JP2006321053A - Heat-resistant sound-absorbing and heat insulating material - Google Patents

Heat-resistant sound-absorbing and heat insulating material Download PDF

Info

Publication number
JP2006321053A
JP2006321053A JP2005143624A JP2005143624A JP2006321053A JP 2006321053 A JP2006321053 A JP 2006321053A JP 2005143624 A JP2005143624 A JP 2005143624A JP 2005143624 A JP2005143624 A JP 2005143624A JP 2006321053 A JP2006321053 A JP 2006321053A
Authority
JP
Japan
Prior art keywords
heat
sound
resistant
absorbing
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143624A
Other languages
Japanese (ja)
Inventor
Akira Takayasu
彰 高安
Kazuhiko Kosuge
一彦 小菅
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Takayasu Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Takayasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Takayasu Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2005143624A priority Critical patent/JP2006321053A/en
Publication of JP2006321053A publication Critical patent/JP2006321053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant sound-absorbing and heat insulating material having no concern of the falling-off or pyrolysis of fibers and excellent in sound absorbing properties and heat insulating properties even if installed at a place where a temperature becomes 400-450°C such as a car muffler or the like. <P>SOLUTION: The heat-resistant sound-absorbing and heat insulating material is constituted by laminating a needle punched nonwoven fabric, which is obtained by the needle punching of short fibers comprising a heat-resistant organic fiber such as an aramid fiber or a PBO fiber, on a sheetlike heat-resistant member containing high purity silica-alumina ceramic fibers and inorganic particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性吸音断熱材に関し、特に、4輪または2輪の自動車マフラーの消音に好適なシート状の耐熱性吸音断熱材に関する。   The present invention relates to a heat-resistant sound-absorbing heat insulating material, and particularly to a sheet-shaped heat-resistant sound-absorbing heat insulating material suitable for silencing a four-wheel or two-wheel automobile muffler.

一般に4輪車や2輪車では、内燃機関から発生する音を消音するための吸音・遮音材が使用されている。排気マフラの近傍は、登坂走行時の高負荷や高速走行時の高回転数の条件下では、かなりの高温になる場合がある。従来より、グラスウールやステンレスウール等を吸音材として使用する提案がなされているが、グラスウールは大気中に飛散して大気汚染に繋がるおそれがあり、一方、ステンレスウールはニードリングした時の形状保持性に劣る。   Generally, in a four-wheeled vehicle and a two-wheeled vehicle, a sound absorbing / sound insulating material is used to mute the sound generated from the internal combustion engine. In the vicinity of the exhaust muffler, the temperature may be considerably high under conditions of high load during climbing and high rotation speed during high-speed traveling. Conventionally, glass wool or stainless wool has been proposed as a sound absorbing material, but glass wool may scatter in the atmosphere and lead to air pollution, while stainless wool has a shape retention property when it is needled. Inferior to

そのため、ロックウール等の無機繊維をフェノール樹脂で固めたものを吸音体とし、高温接触面側を有孔金属板で被覆した耐熱吸音材が提案されている(特許文献1等)。しかしながら、フェノール樹脂の耐熱性が劣るために経時で無機繊維が徐々に分離し、吸音性能が低下するという問題がある。   Therefore, a heat-resistant sound-absorbing material in which inorganic fibers such as rock wool are hardened with a phenol resin is used as a sound-absorbing material and the high-temperature contact surface side is covered with a perforated metal plate has been proposed (Patent Document 1, etc.). However, since the heat resistance of the phenol resin is inferior, there is a problem that the inorganic fibers are gradually separated over time and the sound absorption performance is lowered.

また、4輪車や2輪車において排気温度800℃前後となる部位にも適用できる吸音材として、ステンレス鋼繊維をニードルパンチしたシートを、自動車マフラを構成する多孔パイプに外装することが提案されている(特許文献2)。しかしながら、ステンレス鋼繊維は上記したように、ニードリングした時の形状保持性が悪く、経時で繊維の絡み合いがほぐれ、繊維が脱落するという問題がある。
特開平1−211608号公報 特開平8−100627号公報
In addition, as a sound absorbing material that can be applied to a part having an exhaust temperature of about 800 ° C. in a four-wheeled vehicle or a two-wheeled vehicle, it is proposed that a sheet obtained by needle punching a stainless steel fiber is covered with a porous pipe constituting an automobile muffler. (Patent Document 2). However, as described above, the stainless steel fiber has a problem that shape retention is poor when it is needled, the entanglement of the fiber is loosened over time, and the fiber falls off.
Japanese Patent Laid-Open No. 1-211608 Japanese Patent Laid-Open No. 8-100267

本発明は、前記従来の問題点に鑑みてなされたものであり、自動車マフラー等のように温度が400〜450℃になる場所に設置された際でも、繊維の脱落や熱分解のおそれがなく、かつ、吸音性と断熱性に優れる耐熱性吸音断熱材を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and there is no risk of fiber dropping or thermal decomposition even when installed in a place where the temperature is 400 to 450 ° C., such as an automobile muffler. And it aims at providing the heat-resistant sound-absorbing heat insulating material which is excellent in sound-absorbing property and heat insulation.

本発明者らは、上記目的を達成すべく鋭意検討した結果、セラミック繊維と無機粒子とを含む低通気度のシート状不織布に、1種又は2種以上の耐熱性有機繊維の短繊維から構成された高通気度のニードルパンチ不織布を積層することによって、熱放流が促進されて断熱性が向上すると共に、不織布を夫々単独で使用したときよりも吸音性(特に低周波領域における吸音性)が飛躍的に向上し、しかも、吸音断熱材を軽量化できることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the inventors of the present invention are composed of a low-breathing sheet-like nonwoven fabric containing ceramic fibers and inorganic particles, composed of short fibers of one or more types of heat-resistant organic fibers. By laminating needle punched nonwoven fabrics with high air permeability, heat dissipation is promoted and heat insulation is improved, and sound absorbing properties (especially in the low frequency region) are higher than when the nonwoven fabrics are used alone. It has been found that the sound-absorbing and heat-insulating material can be reduced in weight significantly, and has reached the present invention.

