JP2006319037A - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
JP2006319037A
JP2006319037A JP2005138452A JP2005138452A JP2006319037A JP 2006319037 A JP2006319037 A JP 2006319037A JP 2005138452 A JP2005138452 A JP 2005138452A JP 2005138452 A JP2005138452 A JP 2005138452A JP 2006319037 A JP2006319037 A JP 2006319037A
Authority
JP
Japan
Prior art keywords
optical waveguide
solid
state imaging
imaging device
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138452A
Other languages
Japanese (ja)
Other versions
JP2006319037A5 (en
Inventor
Akihiko Nagano
明彦 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005138452A priority Critical patent/JP2006319037A/en
Publication of JP2006319037A publication Critical patent/JP2006319037A/en
Publication of JP2006319037A5 publication Critical patent/JP2006319037A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve light collection efficiency by making an optical waveguide of metal oxides, and to prevent dark current generated by the waveguide made of the metal oxides. <P>SOLUTION: A solid-state imaging element has a photoelectric converter (31) for converting incident light into an electrical signal, according to its amount of light, the optical waveguide (38) formed of a metal oxide for leading the incident light to the photoelectric converter, and isolation layers (37 and 40) with translucent characteristics provided between the waveguide and the photoelectric conversion element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、デジタルスチルカメラ等の撮像装置に用いる固体撮像素子に関するものである。   The present invention relates to a solid-state imaging device used for an imaging apparatus such as a digital still camera.

近年、デジタルスチルカメラ等の撮像装置に用いる固体撮像素子では、画素数を増やして画質を向上させる一方で、チップサイズを小さくすることにより低価格化をはかっている。そのため、固体撮像素子を構成する1画素の大きさは年々小さくなり、それに伴って受光部の面積も小さくなってきている。   In recent years, solid-state imaging devices used in imaging devices such as digital still cameras have improved the image quality by increasing the number of pixels, while reducing the cost by reducing the chip size. For this reason, the size of one pixel constituting the solid-state imaging element is decreasing year by year, and the area of the light receiving unit is also decreasing accordingly.

受光部の面積が小さくなると受光感度が低下してしまうため、光入射面と受光部との間に入射開口の大きな光導波路を設け、集光特性を高めた固体撮像素子が提案されている(例えば、特許文献1参照)。この固体撮像素子では、光電変換部の光入射側に高屈折率の材料であるシリコン酸化物(SiO2)で構成された光導波路を設け、その周囲に低屈折率材料である酸化マグネシウム(MgO)を構成して、その境界面で入射光を全反射させることにより集光特性を向上させている。 Since the light receiving sensitivity decreases as the area of the light receiving portion is reduced, a solid-state imaging device having an optical waveguide with a large incident aperture provided between the light incident surface and the light receiving portion to improve the light collecting characteristics has been proposed ( For example, see Patent Document 1). In this solid-state imaging device, an optical waveguide made of silicon oxide (SiO 2 ), which is a high refractive index material, is provided on the light incident side of the photoelectric conversion unit, and magnesium oxide (MgO), which is a low refractive index material, is provided around it. ), And the incident light is totally reflected at the boundary surface, thereby improving the light collecting characteristics.

図5は、光導波路を有する従来のCMOS型固体撮像素子の素子断面図である。図中、43はマイクロレンズで、不図示の撮影レンズから入射してくる光をシリコン基板30に形成された光電変換部31に効率よく集光するように配設されている。マイクロレンズ43を透過した光は透明な平坦化層42を透過し、カラーフィルタ層41で波長選択される。カラーフィルタ層41を透過した所定波長の光は、平坦化層39を介して、入射側の開口面積が光電変換部31の面積よりも広い光導波路45によって光電変換部31に導かれる。光導波路45は、屈折率が約2.0のシリコン窒化物(SiN)で形成され、光導波路45の周囲は屈折率が約1.46のシリコン酸化物(SiO2)にて層間絶縁膜33が形成されているため、例えば光導波路45から層間絶縁膜33へ抜けようとする光50は光導波路45と層間絶縁膜33との屈折率差によって屈折率界面で全反射して光電変換部31に導かれる。 FIG. 5 is a cross-sectional view of a conventional CMOS solid-state imaging device having an optical waveguide. In the figure, reference numeral 43 denotes a microlens, which is disposed so as to efficiently collect light incident from a photographing lens (not shown) on the photoelectric conversion unit 31 formed on the silicon substrate 30. The light transmitted through the microlens 43 is transmitted through the transparent planarization layer 42 and is wavelength-selected by the color filter layer 41. The light having a predetermined wavelength that has passed through the color filter layer 41 is guided to the photoelectric conversion unit 31 through the planarization layer 39 by the optical waveguide 45 whose opening area on the incident side is larger than the area of the photoelectric conversion unit 31. The optical waveguide 45 is formed of silicon nitride (SiN) having a refractive index of about 2.0, and an interlayer insulating film 33 is formed around the optical waveguide 45 with silicon oxide (SiO 2 ) having a refractive index of about 1.46. Therefore, for example, the light 50 about to escape from the optical waveguide 45 to the interlayer insulating film 33 is totally reflected at the refractive index interface due to the refractive index difference between the optical waveguide 45 and the interlayer insulating film 33 and is guided to the photoelectric conversion unit 31.

