JP2006318957A - Method of detecting eccentricity in susceptor of vapor phase deposition apparatus - Google Patents

Method of detecting eccentricity in susceptor of vapor phase deposition apparatus Download PDF

Info

Publication number
JP2006318957A
JP2006318957A JP2005137178A JP2005137178A JP2006318957A JP 2006318957 A JP2006318957 A JP 2006318957A JP 2005137178 A JP2005137178 A JP 2005137178A JP 2005137178 A JP2005137178 A JP 2005137178A JP 2006318957 A JP2006318957 A JP 2006318957A
Authority
JP
Japan
Prior art keywords
susceptor
eccentricity
vapor phase
rotating shaft
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137178A
Other languages
Japanese (ja)
Inventor
Takeshi Nakazawa
健 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005137178A priority Critical patent/JP2006318957A/en
Publication of JP2006318957A publication Critical patent/JP2006318957A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting eccentricity in a susceptor in rotation in a vapor phase deposition apparatus having the susceptor for arranging a substrate at a prescribed position. <P>SOLUTION: The periphery of a rotating shaft 8 in the susceptor 1 is surrounded for providing a conductive eccentricity detection member 5, and it is detected whether the susceptor 1 becomes eccentric according to the presence or absence of electrical continuity caused by allowing the conductive eccentricity detection member 5 to come into contact with the rotating shaft 8 of the susceptor 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応炉内に設置されたサセプタに基板を配置して、各基板上に単結晶、多結晶、あるいはアモルファスの薄膜を気相成長させる装置におけるサセプタの偏心検知方法に関するものである。   The present invention relates to a method for detecting susceptor eccentricity in an apparatus in which a substrate is placed on a susceptor installed in a reaction furnace and a single crystal, polycrystalline, or amorphous thin film is vapor-phase grown on each substrate.

GaAs、InGaP、AlGaAs、AlGaInPなどの化合物半導体エピタキシャル結晶の積層構造はHEMT(高電子移動度トランジスタ)やHBT(ヘテロ接合バイポーラトランジスタ)等の電子デバイスやLED、レーザーといった発光デバイスとして広く使用されている。これらの化合物半導体の電子・発光デバイスは、一般的にまずGaAsなどの基板にMOVPE法(有機金属気相成長法)などの結晶成長法を用いて所望の組成、厚さの化合物半導体結晶を順次エピタキシャル成長させる。   Laminated structures of compound semiconductor epitaxial crystals such as GaAs, InGaP, AlGaAs, and AlGaInP are widely used as electronic devices such as HEMT (High Electron Mobility Transistor) and HBT (Heterojunction Bipolar Transistor), and light emitting devices such as LEDs and lasers. . In general, these compound semiconductor electron / light-emitting devices are generally obtained by sequentially depositing a compound semiconductor crystal having a desired composition and thickness on a substrate such as GaAs using a crystal growth method such as MOVPE (metal organic vapor phase epitaxy). Epitaxially grow.

基板上に薄膜を形成させるエピタキシャル成長法の一種である気相成長法において、膜厚分布、比抵抗分布等が均一な高品質の結晶を成長させるため、原料ガス濃度や流れが複数の基板表面で均一になるよう、基板を配置したサセプタを回転させながら成長させる方法がある。そのうち結晶成長面が下向きになるように結晶成長装置(反応炉)内に基板を固定する方式(例えば、特許文献1参照)はフェイスダウンタイプと呼ばれている。フェイスダウンタイプは原料ガスを基板に供給する際に余分な対流が生じにくいため微細な積層構造作成に優れ、また炉内に蓄積した堆積物が基板表面に舞い降りることが少ないため、表面不良も生じにくいという利点を有している。   In vapor phase epitaxy, a type of epitaxial growth method that forms a thin film on a substrate, a high quality crystal with uniform film thickness distribution, specific resistance distribution, etc. is grown. There is a method of growing while rotating the susceptor on which the substrate is arranged so as to be uniform. Among them, a method of fixing a substrate in a crystal growth apparatus (reaction furnace) so that the crystal growth surface faces downward (for example, refer to Patent Document 1) is called a face-down type. The face-down type is excellent in creating a fine layered structure because extra convection is unlikely to occur when supplying the source gas to the substrate, and surface deposits also occur because deposits accumulated in the furnace rarely fall on the substrate surface. It has the advantage of being difficult.