すなわち、本発明は以下の通りである。
1)セラミック短繊維と無機粒子とを含むシート状の耐熱部材に、1種又は2種以上の耐熱性有機繊維の短繊維をニードルパンチングして得られたニードルパンチ不織布が積層されてなることを特徴とする耐熱性吸音断熱材、
2)耐熱性吸音断熱材におけるニードルパンチ不織布の通気度が耐熱部材の通気度よりも大きいことを特徴とする前記1)に記載の耐熱性吸音断熱材、
3)前記耐熱部材は、厚さが50mm以下、かつ、密度が0.05〜0.5g/cmの範囲であることを特徴とする前記1)又は2)に記載の耐熱性吸音断熱材、
4)前記ニードルパンチ不織布は、厚さが3〜50mm、かつ、密度が0.01〜0.1g/cmの範囲であることを特徴とする前記1)〜3)のいずれかに記載の耐熱性吸音断熱材、
5)前記耐熱性有機繊維が、アラミド繊維、ポリベンズオキサゾール繊維、ポリアリレート繊維及びポリイミド繊維からなる群より選ばれる少なくとも1種の繊維であることを特徴とする前記1)〜4)のいずれかに記載の耐熱性吸音断熱材、
6)前記セラミック繊維がシリカアルミナ系繊維、アルミナ繊維又はムライト繊維であることを特徴とする前記1)〜5)のいずれかに記載の耐熱性吸音断熱材、
7)前記無機粒子がアルミナ粒子であることを特徴とする前記1)〜6)のいずれかに記載の耐熱性吸音断熱材、
8)前記耐熱部材が、セラミック短繊維が有機又は無機バインダーで結合された構造を有することを特徴とする前記1)〜7)のいずれかに記載の耐熱性吸音断熱材、及び、
9)前記耐熱部材が音源側に配されてなることを特徴とする前記1)〜8)のいずれかに記載の耐熱性吸音断熱材。
That is, the present invention is as follows.
1) A needle punched nonwoven fabric obtained by needle punching one or two or more kinds of heat-resistant organic fiber short fibers is laminated on a sheet-like heat-resistant member containing ceramic short fibers and inorganic particles. Heat-resistant sound-absorbing heat insulating material,
2) The heat-resistant sound-absorbing heat insulating material according to 1) above, wherein the air permeability of the needle punched nonwoven fabric in the heat-resistant sound-absorbing heat insulating material is larger than the air permeability of the heat-resistant member,
3) The heat-resistant sound-absorbing heat insulating material according to 1) or 2), wherein the heat-resistant member has a thickness of 50 mm or less and a density in a range of 0.05 to 0.5 g / cm 3. ,
4) The needle punched nonwoven fabric has a thickness of 3 to 50 mm and a density in the range of 0.01 to 0.1 g / cm 3 . Heat-resistant sound-absorbing heat insulating material,
5) The heat-resistant organic fiber is at least one fiber selected from the group consisting of an aramid fiber, a polybenzoxazole fiber, a polyarylate fiber, and a polyimide fiber, any one of the above 1) to 4) Heat-resistant sound-absorbing heat insulating material as described in
6) The heat-resistant sound-absorbing heat insulating material according to any one of 1) to 5), wherein the ceramic fiber is a silica-alumina fiber, an alumina fiber, or a mullite fiber,
7) The heat-resistant sound-absorbing heat insulating material according to any one of 1) to 6) above, wherein the inorganic particles are alumina particles.
8) The heat-resistant sound-absorbing heat-insulating material according to any one of 1) to 7), wherein the heat-resistant member has a structure in which ceramic short fibers are bonded with an organic or inorganic binder, and
9) The heat-resistant sound-absorbing heat insulating material according to any one of 1) to 8), wherein the heat-resistant member is disposed on a sound source side.

本発明によれば、セラミック短繊維と無機粒子とを含む耐熱部材に、耐熱性有機繊維からなり耐熱性及び通気性に優れかつ軽量なニードルパンチ不織布を積層しているため、軽量、かつ、断熱性と吸音性に優れた耐熱性吸音断熱材を提供することができる。また、ニードルパンチ不織布を積層しているため、耐熱部材からのセラミック繊維等の脱落が生じることなく取扱性に優れている。本発明の耐熱性吸音断熱材は、400〜450℃の高温条件下でも熱劣化が無く安定した吸音性能を発揮するので、4輪車や2輪車の排気マフラー等の吸音材として用いることにより、車外騒音を大幅に低減することができる。   According to the present invention, a heat-resistant member containing ceramic short fibers and inorganic particles is laminated with a needle punched nonwoven fabric made of heat-resistant organic fibers and having excellent heat resistance and air permeability, and is lightweight and heat-insulating. It is possible to provide a heat-resistant sound-absorbing heat insulating material having excellent properties and sound-absorbing properties. Moreover, since the needle punched nonwoven fabric is laminated, the handleability is excellent without the ceramic fibers or the like falling off from the heat-resistant member. Since the heat-resistant sound-absorbing heat insulating material of the present invention exhibits stable sound-absorbing performance without thermal deterioration even at high temperatures of 400 to 450 ° C., it can be used as a sound-absorbing material for exhaust mufflers of four-wheeled vehicles and two-wheeled vehicles. The noise outside the vehicle can be greatly reduced.

また、本発明の耐熱性吸音断熱材は、上記効果に加えて、遮音性、難燃性、機械的強度にも優れているので、耐熱クッション材、耐熱シール材、耐熱搬送用ベルト等として、照明装置、壁材、各種配管周りの断熱・吸音用途に用いることもできる。   Moreover, since the heat-resistant sound-absorbing heat insulating material of the present invention is excellent in sound insulation, flame retardancy, and mechanical strength in addition to the above effects, as a heat-resistant cushioning material, heat-resistant sealing material, heat-resistant conveying belt, etc. It can also be used for heat insulation and sound absorption around lighting devices, wall materials, and various pipes.

本発明の耐熱性吸音断熱材で用いる耐熱部材は、セラミック短繊維と無機粒子とを必須成分として含む。更に、石綿、ガラス繊維、シリカ繊維等の無機繊維や、炭素繊維、金属繊維等の短繊維を含んでいてもよいが、石綿、ガラス繊維などは燃焼時の有害ガス発生のおそれがなく、断熱性及び吸音性の点でも有利である。該耐熱部材は、セラミック短繊維と無機粒子とが無機バインダーで結合された構造を有しているもの、或いは、セラミック繊維と無機粒子が有機バインダーで結合された成形体を乾燥、焼成したものなどが例示される。これらの耐熱部材は、特開2002−284567号公報段落[0033]〜[0046]等に記載の方法により得られる   The heat-resistant member used in the heat-resistant sound-absorbing heat insulating material of the present invention contains ceramic short fibers and inorganic particles as essential components. Furthermore, it may contain inorganic fibers such as asbestos, glass fibers and silica fibers, and short fibers such as carbon fibers and metal fibers. However, asbestos and glass fibers do not cause the generation of harmful gases during combustion and are insulated. This is also advantageous in terms of the properties and sound absorption. The heat-resistant member has a structure in which ceramic short fibers and inorganic particles are bonded with an inorganic binder, or a molded body in which ceramic fibers and inorganic particles are bonded with an organic binder is dried and fired. Is exemplified. These heat resistant members are obtained by the method described in paragraphs [0033] to [0046] of JP-A-2002-284567.

セラミック繊維は、従来公知の各種セラミック繊維を用いることができ、例えば、精製されたアルミナ・シリカ系の鉱物を主原料として繊維化したものを短繊維状に切断したチョップドストランドや、ウイスカー等が挙げられる。チョップドストランドとしては、シリカアルミナ系繊維、アルミナ繊維、ムライト繊維等が挙げられる。また、ウイスカーとしては、ホウ酸アルミニウムウイスカー、チタン酸カリウムウイスカー、炭化珪素ウイスカー、酸化亜鉛ウイスカー、アルミナウイスカー等が挙げられる。   As the ceramic fiber, conventionally known various ceramic fibers can be used, for example, chopped strands obtained by fiberizing refined alumina / silica mineral as a main raw material, and whisker, etc. It is done. Examples of chopped strands include silica-alumina fibers, alumina fibers, mullite fibers, and the like. Examples of the whisker include aluminum borate whisker, potassium titanate whisker, silicon carbide whisker, zinc oxide whisker, and alumina whisker.