また、図中32、34、35は光電変換部31で発生した電荷を選択的に読み出すための電極で、通常、電極32は一部の波長領域の光を透過する多結晶シリコン(Poly-Si)、電極34、35はアルミニウム(Al)で形成されている。   In the figure, 32, 34, and 35 are electrodes for selectively reading out the charges generated in the photoelectric conversion unit 31, and the electrode 32 is usually polycrystalline silicon (Poly-Si) that transmits light in a part of the wavelength region. ), And the electrodes 34 and 35 are made of aluminum (Al).

特開平5−235313号公報(第4頁、図1)JP-A-5-235313 (page 4, FIG. 1)

近年では、デジタルスチルカメラの更なる高倍率ズーム化に伴い、固体撮像素子に入射する光の角度範囲がより大きくなっている。そのため、図5の固体撮像素子断面図に示すように、入射角の大きい光51は光導波路45と層間絶縁膜33との屈折率界面で全反射せずに透過してしまい、光電変換部31に導かれない、という問題が生じていた。   In recent years, the angle range of light incident on a solid-state image sensor has become larger as the digital still camera is further zoomed. Therefore, as shown in the cross-sectional view of the solid-state imaging device in FIG. 5, the light 51 having a large incident angle is transmitted without being totally reflected at the refractive index interface between the optical waveguide 45 and the interlayer insulating film 33, and the photoelectric conversion unit 31. There was a problem that it was not led to.

また、入射角の大きい光51が光導波路45と層間絶縁膜33との屈折率界面で全反射をするためには、光導波路45と層間絶縁膜33との屈折率差を大きくすることが有効で、例えば光導波路45を屈折率が2.3のチタニウム酸化物(TiO2)で構成することが考えられる。 In addition, in order for the light 51 having a large incident angle to be totally reflected at the refractive index interface between the optical waveguide 45 and the interlayer insulating film 33, it is effective to increase the difference in refractive index between the optical waveguide 45 and the interlayer insulating film 33. For example, it is conceivable that the optical waveguide 45 is made of titanium oxide (TiO 2 ) having a refractive index of 2.3.

しかしながら、チタニウム酸化物等の金属酸化物の金属は光電変換部31を構成するシリコン(Si)に対して不純物として作用し、暗電流等の増加をもたらすため、現実的に使用することができないという欠点があった。   However, metal of metal oxide such as titanium oxide acts as an impurity on silicon (Si) constituting the photoelectric conversion unit 31 and causes an increase in dark current and the like, so that it cannot be used practically. There were drawbacks.

本発明は上記問題点を鑑みてなされたものであり、光導波路を金属酸化物で構成することで集光効率を向上させると共に、金属酸化物で構成したことによって生じる暗電流を防ぐことを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to improve the light collection efficiency by configuring the optical waveguide with a metal oxide and to prevent dark current caused by the configuration with the metal oxide. And

上記目的を達成するために、本発明の個体撮像素子は、入射光をその光量に応じて電気信号に変換する光電変換部と、前記光電変換部に入射光を導くための金属酸化物で形成された光導波路と、前記光導波路と前記光電変換素子との間に配設された、透光特性を有する分離層とを有する。   In order to achieve the above object, the solid-state imaging device of the present invention is formed of a photoelectric conversion unit that converts incident light into an electrical signal according to the amount of light, and a metal oxide for guiding the incident light to the photoelectric conversion unit. And a separation layer having a light transmission characteristic disposed between the optical waveguide and the photoelectric conversion element.