図3は、従来のフェイスダウンタイプの気相成長装置(反応炉)の一部を示した縦断面図である。   FIG. 3 is a longitudinal sectional view showing a part of a conventional face-down type vapor phase growth apparatus (reactor).

気相成長装置(反応炉)内の上下方向の中間部には、原料ガス等のガス流路となるフローチャネル20を構成すべく、片側に原料ガス供給口(入口)21、反対側にガス排気口(出口)22を備えた横型反応管2が配置されている。このフローチャネル20の上壁内、つまり横型反応管2の上壁内には、その中心部にフローチャネルの開口部9が設けられ、このフローチャネルの開口部9に、複数の半導体基板4を保持するサセプタ1が回転可能に嵌め込まれている。   A raw material gas supply port (inlet) 21 is provided on one side and a gas is provided on the opposite side in order to form a flow channel 20 serving as a gas flow path for raw material gas or the like in an intermediate portion in the vertical direction in the vapor phase growth apparatus (reactor). A horizontal reaction tube 2 having an exhaust port (outlet) 22 is disposed. In the upper wall of the flow channel 20, that is, in the upper wall of the horizontal reaction tube 2, a flow channel opening 9 is provided at the center, and a plurality of semiconductor substrates 4 are placed in the flow channel opening 9. The holding susceptor 1 is rotatably fitted.

サセプタ1は円板形をしており、その円板面内には同一円上に均等に複数の円形の開口6が設けられ、各々の開口6内には、エピタキシャル成長の対象である結晶成長用基板としての半導体基板(ウェハ)4がその表面(結晶成長面)を下向きにして収納配置される。この半導体基板4を開口6内に載置し支持する構造を得るため、開口6の下面周縁部には、開口6の中心方向に一部が張り出した金属製のツメ7から成る基板支持部が設けられており、半導体基板4は、この基板支持部に外周部が支えられて開口6の下面に保持される。なお、開口6内において、半導体基板4の上には必要に応じて均熱板が設けられる。   The susceptor 1 has a disk shape, and a plurality of circular openings 6 are equally provided on the same circle in the disk surface, and each of the openings 6 is for crystal growth that is an object of epitaxial growth. A semiconductor substrate (wafer) 4 as a substrate is accommodated and disposed with its surface (crystal growth surface) facing downward. In order to obtain a structure in which the semiconductor substrate 4 is placed and supported in the opening 6, a substrate support portion made of a metal claw 7 partially projecting in the center direction of the opening 6 is provided on the peripheral surface of the lower surface of the opening 6. The semiconductor substrate 4 is held on the lower surface of the opening 6 with the outer peripheral portion supported by the substrate support portion. In the opening 6, a soaking plate is provided on the semiconductor substrate 4 as necessary.

フェイスダウンタイプのMOVPE法にてエピタキシャル成長する場合、上記半導体基板4を支持するサセプタ1を、その回転軸8をモータで回転しつつ、上方のヒータ(図示せず)によりサセプタ1を介して半導体基板4を加熱し、サセプタ1と平行に原料ガスを流して半導体基板(ウェハ)4上に所望の構造のエピタキシャル膜を成長させる。   In the case of epitaxial growth by the face-down type MOVPE method, the susceptor 1 that supports the semiconductor substrate 4 is rotated by a motor while rotating the rotating shaft 8 with a motor (not shown) through the susceptor 1. 4 is heated, and a source gas is allowed to flow in parallel with the susceptor 1 to grow an epitaxial film having a desired structure on the semiconductor substrate (wafer) 4.

上記構造において、サセプタ1はグラファイトで形成されたものである。フローチャネル20を形成する反応管2は石英ガラスで形成された軸方向に扁平な角筒状のものである。原料ガスはフローチャネル20の中を通ってサセプタ1に到達し、ヒータによって高温に加熱されているサセプタ下方で熱分解し、分解したガス分子が半導体基板4に到達して膜の形成が行われる。ここで、フローチャネル20の内部からの原料ガスの流出や、フローチャネル20外部への不純物およびパーティクルの流入を防止するために、サセプタ1と反応管2の嵌め合わせ部に生じる隙間3はできる限り狭くする方がよい。
特開平10−25191号公報
In the above structure, the susceptor 1 is made of graphite. The reaction tube 2 forming the flow channel 20 is a rectangular tube that is formed of quartz glass and is flat in the axial direction. The source gas reaches the susceptor 1 through the flow channel 20 and is thermally decomposed under the susceptor heated to a high temperature by the heater. The decomposed gas molecules reach the semiconductor substrate 4 to form a film. . Here, in order to prevent the outflow of the source gas from the inside of the flow channel 20 and the inflow of impurities and particles to the outside of the flow channel 20, the gap 3 generated in the fitting portion of the susceptor 1 and the reaction tube 2 is as much as possible. It is better to make it narrower.
Japanese Patent Laid-Open No. 10-25191

