JP2006319600A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2006319600A
JP2006319600A JP2005139387A JP2005139387A JP2006319600A JP 2006319600 A JP2006319600 A JP 2006319600A JP 2005139387 A JP2005139387 A JP 2005139387A JP 2005139387 A JP2005139387 A JP 2005139387A JP 2006319600 A JP2006319600 A JP 2006319600A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
idt
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005139387A
Other languages
Japanese (ja)
Other versions
JP4765396B2 (en
Inventor
Kunihito Yamanaka
国人 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005139387A priority Critical patent/JP4765396B2/en
Publication of JP2006319600A publication Critical patent/JP2006319600A/en
Application granted granted Critical
Publication of JP4765396B2 publication Critical patent/JP4765396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device which has IDT electrodes and reflecting electrodes on a piezoelectric substrate, and has a pass property of a low loss and small inband deviation. <P>SOLUTION: The reflecting electrodes 4 are arranged inside an IDT electrode 2 and outside the IDT electrodes 1, 2. The reflecting electrodes 4 are so structured that floating electrodes O1, S1, O2 and S2 are arranged one by one along the propagation direction of a surface acoustic wave, that the floating electrodes O1, O2 are made to function as open type gratings, and that the floating electrodes S1, S2 are made to function as short-circuited gratings by electrically being connected to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弾性表面波デバイスにおいて、挿入損失と帯域内偏差を改善することを目的とした弾性表面波デバイスに関する。   The present invention relates to a surface acoustic wave device intended to improve insertion loss and in-band deviation in a surface acoustic wave device.

近年、弾性表面波(以下、SAWと称す)デバイスは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話等に多く用いられる。画像等のデータ通信の需要増により、携帯電話に用いられるIFフィルタには低損失で帯域内偏差の小さな特性が要求され、このような厳しい仕様を満たすフィルタとしてはトランスバーサルSAWフィルタが適している。   In recent years, surface acoustic wave (hereinafter referred to as SAW) devices have been widely used in the communication field, and are often used particularly for cellular phones and the like because they have excellent characteristics such as high performance, small size, and mass productivity. Due to the increasing demand for data communication such as images, IF filters used in mobile phones are required to have low loss and small in-band deviation characteristics, and transversal SAW filters are suitable as filters that satisfy such strict specifications. .

図5は従来のトランスバーサルSAWフィルタの平面図を示している。圧電基板の主表面上にSAWの伝搬方向に沿って入力用のIDT電極11と出力用のIDT電極12を所定の間隔をあけて配置すると共に、該IDT電極11、12の間に入出力端子間の直達波を遮蔽するためのシールド電極13を配置する。前記IDT電極11、12は正電極指2本、負電極指2本を1対としたスプリット電極により構成されており、IDT電極11の一方のくし形電極を入力端子INに接続すると共に他方のくし形電極は接地し、IDT電極12の一方のくし形電極を出力端子OUTに接続すると共に他方のくし形電極を接地することによりトランスバーサルSAWフィルタを形成している。   FIG. 5 shows a plan view of a conventional transversal SAW filter. An input IDT electrode 11 and an output IDT electrode 12 are arranged at a predetermined interval along the SAW propagation direction on the main surface of the piezoelectric substrate, and an input / output terminal is provided between the IDT electrodes 11 and 12. A shield electrode 13 for shielding a direct wave therebetween is arranged. The IDT electrodes 11 and 12 are composed of split electrodes in which two pairs of positive electrode fingers and two negative electrode fingers are paired, and one comb electrode of the IDT electrode 11 is connected to the input terminal IN and the other The comb electrode is grounded, and a transversal SAW filter is formed by connecting one comb electrode of the IDT electrode 12 to the output terminal OUT and grounding the other comb electrode.