本発明によれば、光導波路を金属酸化物で構成することで集光効率を向上させると共に、金属酸化物で構成したことによって生じる暗電流を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, while comprising an optical waveguide with a metal oxide, while improving condensing efficiency, the dark current produced by comprising with a metal oxide can be prevented.

以下、添付図面を参照して本発明を実施するための最良の形態を詳細に説明する。ただし、本形態において例示される構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、本発明がそれらの例示に限定されるものではない。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components exemplified in this embodiment should be changed as appropriate according to the configuration of the apparatus to which the present invention is applied and various conditions. However, the present invention is not limited to these examples.

<第1の実施形態>
図1は、本発明の第1の実施形態におけるCMOS型個体撮像素子の1画素の概略構成を示す断面図である。通常、デジタルスチルカメラ等の撮像装置に用いられる固体撮像素子は、数百万の画素で構成される。なお、図5と同様の構成には同じ参照番号を付している。
<First Embodiment>
FIG. 1 is a cross-sectional view showing a schematic configuration of one pixel of a CMOS type solid-state image sensor according to the first embodiment of the present invention. Usually, a solid-state imaging device used in an imaging apparatus such as a digital still camera is composed of several million pixels. In addition, the same reference number is attached | subjected to the structure similar to FIG.

図1において、固体撮像素子は、入射光を集光するためのマイクロレンズ43、マイクロレンズ平坦化層42、入射光を波長選択するためのカラーフィルタ層41、カラーフィルタ平坦化層39、シリコン基板30内に形成された光電変換部31、光電変換部31にて発生した光電荷を読み出すための電極32、34、35等から構成されている。電極32とカラーフィルタ平坦化層39との間には光導波路38が形成されている。40はエッチングにて光導波路38を形成する際に必要とするシリコン窒化物(SiN)で構成されたエッチングストッパ膜である。   In FIG. 1, a solid-state imaging device includes a microlens 43 for condensing incident light, a microlens flattening layer 42, a color filter layer 41 for selecting the wavelength of incident light, a color filter flattening layer 39, and a silicon substrate. 30 includes a photoelectric conversion unit 31 formed in the electrode 30, electrodes 32, 34, and 35 for reading out photoelectric charges generated in the photoelectric conversion unit 31. An optical waveguide 38 is formed between the electrode 32 and the color filter planarizing layer 39. Reference numeral 40 denotes an etching stopper film made of silicon nitride (SiN) necessary for forming the optical waveguide 38 by etching.

光導波路38は層間絶縁膜33に対して相対的に屈折率の高い材料で形成されており、本第1の実施形態では光導波路38は屈折率が約2.3のチタニウム酸化物(TiO2)で形成されている。また、層間絶縁膜33は屈折率が1.46のシリコン酸化物(SiO2)で形成されている。このように、光導波路38と層間絶縁膜33との屈折率差が大きいため、入射角の小さい光50と同様に入射角の大きい光51も光導波路38と層間絶縁膜33との境界面で全反射して、光電変換部31へ効率よく導かれる。このように、入射角の大きい光も光導波路38と層間絶縁膜33との間で全反射して光電変換部に導くことが可能となり、固体撮像素子の光の利用効率を向上させることができる。 The optical waveguide 38 is formed of a material having a relatively high refractive index with respect to the interlayer insulating film 33. In the first embodiment, the optical waveguide 38 is made of titanium oxide (TiO 2 ) having a refractive index of about 2.3. Is formed. The interlayer insulating film 33 is made of silicon oxide (SiO 2 ) having a refractive index of 1.46. As described above, since the refractive index difference between the optical waveguide 38 and the interlayer insulating film 33 is large, the light 51 having a large incident angle as well as the light 50 having a small incident angle is reflected at the boundary surface between the optical waveguide 38 and the interlayer insulating film 33. Totally reflected and efficiently guided to the photoelectric conversion unit 31. In this way, light having a large incident angle can be totally reflected between the optical waveguide 38 and the interlayer insulating film 33 and guided to the photoelectric conversion unit, and the light use efficiency of the solid-state imaging device can be improved. .

