JP2006317957A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2006317957A
JP2006317957A JP2006145353A JP2006145353A JP2006317957A JP 2006317957 A JP2006317957 A JP 2006317957A JP 2006145353 A JP2006145353 A JP 2006145353A JP 2006145353 A JP2006145353 A JP 2006145353A JP 2006317957 A JP2006317957 A JP 2006317957A
Authority
JP
Japan
Prior art keywords
film
layer
refractive index
optical thin
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006145353A
Other languages
Japanese (ja)
Other versions
JP4119925B2 (en
Inventor
Yukimitsu Iwata
田 行 光 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006145353A priority Critical patent/JP4119925B2/en
Publication of JP2006317957A publication Critical patent/JP2006317957A/en
Application granted granted Critical
Publication of JP4119925B2 publication Critical patent/JP4119925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film used for a various kinds of displays, by which required visual information can be clearly read by preventing reflection of light at a surface and in which color development due to interference of light is suppressed and the whole film has low reflection by lessening an optical thin film layer. <P>SOLUTION: On a transparent rugged base material 2 having a rugged shape 6 on its surface, only a single layer of the optical thin film layer 5 having lower refractive index than that of the base material and film thickness of λ/4n (wherein (n) is refractive index and λ is 500 to 600nm) is provided to form a laminated film. Haze value of the whole laminated film is 40% or less and difference between minimum spectral reflectance and highest spectral reflectance in a visible light region (380 to 780nm) is 0.5% or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の属する技術分野TECHNICAL FIELD OF THE INVENTION

本発明は、防眩性の光学的機能をもつフィルムに関し、特にワープロ、コンピュータ、テレビなどの各種ディスプレイ、液晶表示装置に用いる偏光板の表面、透明なプラスチック類からなりサングラスのレンズ、度付きメガネのレンズ、カメラ用ファインダーのレンズなどの光学レンズ、各種計器のカバー、自動車、電車などの窓ガラスの表面の反射防止フィルムに適する光学的特性に優れたフィルムに属する。   The present invention relates to a film having an antiglare optical function, and in particular, various displays such as word processors, computers, and televisions, the surface of a polarizing plate used in a liquid crystal display device, a lens made of transparent plastic, a lens for sunglasses, and glasses with a degree. It belongs to a film excellent in optical properties suitable for an anti-reflection film on the surface of a window glass of an optical lens, a lens of a camera finder, a cover of various instruments, an automobile, a train, etc.

従来の技術Conventional technology

カーブミラー、バックミラー、ゴーグル、窓ガラス、パソコン、ワープロなどのディスプレイその他種々の商業ディスプレイなどには、ガラスやプラスチックなどの透明基板が使用されている。そして、これらの透明基板を通して物体や文字、図形などの視覚情報、あるいはミラーからの像を透明基板を通して反射層から観察する場合に、これら透明基板の表面が光を反射して、内部の必要な視覚情報が判読し難いという問題点があった。   Transparent substrates such as glass and plastic are used for displays such as curved mirrors, rearview mirrors, goggles, window glass, personal computers, word processors, and various other commercial displays. And when observing visual information such as objects, characters, figures, etc. through these transparent substrates, or images from mirrors from the reflective layer through the transparent substrates, the surface of these transparent substrates reflects the light, There was a problem that visual information was difficult to read.

従来、これらの光の反射を防止する技術には、ガラスやプラスチックなどの基材表面に反射防止塗料を塗工する方法、ガラスなどの透明基板の表面に厚み0.1μm程度のMgFなどの極薄膜や金属蒸着膜を設ける方法、プラスチックレンズなどの表面に電離放射線硬化型樹脂を塗工し、更に、その上に蒸着によりSiOxやMgFの膜を形成する方法、電離放射線硬化型樹脂の硬化膜の上に更に低屈折率の塗膜を形成したりする方法などがあった。 Conventionally, technologies for preventing the reflection of light include a method of applying an antireflection coating on the surface of a substrate such as glass or plastic, and MgF 2 having a thickness of about 0.1 μm on the surface of a transparent substrate such as glass. A method of providing an ultra-thin film or a metal vapor-deposited film, a method of coating an ionizing radiation curable resin on the surface of a plastic lens and the like, and further forming a SiOx or MgF 2 film on the surface by vapor deposition. There was a method of forming a coating film having a lower refractive index on the cured film.

また、基材表面に光学薄膜層を多層で設け、光の干渉効果を利用してフィルムの分光最低反射率を下げてきた。しかしながら、多層の光学薄膜は各厚みの管理精度を要求される。すなわち、層構成が多い光学薄膜層の場合は、反射防止効果は得られるものの、光の干渉により発色する色を均一化することが難しい。また、層構成が少ない光学薄膜の場合は、充分な反射防止効果を得ることができないなどの問題があった。特に液晶ディスプレーなどの反射防止フィルムにおいては重要な課題の一つとなっていた。   Moreover, the optical thin film layer was provided in the surface of the base material in multiple layers, and the spectral minimum reflectance of the film has been lowered by utilizing the light interference effect. However, a multilayer optical thin film is required to have a management accuracy of each thickness. That is, in the case of an optical thin film layer having a large number of layer structures, an antireflection effect can be obtained, but it is difficult to uniformize a color that develops due to light interference. Further, in the case of an optical thin film having a small layer structure, there is a problem that a sufficient antireflection effect cannot be obtained. In particular, it has been one of the important issues in antireflection films such as liquid crystal displays.

更に、光干渉により、局所的に特定の波長領域で分光最低反射率を下げた場合には、必然的に、他の波長領域における分光反射率の数値が上がるという問題があった。また、充分な反射防止効果を与えるためには、光学薄膜層を多層にすることで、反射率が高い波長領域を極力せまくすることが行われていた。しかしながら、多層に光学薄膜層を設けることは、工程的に不安定であるという問題点があった。   Furthermore, when the spectral minimum reflectance is locally reduced in a specific wavelength region due to optical interference, there is a problem that the numerical value of the spectral reflectance in other wavelength regions inevitably increases. Further, in order to provide a sufficient antireflection effect, a wavelength region with high reflectivity has been made as much as possible by forming a multilayer optical thin film layer. However, providing an optical thin film layer in multiple layers has a problem that it is unstable in process.

本発明は、各種ディスプレイに使用して透明基板を通して識別する物体や文字、図形などの視覚情報、あるいはミラーからの像を透明基板を通して反射層から観察する場合に、これら透明基板の表面が光の反射を防止して、内部の必要な視覚情報を透過して、明瞭に判読できる反射防止フィルムの提供を課題とするものである。そして、光学薄膜層を少なくして光の干渉を緩和し、なお、かつ反射率が高い波長領域のせまい、フィルム全体としては低反射となる反射防止フィルムの提供を課題とするものである。   In the present invention, when the visual information such as objects, characters, and figures to be identified through a transparent substrate used for various displays or an image from a mirror is observed from a reflective layer through the transparent substrate, the surface of the transparent substrate is made of light. An object of the present invention is to provide an antireflection film that prevents reflection and transmits necessary visual information inside and can be clearly read. The object of the present invention is to provide an antireflection film that reduces the optical interference by reducing the number of optical thin film layers and is low in the wavelength range where the reflectance is high and the film as a whole has low reflection.

上記の課題を解決するために本発明は、透明、かつ、表面に凹凸形状をもつ凹凸基材に、基材の屈折率よりも低い光学薄膜層をλ/4n(但し、n:屈折率、λ:500〜600nm)の膜厚で単層のみを設けた積層フィルムであって、積層フィルム全体のヘイズ値が40%以下であり、かつ、可視光領域(以下、本明細書においては、380〜780nmをいう。)における最低分光反射率と最高分光反射率との差が0.5%以下である反射防止フィルムである。そして、上記積層フィルム全体のヘイズ値が20〜40%の範囲の反射防止フィルムである。また、上記凹凸基材の最表面の表面平均粗度Raが0.1〜0.5μmの反射防止フィルムである。そして、上記の凹凸基材と、光学薄膜層との屈折率差が0.03〜0.15である反射防止フィルムである。そして、透明な基材シート上に凹凸形状をもつ塗工層を介して、塗工層の屈折率よりも低い光学薄膜層をλ/4n(但し、n:屈折率、λ:500〜600nm)の膜厚で単層のみを設けた積層フィルムであって、積層フィルム全体のヘイズ値が40%以下であり、かつ、可視光領域における最低分光反射率と最高分光反射率との差が0.5%以下である反射防止フィルムである。また、請求項5記載の積層フィルム全体のヘイズ値が20〜40%の範囲にある反射防止フィルムである。また、前記凹凸形状をもつ塗工層の最表面の表面粗度Raが0.1〜0.5μmである反射防止フィルムである。そして、前記凹凸形状をもつ塗工層と、光学薄膜層との屈折率差が0.03〜0.15の反射防止フィルムである。更に前記の請求項5記載の塗工層が鉛筆硬度で2H以上の硬化皮膜の反射防止フィルムである。   In order to solve the above-mentioned problems, the present invention provides an optical thin film layer that is transparent and has a concavo-convex shape on the surface, with an optical thin film layer lower than the refractive index of the substrate λ / 4n (where n: A laminated film provided with only a single layer with a film thickness of λ: 500 to 600 nm, the haze value of the whole laminated film is 40% or less, and a visible light region (hereinafter referred to as 380 in this specification). The difference between the lowest spectral reflectance and the highest spectral reflectance in ˜780 nm) is 0.5% or less. And it is an antireflection film whose haze value of the said laminated | multilayer film whole is 20 to 40% of range. Moreover, it is an antireflection film whose surface average roughness Ra of the outermost surface of the said uneven | corrugated base material is 0.1-0.5 micrometer. And it is an antireflection film whose refractive index difference of said concavo-convex base material and an optical thin film layer is 0.03-0.15. Then, an optical thin film layer having a refractive index lower than the refractive index of the coating layer is λ / 4n (where n: refractive index, λ: 500 to 600 nm) through a coating layer having an uneven shape on a transparent substrate sheet. The haze value of the whole laminated film is 40% or less, and the difference between the lowest spectral reflectance and the highest spectral reflectance in the visible light region is 0. The antireflection film is 5% or less. Moreover, it is an antireflection film which has the haze value of the whole laminated film of Claim 5 in the range of 20 to 40%. Moreover, it is an antireflection film whose surface roughness Ra of the outermost surface of the coating layer having the uneven shape is 0.1 to 0.5 μm. And it is an antireflection film whose refractive index difference of the coating layer with the said uneven | corrugated shape and an optical thin film layer is 0.03-0.15. Furthermore, the coating layer according to claim 5 is an antireflection film having a cured film having a pencil hardness of 2H or more.

発明の実施形態Embodiments of the Invention

請求項1の発明は、図1に示すように、透明、かつ、表面に凹凸形状6をもつ凹凸基材2に、基材の屈折率よりも低い光学薄膜層5をλ/4n(但し、n:屈折率、λ:500〜600nm)の膜厚で単層のみ設けた積層フィルムである。そして、該積層フィルム全体のヘイズ値が40%以下の範囲にある反射防止フィルム1である。そして、上記積層フィルム全体のヘイズ値が20〜40%の範囲の反射防止フィルム1である。また、上記凹凸基材2の最表面の表面平均粗度Raが0.1〜0.5μmの反射防止フィルム1である。そして、上記の凹凸基材2と、光学薄膜層5との屈折率差が0.03〜0.15である反射防止フィルムである。そして、請求項5の発明は、図2に示すとおりの透明な基材シート3の上に凹凸形状6をもつ凹凸塗工層4を介して、前記の光学薄膜層5を設けた積層フィルムであり、該積層フィルム全体のヘイズ値が40%以下の範囲にある反射防止フィルム1である。また、請求項5記載の積層フィルム全体のヘイズ値が20〜40%の範囲にある反射防止フィルム1である。また、前記凹凸形状をもつ塗工層4の最表面の表面粗度Raが0.1〜0.5μmである反射防止フィルム1である。そして、前記凹凸形状をもつ塗工層4と、光学薄膜層5との屈折率差が0.03〜0.15である反射防止フィルム1である。また、請求項5記載の塗工層4が鉛筆硬度で2H以上の硬化皮膜の反射防止フィルム1である。   In the invention of claim 1, as shown in FIG. 1, an optical thin film layer 5 having a refractive index lower than the refractive index of the substrate is λ / 4n (provided that λ / 4n) (n: refractive index, λ: 500 to 600 nm) is a laminated film provided with only a single layer. And it is the antireflection film 1 in which the haze value of the whole laminated film is in the range of 40% or less. And it is the antireflection film 1 of the range whose haze value of the said laminated | multilayer film whole is 20 to 40%. Moreover, it is the antireflection film 1 whose surface average roughness Ra of the outermost surface of the said uneven base material 2 is 0.1-0.5 micrometer. And it is an antireflection film whose refractive index difference of said concavo-convex base material 2 and optical thin film layer 5 is 0.03-0.15. And invention of Claim 5 is a laminated film which provided the said optical thin film layer 5 through the uneven | corrugated coating layer 4 which has the uneven | corrugated shape 6 on the transparent base material sheet 3 as shown in FIG. Yes, the antireflection film 1 has a haze value of 40% or less of the entire laminated film. Moreover, it is the antireflection film 1 which has the haze value of the whole laminated film of Claim 5 in the range of 20 to 40%. Moreover, it is the antireflection film 1 whose surface roughness Ra of the outermost surface of the coating layer 4 which has the said uneven | corrugated shape is 0.1-0.5 micrometer. And it is the antireflection film 1 whose refractive index difference of the coating layer 4 with the said uneven | corrugated shape and the optical thin film layer 5 is 0.03-0.15. Moreover, the coating layer 4 of Claim 5 is the antireflection film 1 of the cured film whose pencil hardness is 2H or more.

本発明は、凹凸形状を設けた透明基材に光学薄膜層を単層で設けることにより、凹凸形状の光拡散効果と、光学薄膜層の光干渉効果との組合せにより、積層フィルムが全体として、全光線透過率が高く、可視光領域における分光平均反射率が2%以下で、かつ最低分光反射率と最高分光反射率との差を0.5%以下の色むらがない反射防止フィルムを構成するものである。   In the present invention, by providing the optical thin film layer as a single layer on the transparent substrate provided with the concavo-convex shape, the combination of the concavo-convex light diffusion effect and the optical interference effect of the optical thin film layer, the laminated film as a whole, Constructs an antireflection film with high total light transmittance, spectral average reflectance in the visible light region of 2% or less, and a difference between the lowest spectral reflectance and the highest spectral reflectance of 0.5% or less and no color unevenness To do.

請求項1の発明に使用する凹凸基材2は、屈折率が1.5%以上の透明なガラスなどのセラミックス、又は透明のプラスチックの延伸又は未延伸のフィルムから形成される。そして、通常の光学ガラスの他に、ポリエステル、トリ又はジアセチルセルロース、ポリアミド、ポリイミド、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリメタアクリル酸メチル、ポリカーボネート、ポリウレタンなどの熱可塑性樹脂を使用することができる。フィルムの厚みは材料の剛性、強度、製造方法にもよるが、プラスチックフィルムでは30〜1000μm、セラミックスで200〜3000μmである。そして、凹凸形状は、成膜を行うときに賦型フィルム、又は賦型板と積層したり、成膜を完了したフィルムをサンドブラストなどの処理で形成する。   The uneven substrate 2 used in the invention of claim 1 is formed from a stretched or unstretched film of ceramics such as transparent glass having a refractive index of 1.5% or more, or a transparent plastic. In addition to normal optical glass, thermoplastic resins such as polyester, tri- or diacetylcellulose, polyamide, polyimide, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, methyl polymethacrylate, polycarbonate, and polyurethane are used. can do. The thickness of the film depends on the rigidity, strength, and manufacturing method of the material, but is 30 to 1000 μm for plastic films and 200 to 3000 μm for ceramics. The concave / convex shape is formed by laminating a shaping film or a shaping plate at the time of film formation, or forming a film on which film formation has been completed by a process such as sandblasting.

上記の凹凸基材は、賦型を行うことによりヘイズを40%以下とし、そしてその凹凸形状の表面粗度Raは、0.1〜0.5μmとする。このような凹凸形状に単層の光学薄膜層を設けることにより、可視光領域における分光平均反射率を、2.0%以下、かつ可視光領域における最低分光反射率と、最高分光反射率との差を0.5%以下にできる。分光反射率が2%以下であり、かつ可視光領域における最高分光反射率と最低分光反射率とのさが0.5%以下にすることが好ましい。表面粗度Raが0.5μmを超えると、表面が荒れて液晶ディスプレーなどの用途には不適当である。ヘイズが40%を超えると全体に白っぽい表面となり、ディスプレーの用途には不適当である。また、表面粗度Raが0.1μmに充たないときは、表面凹凸による光拡散効果が不充分となり、単層のみの光学薄膜層では可視光領域における分光平均反射率を、2.0%以下にすることは困難である。   The concavo-convex substrate is shaped so that the haze is 40% or less, and the surface roughness Ra of the concavo-convex shape is 0.1 to 0.5 μm. By providing a single optical thin film layer in such an uneven shape, the spectral average reflectance in the visible light region is 2.0% or less, and the minimum spectral reflectance and the maximum spectral reflectance in the visible light region are The difference can be 0.5% or less. It is preferable that the spectral reflectance is 2% or less and the maximum spectral reflectance and the minimum spectral reflectance in the visible light region are 0.5% or less. When the surface roughness Ra exceeds 0.5 μm, the surface becomes rough and is not suitable for applications such as liquid crystal displays. If the haze exceeds 40%, the entire surface becomes whitish, which is unsuitable for display applications. Further, when the surface roughness Ra is less than 0.1 μm, the light diffusing effect due to the surface irregularities becomes insufficient, and the optical thin film layer having only a single layer has a spectral average reflectance of 2.0% in the visible light region. It is difficult to make it below.

請求項5の発明における凹凸形状は、前記凹凸基材で作成したものと同一、又は表面硬度などの特性を向上させる目的で透明の基材シート3に塗工により形成する。そして、透明基材シート3に熱硬化型又は電離放射線硬化型組成物を主とする塗料を塗工して、基材シートとは異なる表面特性をもつ凹凸塗工層4を形成するものである。また、基材シートに、直接又は凹凸塗工層の接着を強固にするプライマー層を設けて、凹凸塗工層を形成することもできる。そして、凹凸塗工層の塗工量(本明細書においては、塗工量の厚みは固形分で記載する。)は、2〜20μmである。塗工量が2μm以下では、精度のある凹凸形状を賦型できないばかりでなく、塗工材料がもつ特性を発揮することができない。また、塗工量が20μm以上になると、資源の浪費であり、硬化に時間を必要とし、塗工層の可撓性を損ない、加工工程で亀裂を生ずるなどの問題を発生することとなる。また、凹凸塗工層が熱可塑性樹脂を主とする組成物を塗工・賦型することでも形成できる。   The concavo-convex shape in the invention of claim 5 is formed on the transparent base material sheet 3 by coating for the purpose of improving the characteristics such as the surface hardness or the same as that prepared with the concavo-convex base material. And the coating material which mainly has a thermosetting type or ionizing radiation-curable composition is applied to the transparent base material sheet 3, and the uneven | corrugated coating layer 4 which has a surface characteristic different from a base material sheet is formed. . Moreover, the primer layer which strengthens the adhesion | attachment of an uneven | corrugated coating layer directly or on a base material sheet can be provided, and an uneven | corrugated coating layer can also be formed. The coating amount of the uneven coating layer (in this specification, the thickness of the coating amount is described as a solid content) is 2 to 20 μm. When the coating amount is 2 μm or less, it is not only possible to form an accurate uneven shape, but also the characteristics of the coating material cannot be exhibited. On the other hand, when the coating amount is 20 μm or more, it is a waste of resources, and it takes time for curing, and the flexibility of the coating layer is impaired, and cracks are generated in the processing step. Alternatively, the uneven coating layer can be formed by coating / molding a composition mainly composed of a thermoplastic resin.

凹凸塗工層が形成する屈折率と、光学薄膜層がもつ屈折率との差が、0.03に充たないときは、干渉効果を奏さず、また、0.15を超えると、干渉効果により発色する。したがって、上記屈折率の差は、0.03〜0.15好ましくは0.05〜0.10である。   When the difference between the refractive index formed by the concavo-convex coating layer and the refractive index of the optical thin film layer is not 0.03, no interference effect is obtained. Due to color development. Therefore, the difference in refractive index is 0.03 to 0.15, preferably 0.05 to 0.10.

凹凸塗工層は、小ロットで生産する凹凸形状の賦型に適するばかりでなく、基材シートの表面特性、擦り傷などの発生を防止する硬度や、異物の付着を防止する防汚性を付与するために設けるものである。したがって、熱可塑性樹脂ばかりでなく、フィルムによる凹凸賦型が容易な硬化型樹脂、熱硬化性樹脂、電離放射線硬化型樹脂などに必要によっては、界面活性剤や、離形材料を添加したものの使用が好ましい。例えば、ポリカーボネート、ポリメチルメタアクリレート、ポリメチルペンテン、ポリイミド、ポリエステルなどの熱可塑性樹脂の他に、ポリエステル・イソシアネート、ポリエーテル・イソシアネート、エポキシ・イソシアネートなどの二液反応型樹脂がある。更に好ましくは、ポリエステル・(メタ)アクリレート(本明細書においては、・・メタアク・・・と・・アク・・とを・・(メタ)アク・・と記載する。)、エポキシ(メタ)アクリレート、多官能(メタ)アクリレートなどを主成分とする電離放射線硬化型樹脂である。これらの樹脂を基材シートに塗工し、溶融状態あるいは未硬化の状態で、賦型フィルムと圧着・賦型して、冷却や、加熱及び/又は電離放射線で硬化して凹凸塗工層を構成するものである。また、硬化した塗工層をサンドブラスト処理により凹凸形状を形成することもできる。   The uneven coating layer is not only suitable for forming uneven shapes produced in small lots, but also provides surface properties of the base sheet, hardness to prevent scratches, and antifouling properties to prevent adhesion of foreign matter It is provided to do. Therefore, in addition to thermoplastic resins, use of curable resins, thermosetting resins, ionizing radiation curable resins, etc. that are easy to form unevenness with films, if necessary, with surfactants or release materials added Is preferred. For example, in addition to thermoplastic resins such as polycarbonate, polymethyl methacrylate, polymethylpentene, polyimide, and polyester, there are two-component reactive resins such as polyester / isocyanate, polyether / isocyanate, and epoxy / isocyanate. More preferably, polyester (meth) acrylate (in the present specification,..., Methac ... and aku ... are described as (meth) ac ...), epoxy (meth) acrylate. , An ionizing radiation curable resin containing polyfunctional (meth) acrylate as a main component. These resins are coated on a base sheet, and in a molten or uncured state, crimped and molded with a shaping film, and cured by cooling, heating and / or ionizing radiation to form an uneven coating layer. It constitutes. Moreover, the uneven | corrugated shape can also be formed by the sandblast process for the hardened coating layer.

凹凸塗工層は、賦型フィルムによる形成の他に、上記の樹脂ワニスに、無機又は有機微粒子を分散した組成物を塗工して形成することができる。上記の塗工用組成物は、熱硬化型樹脂、及び/又は電離放射線型樹脂を1重量部に対して、ITO、SiO、Alや、ポリカーボネート、ポリイミド、ポリアミド、ポリエステル、ポリメチルメタアクリレートなどから1種類以上の微粒子から選択したマット材が、0.2〜20重量部で構成されている。 The concavo-convex coating layer can be formed by applying a composition in which inorganic or organic fine particles are dispersed to the above resin varnish, in addition to formation by a shaping film. The coating composition is composed of 1 part by weight of thermosetting resin and / or ionizing radiation resin, ITO, SiO 2 , Al 2 O 3 , polycarbonate, polyimide, polyamide, polyester, polymethyl. A mat material selected from one or more kinds of fine particles such as methacrylate is composed of 0.2 to 20 parts by weight.

光学薄膜層は、基材シートより屈折率が小さくすることが好ましく、SiOx(xは1.5〜4.0)である。SiOxを蒸着、プラズマCVD又はスパッタリングで設ける。そして、SiOxの原料は、好ましくは有機シロキサンを原料ガスとして、他の無機蒸着源が存在しない条件でプラズマCVDで被蒸着フィルムをできるだけ低温度に維持することが好ましい。本発明の光学薄膜層(SiOx層)には未分解の有機シロキサンを含むことがSiOxの可撓性と接着性を維持することに効果がある。光学薄膜層の厚さdは、λ/4n(但し、λが500〜600nm、nを1.5とすれば、dは約80〜100nm)を満足する厚みdで設けることが好ましい。厚みが上記の数値以下(例えば、80nmでは干渉効果を示さず全光線透過率が充分でなく、上記の数値を超える(例えば100nm)と発色するという問題がある。   The optical thin film layer preferably has a refractive index smaller than that of the base sheet, and is SiOx (x is 1.5 to 4.0). SiOx is provided by vapor deposition, plasma CVD or sputtering. The raw material for SiO x is preferably organic siloxane as a raw material gas, and the film to be deposited is preferably maintained at the lowest possible temperature by plasma CVD under the condition that no other inorganic vapor deposition source is present. Including the undecomposed organosiloxane in the optical thin film layer (SiOx layer) of the present invention is effective in maintaining the flexibility and adhesiveness of SiOx. The thickness d of the optical thin film layer is preferably provided to a thickness d that satisfies λ / 4n (provided that λ is 500 to 600 nm, and n is 1.5, d is about 80 to 100 nm). There is a problem that when the thickness is less than the above value (for example, 80 nm, no interference effect is exhibited and the total light transmittance is not sufficient, and when the thickness exceeds the above value (for example, 100 nm), color is developed.

以下、実験例に基づいて本発明を更に詳細に説明する。図1又は図2に示すとおりの、表1に示す厚み80μmの凹凸基材2もしくは、基材シート3としてのトリアセチルセルロースフィルムに下記に示す「塗工液組成物」を約7μm塗工し、各種の賦型フィルムを積層し、紫外線照射装置で(80W/cm×10m/min×4回)の条件で硬化後、賦型フィルムを剥離し、表面に凹凸塗工層5をもつ積層フィルムを作製した。次いで、上記積層フィルムを、60℃の8%苛性ソーダ水溶液で2分間ケン化処理後水洗・乾燥した。更に、比較例5(*)を除く他の積層フィルムの凹凸形状6の面にSiOxを、λ/4(約90nm)の膜厚で蒸着し本発明の実施例及び比較例のヘイズ又は表面粗さをもつ反射防止フィルム1を構成した。
「塗工液組成物」
・ペンタエリスリトールトリアクリレート(官能アクリレート)100重量部
・光重合開始剤 3重量部
・プロピオン酸セルロース 1.25重量部
・シリコーン(レベリング剤) 0.1 重量部
Hereinafter, the present invention will be described in more detail based on experimental examples. As shown in FIG. 1 or FIG. 2, about 7 μm of the “coating liquid composition” shown below is applied to the concavo-convex substrate 2 having a thickness of 80 μm shown in Table 1 or the triacetyl cellulose film as the substrate sheet 3. , Various shaped films are laminated and cured with UV irradiation equipment (80 W / cm × 10 m / min × 4 times), then the shaped film is peeled off, and the laminated film having the uneven coating layer 5 on the surface Was made. Next, the laminated film was saponified with an 8% aqueous solution of caustic soda at 60 ° C. for 2 minutes, washed with water and dried. Further, SiOx was deposited on the surface of the concavo-convex shape 6 of the other laminated film except for Comparative Example 5 (*) with a film thickness of λ / 4 (about 90 nm), and the haze or surface roughness of Examples and Comparative Examples of the present invention. A thick antireflection film 1 was constructed.
"Coating fluid composition"
Pentaerythritol triacrylate (functional acrylate) 100 parts by weight Photopolymerization initiator 3 parts by weight Cellulose propionate 1.25 parts by weight Silicone (leveling agent) 0.1 parts by weight

Figure 2006317957
Figure 2006317957

上記実験の(表1)に示すヘイズ及び表面粗さをもつ実施例及び比較例の各試料について、次のように反射防止フィルムとしての分光反射率、全光線透過率、発色の程度およびグロスの測定と評価を行った結果を(表2)に示す。
・表面粗さ:小坂研究所製 サーフコーダーAY−31により測定する。
・ヘイズ:東洋精機(株)製 直読式ヘイズメーターにより測定する。
・分光反射率:島津製作所製 分光反射率測定器 MPC−3100を用いて可視光領域の範囲における、全光線透過率及び最高分光反射率と最低分光反射率とを測定し、その差を算出する。
・グロス:村上色彩技術研究所製 グロスメーターGM−3Dを用いて、入射光60度におけるグロスを評価する。
・発色の程度:光干渉による発色の程度を目視で評価する。
3:発色の程度が大2:若干発色する1:殆ど発色がない
For each sample of Examples and Comparative Examples having the haze and surface roughness shown in (Table 1) of the above experiment, spectral reflectance, total light transmittance, degree of color development and gloss of the antireflection film are as follows: The results of measurement and evaluation are shown in (Table 2).
-Surface roughness: Measured with Surfcoder AY-31 manufactured by Kosaka Laboratory.
-Haze: Measured with a direct reading haze meter manufactured by Toyo Seiki Co., Ltd.
Spectral reflectance: Spectral reflectance measuring instrument manufactured by Shimadzu Corporation MPC-3100 is used to measure the total light transmittance, the highest spectral reflectance, and the lowest spectral reflectance in the visible light range, and calculate the difference. .
Gloss: Gloss meter GM-3D manufactured by Murakami Color Research Laboratory is used to evaluate the gloss at 60 degrees of incident light.
-Degree of color development: Visually evaluate the degree of color development due to light interference.
3: Large color development 2: Slight color development 1: Almost no color development

Figure 2006317957
・実施例9及び10は、反射率が比較的大きく、反射防止効が若干劣るものであった。
・比較例1はヘイーズが高く画像の鮮明性が劣るものであった。
Figure 2006317957
In Examples 9 and 10, the reflectance was relatively large and the antireflection effect was slightly inferior.
Comparative Example 1 had high haze and poor image sharpness.

[発明の効果]
本発明の反射防止フィルムは、以上説明したように、凹凸形状を賦型したヘイズが40%以下、あるいは、硬化型の塗工層に凹凸形状を設けたヘイズが40%以下のフィルムに、光学薄膜層を単層に設けて形成するものである。したがって、単層の光学薄膜層の形成は、多層のものと比較して生産上の管理が容易であり、可視光領域において、分光平均反射率が2%以下の低反射率の反射防止フィルムを提供できる効果を奏する。また、従来の反射防止フィルムとは異なり、可視光領域における、最高分光反射率と最低分光反射率との差が0.5%以下を実現できるため、高い分光反射率の波長領域でも反射防止効果を阻害することがない。そして、硬化型凹凸塗工層を設けた反射防止フィルムは表面特性に優れた効果を奏する。
[The invention's effect]
As described above, the antireflection film of the present invention is optically applied to a film having an irregular shape shaped haze of 40% or less, or a curable coating layer provided with an irregular shape haze of 40% or less. The thin film layer is formed as a single layer. Therefore, the formation of a single-layer optical thin film layer is easier to manage in production as compared with a multilayered one, and in the visible light region, an antireflection film having a low reflectance with a spectral average reflectance of 2% or less is used. There is an effect that can be provided. In addition, unlike the conventional antireflection film, the difference between the highest spectral reflectance and the lowest spectral reflectance in the visible light region can be 0.5% or less, so the antireflection effect can be achieved even in the high spectral reflectance wavelength region. Will not be disturbed. And the antireflection film which provided the curable uneven | corrugated coating layer has an effect excellent in surface characteristics.

本発明の反射防止フィルムの層構成を示す断面概略図である。It is a section schematic diagram showing layer composition of an antireflection film of the present invention. 本発明の反射防止フィルムの他の層構成を示す断面概略図である。It is a section schematic diagram showing other layer composition of the antireflection film of the present invention.

符号の説明Explanation of symbols

1 反射防止フィルム
2 凹凸基材
3 基材シート
4 凹凸塗工層
5 光学薄膜層
6 凹凸形状
DESCRIPTION OF SYMBOLS 1 Antireflection film 2 Uneven base material 3 Base material sheet 4 Uneven coating layer 5 Optical thin film layer 6 Uneven shape

Claims (9)

透明、かつ、表面に凹凸形状をもつ凹凸基材に、基材の屈折率よりも低い光学薄膜層をλ/4n(但し、n:屈折率、λ:500〜600nm)の膜厚で単層のみを設けた積層フィルムであって、積層フィルム全体のヘイズ値が40%以下であり、かつ、可視光領域(380〜780nm)における最低分光反射率と最高分光反射率との差が0.5%以下であることを特徴とする反射防止フィルム。   An optical thin film layer having a thickness of λ / 4n (where n: refractive index, λ: 500 to 600 nm) is a single layer on an uneven substrate that is transparent and has an uneven shape on the surface. The haze value of the entire laminated film is 40% or less, and the difference between the lowest spectral reflectance and the highest spectral reflectance in the visible light region (380 to 780 nm) is 0.5. % Antireflective film characterized by being less than or equal to%. 請求項1記載の積層フィルム全体のヘイズ値が20〜40%の範囲にあることを特徴とする反射防止フィルム。   2. The antireflection film according to claim 1, wherein the entire laminated film according to claim 1 has a haze value in the range of 20 to 40%. 請求項1記載の凹凸基材の最表面の表面平均粗度Raが0.1〜0.5μmであることを特徴とする反射防止フィルム。   2. The antireflection film according to claim 1, wherein the surface average roughness Ra of the outermost surface of the concavo-convex substrate is from 0.1 to 0.5 [mu] m. 請求項1記載の凹凸基材と、光学薄膜層との屈折率差が0.03〜0.15であることを特徴とする反射防止フィルム。   An antireflection film, wherein the refractive index difference between the uneven substrate according to claim 1 and the optical thin film layer is 0.03 to 0.15. 透明な基材シート上に凹凸形状をもつ塗工層を介して、塗工層の屈折率よりも低い光学薄膜層をλ/4n(但し、n:屈折率、λ:500〜600nm)の膜厚で単層のみを設けた積層フィルムであって、積層フィルム全体のヘイズ値が40%以下であり、かつ、可視光領域における最低分光反射率と最高分光反射率との差が0.5%以下であることを特徴とする反射防止フィルム。   An optical thin film layer having a refractive index lower than the refractive index of the coating layer is formed on a transparent substrate sheet having a concavo-convex shape by a film of λ / 4n (where n: refractive index, λ: 500 to 600 nm). A laminated film having a single layer only in thickness, the haze value of the whole laminated film is 40% or less, and the difference between the lowest spectral reflectance and the highest spectral reflectance in the visible light region is 0.5% An antireflection film characterized by the following. 請求項5記載の積層フィルム全体のヘイズ値が20〜40%の範囲にあることを特徴とする反射防止フィルム。   The haze value of the whole laminated film according to claim 5 is in the range of 20 to 40%. 請求項5記載の多層フイルムの最表面の表面粗度Raが0.1〜0.5μmであることを特徴とする反射防止フィルム。   6. The antireflection film according to claim 5, wherein the surface roughness Ra of the outermost surface of the multilayer film is from 0.1 to 0.5 [mu] m. 請求項5記載の塗工層と、光学薄膜層との屈折率差が0.03〜0.15であることを特徴とする反射防止フィルム。   An antireflection film, wherein the difference in refractive index between the coating layer according to claim 5 and the optical thin film layer is 0.03 to 0.15. 請求項4記載の塗工層が鉛筆硬度で2H以上の硬化皮膜であることを特徴とする反射防止フィルム。   5. The antireflection film according to claim 4, wherein the coating layer is a cured film having a pencil hardness of 2H or more.
JP2006145353A 2006-05-25 2006-05-25 Antireflection film Expired - Lifetime JP4119925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145353A JP4119925B2 (en) 2006-05-25 2006-05-25 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145353A JP4119925B2 (en) 2006-05-25 2006-05-25 Antireflection film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9019563A Division JPH10206604A (en) 1997-01-20 1997-01-20 Reflection preventive film

Publications (2)

Publication Number Publication Date
JP2006317957A true JP2006317957A (en) 2006-11-24
JP4119925B2 JP4119925B2 (en) 2008-07-16

Family

ID=37538627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145353A Expired - Lifetime JP4119925B2 (en) 2006-05-25 2006-05-25 Antireflection film

Country Status (1)

Country Link
JP (1) JP4119925B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103808A (en) * 2007-10-22 2009-05-14 Asahi Kasei Corp Antireflection film
EP2321675A1 (en) * 2008-08-11 2011-05-18 Greenlux Finland OY Optical light diffuser component and a method for manufacturing the same
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11971519B2 (en) 2021-07-08 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239501A (en) * 1988-03-22 1989-09-25 Nitto Denko Corp Reflection preventing plate
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239501A (en) * 1988-03-22 1989-09-25 Nitto Denko Corp Reflection preventing plate
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103808A (en) * 2007-10-22 2009-05-14 Asahi Kasei Corp Antireflection film
EP2321675A1 (en) * 2008-08-11 2011-05-18 Greenlux Finland OY Optical light diffuser component and a method for manufacturing the same
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11971519B2 (en) 2021-07-08 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings

Also Published As

Publication number Publication date
JP4119925B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
KR100917949B1 (en) Hard-coated antiglare film, polarizing plate, image display, and method of manufacturing hard-coated antiglare film
KR100852562B1 (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
KR100916171B1 (en) Hard-coated antiglare film, and polarizing plate and image display including the same
KR100916172B1 (en) Hard-coated antiglare film, polarizing plate, and image display
CN100523875C (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
KR100852561B1 (en) Hard-coated film, method of manufacturing the same, optical device, and image display
JP4116045B2 (en) Anti-glare hard coat film
JP4080520B2 (en) Antiglare hard coat film, method for producing antiglare hard coat film, optical element, polarizing plate and image display device
CN100582818C (en) Hard-coated antiglare film, polarizing plate, image display, and method of manufacturing hard-coated antiglare film
US8124215B2 (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
JPH10206603A (en) Reflection preventive film and manufacture thereof
CN100476455C (en) Hard-coated antiglare film and method of manufacturing the same
CN101572038B (en) Flat panel display and antiglare film for flat panel display
CN101551474A (en) Antidazzle hard coating film, polarizing film using the film and image display apparatus
TWI398674B (en) Directional diffusion film, polarizing plate, liquid crystal display, and method of manufacturing directional diffusion film
JP2008032763A (en) Hard coat film, polarizing plate using the same and image display device
JP2008158536A (en) Antiglare hard coat film
JP2008151998A (en) Manufacturing method of hard coat film, hard coat film, polarizing plate and image display apparatus
TWI467215B (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
CN102033252A (en) Hard-coated antiglare film, polarizing plate and image display including the same
WO2008136535A1 (en) Anti-dazzling film, anti-dazzling polarizing plate, and image display device
JP2000214302A (en) Antireflection film and its production
JP4119925B2 (en) Antireflection film
JPH10300902A (en) Antireflection film and manufacturing method therefor
JPH10206604A (en) Reflection preventive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

EXPY Cancellation because of completion of term