しかしながら、サセプタを含む回転機構は、複数の部品で構成されているために組み立て状態での精度確保が難しく、気相成長における高温下では回転時に偏心が生じ易い。   However, since the rotation mechanism including the susceptor is composed of a plurality of parts, it is difficult to ensure accuracy in the assembled state, and eccentricity is likely to occur during rotation at high temperatures in vapor phase growth.

偏心が許容範囲を越えた場合、膜厚分布、比抵抗分布が、ウェハの同一面内、もしくはウェハ間で、特性差が生じるという問題がある。さらに、偏心が顕著な場合、サセプタとフローチャネルが擦れ、これによって発生する黒鉛粉が基板上に成長中の薄膜に取り込まれ、品質低下を招くという問題がある。   When the eccentricity exceeds the allowable range, there is a problem that the film thickness distribution and the specific resistance distribution cause a characteristic difference within the same plane of the wafer or between wafers. Further, when the eccentricity is remarkable, there is a problem that the susceptor and the flow channel are rubbed, and the graphite powder generated thereby is taken into the thin film growing on the substrate, resulting in a deterioration in quality.

このような事態が発生すると、サセプタ及びフローチャネルの交換、及び回転機構を構成する部品について位置調整を実施する必要がある。しかし、成長時において偏心を定量的に判定することは難しく、この結果、低品質の薄膜を継続的に生産してしまうという問題がある。   When such a situation occurs, it is necessary to replace the susceptor and the flow channel and to adjust the position of the parts constituting the rotation mechanism. However, it is difficult to quantitatively determine the eccentricity during growth, and as a result, there is a problem in that a low-quality thin film is continuously produced.

そこで、本発明の目的は、上記課題を解決し、所定の位置に基板を配置するためのサセプタを備えた気相成長装置において、回転時におけるサセプタの偏心を検知する方法を提供し、良品歩留の低下を防止することにある。   Accordingly, an object of the present invention is to solve the above problems and provide a method for detecting the eccentricity of a susceptor during rotation in a vapor phase growth apparatus having a susceptor for placing a substrate at a predetermined position. It is to prevent the drop of the distillation.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る気相成長装置のサセプタ偏心検知方法は、原料ガス等のガス流路となるフローチャネルの壁内の所定位置に開口部を設け、この開口部に基板を保持したサセプタを嵌め込み、このサセプタをこれに固定の回転軸により開口部内で回転させつつ基板上に半導体の薄膜を成長する気相成長装置において、上記サセプタの回転軸の周囲を取り囲んで導電性の偏心検知部材を設け、この導電性の偏心検知部材とサセプタの回転軸間の接触による電気的な導通の有無により、サセプタが偏心したかどうかを検知することを特徴とする。   The susceptor eccentricity detection method for a vapor phase growth apparatus according to the first aspect of the present invention is a susceptor in which an opening is provided at a predetermined position in a wall of a flow channel serving as a gas flow path for a raw material gas and the substrate is held in the opening. In a vapor phase growth apparatus for growing a semiconductor thin film on a substrate while rotating the susceptor within an opening by a rotation shaft fixed to the susceptor, a conductive eccentricity detection member surrounding the rotation shaft of the susceptor And detecting whether or not the susceptor is eccentric based on the presence or absence of electrical continuity due to contact between the conductive eccentricity detecting member and the rotating shaft of the susceptor.

上記導電性の偏心検知部材は、サセプタの回転軸の周囲を取り囲む導電性のリングから成ることが好ましい。   The conductive eccentricity detection member preferably comprises a conductive ring surrounding the periphery of the rotation axis of the susceptor.