また光導波路38を構成するチタニウム酸化物(TiO2)は金属酸化物であるため、CVD法によりチタニウム酸化物を成膜する際に、金属であるチタン(Ti)が光電変換部31のシリコン(Si)に不純物として拡散しないように、光導波路38と光電変換部31との間には厚さが3000Å以上の透明保護層37を形成する。本第1の実施形態では、透明保護層37は屈折率が約2.0のシリコン窒化物(SiN)で構成され厚さは約3500Åである。また、透明保護層37(屈折率約2.0)と層間絶縁膜33(屈折率1.46)との屈折率差により、透明保護層37と層間絶縁膜33との屈折率界面でも全反射が生じ、光の利用率向上に寄与している。この透明保護層37とエッチングストッパ膜40とが、光導波路38と光電変換部31とを分離する分離層を形成している。 Further, since titanium oxide (TiO 2 ) constituting the optical waveguide 38 is a metal oxide, titanium (Ti), which is a metal, is deposited on the silicon of the photoelectric conversion unit 31 (when the titanium oxide film is formed by the CVD method). A transparent protective layer 37 having a thickness of 3000 mm or more is formed between the optical waveguide 38 and the photoelectric conversion unit 31 so as not to diffuse into Si) as an impurity. In the first embodiment, the transparent protective layer 37 is made of silicon nitride (SiN) having a refractive index of about 2.0 and has a thickness of about 3500 mm. Further, due to the difference in refractive index between the transparent protective layer 37 (refractive index of about 2.0) and the interlayer insulating film 33 (refractive index 1.46), total reflection occurs at the refractive index interface between the transparent protective layer 37 and the interlayer insulating film 33, and light It contributes to the improvement of the utilization rate. The transparent protective layer 37 and the etching stopper film 40 form a separation layer that separates the optical waveguide 38 and the photoelectric conversion unit 31.

図2は光導波路38と光電変換部31との間での分光反射特性図である。本第1の実施形態では、透明保護層37は光導波路38を構成する金属成分が光電変換部31に拡散するのを防止するとともに、固体撮像素子の相対的に感度が低い青と赤の波長領域に対して反射防止特性を有するように構成されている。   FIG. 2 is a spectral reflection characteristic diagram between the optical waveguide 38 and the photoelectric conversion unit 31. In the first embodiment, the transparent protective layer 37 prevents the metal component constituting the optical waveguide 38 from diffusing into the photoelectric conversion unit 31, and the blue and red wavelengths with relatively low sensitivity of the solid-state imaging device. The region is configured to have antireflection characteristics.

次に、図3を参照して、本発明の第1の実施形態に係る固体撮像素子を製造するための光導波路の形成工程について説明する。   Next, with reference to FIG. 3, an optical waveguide forming process for manufacturing the solid-state imaging device according to the first embodiment of the present invention will be described.

なお、CMOS型固体撮像素子3を製造する前工程は、例えば、特開2000−85659号公報により開示されている方法を用いる。   In addition, the pre-process which manufactures CMOS type solid-state image sensor 3 uses the method currently disclosed by Unexamined-Japanese-Patent No. 2000-85659, for example.

前工程終了後の固体撮像素子3の構造を図3(a)に示す。シリコン酸化物(SiO2)で構成された層間絶縁膜33の上にアルミニウム(Al)による電極35が形成されている。さらに本発明の固体撮像素子では、光電変換部31の上にシリコン窒化物(SiN)によるエッチングストッパ膜40が形成されている。 FIG. 3A shows the structure of the solid-state imaging device 3 after the completion of the previous process. An electrode 35 made of aluminum (Al) is formed on an interlayer insulating film 33 made of silicon oxide (SiO 2 ). Furthermore, in the solid-state imaging device of the present invention, an etching stopper film 40 made of silicon nitride (SiN) is formed on the photoelectric conversion unit 31.