なかでも、アルミナ質の含有量が70質量%以上の高アルミナ質のシリカアルミナ系繊維、アルミナ繊維及びムライト繊維は、耐熱性が良好であり、好ましい。   Of these, high alumina silica-alumina fibers, alumina fibers, and mullite fibers having an alumina content of 70% by mass or more are preferable because of their good heat resistance.

また、無機粒子としては、アルミナ粒子が好ましい。なかでも、アルミナ質の含有量が70質量%を超える高アルミナ質粒子が好ましい。   Moreover, as an inorganic particle, an alumina particle is preferable. Among these, high alumina particles having an alumina content exceeding 70% by mass are preferable.

また、上記の無機バインダーとしては、コロイダルシリカ、アルミナゾルが好ましい。   Moreover, as said inorganic binder, colloidal silica and an alumina sol are preferable.

耐熱部材を製造するには、先ず、上記原料に水と有機バインダー(例えば澱粉)を加えて混合して得たスラリーを、吸引脱水成形法により成形し、板状の成形体を得る。この成形体を乾燥させることにより耐熱部材が得られる。この状態では、有機バインダーとコロイダルシリカの分子間力によってセラミック繊維と無機粒子とが相互に結合され、成形体となっている。この状態でも耐熱部材として用いることができるが、更に焼成し、焼成品としてもよい。焼成は800〜1500℃の温度で1時間〜5時間の条件で行えばよい。焼成品は、コロイダルシリカとアルミナ成分とが反応してムライト化し、ムライト質によって結合された状態となっている。使用時に加熱されて有機バインダーの揮発が問題となる場合には、予め焼成し、有機バインダーを除去したものが好適である。   In order to produce a heat-resistant member, first, a slurry obtained by adding and mixing water and an organic binder (for example, starch) to the above raw material is molded by a suction dehydration molding method to obtain a plate-shaped molded body. A heat-resistant member is obtained by drying the molded body. In this state, ceramic fibers and inorganic particles are bonded to each other by an intermolecular force between the organic binder and colloidal silica to form a molded body. Although it can be used as a heat-resistant member even in this state, it may be further fired to obtain a fired product. Firing may be performed at a temperature of 800 to 1500 ° C. for 1 hour to 5 hours. In the fired product, colloidal silica and an alumina component react to form mullite, and are bonded by mullite quality. When the organic binder is volatilized by heating at the time of use, it is preferable to calcinate in advance and remove the organic binder.

このようにして得られた耐熱部材は、厚さが50mm以下であることがが好ましく、より好ましくは1〜40mm、さらに好ましくは1〜30mmである。耐熱部材の密度は、0.05〜0.5g/cmの範囲である。耐熱部材が厚くなるほど吸音性や断熱性は良好になるが、軽量化に反し、マフラー等に巻回する際の取扱性が悪化する。一方、耐熱部材が薄すぎる場合は低周波領域における吸音性が低下する。 The heat-resistant member thus obtained preferably has a thickness of 50 mm or less, more preferably 1 to 40 mm, still more preferably 1 to 30 mm. The density of the heat-resistant member is in the range of 0.05 to 0.5 g / cm 3 . The thicker the heat-resistant member, the better the sound absorption and heat insulation properties, but against the weight reduction, the handleability when wound around a muffler or the like deteriorates. On the other hand, if the heat-resistant member is too thin, the sound absorption in the low frequency region is lowered.

本発明の耐熱性吸音断熱材で用いる耐熱性有機繊維は、溶融温度または熱分解温度が370℃以上の繊維が好ましく用いられる。該耐熱性有機繊維としては、例えば、アラミド繊維、ポリアリレート繊維、ポリベンズオキサゾール(PBO)繊維、ポリベンズチアゾール繊維、ポリベンズイミダゾール(PBI)繊維、ポリイミド繊維、ポリエーテルイミド繊維、ポリエーテルエーテルケトン繊維、ポリエーテルケトン繊維、ポリエーテルケトンケトン繊維、ポリアミドイミド繊維及び耐炎化繊維から選ばれた1種または2種以上の繊維が挙げられる。これらの耐熱性有機繊維は、従来公知のものや、公知の方法またはそれに準ずる方法に従って製造したものを全て使用することができる。   The heat-resistant organic fiber used in the heat-resistant sound-absorbing heat insulating material of the present invention is preferably a fiber having a melting temperature or a thermal decomposition temperature of 370 ° C. or higher. Examples of the heat-resistant organic fibers include aramid fibers, polyarylate fibers, polybenzoxazole (PBO) fibers, polybenzthiazole fibers, polybenzimidazole (PBI) fibers, polyimide fibers, polyetherimide fibers, and polyetheretherketone. One type or two or more types of fibers selected from fiber, polyetherketone fiber, polyetherketoneketone fiber, polyamideimide fiber, and flameproof fiber can be used. As these heat-resistant organic fibers, any conventionally known fibers, those manufactured according to a known method or a method analogous thereto can be used.

耐熱性有機繊維の断面形状は、特に限定されず、真円断面状であってもよいし、異形断面状であってもよい。例えば楕円状、中空状、X断面状、Y断面状、T断面状、L断面状、星型断面状、葉形断面状(例えば三つ葉形状、四葉形状、五葉形状等)、その他の多角断面状(例えば三角状、四角状、五角状、六角状等)などの異形断面状であってもよい。   The cross-sectional shape of the heat-resistant organic fiber is not particularly limited, and may be a perfect circular cross-sectional shape or an irregular cross-sectional shape. For example, elliptical shape, hollow shape, X sectional shape, Y sectional shape, T sectional shape, L sectional shape, star sectional shape, leaf shaped sectional shape (for example, three leaf shape, four leaf shape, five leaf shape, etc.), other polygonal sectional shape (For example, a triangular shape, a square shape, a pentagonal shape, a hexagonal shape, etc.) may be used.

上記の耐熱性有機繊維の中でも、低収縮性で加工性が良く、しかも高温で溶融しない、アラミド繊維、ポリアリレート繊維、ポリベンズオキサゾール(PBO)繊維及びポリイミド繊維が好ましく、さらに好ましいのはアラミド繊維、ポリベンズオキサゾール(PBO)繊維である。   Among the above heat-resistant organic fibers, aramid fibers, polyarylate fibers, polybenzoxazole (PBO) fibers and polyimide fibers, which are low shrinkage, good workability and do not melt at high temperatures, are preferred, and more preferred are aramid fibers. Polybenzoxazole (PBO) fiber.