請求項2の発明は、請求項1記載の気相成長装置のサセプタ偏心検知方法において、サセプタの回転軸と導電性の偏心検知部材の接触の有無により、回転時のサセプタの回転軸の偏心量が、許容される膜厚分布又は比抵抗分布の範囲を超えたかどうかを検知することを特徴とする。   According to a second aspect of the present invention, in the susceptor eccentricity detection method of the vapor phase growth apparatus according to the first aspect, the amount of eccentricity of the rotation axis of the susceptor during rotation depends on the presence or absence of contact between the rotation axis of the susceptor and the conductive eccentricity detection member. It is characterized in that it is detected whether the range of the allowable film thickness distribution or specific resistance distribution is exceeded.

請求項3の発明は、請求項1記載の気相成長装置のサセプタ偏心検知方法において、サセプタの回転軸と導電性の偏心検知部材の接触の有無により、回転時にサセプタがフローチャネルの開口部に擦れたかどうかを検知することを特徴とする。   According to a third aspect of the present invention, in the susceptor eccentricity detection method of the vapor phase growth apparatus according to the first aspect, the susceptor is positioned at the opening of the flow channel during rotation depending on whether or not the rotating shaft of the susceptor is in contact with the conductive eccentricity detection member. It is characterized by detecting whether rubbing has occurred.

<発明の要点>
本発明の要点は、サセプタの回転軸部付近に、グラファイト等の導電性材料で構成された偏心検知部材を設置することで、この偏心検知部材とサセプタとの間で電気回路を構成し、その導通を検出可能とし、これによってサセプタの偏心が許容できる範囲を越えているか検知する点にある。
<Key points of the invention>
The main point of the present invention is that an eccentricity detection member made of a conductive material such as graphite is installed in the vicinity of the rotating shaft portion of the susceptor, so that an electric circuit is configured between the eccentricity detection member and the susceptor. The continuity can be detected, thereby detecting whether the eccentricity of the susceptor exceeds an allowable range.

図1は、サセプタ1がフローチャネルの開口部9にセットされている状態を示している。本発明によれば、サセプタ1と、反応管2と、グラファイト等の導電性材料からなる偏心検知部材5とで電気的回路が構成される。サセプタ1は回転軸8を含めグラファイトからなる。   FIG. 1 shows a state in which the susceptor 1 is set in the opening 9 of the flow channel. According to the present invention, an electrical circuit is configured by the susceptor 1, the reaction tube 2, and the eccentricity detection member 5 made of a conductive material such as graphite. The susceptor 1 is made of graphite including the rotating shaft 8.

図2は、サセプタ1に偏心が発生した状態を示す断面図であり、サセプタ1とフローチャネルの開口部9の間の隙間3aと3bとで隙間間隔が異なっている。ここでサセプタ1と偏心検知部材5の双方を外部で電流検出回路10を介して電源に接続しておけば、図2に示すようにサセプタ1に偏心が生じた状態においては、偏心検知部材5にサセプタ1が接触して電気的閉回路が形成され、これを検知信号にすることにより、サセプタ1の偏心が許容範囲を越えているか判定することが可能である。   FIG. 2 is a cross-sectional view showing a state in which the susceptor 1 is eccentric. The gaps 3a and 3b between the susceptor 1 and the opening 9 of the flow channel are different. Here, if both the susceptor 1 and the eccentricity detection member 5 are connected to the power source through the current detection circuit 10 outside, the eccentricity detection member 5 is in an eccentric state in the susceptor 1 as shown in FIG. When the susceptor 1 comes into contact with the susceptor 1 and an electrical closed circuit is formed, and this is used as a detection signal, it is possible to determine whether the eccentricity of the susceptor 1 exceeds an allowable range.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

請求項1に記載の発明によれば、導電性の偏心検知部材とサセプタの回転軸間の接触による電気的な導通の有無により、回転中にサセプタが偏心したかどうかを検知することができる。   According to the first aspect of the present invention, it is possible to detect whether or not the susceptor is eccentric during rotation based on the presence or absence of electrical continuity due to contact between the conductive eccentricity detecting member and the rotating shaft of the susceptor.