まず、光電変換部31上に光導波路38を形成するための穴36を形成する。穴36は、層間絶縁膜33上にフォトレジストを塗布し、光導波路38の入射開口に相当する開口をレジストパターニングで設けて、さらにドライエッチングを行うことにより形成される。このとき、層間絶縁膜33と光電変換部31との間には不図示のエッチングストッパ膜40が形成されているため、光電変換部31自体はエッチングされない(図3(b))。   First, a hole 36 for forming the optical waveguide 38 is formed on the photoelectric conversion unit 31. The hole 36 is formed by applying a photoresist on the interlayer insulating film 33, providing an opening corresponding to the incident opening of the optical waveguide 38 by resist patterning, and further performing dry etching. At this time, since the etching stopper film 40 (not shown) is formed between the interlayer insulating film 33 and the photoelectric conversion unit 31, the photoelectric conversion unit 31 itself is not etched (FIG. 3B).

次に、固体撮像素子全面にCVD法によりシリコン窒化物(SiN)を成膜し、穴36に透明保護層37を形成する(図3(c))。シリコン窒化物(SiN)の厚さは約3500Åで、次の工程で穴36の領域に成膜される光導波路38の金属成分が光電変換部31に拡散するのを防止するとともに、固体撮像素子の相対的に感度が低い青と赤の波長領域の光に対して反射防止特性を有するような厚さに制御されている。また、透明保護層37の厚さが厚いと金属酸化物による光導波路38の領域が狭くなるため、透明保護層37の厚さは約7000Å以下に制限される。   Next, a silicon nitride (SiN) film is formed on the entire surface of the solid-state imaging device by a CVD method, and a transparent protective layer 37 is formed in the hole 36 (FIG. 3C). The thickness of the silicon nitride (SiN) is about 3500 mm, and the metal component of the optical waveguide 38 formed in the region of the hole 36 in the next step is prevented from diffusing into the photoelectric conversion unit 31, and the solid-state imaging device The thickness is controlled so as to have antireflection characteristics for light in the blue and red wavelength regions where the sensitivity is relatively low. Moreover, since the area | region of the optical waveguide 38 by a metal oxide will become narrow when the thickness of the transparent protective layer 37 is thick, the thickness of the transparent protective layer 37 is restrict | limited to about 7000 mm or less.

さらに、CVD法によりチタニウム酸化物(TiO2)を成膜することにより、光導波路38を形成する(図3(d))。このとき、金属成分のチタン(Ti)の一部はシリコン窒化物(SiN)で形成された透明保護層37に拡散するが、透明保護層37が3000Å以上であるため光電変換部31のシリコン(Si)までは到達しない。チタニウム酸化物(TiO2)が成膜されると、CMP等による平坦化処理が行われる。 Further, an optical waveguide 38 is formed by depositing titanium oxide (TiO 2 ) by a CVD method (FIG. 3D). At this time, a part of titanium (Ti) as a metal component diffuses into the transparent protective layer 37 formed of silicon nitride (SiN). However, since the transparent protective layer 37 is 3000 mm or more, the silicon of the photoelectric conversion unit 31 ( Si) is not reached. When the titanium oxide (TiO 2 ) is formed, a planarization process using CMP or the like is performed.

光導波路38が形成されると、カラーフィルタ層41を形成するためのカラーフィルタ平坦化層39が形成された後にカラーフィルタ層41が形成される。さらに、マイクロレンズ43を形成するためのマイクロレンズ平坦化層42が形成された後にマイクロレンズ43が形成される。マイクロレンズは、公知のレジストリフロー法にて形成され、最終的に図1に示すような固体撮像素子3構造が製造される。   When the optical waveguide 38 is formed, the color filter layer 41 is formed after the color filter flattening layer 39 for forming the color filter layer 41 is formed. Further, the microlens 43 is formed after the microlens flattening layer 42 for forming the microlens 43 is formed. The microlens is formed by a known registry flow method, and finally a solid-state imaging device 3 structure as shown in FIG. 1 is manufactured.

なお、上述した本第1の実施形態の説明においては、チタニウム酸化物で形成された部分38のみを光導波路と呼んでいるが、穴36内に形成された透明保護層37及び光導波路38を合わせて光導波路として捕らえることができることは言うまでもない。   In the description of the first embodiment described above, only the portion 38 formed of titanium oxide is referred to as an optical waveguide. However, the transparent protective layer 37 and the optical waveguide 38 formed in the hole 36 are referred to as the optical waveguide. Needless to say, they can be combined as an optical waveguide.