アラミド繊維には、パラ系アラミド繊維とメタ系アラミド繊維とがあり、パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維(米国デュポン株式会社、東レ・デュポン株式会社製、商品名「KEVLAR」(登録商標))、コポリパラフェニレン−3,4’−オキシジフェニレンテレフタルアミド繊維(帝人株式会社製、商品名「テクノーラ」(登録商標))などがあり、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維(米国デュポン社製商品名「NOMEX(登録商標)」、帝人株式会社製商品名「コーネックス(登録商標)」)などがある。これらのアラミド繊維の中でも、耐熱性に優れる点よりパラ系アラミド繊維が好ましい。   Aramid fibers include para-aramid fibers and meta-aramid fibers. Examples of para-aramid fibers include polyparaphenylene terephthalamide fibers (manufactured by DuPont, Inc., Toray DuPont, trade name “KEVLAR”). ”(Registered trademark)), copolyparaphenylene-3,4′-oxydiphenylene terephthalamide fiber (manufactured by Teijin Ltd., trade name“ Technola ”(registered trademark)) and the like. Metaphenylene isophthalamide fiber (trade name “NOMEX (registered trademark)” manufactured by DuPont, USA, trade name “Conex (registered trademark)” manufactured by Teijin Limited), and the like. Among these aramid fibers, para-aramid fibers are preferable from the viewpoint of excellent heat resistance.

上記のアラミド繊維は、必要に応じて、その繊維表面および繊維内部にフィルムフォーマ、シランカップリング剤および界面活性剤が付与されていてもよい。これらの表面処理剤のアラミド繊維に対する固形分付着量は、0.01〜20質量%の範囲であることが望ましい。   The aramid fiber may be provided with a film former, a silane coupling agent, and a surfactant on the fiber surface and inside the fiber as necessary. The solid content of these surface treatment agents on the aramid fibers is preferably in the range of 0.01 to 20% by mass.

1種又は2種以上の耐熱性有機繊維から構成される不織布は、耐熱性有機繊維の短繊維を従来公知の方法によりニードルパンチングして得られるニードルパンチ不織布が用いられる。ニードルパンチ不織布は、通気度が高いため断熱性が良好で、吸音性も優れ、低密度であるため吸音性能を損なうことなく吸音断熱材の軽量化を達成できる。該ニードルパンチ不織布は少なくとも1層用いればよく、これを積層したものを使用することもできる。   As the nonwoven fabric composed of one or more heat-resistant organic fibers, a needle punched nonwoven fabric obtained by needle-punching short fibers of heat-resistant organic fibers by a conventionally known method is used. Since the needle punched nonwoven fabric has high air permeability, it has good heat insulation, excellent sound absorption, and low density. Therefore, the weight of the sound absorption heat insulating material can be reduced without impairing sound absorption performance. The needle punched nonwoven fabric may be used in at least one layer, and a laminate of these may be used.

短繊維の繊維長および繊度は特に限定されず、加工性や吸音特性等により適宜決定することができる。短繊維の繊度は、通常0.5〜30dtex、好ましくは1.0〜20dtex、より好ましくは1.0〜10dtexである。短繊維の繊維長は10〜100mm、特に好ましくは20〜80mmである。前記耐熱性有機繊維は、同種又は異種の繊維で、繊度や繊維長の異なる繊維を混合して用いることもできる。この場合、繊維の混合比は任意であり、用途や目的に合せて適宜決定することができる。   The fiber length and fineness of the short fibers are not particularly limited, and can be appropriately determined depending on processability, sound absorption characteristics, and the like. The fineness of the short fibers is usually 0.5 to 30 dtex, preferably 1.0 to 20 dtex, more preferably 1.0 to 10 dtex. The fiber length of the short fibers is 10 to 100 mm, particularly preferably 20 to 80 mm. The heat-resistant organic fibers may be the same type or different types of fibers and may be used by mixing fibers having different fineness and fiber length. In this case, the mixing ratio of the fibers is arbitrary, and can be appropriately determined according to the use and purpose.

ニードルパンチ不織布は、密度が0.01〜0.1g/cmの範囲であることが、吸音性能及び断熱性の点より好ましい。密度が小さすぎると吸音性及び断熱性が低下し、大きすぎても耐摩耗性および加工性が低下する。より好ましくは0.02〜0.08g/cmの範囲である。このように、低通気度の耐熱部材に積層する不織布の密度を制御して高通気度にすることによって、熱源からの熱放流が促進され、その結果、吸音断熱材に優れた断熱性能を付与することができる。 The needle punched nonwoven fabric preferably has a density in the range of 0.01 to 0.1 g / cm 3 from the viewpoint of sound absorption performance and heat insulation. If the density is too small, the sound absorption and heat insulation properties decrease, and if it is too large, the wear resistance and workability deteriorate. More preferably, it is the range of 0.02-0.08 g / cm < 3 >. In this way, by controlling the density of the non-woven fabric laminated on the heat-resistant member with low air permeability and increasing the air permeability, heat release from the heat source is promoted, and as a result, excellent heat insulation performance is imparted to the sound-absorbing heat insulating material. can do.

本発明において不織布の厚みは、厚いほど吸音性能が良くなるが、経済性、扱い易さ、吸音材としてのスペース確保等の点から3〜50mm程度が好ましく、さらに好ましくは5〜30mmである。   In the present invention, the thicker the nonwoven fabric, the better the sound absorbing performance, but it is preferably about 3 to 50 mm, more preferably 5 to 30 mm from the viewpoints of economy, ease of handling, and securing of space as a sound absorbing material.

本発明の耐熱性吸音断熱材において用いられる不織布は、耐熱性有機繊維の短繊維からなるウエブをニードルパンチ法によって交絡させ、一体化したものである。ニードルパンチング処理を施すことにより、ウエブの短繊維を交絡させることで該短繊維の脱落を防止することができ、また、適度な通気度を有するとともに、耐熱部材からのセラミック短繊維等の脱落を防止することが可能な不織布を容易に製造することができる。   The nonwoven fabric used in the heat-resistant sound-absorbing heat-insulating material of the present invention is an integral product obtained by interlacing a web made of short fibers of heat-resistant organic fibers by a needle punch method. By performing the needle punching treatment, the short fibers of the web can be entangled to prevent the short fibers from falling off. In addition, while having an appropriate air permeability, the ceramic short fibers etc. can be removed from the heat-resistant member. The nonwoven fabric which can be prevented can be manufactured easily.

ニードルパンチング処理は、ウエブの片面又は両面のいずれに施してもよい。パンチング密度は、少なすぎると短繊維の交絡が不十分となり、多すぎると不織布の通気性が低下して断熱効果や吸音効果が損なわれてしまうため、50〜300回/cm程度が好ましく、より好ましくは50〜100回/cmである。 The needle punching process may be performed on either one side or both sides of the web. If the punching density is too low, the entanglement of the short fibers becomes insufficient, and if it is too high, the air permeability of the nonwoven fabric decreases and the heat insulating effect and the sound absorbing effect are impaired. Therefore, about 50 to 300 times / cm 2 is preferable. more preferably from 50 to 100 times / cm 2.