図6は、前記トランスバーサルSAWフィルタの通過特性を示している。なお、中心周波数を40MHzとし、圧電基板にニオブ酸リチウムを用い、IDT電極11の対数を5対、IDT電極12の対数を7対としている。同図に示すように、通過帯域は中心周波数付近で大きく凸となっており、帯域内偏差が著しく劣化しているのが分かる。
特開昭60−263505号公報 M.Takeuchi and K.Yamanouchi:“ New Type of SAW Reflectors and Resonators Consisting of Reflecting Elements with Positive and Negative Reflection Coefficients”, IEEE Trans.Ultrason. Ferroelec. Freq. Contr.,vol.33, No.4, pp.369-374 (1986).
FIG. 6 shows the pass characteristics of the transversal SAW filter. The center frequency is 40 MHz, lithium niobate is used for the piezoelectric substrate, the IDT electrode 11 has 5 pairs, and the IDT electrode 12 has 7 pairs. As shown in the figure, the pass band is greatly convex near the center frequency, and it can be seen that the in-band deviation is significantly degraded.
JP-A-60-263505 M. Takeuchi and K. Yamanouchi: “New Type of SAW Reflectors and Resonators Consisting of Reflecting Elements with Positive and Negative Reflection Coefficients”, IEEE Trans.Ultrason. Ferroelec. Freq. Contr., Vol.33, No.4, pp. 369-374 (1986).

前述のように、従来のトランスバーサルSAWフィルタは帯域内偏差が著しく悪いという問題があった。この問題を解決するためには、図7に示すようにIDT電極11、12の外側に隣り合う電極指同士を電気的に接続した短絡型の反射電極14を複数対配置して反射効率を高める方法が適している。   As described above, the conventional transversal SAW filter has a problem that the in-band deviation is remarkably bad. In order to solve this problem, as shown in FIG. 7, a plurality of pairs of short-circuited reflective electrodes 14 in which adjacent electrode fingers are electrically connected to each other outside the IDT electrodes 11 and 12 are arranged to increase the reflection efficiency. The method is suitable.

図8は、図7のトランスバーサルSAWフィルタの通過特性を示している。なお、中心周波数を40MHzとし、圧電基板にニオブ酸リチウムを用い、IDT電極11の対数を5対、IDT電極12の対数を7対としている。そして、反射電極14を4、6、8対と変化させた時の通過特性を重ね合わせて図示している。同図に示すように、反射電極の対数を増加させると、通過帯域の中心周波数付近の凸部が次第に小さくなり、帯域内偏差が改善されているのが分かる。しかし、その一方で反射電極の対数を増加させると通過特性が単峰となり、挿入損失や帯域幅が劣化してしまう問題が生じる。   FIG. 8 shows the pass characteristics of the transversal SAW filter of FIG. The center frequency is 40 MHz, lithium niobate is used for the piezoelectric substrate, the IDT electrode 11 has 5 pairs, and the IDT electrode 12 has 7 pairs. Then, the transmission characteristics when the reflective electrode 14 is changed to 4, 6, and 8 pairs are superimposed and shown. As shown in the figure, it can be seen that when the number of reflection electrodes is increased, the convex portion near the center frequency of the pass band gradually decreases, and the in-band deviation is improved. However, on the other hand, when the number of the reflective electrodes is increased, the pass characteristic becomes a single peak, and there arises a problem that the insertion loss and the bandwidth are deteriorated.

以上説明した問題点を解決すべく、本発明では、SAWデバイスにおいて低損失で帯域内偏差の小さい通過特性を実現することを目的とする。   In order to solve the problems described above, an object of the present invention is to realize a pass characteristic with a low loss and a small in-band deviation in a SAW device.

上記課題を解決するために本発明に係るSAWデバイスの請求項1に記載の発明は、圧電基板と、該圧電基板上に形成したIDT電極と、該IDT電極の内部及び外側に配置した反射電極とを備えた弾性表面波デバイスにおいて、前記反射電極は弾性表面波の伝搬方向に沿って第1乃至第4の浮き電極を順次配置し第1及び第3の浮き電極同士、或いは第2及び第4の浮き電極同士を短絡した構造であることを特徴とする。   In order to solve the above problems, the invention according to claim 1 of the SAW device according to the present invention comprises a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate, and a reflective electrode disposed inside and outside the IDT electrode. In the surface acoustic wave device, the first to fourth floating electrodes are sequentially arranged in the reflection electrode along the propagation direction of the surface acoustic wave, and the first and third floating electrodes or the second and second floating electrodes are arranged. It is the structure which short-circuited 4 floating electrodes.