<第2の実施形態>
図4は、本発明の第2の実施形態におけるCMOS型固体撮像素子の1画素の概略構成を示す断面図である。図1のCMOS型固体撮像素子の概略断面図と同一の部材には同一の参照番号を付している。本第2の実施形態では、チタニウム酸化物(TiO2)で形成された光導波路38と光電変換部31との間に、透明保護層として3000Å以上の厚さの層間絶縁膜33が配設する。層間絶縁膜33は、シリコン酸化物(SiO2)で形成されている。また、光導波路38を形成するための穴は層間絶縁膜33をドライエッチングすることにより製造されるが、穴の深さはエッチング時間により制御する。
<Second Embodiment>
FIG. 4 is a cross-sectional view showing a schematic configuration of one pixel of a CMOS solid-state imaging device according to the second embodiment of the present invention. The same members as those in the schematic cross-sectional view of the CMOS solid-state imaging device in FIG. In the second embodiment, an interlayer insulating film 33 having a thickness of 3000 mm or more is disposed as a transparent protective layer between the optical waveguide 38 formed of titanium oxide (TiO 2 ) and the photoelectric conversion unit 31. . The interlayer insulating film 33 is made of silicon oxide (SiO 2 ). A hole for forming the optical waveguide 38 is manufactured by dry etching the interlayer insulating film 33. The depth of the hole is controlled by the etching time.

その結果、光導波路38(屈折率約2.3)と層間絶縁膜33(屈折率1.46)との屈折率差が大きいため、入射角の大きい光51も光導波路38と層間絶縁膜33との境界面で全反射して、光電変換部31へ効率よく導かれる。   As a result, since the refractive index difference between the optical waveguide 38 (refractive index of about 2.3) and the interlayer insulating film 33 (refractive index 1.46) is large, the light 51 having a large incident angle is also a boundary surface between the optical waveguide 38 and the interlayer insulating film 33. And are efficiently guided to the photoelectric conversion unit 31.

また、チタニウム酸化物(TiO2)にて光導波路38を形成する際、層間絶縁膜33が透明保護層として機能し、金属であるチタン(Ti)が光電変換部33まで拡散するのを防止している。 Further, when the optical waveguide 38 is formed of titanium oxide (TiO 2 ), the interlayer insulating film 33 functions as a transparent protective layer, and prevents titanium (Ti), which is a metal, from diffusing to the photoelectric conversion portion 33. ing.

上記第1及び第2の実施形態では、光導波路38を構成する金属酸化物としてチタニウム酸化物(TiO2)を用いた例を示したが、屈折率がそれぞれ約2.3のニオブ酸化物(Nb2O5)やタンタル酸化物(Ta2O5)のような金属酸化物を用いても有効である。 In the first and second embodiments, an example in which titanium oxide (TiO 2 ) is used as the metal oxide constituting the optical waveguide 38 has been shown, but niobium oxide (Nb 2 ) having a refractive index of about 2.3 respectively. It is also effective to use a metal oxide such as O 5 ) or tantalum oxide (Ta 2 O 5 ).

本発明の第1の実施形態におけるCMOS型個体撮像素子の1画素の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 1 pixel of the CMOS type | mold solid-state image sensor in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるCMOS型個体撮像素子の光導波路と光電変換部との間の分光反射特性図である。It is a spectral reflection characteristic view between the optical waveguide of the CMOS type individual image sensor and the photoelectric conversion unit in the first embodiment of the present invention. 本発明の第1の実施形態におけるCMOS型固体撮像素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the CMOS type solid-state image sensor in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるCMOS型個体撮像素子の1画素の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 1 pixel of the CMOS type solid-state image sensor in the 2nd Embodiment of this invention. 従来のCMOS型個体撮像素子の1画素の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of 1 pixel of the conventional CMOS type | mold solid-state image sensor.