本発明において、ニードルパンチング処理は、従来と同様のニードルパンチング装置を用いて、従来のニードルパンチング方法に従って行うことができる。   In the present invention, the needle punching process can be performed according to a conventional needle punching method using a needle punching apparatus similar to the conventional one.

耐熱部材と不織布の積層は、非接着状態でもよいが、吸音材の剥離による吸音性能の低下を防止するため、結合させて積層することが好ましい。耐熱部材と不織布の積層は接着剤を使用しない方法では縫合、ニードルパンチなどによる他、台付き金属製接合具を表皮材と複合繊維構造体を貫通させたあと、先端部に別の穴あき金属板を通し、台付き金属製接合部の先端を折り曲げて接合する方法も採用することができる。また、結束機具を用いて固定部材を取り付ける方法も採用することができ、例えばバノックピン(登録商標)(日本バノック社製)などを挙げることができる。   The heat-resistant member and the nonwoven fabric may be laminated in a non-adhered state, but are preferably bonded and laminated in order to prevent a decrease in sound absorption performance due to peeling of the sound absorbing material. Lamination of heat-resistant material and non-woven fabric is done by stitching, needle punching, etc. in a method that does not use an adhesive, and after a metal fitting with a base is passed through the skin material and composite fiber structure, another perforated metal is attached to the tip. It is also possible to employ a method of passing the plate and bending the tip of the metal joint with the base to join. Moreover, the method of attaching a fixing member using a binding machine can also be employed, and examples thereof include Bannock Pin (registered trademark) (manufactured by Bannock Japan).

本発明の耐熱性吸音断熱材において、耐熱部材は音源(マフラー等)側に配置されていることが、優れた吸音性と断熱性を発揮させることができる点より、好ましい。図1は、自動車マフラー2に耐熱性吸音断熱材1を巻回して使用したときの一実施形態を示す断面概略図(図1(a))と円内の部分拡大断面図(図1(b))である。図1中、11は耐熱部材、12は不織布である。耐熱性吸音断熱材は、耐熱部材11をマフラー側にして取付け、外側に不織布を配置することにより、耐熱部材を構成する短繊維や無機粒子の脱落を抑えることができる。また、耐熱部材と不織布との間に、上記の耐熱性有機繊維から形成されるペーパー類(アラミドペーパー等)を介在させてもよい。   In the heat-resistant sound-absorbing heat insulating material of the present invention, it is preferable that the heat-resistant member is disposed on the sound source (muffler or the like) side from the viewpoint that excellent sound absorbing properties and heat insulating properties can be exhibited. 1 is a schematic cross-sectional view (FIG. 1 (a)) showing an embodiment when a heat-resistant sound-absorbing heat insulating material 1 is wound around an automobile muffler 2 and a partially enlarged cross-sectional view in a circle (FIG. 1 (b)). )). In FIG. 1, 11 is a heat-resistant member and 12 is a nonwoven fabric. The heat-resistant sound-absorbing heat insulating material can be attached with the heat-resistant member 11 facing the muffler and a non-woven fabric is arranged on the outside, thereby suppressing the short fibers and inorganic particles constituting the heat-resistant member from falling off. Moreover, you may interpose papers (aramid paper etc.) formed from said heat resistant organic fiber between a heat resistant member and a nonwoven fabric.

本発明の耐熱性吸音断熱材は、必要に応じて染料や顔料で着色されていてもよい。着色方法として、紡糸前に染料や顔料をポリマーと混合して紡糸した原着糸を使用してもよく、各種方法で着色した繊維を用いてもよい。耐熱性吸音断熱材を染料や顔料で着色してもよい。   The heat-resistant sound-absorbing heat insulating material of the present invention may be colored with a dye or a pigment as necessary. As a coloring method, an original yarn obtained by spinning a dye or pigment mixed with a polymer before spinning may be used, or fibers colored by various methods may be used. The heat-resistant sound-absorbing heat insulating material may be colored with a dye or pigment.

本発明の耐熱性吸音断熱材は、その目的や用途に合せて公知の方法等を適用して適宜な大きさ、形状等に加工することにより種々の用途に用いることができ、高度な耐熱性と吸音性と断熱性が求められる用途の全てに用いることができる。   The heat-resistant sound-absorbing heat insulating material of the present invention can be used for various purposes by applying a known method or the like according to its purpose and use, and processing it into an appropriate size, shape, etc. It can be used for all applications that require sound absorption and heat insulation.

例えば、自動車、電車、貨車、船舶、航空機等の内燃機関の消音や遮音;電気掃除機、換気扇、電気洗濯機、電気冷蔵庫、冷凍庫、電気衣類乾燥機、電気ミキサー・ジューサー、エアコン(エアーコンディショナー)、ヘアードライヤー、電気かみそり、空気清浄器、電気除湿器、電気芝刈機等の電化製品の消音や遮音;照明装置の消音や遮音;建築用の壁材;各種配管廻り;ブレーカ(ケーシングの内張等)等の各種用途に用いることができる。特に高温での耐熱性と吸音性能が要求される2輪車や4輪車のエンジンルームや排気マフラーの吸音断熱材として使用することにより、騒音を大幅に低減させることができる。   For example, noise reduction and sound insulation of internal combustion engines such as automobiles, trains, wagons, ships, and aircraft; electric vacuum cleaners, ventilation fans, electric washing machines, electric refrigerators, freezers, electric clothes dryers, electric mixers / juicers, air conditioners (air conditioners) , Hair dryers, electric razors, air cleaners, electric dehumidifiers, electric lawn mowers, etc., silencing and sound insulation; lighting equipment silencing and sound insulation; building wall materials; around various pipes; breakers (casing lining) Etc.). In particular, noise can be greatly reduced by using it as a sound-absorbing heat insulating material for engine rooms and exhaust mufflers of two-wheeled vehicles and four-wheeled vehicles that require heat resistance and sound absorbing performance at high temperatures.

さらに、本発明の耐熱性吸音断熱材は、例えば非常に微細なサンプルなどを観察する触針型顕微鏡、電子顕微鏡等において測定室の空気振動などによりサンプル固定台、機器そのものの微少な揺れ等で観察、写真撮影が困難な場合にも、遮音・吸音性能が優れるため大きな効果を発揮することができる。   Furthermore, the heat-resistant sound-absorbing heat insulating material according to the present invention can be used for example by a slight vibration of the sample fixing table or the instrument itself due to air vibration in a measurement chamber in a stylus microscope or an electron microscope for observing a very fine sample. Even when observation and photography are difficult, the sound insulation and sound absorption performance is excellent, and a great effect can be exhibited.

また、コンプレッサーやエァーポンプ音の遮音、吸音についても、ポンプにかぶせる金属製などのBOXと一緒に耐熱性吸音断熱材を併用することにより、大きな吸音効果が得られる。   Further, with regard to sound insulation and sound absorption of compressor and air pump sound, a large sound absorption effect can be obtained by using a heat-resistant sound-absorbing heat insulating material together with a metal BOX to be put on the pump.

以下、実施例および比較例を用いて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の実施例および比較例における各特性値の測定方法は次の通りである。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples. In addition, the measuring method of each characteristic value in the following examples and comparative examples is as follows.