請求項2に記載の発明は、前記反射電極の少なくとも1つは他の反射電極に対し左右反転した構造であることを特徴とする。   The invention according to claim 2 is characterized in that at least one of the reflective electrodes has a structure that is horizontally reversed with respect to the other reflective electrodes.

請求項3に記載の発明は、前記圧電基板はニオブ酸リチウムであることを特徴とする。   The invention described in claim 3 is characterized in that the piezoelectric substrate is lithium niobate.

本発明の請求項1に記載の発明によれば、IDT電極の内部及び外側に、弾性表面波の伝搬方向に沿って第1乃至第4の浮き電極を順次配置し第1及び第3の浮き電極同士、或いは第2及び第4の浮き電極同士を短絡した反射電極を配置することにより、低損失で帯域内偏差の小さいSAWデバイスを実現することができる。   According to the first aspect of the present invention, the first and third floating electrodes are sequentially arranged inside and outside the IDT electrode along the propagation direction of the surface acoustic wave. By disposing a reflective electrode in which the electrodes or the second and fourth floating electrodes are short-circuited, a SAW device with a low loss and a small in-band deviation can be realized.

請求項2に記載の発明によれば、前記反射電極の少なくとも1つを他の反射電極に対し左右反転した構造にすることにより、請求項1に記載のSAWデバイスよりも挿入損失を更に改善することができる。   According to the invention described in claim 2, the insertion loss is further improved as compared with the SAW device according to claim 1 by adopting a structure in which at least one of the reflection electrodes is horizontally reversed with respect to the other reflection electrodes. be able to.

請求項3に記載の発明によれば、圧電基板にニオブ酸リチウムを用いることにより広帯域な通過特性を実現することができる。   According to the third aspect of the present invention, wide band pass characteristics can be realized by using lithium niobate for the piezoelectric substrate.

以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は、本発明に係るSAWデバイスを示している。圧電基板の主表面上にSAWの伝搬方向に沿って入力用のIDT電極1と出力用のIDT電極2を所定の間隔をあけて配置すると共に、IDT電極1、2の間に入出力端子間の直達波を遮蔽するためのシールド電極3を配置する。前記IDT電極1、2は正電極指2本、負電極指2本を1対としたスプリット電極により構成しており、IDT電極1の一方のくし形電極を入力端子INに接続すると共に他方のくし形電極は接地し、IDT電極2の一方のくし形電極を出力端子OUTに接続すると共に他方のくし形電極を接地している。なお、励振電極をスプリット電極としたのは、励振電極間の反射が重畳するのを防止し、対称な伝達応答を得るためである。そして、IDT電極1、2の外側とIDT電極2の内部に反射電極4を配置する。図1(b)は反射電極4の拡大図を示しており、反射電極4は4本の浮き電極から構成され、浮き電極O1、O2を開放型グレーティングとして機能させ、浮き電極S1、S2を互いに電気的に短絡することにより短絡グレーティングとして機能させている。   Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 shows a SAW device according to the present invention. An input IDT electrode 1 and an output IDT electrode 2 are arranged at a predetermined interval along the SAW propagation direction on the main surface of the piezoelectric substrate, and between the input / output terminals between the IDT electrodes 1 and 2. A shield electrode 3 for shielding the direct wave is arranged. The IDT electrodes 1 and 2 are composed of split electrodes in which two pairs of positive electrode fingers and two negative electrode fingers are paired. One comb electrode of the IDT electrode 1 is connected to the input terminal IN and the other one is connected. The comb electrode is grounded, one comb electrode of the IDT electrode 2 is connected to the output terminal OUT, and the other comb electrode is grounded. The reason why the excitation electrodes are split electrodes is to prevent reflections between the excitation electrodes from overlapping and to obtain a symmetrical transmission response. The reflective electrode 4 is disposed outside the IDT electrodes 1 and 2 and inside the IDT electrode 2. FIG. 1 (b) shows an enlarged view of the reflective electrode 4. The reflective electrode 4 is composed of four floating electrodes. The floating electrodes O1 and O2 function as open gratings, and the floating electrodes S1 and S2 are connected to each other. It is made to function as a short-circuit grating by electrically short-circuiting.