符号の説明Explanation of symbols

30 シリコン基板
31 光電変換部
32、34、35 電極
33 層間絶縁膜
37 透明保護層
38、45 光導波路
40 エッチングストッパ膜
41 カラーフィルタ層
39、42 平坦化層
43 マイクロレンズ
30 Silicon substrate 31 Photoelectric conversion parts 32, 34, 35 Electrode 33 Interlayer insulating film 37 Transparent protective layers 38, 45 Optical waveguide 40 Etching stopper film 41 Color filter layers 39, 42 Flattening layer 43 Micro lens

Claims (10)

入射光をその光量に応じて電気信号に変換する光電変換部と、
前記光電変換部に入射光を導くための金属酸化物で形成された光導波路と、
前記光導波路と前記光電変換素子との間に配設された、透光特性を有する分離層と
を有することを特徴とする固体撮像素子。
A photoelectric conversion unit that converts incident light into an electrical signal according to the amount of light;
An optical waveguide formed of a metal oxide for guiding incident light to the photoelectric conversion unit;
A solid-state imaging device, comprising: a separation layer having a light transmission characteristic disposed between the optical waveguide and the photoelectric conversion device.
前記金属酸化物は、チタニウム酸化物、ニオブ酸化物、タンタル酸化物を含むことを特徴とする請求項1に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the metal oxide includes titanium oxide, niobium oxide, or tantalum oxide. 前記分離層は、前記光導波路を構成する金属酸化物が、前記光電変換部に拡散するのを防ぐことができる厚さを有することを特徴とする請求項1または2に記載の固体撮像素子。   3. The solid-state imaging device according to claim 1, wherein the separation layer has a thickness capable of preventing a metal oxide constituting the optical waveguide from diffusing into the photoelectric conversion unit. 前記分離層は、更に、前記光電変換部の感度が相対的に低い波長領域の光を反射防止する厚さを有することを特徴とする請求項3に記載の固体撮像素子。   The solid-state imaging device according to claim 3, wherein the separation layer further has a thickness for preventing reflection of light in a wavelength region in which the sensitivity of the photoelectric conversion unit is relatively low. 前記分離層の厚さは、約3000Åから約7000Åの間であることを特徴とする請求項3または4に記載の固体撮像素子。   5. The solid-state imaging device according to claim 3, wherein a thickness of the separation layer is between about 3000 mm and about 7000 mm. 前記光導波路の周囲に配設された層間絶縁膜を更に有し、
前記分離層は、前記層間絶縁膜よりも高い屈折率の素材により形成されていることを特徴とする請求項1乃至5のいずれかに記載の固体撮像素子。
Further comprising an interlayer insulating film disposed around the optical waveguide,
The solid-state imaging device according to claim 1, wherein the separation layer is made of a material having a refractive index higher than that of the interlayer insulating film.
前記分離層は、シリコン窒化物で形成されていることを特徴とする請求項6に記載の固体撮像素子。   The solid-state imaging device according to claim 6, wherein the separation layer is made of silicon nitride. 前記分離層が、前記光導波路に引き続く光導波路を構成することを特徴とする請求項1乃至7のいずれかに記載の個体撮像素子。   The individual imaging element according to claim 1, wherein the separation layer constitutes an optical waveguide that follows the optical waveguide. 前記光導波路の周囲に配設された層間絶縁膜を更に有し、
前記分離層は、前記層間絶縁膜と同じ素材で形成されていることを特徴とする請求項1乃至5のいずれかに記載の固体撮像素子。
Further comprising an interlayer insulating film disposed around the optical waveguide,
The solid-state imaging device according to claim 1, wherein the separation layer is formed of the same material as the interlayer insulating film.
前記分離層は、シリコン酸化物で形成されていることを特徴とする請求項8に記載の固体撮像素子。   The solid-state imaging device according to claim 8, wherein the separation layer is made of silicon oxide.
JP2005138452A 2005-05-11 2005-05-11 Solid-state imaging element Pending JP2006319037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138452A JP2006319037A (en) 2005-05-11 2005-05-11 Solid-state imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138452A JP2006319037A (en) 2005-05-11 2005-05-11 Solid-state imaging element

Publications (2)

Publication Number Publication Date
JP2006319037A true JP2006319037A (en) 2006-11-24
JP2006319037A5 JP2006319037A5 (en) 2008-06-26

Family

ID=37539456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138452A Pending JP2006319037A (en) 2005-05-11 2005-05-11 Solid-state imaging element

Country Status (1)