[吸音性]
JIS A 1409 「残響室法吸音率の測定方法」に準じ、福井県工業技術センター設置の残響室法吸音率測定装置を用い、残響室容積38.9m、表面積68.3m、サンプルの面積5.0mで試験した。吸音性は500Hz時の吸音率で下記のように評価した。
◎:80%以上
○:50%以上
△:50%未満
[Sound absorption]
According to JIS A 1409 “Measurement method of sound absorption coefficient of reverberation room method”, reverberation room volume 38.9 m 3 , surface area 68.3 m 2 , sample area using reverberation room method sound absorption coefficient measurement device installed at Fukui Industrial Technology Center. Tested at 5.0 m 2 . The sound absorption was evaluated as follows with the sound absorption rate at 500 Hz.
◎: 80% or more ○: 50% or more △: Less than 50%

[断熱性]
作成した吸音断熱材を、温度が350〜450℃の熱版に断熱部材が熱版側になるように取付け、熱版からの距離とそのポイントの温度を測定することにより、断熱性を評価した。
[Thermal insulation properties]
The created sound absorbing heat insulating material was attached to a thermal plate having a temperature of 350 to 450 ° C. so that the heat insulating member was on the thermal plate side, and the thermal insulation was evaluated by measuring the distance from the thermal plate and the temperature at that point. .

[遮音性]
JIS A 1416 「実験室における建築部材の空気音遮断性能の測定方法」に準じ福井県工業技術センター設置の透過損失測定装置を用い、音源側(残響室)実験室容積38.9m、表面積68.3m、無響室(受音室)側実験室容積159.0m、表面積177.0m、サンプルの面積0.8m×0.8m=0.64mで試験した。遮音性は5000Hz時の透過損失で下記のように評価した。
◎:50dB以上
○:25dB以上
△:25dB未満
[Sound insulation]
In accordance with JIS A 1416 “Measurement method of air sound insulation performance of building materials in the laboratory”, using the transmission loss measuring device installed at Fukui Industrial Technology Center, the volume on the sound source side (reverberation room) is 38.9 m 3 , surface area 68 .3 m 2 , anechoic chamber (sound receiving chamber) side laboratory volume 159.0 m 3 , surface area 177.0 m 2 , sample area 0.8 m × 0.8 m = 0.64 m 2 . The sound insulation was evaluated as follows by transmission loss at 5000 Hz.
◎: 50 dB or more ○: 25 dB or more Δ: Less than 25 dB

[取扱性]
吸音断熱材取扱い時におけるセラミック繊維の脱落の有無を評価し、脱落の無い場合を良好、有る場合を不良とした。
[Handling]
The presence or absence of falling off of the ceramic fibers during the handling of the sound-absorbing heat insulating material was evaluated.

[厚さ]
圧縮硬さ試験器(株式会社大栄科学精器製作所製)を用い、荷重が0.1g/cm時の厚さを測定した。
[thickness]
Using a compression hardness tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.), the thickness when the load was 0.1 g / cm 2 was measured.

[通気量]
JIS L−1096のフラジール法に基づいて測定した。
[Air flow rate]
It measured based on the fragile method of JIS L-1096.

(実施例1)
東レ・デュポン(株)製のKEVLAR(登録商標)ステープル(1.5dtex×51mm)を用い、通常のニードルパンチ方法により、厚さ11.5mm、目付510g/m、密度0.044g/cmのKEVLAR不織布を作成した。
この不織布に、厚さ12.5mm、目付1594g/m、密度0.123g/cmの高純度シリカアルミナ系断熱部材(ニチアス株式会社製「ファインフレックスブランケット」)を積層し、不織布と耐熱部材を金属ピンで結合することにより積層一体化して吸音断熱材を得た。
Example 1
Using KEVLAR (registered trademark) staple (1.5 dtex × 51 mm) manufactured by Toray DuPont Co., Ltd., a thickness of 11.5 mm, a basis weight of 510 g / m 2 , and a density of 0.044 g / cm 3 by a normal needle punch method A KEVLAR nonwoven fabric was prepared.
A high-purity silica-alumina heat insulating member (“Fine Flex Blanket” manufactured by NICHIAS Corporation) having a thickness of 12.5 mm, a basis weight of 1594 g / m 2 , and a density of 0.123 g / cm 3 is laminated on this nonwoven fabric, and the nonwoven fabric and the heat-resistant member Are combined with a metal pin to obtain a sound-absorbing heat insulating material.

(実施例2)
厚さ90μm、目付57g/m、通気量16cc/cm/secのKEVLAR(登録商標)100%ペーパーを、実施例1で用いた不織布と断熱部材の間に介在させ、これらを実施例1と同様の方法で積層一体化して吸音断熱材を得た。
(Example 2)
KEVLAR (registered trademark) 100% paper having a thickness of 90 μm, a weight per unit area of 57 g / m 2 , and an air flow rate of 16 cc / cm 2 / sec was interposed between the nonwoven fabric and the heat insulating member used in Example 1, and these were used in Example 1. The sound absorbing and heat insulating material was obtained by laminating and integrating in the same manner.

(実施例3)
実施例1で作成したKEVLAR不織布に、厚さ25mm、目付3322g/m、密度0.123g/cmの高純度シリカアルミナ系断熱部材(ニチアス株式会社製「ファインフレックスブランケット」)を積層し、不織布と耐熱部材を金属ピンで結合することにより積層一体化して吸音断熱材を得た。
(Example 3)
On the KEVLAR nonwoven fabric prepared in Example 1, a high-purity silica-alumina-based heat insulating member ("Fine Flex Blanket" manufactured by NICHIAS Corporation) having a thickness of 25 mm, a basis weight of 3322 g / m 2 , and a density of 0.123 g / cm 3 is laminated, The nonwoven fabric and the heat-resistant member were bonded together by metal pins to obtain a sound-absorbing heat insulating material.

(実施例4)
実施例2で用いたものと同じKEVLAR(登録商標)100%ペーパーを、実施例3で用いた不織布と断熱部材の間に介在させ、これらを実施例3と同様の方法で積層一体化して吸音断熱材を得た。
Example 4
The same KEVLAR (registered trademark) 100% paper used in Example 2 is interposed between the nonwoven fabric used in Example 3 and the heat insulating member, and these are laminated and integrated in the same manner as in Example 3 to absorb sound. Insulation was obtained.

(比較例1)
実施例1で用いた東レ・デュポン(株)製のKEVLAR(登録商標)ステープル(1.5dtex、×51mm)を用い、実施例1と同様の条件にて通常のニードルパンチ方法で厚さ11.5mm、目付510g/m、密度0.044g/cmのKEVLER不織布を得た。この不織布に実施例2で用いたKEVLAR(登録商標)100%ペーパーを、実施例1と同様の方法で積層一体化して吸音断熱材を得た。
(Comparative Example 1)
Using the KEVLAR (registered trademark) staple (1.5 dtex, × 51 mm) manufactured by Toray DuPont Co., Ltd. used in Example 1, a thickness of 11. A KEVLER nonwoven fabric having a diameter of 5 mm, a basis weight of 510 g / m 2 and a density of 0.044 g / cm 3 was obtained. The nonwoven fabric 100% KEVLAR (registered trademark) used in Example 2 was laminated and integrated in the same manner as in Example 1 to obtain a sound-absorbing heat insulating material.