前記反射電極は、特許文献1及び非特許文献1にて開示されているPNR(Positive and Nagative Reflectivity:正負反射型反射エレメント)と同じである。特許文献1及び非特許文献1によれば、PNRをSAW共振子のIDT電極の外側に配置することで、従来の開放型又は短絡型の反射電極と比較してバルク波へのモード変換を小さくでき、反射効率を高めることができると開示されている。これに対し本発明では、IDT電極の外側とIDT電極の内部の両方にPNRを配置することにより反射効率を高め、挿入損失と帯域内偏差の改善を図った。 The reflective electrode is the same as PNR (Positive and Nagative Reflectivity) disclosed in Patent Document 1 and Non-Patent Document 1. According to Patent Document 1 and Non-Patent Document 1, by placing the PNR outside the IDT electrode of the SAW resonator, mode conversion to a bulk wave is reduced as compared with a conventional open type or short type reflective electrode. It is disclosed that the reflection efficiency can be increased. On the other hand, in the present invention, the PNR is disposed both outside the IDT electrode and inside the IDT electrode, thereby improving the reflection efficiency and improving the insertion loss and in-band deviation.

図2は本発明のトランスバーサルSAWフィルタの通過特性を示しており、中心周波数を40MHzとし、圧電基板にニオブ酸リチウムを用い、IDT電極1の対数を5対、IDT電極2の対数を7対とし、IDT電極1、2の外側に反射電極4を5対配置し、IDT電極2の内部に反射電極4を1個配置している。なお、比較のために、同図の従来1に示す特性は図6の通過特性を、従来2に示す特性はIDT電極の外側にのみ反射電極を5対配置し、IDT電極の内部には反射電極を配置しない時のトランスバーサルSAWフィルタの通過特性を示している。 FIG. 2 shows the pass characteristics of the transversal SAW filter of the present invention. The center frequency is 40 MHz, lithium niobate is used for the piezoelectric substrate, the IDT electrode 1 has 5 pairs, and the IDT electrode 2 has 7 pairs. 5 pairs of reflective electrodes 4 are arranged outside the IDT electrodes 1 and 2, and one reflective electrode 4 is arranged inside the IDT electrode 2. For comparison, the characteristic shown in FIG. 6 is the pass characteristic shown in FIG. 6 and the characteristic shown in conventional 2 is that five pairs of reflective electrodes are arranged only outside the IDT electrode, and the reflection inside the IDT electrode is reflected. The pass characteristic of the transversal SAW filter when no electrode is disposed is shown.

図2より、本発明のトランスバーサルSAWフィルタの通過特性は従来1の特性と比較して、通過帯域の中心周波数付近の凸部が小さくなっており帯域内偏差が大幅に改善されていることが分かる。また、通過帯域の形状は角形で、低損失、広帯域な特性が得られている。具体的には、本発明のトランスバーサルSAWフィルタでは、挿入損失が10.4(dB)、帯域内偏差が0.7(dB)の特性が得られた。また、本発明と従来2の特性とを比較すると、従来2の特性は挿入損失が11.0(dB)、帯域内偏差が1.1(dB)であり、本発明のトランスバーサル型フィルタの方が挿入損失及び帯域内偏差が良好であった。これにより、反射電極をIDT電極の外側と内部に分散して配置した方が挿入損失及び帯域内偏差を改善できることが確認された。 From FIG. 2, it can be seen that the pass characteristic of the transversal SAW filter of the present invention is smaller in the convex portion near the center frequency of the pass band than in the conventional characteristic 1, and the in-band deviation is greatly improved. I understand. Further, the shape of the pass band is a square, and low loss and wide band characteristics are obtained. Specifically, in the transversal SAW filter of the present invention, characteristics with an insertion loss of 10.4 (dB) and an in-band deviation of 0.7 (dB) were obtained. Further, when comparing the characteristics of the present invention with the characteristics of Conventional 2, the characteristics of Conventional 2 have an insertion loss of 11.0 (dB) and an in-band deviation of 1.1 (dB). The insertion loss and in-band deviation were better. Thus, it was confirmed that the insertion loss and the in-band deviation can be improved by disposing the reflective electrode on the outside and inside of the IDT electrode.

