperature rise rate of the coal bed is almost the same as that of the low methane concentration coal without humidification. It turns out that it is suppressed to the same extent.

つぎに、上記実施例1と異なり、本実施例では、高メタン濃度石炭に対し、荷揚げ速度の低下のみの対策を実施した場合についての効果の確認を行った。なお、本実施例では、石炭銘柄は実施例1と同じKP炭を用いたが、実施例1と入港時期が異なる石炭運搬船から荷揚げした石炭を用いた。   Next, unlike the above-described Example 1, in this example, the effect was confirmed for the case where only measures for lowering the unloading speed were performed on high methane concentration coal. In this example, the same KP coal as in Example 1 was used as the coal brand, but coal unloaded from a coal carrier having a different port entry time from Example 1 was used.

すなわち、各船倉内のメタン濃度の高低に関わらず、いずれの船倉の石炭に対しても荷揚げ後サイロ装入前には加湿を行わなかった。そして、上記実施例1と同様に、最高メタン濃度が30%LEL以下の船倉の石炭(低メタン濃度石炭)と、30%LELを超えた船倉の石炭(高メタン濃度石炭)とに分け、低濃度メタン石炭は、通常の荷揚げ速度3000t/hで荷揚げして第1のサイロに貯蔵した。高メタン濃度石炭は、さらに2つに分け、その一方の石炭は、低濃度メタン石炭と同じ通常の荷揚げ速度3000t/hで荷揚げして第2のサイロに貯蔵し、他方の石炭は、荷揚げ速度を1500t/hに半減させて荷揚げし、第3のサイロに貯蔵した。なお、第1〜第3の各サイロ内の石炭の貯蔵量は実施例1と同様、同じとした。そして、第1〜第3の各サイロ内の石炭層の温度変化を測定した。   In other words, regardless of the methane concentration in each hold, the coal in any hold was not humidified after unloading and before silo loading. In the same manner as in Example 1 above, it is divided into coal in a hold (low methane concentration coal) having a maximum methane concentration of 30% LEL or less and coal in a hold (high methane concentration coal) exceeding 30% LEL. Concentrated methane coal was unloaded at a normal unloading speed of 3000 t / h and stored in the first silo. The high methane concentration coal is further divided into two, one of which is unloaded at the same normal unloading speed of 3000 t / h as the low concentration methane coal and stored in the second silo, and the other coal is unloaded. Was reduced by half to 1500 t / h and stored in a third silo. Note that the amount of coal stored in each of the first to third silos was the same as in Example 1. And the temperature change of the coal bed in each 1st-3rd silo was measured.

図3に各サイロ内の石炭層の温度変化を比較して示す。同図に示すように、高濃度石炭を、低メタン濃度石炭と同じく加湿を行わず、かつ低メタン濃度石炭と同一の荷揚げ速度で荷揚げしてサイロに貯蔵すると、石炭層の温度上昇速度が明らかに大きくなっている。これに対し、低メタン濃度石炭と同じく加湿を行わない場合であっても、高メタン濃度石炭の荷揚げ速度を通常より低下させてサイロに貯蔵すると、石炭層の温度上昇速度は、通常の荷揚げ速度で荷揚げされた低メタン濃度石炭とほぼ同程度に抑制されることがわかる。   FIG. 3 shows a comparison of changes in the temperature of the coal bed in each silo. As shown in the figure, when coal with high concentration is not humidified like coal with low methane concentration and is unloaded at the same discharge rate as coal with low methane concentration and stored in a silo, the rate of temperature rise of the coal bed is clear Is getting bigger. On the other hand, even when humidification is not performed as in the case of low methane concentration coal, if the unloading speed of high methane concentration coal is reduced and stored in a silo, the temperature rise rate of the coal bed will be the normal unloading speed. It can be seen that it is suppressed to the same extent as the low methane concentration coal unloaded in

上記実施例1および2の実験結果より本発明方法の効果が確認できたので、実操業において上記貯炭サイロに対し本発明方法の適用を行った。   Since the effect of the method of the present invention was confirmed from the experimental results of Examples 1 and 2, the method of the present invention was applied to the coal storage silo in actual operation.