Country Link
JP (1) JP2006319037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176952A (en) * 2008-01-24 2009-08-06 Sony Corp Solid-state imaging device
JP2009267252A (en) * 2008-04-28 2009-11-12 Canon Inc Imaging sensor, and imaging device
CN101853866A (en) * 2009-03-30 2010-10-06 索尼公司 Solid-state image pickup apparatus and manufacture method thereof, image pick-up device and electronic installation
JP2010225939A (en) * 2009-03-24 2010-10-07 Toshiba Corp Solid-state imaging device and method of manufacturing the same
CN108257985A (en) * 2016-12-28 2018-07-06 三星电子株式会社 Optical sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316448A (en) * 1995-05-22 1996-11-29 Matsushita Electron Corp Solid-state image pickup device and its manufacture
JP2001015724A (en) * 1999-06-30 2001-01-19 Sony Corp Solid-state image pickup element
JP2002151729A (en) * 2000-11-13 2002-05-24 Sony Corp Semiconductor device and its manufacturing method
JP2003249632A (en) * 2002-02-22 2003-09-05 Sony Corp Solid imaging device and manufacturing method thereof
JP2003282851A (en) * 2002-03-27 2003-10-03 Sony Corp Method for manufacturing charge-coupled device
JP2005109411A (en) * 2003-10-02 2005-04-21 Canon Inc Imaging equipment and imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316448A (en) * 1995-05-22 1996-11-29 Matsushita Electron Corp Solid-state image pickup device and its manufacture
JP2001015724A (en) * 1999-06-30 2001-01-19 Sony Corp Solid-state image pickup element
JP2002151729A (en) * 2000-11-13 2002-05-24 Sony Corp Semiconductor device and its manufacturing method
JP2003249632A (en) * 2002-02-22 2003-09-05 Sony Corp Solid imaging device and manufacturing method thereof
JP2003282851A (en) * 2002-03-27 2003-10-03 Sony Corp Method for manufacturing charge-coupled device
JP2005109411A (en) * 2003-10-02 2005-04-21 Canon Inc Imaging equipment and imaging system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176952A (en) * 2008-01-24 2009-08-06 Sony Corp Solid-state imaging device
US8866251B2 (en) 2008-01-24 2014-10-21 Sony Corporation Solid-state imaging element having optical waveguide with insulating layer
JP2009267252A (en) * 2008-04-28 2009-11-12 Canon Inc Imaging sensor, and imaging device
JP2010225939A (en) * 2009-03-24 2010-10-07 Toshiba Corp Solid-state imaging device and method of manufacturing the same
US8648435B2 (en) 2009-03-24 2014-02-11 Kabushiki Kaisha Toshiba Solid-state imaging device and method for manufacturing same
CN101853866A (en) * 2009-03-30 2010-10-06 索尼公司 Solid-state image pickup apparatus and manufacture method thereof, image pick-up device and electronic installation
CN101853866B (en) * 2009-03-30 2012-11-14 索尼公司 Solid state image pickup device, method of manufacturing the same, image pickup device, and electronic device
CN108257985A (en) * 2016-12-28 2018-07-06 三星电子株式会社 Optical sensor
CN108257985B (en) * 2016-12-28 2024-04-09 三星电子株式会社 Light Sensor

Similar Documents

Publication Publication Date Title
JP6060851B2 (en) Method for manufacturing solid-state imaging device
JP4826111B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP5288823B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5086877B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP2006344754A (en) Solid state imaging device and its fabrication process
JP2006202778A (en) Solid state imaging device and its fabrication process
US10777592B2 (en) Image sensor and method for manufacturing thereof
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
JP2007242697A (en) Image pickup device and image pickup system
JP2008091643A (en) Solid-state image pick-up device
JP2010093081A (en) Solid-state imaging device and method for manufacturing the same
JP2008091800A (en) Imaging device, its manufacturing method, and imaging system
JP2005158940A (en) Photoelectric transfer device and image pickup system
JP2006191000A (en) Photoelectric converter
JP2006121065A (en) Solid-state imaging device
JP4923357B2 (en) Method for manufacturing solid-state imaging device
TW202133457A (en) Imaging element and imaging device
JP2006319037A (en) Solid-state imaging element
JP5409087B2 (en) Solid-state image sensor
JP2006128383A (en) Imaging device and its manufacturing method
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP2007088057A (en) Solid-state imaging element and manufacturing method thereof
JP2006140413A (en) Solid-state image sensing element
JP4549195B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009124053A (en) Photoelectric converter and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111028