(比較例2)
実施例1で用いた東レ・デュポン(株)製のKEVLAR(登録商標)ステープル(1.5dtex、×51mm)を用い、実施例1と同様の条件にて通常のニードルパンチ方法で作成した、厚さ11.5mm、目付510g/m、密度0.044g/cmのKEVLER不織布を用いた。
(Comparative Example 2)
Using the KEVLAR (registered trademark) staple (1.5 dtex, x 51 mm) manufactured by Toray DuPont Co., Ltd. used in Example 1, the thickness was created by a normal needle punch method under the same conditions as in Example 1. A KEVLER nonwoven fabric having a thickness of 11.5 mm, a basis weight of 510 g / m 2 and a density of 0.044 g / cm 3 was used.

(比較例3)
厚さ12.5mm、目付1594g/m、密度0.123g/cmの高純度シリカアルミナ系断熱部材(ニチアス株式会社製「ファインフレックスブランケット」)を用いた。
(Comparative Example 3)
A high-purity silica-alumina heat insulating member (“Fine Flex Blanket” manufactured by NICHIAS Corporation) having a thickness of 12.5 mm, a basis weight of 1594 g / m 2 and a density of 0.123 g / cm 3 was used.

(比較例4)
厚さ25mm、目付3322g/m、密度0.123g/cmの高純度シリカアルミナ系断熱部材(ニチアス株式会社製「ファインフレックスブランケット」)を用いた。
(Comparative Example 4)
A high-purity silica-alumina heat insulating member (“Fine Flex Blanket” manufactured by NICHIAS Corporation) having a thickness of 25 mm, a basis weight of 3322 g / m 2 , and a density of 0.123 g / cm 3 was used.

実施例1〜4及び比較例1〜4の吸音断熱材について、上記の評価方法に従い性能評価を行った。その結果を吸音断熱材の特性値と併せて表1に示す。また、各吸音断熱材の吸音特性(残響室吸音率)を図2、遮音特性(透過損失)を図3に示す。   About the sound-absorbing heat insulating material of Examples 1-4 and Comparative Examples 1-4, performance evaluation was performed according to said evaluation method. The results are shown in Table 1 together with the characteristic values of the sound absorbing heat insulating material. In addition, FIG. 2 shows the sound absorption characteristics (sound absorption coefficient of the reverberation chamber) and FIG. 3 shows the sound insulation characteristics (transmission loss) of each sound absorbing heat insulating material.

表1及び図2の結果から、本発明の吸音断熱材はセラミック繊維の脱落がなく取扱性が良好で、軽量性、断熱性及び吸音性に優れ、特に低周波数領域における吸音性に優れていた。一方、比較例1〜2の吸音断熱材は、軽量で取扱性は良好であったが、吸音性及び断熱性が劣っていた。比較例3の吸音断熱材は吸音性が劣っており、厚みを増した比較例4の吸音断熱材は、吸音性及び断熱性は良好であったが、取扱性に欠けていた。   From the results of Table 1 and FIG. 2, the sound-absorbing heat insulating material of the present invention has good handleability without falling off of the ceramic fibers, is excellent in lightness, heat insulating property and sound absorbing property, and particularly excellent in sound absorbing property in a low frequency region. . On the other hand, although the sound-absorbing heat insulating materials of Comparative Examples 1 and 2 were light and easy to handle, the sound absorbing properties and heat insulating properties were inferior. The sound absorbing heat insulating material of Comparative Example 3 was inferior in sound absorbing properties, and the sound absorbing heat insulating material of Comparative Example 4 having an increased thickness had good sound absorbing properties and heat insulating properties, but lacked handling properties.

図3の結果から、本発明の吸音断熱材は遮音性に優れているが、鉄板に貼り合わせることにより一層優れた透過損失が得られることが確認できた。   From the results of FIG. 3, it was confirmed that the sound-absorbing heat insulating material of the present invention was excellent in sound insulation, but that even better transmission loss was obtained by bonding to an iron plate.

Figure 2006321053
Figure 2006321053

実施例3で作成した吸音断熱材を熱版に取付け、熱版からの距離とそのポイント温度を測定した結果を表2に示す。   Table 2 shows the results of measuring the distance from the hot plate and its point temperature by attaching the sound-absorbing heat insulating material created in Example 3 to the hot plate.

Figure 2006321053
Figure 2006321053

表2の結果から、本発明の吸音断熱材は熱版に取り付けた場合でも最外側となる不織布の表面温度が充分低下しており、断熱性に優れていることが確認できた。   From the results shown in Table 2, it was confirmed that the sound absorbing heat insulating material of the present invention had a sufficiently reduced surface temperature of the outermost nonwoven fabric even when attached to a hot plate, and was excellent in heat insulating properties.

本発明の耐熱性吸音断熱材のマフラーへの使用例を示す概略断面図である。It is a schematic sectional drawing which shows the usage example to the muffler of the heat-resistant sound-absorbing heat insulating material of this invention. 吸音特性(残響室吸音率)を示すグラフである。It is a graph which shows a sound absorption characteristic (reverberation room sound absorption rate). 遮音特性(透過損失)を示すグラフである。It is a graph which shows a sound insulation characteristic (transmission loss).

Claims (9)