また、請求項2に記載の発明によれば、サセプタの回転軸と導電性の偏心検知部材が接触するまでの間隔を適正に設定することにより、回転時のサセプタの回転軸の偏心量が、許容される膜厚分布又は比抵抗分布の範囲を超えたときに、その旨の検知を報知することができる。従って、早期にその対策を採ることができ、低品質の薄膜を継続的に生産してしまうという問題を回避して、ウェハの同一面内又はウェハ間における膜厚分布や比抵抗分布の均一化を図ることができる。   Further, according to the invention described in claim 2, by properly setting the interval until the rotating shaft of the susceptor and the conductive eccentricity detecting member come into contact, the amount of eccentricity of the rotating shaft of the susceptor during rotation is When the allowable film thickness distribution or specific resistance distribution range is exceeded, the detection to that effect can be notified. Therefore, measures can be taken early, avoiding the problem of continuously producing low-quality thin films, and making the film thickness distribution and specific resistance distribution uniform within the same wafer surface or between wafers. Can be achieved.

同様に、請求項3に記載の発明によれば、サセプタの回転軸と導電性の偏心検知部材が接触するまでの間隔を適正に設定することにより、回転時にサセプタがフローチャネルの開口部に擦れたときに、その旨の検知を報知することができる。従って、従来の覗き窓から擦れの有無をチェックする方法に較べ、サセプタがフローチャネルの開口部に擦れるという異常を直ちに検知することができ、早期にその対策を採ることができる。従って、本発明によれば、従来の低品質の薄膜を継続的に生産してしまうという問題を回避することができる。   Similarly, according to the third aspect of the present invention, the susceptor rubs against the opening of the flow channel during rotation by appropriately setting the interval until the rotating shaft of the susceptor contacts the conductive eccentricity detecting member. At that time, the detection of that fact can be notified. Therefore, compared with the conventional method of checking the presence or absence of rubbing from the viewing window, an abnormality that the susceptor is rubbing against the opening of the flow channel can be detected immediately, and measures can be taken at an early stage. Therefore, according to the present invention, the problem of continuously producing a conventional low quality thin film can be avoided.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1は、本実施形態に係るフェイスダウンタイプの気相エピタキシャル成長装置を示したものである。この成長装置は、基本的には図3と同じ構成であり、原料ガス等のガス流路となるフローチャネル20の上部壁、つまり横型反応管2の上壁内に設けた円形の開口部9に、複数の半導体基板4を保持する円形のサセプタ1を回転可能に嵌め込み、原料ガスが流通する横型反応管2の上部壁の一部として機能させている。サセプタ1は回転軸8を含めグラファイトからなる。   FIG. 1 shows a face-down type vapor phase epitaxial growth apparatus according to this embodiment. This growth apparatus has basically the same configuration as that shown in FIG. 3, and a circular opening 9 provided in the upper wall of the flow channel 20 serving as a gas flow path for the raw material gas, that is, the upper wall of the horizontal reaction tube 2. In addition, a circular susceptor 1 holding a plurality of semiconductor substrates 4 is rotatably fitted to function as a part of the upper wall of the horizontal reaction tube 2 through which the source gas flows. The susceptor 1 is made of graphite including the rotating shaft 8.

この円形のサセプタ1の面内には、気相エピタキシャル成長の対象である半導体基板4とほぼ同じ形状の複数個の開口6が、サセプタ1と同心の一つの円周上に沿って、周方向に配設されており、この開口6内には、半導体基板4がその結晶成長面を下向きにして収納され、かつ下部のツメ7から成る基板支持部により支持されている。   In the plane of the circular susceptor 1, a plurality of openings 6 having substantially the same shape as that of the semiconductor substrate 4 to be subjected to vapor phase epitaxial growth are provided in the circumferential direction along one circumference concentric with the susceptor 1. In this opening 6, the semiconductor substrate 4 is accommodated with its crystal growth surface facing downward, and is supported by a substrate support portion comprising a lower claw 7.

そしてMOVPE法にてエピタキシャル成長する場合、上記半導体基板4を支持するサセプタ1を、その回転軸8をモータで回転しつつ、上方のヒータ(図示せず)によりサセプタ1を介して半導体基板4を加熱し、サセプタ1と平行に原料ガスを流して半導体基板(ウェハ)4上に、半導体の単結晶、多結晶、あるいはアモルファスといった薄膜を気相成長させる構造となっている。   When epitaxial growth is performed by the MOVPE method, the susceptor 1 that supports the semiconductor substrate 4 is heated by the upper heater (not shown) through the susceptor 1 while rotating the rotating shaft 8 with a motor. In addition, a material gas is allowed to flow in parallel with the susceptor 1 so that a thin film such as a semiconductor single crystal, polycrystal, or amorphous is vapor-phase grown on the semiconductor substrate (wafer) 4.