以上説明したように、本発明のトランスバーサルSAWフィルタは、電極の外側及び内部にPNR型の反射電極を配置することにより、従来のSAWデバイスと比較して低損失で帯域内偏差の小さい通過特性を実現した。また、圧電基板にニオブ酸リチウムを用いているので広帯域な特性が得られた。なお、図1ではIDT電極2の内部にのみ反射電極4を配置しているが、IDT電極1、2の両方の内部に反射電極4を配置しても良い。   As described above, the transversal SAW filter according to the present invention has a low-loss and low in-band deviation compared with a conventional SAW device by disposing a PNR type reflection electrode outside and inside the electrode. Realized. In addition, wide bandwidth characteristics were obtained because lithium niobate was used for the piezoelectric substrate. In FIG. 1, the reflective electrode 4 is arranged only inside the IDT electrode 2, but the reflective electrode 4 may be arranged inside both the IDT electrodes 1 and 2.

図3は本発明に係るSAWデバイスの変形例を示しており、図1と異なる点は、IDT電極2の内部に配置したPNR型の反射電極5を、IDT電極1、2の外側に配置したPNR型の反射電極4に対し左右反転して配置した点であり、それ以外の構造は図1と同等である。   FIG. 3 shows a modification of the SAW device according to the present invention. The difference from FIG. 1 is that a PNR type reflection electrode 5 arranged inside the IDT electrode 2 is arranged outside the IDT electrodes 1 and 2. The structure is the same as that shown in FIG. 1 except that the PNR type reflection electrode 4 is reversed from side to side.

図4は図3のトランスバーサルSAWフィルタの通過特性を示しており、中心周波数を40MHzとし、圧電基板にニオブ酸リチウムを用い、IDT電極1の対数を5対、IDT電極2の対数を7対とし、IDT電極1、2の外側に反射電極4を5対配置し、IDT電極2の内部に左右反転させた反射電極5を1個配置している。なお、比較のために、同図の破線に示す特性は図1のトランスバーサルSAWフィルタの通過特性を示している。同図より、実線に示す図3のトランスバーサルSAWフィルタは挿入損失は10.0(dB)、帯域内偏差は0.8(dB)であり、図1のトランスバーサルSAWフィルタと比較してほぼ同等の帯域内偏差を保ちつつ、挿入損失を更に改善できることが確認された。 FIG. 4 shows the pass characteristics of the transversal SAW filter of FIG. 3. The center frequency is 40 MHz, lithium niobate is used for the piezoelectric substrate, the IDT electrode 1 has 5 pairs, and the IDT electrode 2 has 7 pairs. 5 pairs of reflective electrodes 4 are arranged outside the IDT electrodes 1 and 2, and one reflective electrode 5 that is horizontally reversed is arranged inside the IDT electrode 2. For comparison, the characteristic indicated by the broken line in FIG. 4 indicates the pass characteristic of the transversal SAW filter in FIG. From the figure, the transversal SAW filter of FIG. 3 indicated by the solid line has an insertion loss of 10.0 (dB) and an in-band deviation of 0.8 (dB), which is almost the same as the transversal SAW filter of FIG. It was confirmed that the insertion loss can be further improved while maintaining the same in-band deviation.