すなわち、高メタン濃度石炭に対して対策を実施する閾値である上記所定濃度としては30%LELを採用し、高メタン濃度石炭に対する対策としては、石炭銘柄や荷役スケジュール等を総合的に勘案しつつ、荷揚げ速度の低下および加湿量の増加のいずれかまたは双方の対策を適宜選択するようにした。   That is, 30% LEL is adopted as the above-mentioned predetermined concentration, which is a threshold value for implementing countermeasures against high methane concentration coal, and as a countermeasure against high methane concentration coal, while taking into consideration coal brands and cargo handling schedules comprehensively. One or both of the measures for lowering the unloading speed and increasing the humidification amount were appropriately selected.

このようにして、石炭への加湿を必要とする場合でも、石炭運搬船の船倉ごとにきめ細かく分けて、真に対策の必要な石炭にのみ加湿量を増加するようにしたことにより、本サイロにおける平均の加湿量は、本発明適用前に比べ0.78質量%削減された。この結果、石炭中水分の蒸発に使用されていた熱量ロス分が有効に使用できるようになり、石炭の発熱量は平均で約4.5kcal/kg上昇した。   In this way, even when humidification of coal is required, the average amount in this silo is increased by finely dividing the hold of coal carriers and increasing the amount of humidification only to coal that really needs countermeasures. The amount of humidification was reduced by 0.78% by mass compared to before application of the present invention. As a result, the amount of heat loss used to evaporate the water in the coal can be used effectively, and the calorific value of the coal increased by an average of about 4.5 kcal / kg.

また、過剰の加湿水分がカットされたことにより、後続の粉砕設備への搬送途中でのシュート詰りやホッパ内棚吊りなど石炭のハンドリング性悪化に起因する設備トラブルの発生頻度も、本発明適用前を100%とすると24%へと大幅に減少した。   Moreover, the frequency of occurrence of equipment troubles due to deterioration of the handling property of coal such as chute clogging during the transportation to the subsequent crushing equipment and hanging on the shelves in the hopper due to the cutting of excessive humidified moisture is also the same as before application of the present invention. Assuming that 100%, it was greatly reduced to 24%.

さらに、本発明適用後1年以上経過しているが、上記のように加湿量を削減しても、まったくサイロ内に乾燥状態を発生させることがなく、確実に自然発火を防止できることを確認した。   Furthermore, although more than one year has passed since the present invention was applied, it was confirmed that even if the amount of humidification was reduced as described above, a dry state was not generated at all in the silo, and spontaneous ignition could be prevented reliably. .

(a)は本発明の実施に係る貯炭サイロにおける自然発火防止方法を説明するためのフロー図であり、(b)は石炭運搬船の複数の船倉内における最高メタン濃度の分布を模式的に示す縦断面図である。(A) is a flowchart for demonstrating the spontaneous-fire prevention method in the coal storage silo which concerns on implementation of this invention, (b) is a longitudinal section which shows typically distribution of the highest methane concentration in the several hold of a coal carrier. FIG. 実施例1における、貯炭サイロ内での貯蔵日数と石炭層の温度との関係を示すグラフ図である。It is a graph which shows the relationship between the storage days in a coal storage silo, and the temperature of a coal bed in Example 1. FIG. 実施例2における、貯炭サイロ内での貯蔵日数と石炭層の温度との関係を示すグラフ図である。It is a graph which shows the relationship between the storage days in a coal storage silo, and the temperature of a coal bed in Example 2. FIG. 高メタン濃度石炭と低メタン濃度石炭とを比較して、貯炭サイロ内での貯蔵日数と石炭層の温度との関係を示すグラフ図である。It is a graph which compares the high methane density | concentration coal and the low methane density | concentration coal, and shows the relationship between the storage days in a coal storage silo, and the temperature of a coal bed.