しかし、従来の成長装置と異なり、グラファイトからなるサセプタ1の回転軸8の周囲を取り囲んで、導電性の偏心検知部材5を設けてある。この導電性の偏心検知部材5は、具体的にはサセプタ1の回転軸8の周囲を取り囲む導電性のグラファイト製のリングから成る。そして、サセプタ1の回転軸8が偏心した際に、この導電性のリング(偏心検知部材5)と接触して、サセプタ1の回転軸8と偏心検知部材5とが電気的に導通するように構成されている。   However, unlike the conventional growth apparatus, a conductive eccentricity detection member 5 is provided surrounding the rotating shaft 8 of the susceptor 1 made of graphite. The conductive eccentricity detection member 5 is specifically formed of a conductive graphite ring surrounding the periphery of the rotating shaft 8 of the susceptor 1. Then, when the rotating shaft 8 of the susceptor 1 is eccentric, it comes into contact with the conductive ring (eccentricity detecting member 5) so that the rotating shaft 8 of the susceptor 1 and the eccentricity detecting member 5 are electrically connected. It is configured.

この偏心検知部材5とサセプタ1の双方を外部で電源に接続しておけば、図2に示す偏心が生じている状態においては電気的閉回路が形成される。即ち、電流が流れている状態を偏心が生じているとして検知することによって、気相成長中のサセプタ偏心が許容範囲を越えているか判定することが可能である。   If both the eccentricity detecting member 5 and the susceptor 1 are externally connected to a power source, an electrical closed circuit is formed in the state where the eccentricity shown in FIG. 2 occurs. That is, it is possible to determine whether or not the susceptor eccentricity during the vapor phase growth exceeds the allowable range by detecting that the current is flowing as the eccentricity occurs.

図1はサセプタ1の回転軸8と導電性の偏心検知部材5とが非導通(OFF)にある状態を、そして図2は両者が接触して導通(ON)した状態を示す図である。サセプタ1の回転軸8と導電性の偏心検知部材5とは、それぞれを電流検出回路10を介して外部の電源に接続されている。このため、回転軸8と偏心検知部材5の両者が図2の如く接触して擦れた状態となった場合には、電気的な閉回路(電気回路)が形成される。すなわちON状態となり、電流が流れる。従って、これを電流検出回路10により検出し、検出信号として出力することにより、サセプタ1の回転軸8の偏心を検出することができ、またその応答する際の偏心量を予め設定しておくことにより、間接的に、所定偏心量の超過や、サセプタ1とフローチャネルの開口部9との擦れを検出することが可能である。例えば、サセプタの回転軸の偏心量が、許容される膜厚分布又は比抵抗分布の範囲(偏心の許容範囲)を超えたとき、サセプタの回転軸が導電性の偏心検知部材に接触するように(間隔を)設定することで、その異常を検出したときには、生産を中止し、膜厚分布又は比抵抗分布が許容範囲を超えたウェハを多量に生産してしまう不都合を防止することができる。   FIG. 1 is a diagram showing a state where the rotating shaft 8 of the susceptor 1 and the conductive eccentricity detecting member 5 are non-conductive (OFF), and FIG. 2 is a diagram showing a state where both are in contact and conductive (ON). The rotating shaft 8 of the susceptor 1 and the conductive eccentricity detection member 5 are each connected to an external power source via a current detection circuit 10. For this reason, when both the rotating shaft 8 and the eccentricity detection member 5 are in contact and rubbed as shown in FIG. 2, an electrical closed circuit (electric circuit) is formed. That is, the current is turned on and current flows. Therefore, the eccentricity of the rotating shaft 8 of the susceptor 1 can be detected by detecting this with the current detection circuit 10 and outputting it as a detection signal, and the amount of eccentricity when the response is made is set in advance. Thus, it is possible to indirectly detect the excess of the predetermined eccentricity or the friction between the susceptor 1 and the flow channel opening 9. For example, when the amount of eccentricity of the rotation axis of the susceptor exceeds the range of allowable film thickness distribution or specific resistance distribution (tolerance range of eccentricity), the rotation axis of the susceptor comes into contact with the conductive eccentricity detection member. By setting the (interval), it is possible to prevent inconvenience that production is stopped when the abnormality is detected, and a large number of wafers whose film thickness distribution or specific resistance distribution exceeds an allowable range are produced.

次に、本発明の効果を確認するため、上記サセプタ偏心検知方法を実際の気相成長に適用してみた。   Next, in order to confirm the effect of the present invention, the above susceptor eccentricity detection method was applied to actual vapor phase growth.

サセプタに基板をセットして気相成長を実施後、基板を取り出すまでを1バッジとし、数バッジ繰り返して気相成長を実施したところ、あるバッジにおいてサセプタ1と偏心検知部材5の間で通電が確認された。取り出した基板の表面状態を確認したところ、前のバッジに比べ極端に悪化していた。また、そのバッジの全てのウェハ(基板)についての特性を評価し比較したところ、ウェハ間で特性差があるのを確認した。このため、サセプタの偏心を極力少なくなるよう調整して生産を再開したところ、通常の表面状態に改善した。   After the substrate is set on the susceptor and the vapor phase growth is performed, one badge is used until the substrate is taken out. The vapor phase growth is repeated for several badges. When a certain badge is used, current is passed between the susceptor 1 and the eccentricity detection member 5. confirmed. When the surface state of the substrate taken out was confirmed, it was extremely worse than the previous badge. Further, when the characteristics of all the wafers (substrates) of the badge were evaluated and compared, it was confirmed that there was a characteristic difference between the wafers. For this reason, when the production was resumed by adjusting the eccentricity of the susceptor as much as possible, the surface condition was improved.

以上から、気相成長中のサセプタ1の偏心を、サセプタ1の回転軸8と偏心検知部材5間の通電により検知することができ、歩留低下の防止に効果的であることが判明した。   From the above, it has been found that the eccentricity of the susceptor 1 during the vapor phase growth can be detected by energization between the rotating shaft 8 of the susceptor 1 and the eccentricity detection member 5 and is effective in preventing the yield reduction.

上記実施形態においては、サセプタの直径方向に原料ガスが流れるフェイスダウンタイプを例にして説明したが、本発明はサセプタ1の中心から半径方向に原料ガスが流れるフェイスダウンタイプについても適用することができる。   In the above embodiment, the face-down type in which the source gas flows in the diameter direction of the susceptor has been described as an example, but the present invention can also be applied to the face-down type in which the source gas flows in the radial direction from the center of the susceptor 1. it can.

本発明のサセプタ偏心検知方法におけるサセプタの回転軸と偏心検知部材の非導通状態を示した図である。It is the figure which showed the non-conduction state of the rotating shaft of a susceptor and the eccentricity detection member in the susceptor eccentricity detection method of this invention. 本発明のサセプタ偏心検知方法におけるサセプタの回転軸と偏心検知部材の導通状態を示した図である。It is the figure which showed the conduction | electrical_connection state of the rotating shaft of a susceptor and the eccentricity detection member in the susceptor eccentricity detection method of this invention. 従来技術の気相成長装置を示した断面図である。It is sectional drawing which showed the vapor phase growth apparatus of the prior art.

符号の説明Explanation of symbols

1 サセプタ
2 反応管
3 隙間
3a 隙間
3b 隙間
4 半導体基板(ウェハ)
5 偏心検知部材
6 開口
7 ツメ
8 回転軸
9 開口部
10 電流検出回路
20 フローチャネル
21 原料ガス供給口
22 ガス排気口
1 susceptor 2 reaction tube 3 gap 3a gap 3b gap 4 semiconductor substrate (wafer)
DESCRIPTION OF SYMBOLS 5 Eccentricity detection member 6 Opening 7 Claw 8 Rotating shaft 9 Opening part 10 Current detection circuit 20 Flow channel 21 Source gas supply port 22 Gas exhaust port

Claims (3)

原料ガス等のガス流路となるフローチャネルの壁内の所定位置に開口部を設け、この開口部に基板を保持したサセプタを嵌め込み、このサセプタをこれに固定の回転軸により開口部内で回転させつつ基板上に半導体の薄膜を成長する気相成長装置において、
上記サセプタの回転軸の周囲を取り囲んで導電性の偏心検知部材を設け、この導電性の偏心検知部材とサセプタの回転軸間の接触による電気的な導通の有無により、サセプタが偏心したかどうかを検知することを特徴とする気相成長装置のサセプタ偏心検知方法。
An opening is provided at a predetermined position in the wall of the flow channel that serves as a gas flow path for source gas, etc., and a susceptor holding the substrate is fitted into this opening, and this susceptor is rotated in the opening by a fixed rotating shaft. While in a vapor phase growth apparatus for growing a semiconductor thin film on a substrate,
A conductive eccentricity detecting member is provided surrounding the rotating shaft of the susceptor, and whether or not the susceptor is eccentric is determined by the presence or absence of electrical conduction due to contact between the conductive eccentricity detecting member and the rotating shaft of the susceptor. A method of detecting a susceptor eccentricity of a vapor phase growth apparatus.
請求項1記載の気相成長装置のサセプタ偏心検知方法において、
サセプタの回転軸と導電性の偏心検知部材の接触の有無により、回転時のサセプタの回転軸の偏心量が、許容される膜厚分布又は比抵抗分布の範囲を超えたかどうかを検知することを特徴とする気相成長装置のサセプタ偏心検知方法。
In the susceptor eccentricity detection method of the vapor phase growth apparatus according to claim 1,
Detecting whether or not the amount of eccentricity of the rotating shaft of the susceptor during rotation exceeds the range of allowable film thickness distribution or specific resistance distribution based on the presence or absence of contact between the rotating shaft of the susceptor and the conductive eccentricity detecting member. A susceptor eccentricity detection method for a vapor phase growth apparatus.
請求項1記載の気相成長装置のサセプタ偏心検知方法において、
サセプタの回転軸と導電性の偏心検知部材の接触の有無により、回転時にサセプタがフローチャネルの開口部に擦れたかどうかを検知することを特徴とする気相成長装置のサセプタ偏心検知方法。
In the susceptor eccentricity detection method of the vapor phase growth apparatus according to claim 1,
A susceptor eccentricity detection method for a vapor phase growth apparatus, characterized by detecting whether or not the susceptor rubs against an opening of a flow channel during rotation based on the presence or absence of contact between a rotating shaft of the susceptor and a conductive eccentricity detection member.
JP2005137178A 2005-05-10 2005-05-10 Method of detecting eccentricity in susceptor of vapor phase deposition apparatus Pending JP2006318957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137178A JP2006318957A (en) 2005-05-10 2005-05-10 Method of detecting eccentricity in susceptor of vapor phase deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137178A JP2006318957A (en) 2005-05-10 2005-05-10 Method of detecting eccentricity in susceptor of vapor phase deposition apparatus

Publications (1)

Publication Number Publication Date
JP2006318957A true JP2006318957A (en) 2006-11-24

Family

ID=37539386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137178A Pending JP2006318957A (en) 2005-05-10 2005-05-10 Method of detecting eccentricity in susceptor of vapor phase deposition apparatus

Country Status (1)

Country Link
JP (1) JP2006318957A (en)

Similar Documents

Publication Publication Date Title
US20080032036A1 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
KR101650837B1 (en) Vapor phase growth apparatus
KR20150012252A (en) Rotating disk reactor with ferrofluid seal for chemical vapor deposition
JPWO2003017345A1 (en) Chemical vapor deposition equipment
US20090194018A1 (en) Apparatus and method for manufacturing epitaxial wafer
US20080124901A1 (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP5802052B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2011040615A (en) Apparatus and method for manufacturing semiconductor
JP2010147080A (en) Susceptor for vapor deposition, vapor deposition apparatus, and manufacturing method of epitaxial wafer
JP2006318957A (en) Method of detecting eccentricity in susceptor of vapor phase deposition apparatus
CN111349908A (en) SiC chemical vapor deposition device
JP4327515B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP4341647B2 (en) Chemical vapor deposition equipment
JP2006216864A (en) Compound semiconductor manufacturing device
JP2006165135A (en) Method for detecting susceptor friction in vapor phase epitaxy device
JP5349232B2 (en) Film forming apparatus and film forming method
JP2010272550A (en) Susceptor
JP4758385B2 (en) Vapor growth apparatus and vapor growth method
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JP2007035727A (en) Vapor phase deposition apparatus and vapor phase deposition method using same
JP2010129587A (en) Apparatus for manufacturing compound semiconductor epitaxial wafer
JP2005243766A (en) Gas phase growth device
JP2006093275A (en) Vapor phase epitaxial method
JP2004273515A (en) Semiconductor vapor growth equipment
JP4720692B2 (en) Vapor growth susceptor, vapor growth apparatus and vapor growth method