なお、図3ではIDT電極の内部に左右反転させたPNR型の反射電極を配置した例について説明したが、IDT電極の外側に配置した反射電極を左右反転させても挿入損失の改善に効果があることを実験により確認した。   In addition, although the example which arrange | positioned the PNR type | mold reflective electrode reversed left and right inside the IDT electrode was demonstrated in FIG. 3, even if the reflection electrode arrange | positioned outside the IDT electrode is reversed right and left, it is effective in the improvement of insertion loss. It was confirmed by experiment.

以上では、圧電基板に広帯域な特性を実現できるニオブ酸リチウムを用いた例について説明したが本発明はこれに限定されるものではなく、圧電基板に水晶、タンタル酸リチウム、四硼酸リチウム、ランガサイト等に用いた場合にも適用できることは言うまでもない。また、トランスバーサルSAWフィルタ以外の共振器型やモード結合型フィルタ等においても本発明が適用できることは言うまでもない。   In the above, an example in which lithium niobate capable of realizing broadband characteristics is used for the piezoelectric substrate has been described. However, the present invention is not limited to this, and quartz, lithium tantalate, lithium tetraborate, langasite is used for the piezoelectric substrate. Needless to say, the present invention can also be applied when used in the above. Needless to say, the present invention can also be applied to a resonator type or a mode coupled filter other than the transversal SAW filter.

本発明に係るトランスバーサルSAWフィルタを説明する図であり、(a)に平面図を、(b)にPNR型の反射電極を示す。It is a figure explaining the transversal SAW filter which concerns on this invention, (a) shows a top view, (b) shows a PNR type reflective electrode. 本発明と従来のトランスバーサルSAWフィルタの通過特性の比較を示す。The comparison of the pass characteristic of this invention and the conventional transversal SAW filter is shown. 本発明に係るトランスバーサルSAWフィルタの変形例を示す。The modification of the transversal SAW filter which concerns on this invention is shown. 本発明に係るトランスバーサルSAWフィルタの変形例の通過特性を示す。The pass characteristic of the modification of the transversal SAW filter which concerns on this invention is shown. 従来のトランスバーサルSAWフィルタの平面図を示す。The top view of the conventional transversal SAW filter is shown. 従来のトランスバーサルSAWフィルタの通過特性を示す。The pass characteristic of the conventional transversal SAW filter is shown. 従来の短絡型の反射電極を配置したトランスバーサルSAWフィルタの平面図を示す。The top view of the transversal SAW filter which has arrange | positioned the conventional short type reflective electrode is shown. 従来の短絡型の反射電極を配置したトランスバーサルSAWフィルタの反射電極の対数を変化させた時の通過特性を示す。The transmission characteristic when the logarithm of the reflective electrode of the transversal SAW filter which has arrange | positioned the conventional short-circuited reflective electrode is changed is shown.

符号の説明Explanation of symbols

1、2:IDT電極
3:シールド電極
4、5:反射電極
O1、O2:開放型浮き電極
S1、S2:短絡型浮き電極
1, 2: IDT electrode 3: Shield electrode 4, 5: Reflective electrode O1, O2: Open type floating electrode S1, S2: Short-circuit type floating electrode

Claims (3)