セラミック短繊維と無機粒子とを含むシート状の耐熱部材に、1種又は2種以上の耐熱性有機繊維の短繊維をニードルパンチングして得られたニードルパンチ不織布が積層されてなることを特徴とする耐熱性吸音断熱材。 A needle punched nonwoven fabric obtained by needle punching one or two or more kinds of heat-resistant organic fiber short fibers is laminated on a sheet-like heat-resistant member containing ceramic short fibers and inorganic particles. Heat-resistant sound-absorbing heat insulating material. 耐熱性吸音断熱材におけるニードルパンチ不織布の通気度が耐熱部材の通気度よりも大きいことを特徴とする請求項1に記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat insulating material according to claim 1, wherein the air permeability of the needle punched nonwoven fabric in the heat-resistant sound-absorbing heat insulating material is larger than the air permeability of the heat-resistant member. 前記耐熱部材は、厚さが50mm以下、かつ、密度が0.05〜0.5g/cmの範囲であることを特徴とする請求項1又は2に記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat insulating material according to claim 1 or 2, wherein the heat-resistant member has a thickness of 50 mm or less and a density in a range of 0.05 to 0.5 g / cm 3 . 前記ニードルパンチ不織布は、厚さが3〜50mm、かつ、密度が0.01〜0.1g/cmの範囲であることを特徴とする請求項1〜3のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing sound according to any one of claims 1 to 3, wherein the needle punched nonwoven fabric has a thickness of 3 to 50 mm and a density of 0.01 to 0.1 g / cm 3. Insulation. 前記耐熱性有機繊維が、アラミド繊維、ポリベンズオキサゾール繊維、ポリアリレート繊維及びポリイミド繊維からなる群より選ばれる少なくとも1種の繊維であることを特徴とする請求項1〜4のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant organic fiber is at least one fiber selected from the group consisting of an aramid fiber, a polybenzoxazole fiber, a polyarylate fiber, and a polyimide fiber, according to any one of claims 1 to 4. Heat-resistant sound insulation. 前記セラミック繊維がシリカアルミナ系繊維、アルミナ繊維又はムライト繊維であることを特徴とする請求項1〜5のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat insulating material according to any one of claims 1 to 5, wherein the ceramic fiber is a silica-alumina fiber, an alumina fiber, or a mullite fiber. 前記無機粒子がアルミナ粒子であることを特徴とする請求項1〜6のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat insulating material according to any one of claims 1 to 6, wherein the inorganic particles are alumina particles. 前記耐熱部材が、セラミック短繊維が有機又は無機バインダーで結合された構造を有することを特徴とする請求項1〜7のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat-insulating material according to any one of claims 1 to 7, wherein the heat-resistant member has a structure in which ceramic short fibers are bonded with an organic or inorganic binder. 前記耐熱部材が音源側に配されてなることを特徴とする請求項1〜8のいずれかに記載の耐熱性吸音断熱材。 The heat-resistant sound-absorbing heat insulating material according to any one of claims 1 to 8, wherein the heat-resistant member is disposed on a sound source side.
JP2005143624A 2005-05-17 2005-05-17 Heat-resistant sound-absorbing and heat insulating material Pending JP2006321053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143624A JP2006321053A (en) 2005-05-17 2005-05-17 Heat-resistant sound-absorbing and heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143624A JP2006321053A (en) 2005-05-17 2005-05-17 Heat-resistant sound-absorbing and heat insulating material

Publications (1)

Publication Number Publication Date
JP2006321053A true JP2006321053A (en) 2006-11-30

Family

ID=37541078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143624A Pending JP2006321053A (en) 2005-05-17 2005-05-17 Heat-resistant sound-absorbing and heat insulating material

Country Status (1)

Country Link
JP (1) JP2006321053A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539340A (en) * 2007-09-14 2010-12-16 エボニック デグサ ゲーエムベーハー Fiber composite and use of the fiber composite in a vacuum insulation system
JP2011064192A (en) * 2009-08-21 2011-03-31 Nichias Corp Automobile exhaust pipe
JP2011208474A (en) * 2010-03-30 2011-10-20 Cci Corp Drain system
JP2017040255A (en) * 2015-07-28 2017-02-23 イソライト ゲーエムベーハー Continuously fiber-molded article
JP2017095840A (en) * 2015-11-27 2017-06-01 アンビック株式会社 Heat-resistant cushioning material
JP2018161778A (en) * 2017-03-24 2018-10-18 イビデン株式会社 Sound absorber and vehicle component
JP2019520294A (en) * 2016-05-18 2019-07-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Open container and its use
CN111100450A (en) * 2019-12-23 2020-05-05 上海普利特伴泰材料科技有限公司 Reinforced nylon composite material for sound absorption and damping and preparation method thereof
JP2020118231A (en) * 2019-01-24 2020-08-06 株式会社ダイセル Heat insulator and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179474A (en) * 2000-12-07 2002-06-26 Toshiba Monofrax Co Ltd Refractory heat-insulating material and its production process
JP2004353128A (en) * 2003-05-29 2004-12-16 Makio Naito Porous body-coated fiber and heat-insulating material
WO2005019783A1 (en) * 2003-08-25 2005-03-03 Takayasu Co., Ltd. Sound absorbing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179474A (en) * 2000-12-07 2002-06-26 Toshiba Monofrax Co Ltd Refractory heat-insulating material and its production process
JP2004353128A (en) * 2003-05-29 2004-12-16 Makio Naito Porous body-coated fiber and heat-insulating material
WO2005019783A1 (en) * 2003-08-25 2005-03-03 Takayasu Co., Ltd. Sound absorbing material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539340A (en) * 2007-09-14 2010-12-16 エボニック デグサ ゲーエムベーハー Fiber composite and use of the fiber composite in a vacuum insulation system
JP2011064192A (en) * 2009-08-21 2011-03-31 Nichias Corp Automobile exhaust pipe
JP2011208474A (en) * 2010-03-30 2011-10-20 Cci Corp Drain system
JP2017040255A (en) * 2015-07-28 2017-02-23 イソライト ゲーエムベーハー Continuously fiber-molded article
JP2017095840A (en) * 2015-11-27 2017-06-01 アンビック株式会社 Heat-resistant cushioning material
JP2019520294A (en) * 2016-05-18 2019-07-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Open container and its use
JP2018161778A (en) * 2017-03-24 2018-10-18 イビデン株式会社 Sound absorber and vehicle component
JP2020118231A (en) * 2019-01-24 2020-08-06 株式会社ダイセル Heat insulator and manufacturing method thereof
JP7337505B2 (en) 2019-01-24 2023-09-04 株式会社ダイセル Insulation material and its manufacturing method
CN111100450A (en) * 2019-12-23 2020-05-05 上海普利特伴泰材料科技有限公司 Reinforced nylon composite material for sound absorption and damping and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006321053A (en) Heat-resistant sound-absorbing and heat insulating material
KR101114805B1 (en) Sound absorbing material
USRE46859E1 (en) Composite laminate for a thermal and acoustic insulation blanket
CA2782413C (en) Multilayer mounting mat for pollution control devices
EP3262287B1 (en) High temperature resistant insulation mat
MXPA00007658A (en) High performance insulations.
JP2009249780A (en) Heat-resistant thermal insulating material
EP2985435B1 (en) Holding seal member, method for producing holding seal member, and exhaust gas purification device
US9056440B2 (en) Holding seal material, exhaust gas purifying apparatus and method of manufacturing holding seal material
JP6191233B2 (en) Molded sheet and method for producing molded sheet
JP2007086505A (en) Sound absorbing and insulating material
JP2006138935A (en) Heat-resistant acoustic material
JP2014092150A (en) Holding seal material, holding seal material manufacturing method and exhaust gas purification device
US10465586B2 (en) Inorganic fibre mats
WO2009081760A1 (en) Heat-insulating sound-absorbing material for vehicle
JP6218529B2 (en) Holding sealing material, manufacturing method of holding sealing material, manufacturing method of exhaust gas purification device, and exhaust gas purification device
JP2018028314A (en) Sound absorption structure and manufacturing method of sound absorption structure
JP2001316961A (en) Sound-absorbing structural body
JP6936597B2 (en) Vehicle parts
CN113891965B (en) Nonwoven fibrous web
KR20230154016A (en) Multi-layer fire resistant sheet
JP7097781B2 (en) Laminated sheet
JP2010089706A (en) Heat insulating and sound absorbing material for vehicle
WO2018159504A1 (en) Cover material for acoustic insulation and engine unit
JP2002316009A (en) Flame resistant filter medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316