符号の説明Explanation of symbols

1…石炭運搬船
2…アンローダ
3…搬送手段(ベルトコンベア)
4…水分供給手段(散水装置)
5…貯炭サイロ
6…船倉(ホールド)

DESCRIPTION OF SYMBOLS 1 ... Coal carrier 2 ... Unloader 3 ... Conveying means (belt conveyor)
4. Water supply means (watering device)
5 ... Coal storage silo 6 ... Funakura (hold)

Claims (3)

石炭運搬船の複数の船倉から石炭を荷揚げし、この石炭に必要に応じて加湿した後、直ちに貯炭サイロに装入して貯蔵するに際し、
輸送中における各船倉内の最高メタン濃度に応じて、各船倉内の石炭ごとに、その荷揚げ速度および加湿量のいずれかまたは双方を調整することを特徴とする貯炭サイロにおける自然発火防止方法。
When unloading coal from multiple cargo holds of a coal carrier, humidifying the coal as necessary, and immediately storing it in a coal storage silo,
A method for preventing spontaneous ignition in a coal storage silo, wherein either or both of a discharge speed and a humidification amount are adjusted for each coal in each cargo hold according to a maximum methane concentration in each cargo hold during transportation.
石炭運搬船の複数の船倉から石炭を荷揚げし、この石炭に必要に応じて加湿した後、直ちに貯炭サイロに装入して貯蔵するに際し、
輸送中における最高メタン濃度が所定濃度を超えた船倉内の石炭につき、その荷揚げ速度の低下および加湿量の増加のいずれかまたは双方の対策を行うことを特徴とする貯炭サイロにおける自然発火防止方法。
When unloading coal from multiple cargo holds of a coal carrier, humidifying the coal as necessary, and immediately storing it in a coal storage silo,
A method for preventing spontaneous ignition in a coal storage silo, characterized in that either or both of a reduction in unloading speed and an increase in humidification amount are taken for coal in a hold where the maximum methane concentration during transportation exceeds a predetermined concentration.
石炭運搬船から荷揚げされ、必要に応じて加湿された後、直ちに貯炭サイロに貯蔵される石炭の自然発火を防止する装置であって、以下の(a)および/または(b)の装置を備えたことを特徴とする貯炭サイロにおける自然発火防止装置。
(a)輸送中における石炭運搬船の各船倉内の最高メタン濃度に基づいて前記石炭の荷揚げ速度を演算する荷揚げ速度演算手段と、前記荷揚げ速度で前記石炭を前記貯炭サイロへ搬送する搬送手段とを備えた石炭搬送装置
(b)輸送中における石炭運搬船の各船倉内の最高メタン濃度に基づいて前記石炭の加湿量を演算する加湿量演算手段と、前記加湿量の水分を供給する水分供給手段とを備えた石炭加湿装置


A device for preventing spontaneous ignition of coal immediately after being unloaded from a coal carrier and humidified as necessary and then stored in a coal storage silo, comprising the following devices (a) and / or (b) A self-ignition prevention device for a coal storage silo.
(A) Unloading speed calculating means for calculating the coal unloading speed based on the maximum methane concentration in each cargo hold of the coal carrier during transportation, and conveying means for conveying the coal to the coal storage silo at the unloading speed. (B) a humidification amount calculating means for calculating the humidification amount of the coal based on the maximum methane concentration in each hold of the coal carrier during transportation; and a moisture supply means for supplying moisture of the humidification amount; Humidifier with coal


JP2005148518A 2005-05-20 2005-05-20 Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo Active JP4823567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148518A JP4823567B2 (en) 2005-05-20 2005-05-20 Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148518A JP4823567B2 (en) 2005-05-20 2005-05-20 Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo

Publications (2)

Publication Number Publication Date
JP2006321646A true JP2006321646A (en) 2006-11-30
JP4823567B2 JP4823567B2 (en) 2011-11-24

Family

ID=37541586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148518A Active JP4823567B2 (en) 2005-05-20 2005-05-20 Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo

Country Status (1)

Country Link
JP (1) JP4823567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106743048A (en) * 2016-12-28 2017-05-31 湖南科技大学 It is a kind of to contribute to moisture absorption and the device and method of accumulation of heat guiding discharge in dump
CN109436854A (en) * 2018-11-20 2019-03-08 河南起重机器有限公司 A kind of loading bulk material on board machine chute structure
CN114030914A (en) * 2021-11-29 2022-02-11 内蒙古智能煤炭有限责任公司 Innovative management method for coal management mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288705A (en) * 1985-10-16 1987-04-23 Fujita Corp Natural firing preventing device in outdoor coal storing facility
JPS6288706A (en) * 1985-10-11 1987-04-23 Mitsui Eng & Shipbuild Co Ltd Natural firing preventing system of coal storage warehouse
JPH11268816A (en) * 1998-03-23 1999-10-05 Ishikawajima Harima Heavy Ind Co Ltd Coal transporting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288706A (en) * 1985-10-11 1987-04-23 Mitsui Eng & Shipbuild Co Ltd Natural firing preventing system of coal storage warehouse
JPS6288705A (en) * 1985-10-16 1987-04-23 Fujita Corp Natural firing preventing device in outdoor coal storing facility
JPH11268816A (en) * 1998-03-23 1999-10-05 Ishikawajima Harima Heavy Ind Co Ltd Coal transporting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106743048A (en) * 2016-12-28 2017-05-31 湖南科技大学 It is a kind of to contribute to moisture absorption and the device and method of accumulation of heat guiding discharge in dump
CN106743048B (en) * 2016-12-28 2022-04-12 湖南科技大学 Device and method for facilitating water absorption and heat storage guiding discharge in coal pile
CN109436854A (en) * 2018-11-20 2019-03-08 河南起重机器有限公司 A kind of loading bulk material on board machine chute structure
CN114030914A (en) * 2021-11-29 2022-02-11 内蒙古智能煤炭有限责任公司 Innovative management method for coal management mechanism

Also Published As

Publication number Publication date
JP4823567B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CN107814213B (en) Pulverized coal storage system and pulverized coal safety management method
TWI434730B (en) Shipping container ozonation system
JP4823567B2 (en) Spontaneous ignition prevention method and spontaneous ignition prevention device for coal storage silo
Stelte Guideline: storage and handling of wood pellets
JP2010501821A (en) Large amount of heavy ash extraction and air / water cooling system
JP2008526409A (en) Deactivation method for fire prevention
JP2007191272A (en) Treatment facility for plastic waste
JP3994216B2 (en) Coal transport equipment
GB2493460A (en) Fire Prevention in Storage Silos
JP2006321645A (en) Method for preventing spontaneous ignition in coal storage silo, and coal humidifier used therefor
JP6381836B1 (en) Pellet biomass fuel storage method, pellet biomass fuel storage
JP2009256424A (en) Storage method and storage equipment for gas hydrate
WO2019039579A1 (en) Crusher and method for operating same
JP2011153176A (en) Method for producing biomass fuel, biomass fuel and biomass carbonization system
CN114748989B (en) Ammonia dilution control method, device and readable storage medium
JP6818105B1 (en) Fuel identification system, control system and solid fuel crusher, and fuel identification method
JP2011218719A (en) Storage device
JP2009197077A (en) Method of controlling temperature of carbonized material by water cooling and carbonized material cooling system
JP2021017256A (en) Storage facility
CN108386866B (en) Self-inerting and stable powder supply system of pulverized coal boiler
KR100546932B1 (en) Container-type dissociation unit for natural gas hydrate
JP2024001358A (en) Powder storage device and dust explosion-proof system thereof
JP2713733B2 (en) Control method of pulverized coal injection amount to blast furnace tuyere
JP2024056609A (en) Self-heating prediction method, trained model, and self-heating control device
CN218936400U (en) Coal conveying control system for helping stable operation of boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250