圧電基板と、該圧電基板上に形成したIDT電極と、該IDT電極の内部及び外側に配置した反射電極とを備えた弾性表面波デバイスにおいて、
前記反射電極は弾性表面波の伝搬方向に沿って第1乃至第4の浮き電極を順次配置し第1及び第3の浮き電極同士、或いは第2及び第4の浮き電極同士を短絡した構造であることを特徴とした弾性表面波デバイス。
In a surface acoustic wave device comprising a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate, and reflective electrodes disposed inside and outside the IDT electrode,
The reflective electrode has a structure in which first to fourth floating electrodes are sequentially arranged along the propagation direction of the surface acoustic wave, and the first and third floating electrodes or the second and fourth floating electrodes are short-circuited. A surface acoustic wave device characterized by being.
前記反射電極の少なくとも1つは、他の反射電極に対し左右反転した構造であることを特徴とした請求項1に記載の弾性表面波デバイス。   The surface acoustic wave device according to claim 1, wherein at least one of the reflective electrodes has a structure that is horizontally reversed with respect to the other reflective electrodes. 前記圧電基板は、ニオブ酸リチウムであることを特徴とした請求項1又は2に記載の弾性表面波デバイス。
The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is lithium niobate.
JP2005139387A 2005-05-12 2005-05-12 Transversal surface acoustic wave filter Expired - Fee Related JP4765396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139387A JP4765396B2 (en) 2005-05-12 2005-05-12 Transversal surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139387A JP4765396B2 (en) 2005-05-12 2005-05-12 Transversal surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2006319600A true JP2006319600A (en) 2006-11-24
JP4765396B2 JP4765396B2 (en) 2011-09-07

Family

ID=37539874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139387A Expired - Fee Related JP4765396B2 (en) 2005-05-12 2005-05-12 Transversal surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4765396B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123123A (en) * 1983-10-14 1985-07-01 イギリス国 Acoustic converter
JPS60263505A (en) * 1984-06-11 1985-12-27 Kazuhiko Yamanouchi Elastic surface wave reflector and resonator having positive and negative reflection coefficients
JPH1093374A (en) * 1997-10-20 1998-04-10 Kazuhiko Yamanouchi Surface acoustic wave device and surface acoustic wave filter
JPH10256863A (en) * 1997-03-11 1998-09-25 Ngk Insulators Ltd Surface acoustic wave filter and converter used for it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123123A (en) * 1983-10-14 1985-07-01 イギリス国 Acoustic converter
JPS60263505A (en) * 1984-06-11 1985-12-27 Kazuhiko Yamanouchi Elastic surface wave reflector and resonator having positive and negative reflection coefficients
JPH10256863A (en) * 1997-03-11 1998-09-25 Ngk Insulators Ltd Surface acoustic wave filter and converter used for it
JPH1093374A (en) * 1997-10-20 1998-04-10 Kazuhiko Yamanouchi Surface acoustic wave device and surface acoustic wave filter

Also Published As

Publication number Publication date
JP4765396B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US7659653B2 (en) Acoustic wave device and filter
US9847770B2 (en) Elastic wave resonator, elastic wave filter apparatus, and duplexer
JPH06260876A (en) Surface acoustic wave filter
JP3419339B2 (en) Surface acoustic wave filters, duplexers, communication equipment
CN115913166A (en) Surface acoustic wave resonator, surface acoustic wave filter and duplexer
WO2023035235A1 (en) Resonator, filter, and electronic device
JP2008078981A (en) Surface acoustic wave resonator, surface acoustic wave filter and antenna duplexer using the same
JP2014160888A (en) Acoustic wave resonator, acoustic wave filter using the same and antenna duplexer
JP2001308675A (en) Surface wave filter and common device, communication device
JP3915322B2 (en) Surface acoustic wave filter
JP4457914B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP4053038B2 (en) Surface acoustic wave device
US20220158611A1 (en) Surface acoustic wave resonator arrangement
JP4765396B2 (en) Transversal surface acoustic wave filter
JP2002217680A (en) Ladder-type surface acoustic wave filter
JP4548305B2 (en) Dual-mode surface acoustic wave filter
JPH10209806A (en) Surface acoustic wave device
JP3290164B2 (en) Surface acoustic wave filter
JP4710186B2 (en) Vertically coupled double mode SAW filter
JP2000341086A (en) Ladder type saw filter
JP4200629B2 (en) Vertically coupled multimode SAW filter
JP4506394B2 (en) Unidirectional surface acoustic wave transducer and surface acoustic wave device using the same
JP2000224003A (en) Cascade connection dual-mode saw filter
JP2006157557A (en) Surface acoustic wave device
JPH10145183A (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees