JP2006317083A - Method of computing optimum shape of cylindrical fluidized bed type incinerator - Google Patents

Method of computing optimum shape of cylindrical fluidized bed type incinerator Download PDF

Info

Publication number
JP2006317083A
JP2006317083A JP2005140653A JP2005140653A JP2006317083A JP 2006317083 A JP2006317083 A JP 2006317083A JP 2005140653 A JP2005140653 A JP 2005140653A JP 2005140653 A JP2005140653 A JP 2005140653A JP 2006317083 A JP2006317083 A JP 2006317083A
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical body
fluidized bed
support plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140653A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tsutsumi
一之 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005140653A priority Critical patent/JP2006317083A/en
Publication of JP2006317083A publication Critical patent/JP2006317083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily predict distortion generated to a weld part of a cylindrical body and a support plate and to obtain the optimum shape of the cylindrical body and support plate having sufficient strength in a cylindrical fluidized bed type incinerator constituted by welding an air distributor to the inner surface of an incinerator body shell interposing the cylindrical body and the support plate. <P>SOLUTION: The cylindrical fluidized bed type incinerator 20 is constituted by welding the air distributor 6 to the inner surface of the incinerator body shell 9 interposing the cylindrical body 11 and the support plate 12. In this case, optimum values of the thickness tc of the support plate 12, the ratio h/D of a diameter D to height h of the cylindrical body 11, and the thickness tb of the cylindrical body 11 at the working temperature T of the cylindrical fluidized type incinerator 20 are computed based on generated distortion E expressed in an approximate expression using numerical analysis such as two-dimensional numerical analysis from the relationship among the thickness tc of the support plate 12, the ratio h/D of the diameter D to height h of the cylindrical body 11, the thickness tb of the cylindrical body 11 and the working temperature T of the cylindrical fluidized bed type incinerator 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炉本体鉄皮内面に空気分散板を円筒体及び支持板を介在して溶接して設けてなる円筒形流動層式焼却炉における円筒体と支持板の溶接部に生じる発生歪みを予測して円筒体及び支持板の最適な形状を求める円筒形流動層式焼却炉の最適形状算出方法に関するものである。   In the present invention, the generated strain generated in the welded portion of the cylindrical body and the support plate in the cylindrical fluidized bed incinerator in which the air dispersion plate is welded to the inner surface of the furnace body iron shell through the cylindrical body and the support plate is provided. The present invention relates to an optimum shape calculation method for a cylindrical fluidized bed incinerator that predicts the optimum shape of a cylindrical body and a support plate.

従来から、都市ゴミ、汚泥などの可燃性有機廃棄物を焼却するために、流動層式焼却炉が用いられている。一般的な流動層式焼却炉20は、図7に示すように、縦型円筒状の炉本体1で構成される。図7は、従来の一般的な円筒形流動層式焼却炉における空気分散板の取付け構造の断面模式図を示すものである。その炉本体1の炉頂部には排ガス出口3が設けられている。また、炉下部4には流動層5を形成するための空気分散板6とその下に風箱7は設けられている。その風箱7には、燃焼用と流動化用とを兼ね備えた空気の吸込み口8が設けられている。また、風箱7より上には燃焼室が形成されており、この部分の炉本体1は外側の炉本体鉄皮9と内側の耐火物(図示せず)とで形成されている。そして、この円筒形流動層式焼却炉20において、焼却中の燃焼熱などにより高温に過熱された砂などの流動層5を循環させながら、被焼却物であるゴミなどを焼却物投入口から炉内に投入して焼却する。   Conventionally, fluidized bed incinerators have been used to incinerate combustible organic waste such as municipal waste and sludge. A general fluidized bed incinerator 20 includes a vertical cylindrical furnace body 1 as shown in FIG. FIG. 7 is a schematic cross-sectional view of an air dispersion plate mounting structure in a conventional general cylindrical fluidized bed incinerator. An exhaust gas outlet 3 is provided at the top of the furnace body 1. In addition, an air dispersion plate 6 for forming a fluidized bed 5 and a wind box 7 therebelow are provided in the lower part 4 of the furnace. The air box 7 is provided with an air suction port 8 that is used for both combustion and fluidization. Further, a combustion chamber is formed above the wind box 7, and the furnace body 1 in this portion is formed by an outer furnace body iron skin 9 and an inner refractory (not shown). In the cylindrical fluidized bed incinerator 20, the incinerated waste is removed from the incinerator inlet while circulating the fluidized bed 5 such as sand heated to high temperature by combustion heat during incineration. Put in and incinerate.

ところで、円筒形流動層式焼却炉20においては、空気分散板6は、砂などの流動層5を支えるべく重量物が乗る構造をとるために、炉本体鉄皮9の内面に強固に溶接して設けられている。従って、円筒形流動層式焼却炉20の起動・停止時においては、炉本体鉄皮9と空気分散板6との温度上昇・下降速度差が大きくなり、結果として炉本体鉄皮9と空気分散板6の溶接部近傍に大きな熱応力が生じる。その結果、図5に示す円筒形流動層式焼却炉20では、空気分散板6より下の風箱内に高温ガスが導入されると、空気分散板6とその下の風箱7周辺が図5の二点鎖線で示すように、大きく変形する。そして、長期間にわたる起動と停止の繰り返しの結果、大きな熱応力が生じる溶接部近傍の部分に亀裂などが生じるといった問題が懸念されている。   By the way, in the cylindrical fluidized bed incinerator 20, the air dispersion plate 6 is firmly welded to the inner surface of the furnace body iron skin 9 in order to take a structure in which a heavy object is placed to support the fluidized bed 5 such as sand. Is provided. Therefore, when the cylindrical fluidized bed incinerator 20 is started and stopped, the temperature rise / fall speed difference between the furnace body iron skin 9 and the air dispersion plate 6 becomes large, and as a result, the furnace body iron skin 9 and the air dispersion are dispersed. A large thermal stress is generated in the vicinity of the welded portion of the plate 6. As a result, in the cylindrical fluidized bed incinerator 20 shown in FIG. 5, when the high temperature gas is introduced into the wind box below the air dispersion plate 6, the air dispersion plate 6 and the surroundings of the wind box 7 below the air dispersion plate 6 are illustrated. As shown by the two-dot chain line in FIG. As a result of repeated starting and stopping over a long period of time, there is a concern that a crack or the like may occur in the vicinity of the weld where a large thermal stress occurs.

従って、この問題を解決するために、特許文献1において、図1に示すように、空気分散板6を円筒体11の下部に溶接して設け、円筒体11の上部を円筒形流動層式焼却炉20の炉本体鉄皮9内面に溶接することで、発生応力を低減する技術が開示されている。そして、特許文献1には、有限要素法による解析の結果、円筒体11の直径Dを1150mmとして円筒体11の高さhを種々変えた場合に、その比h/Dが0.05〜0.1の範囲に規定すると反力及び曲げ応力を十分に低減できることが示されている(特許文献1の段落番号[0015]参照。)   Therefore, in order to solve this problem, in Patent Document 1, as shown in FIG. 1, an air dispersion plate 6 is welded to the lower part of the cylindrical body 11, and the upper part of the cylindrical body 11 is incinerated with a cylindrical fluidized bed type. A technique for reducing the generated stress by welding to the inner surface of the furnace body iron skin 9 of the furnace 20 is disclosed. In Patent Document 1, as a result of analysis by the finite element method, when the diameter D of the cylindrical body 11 is 1150 mm and the height h of the cylindrical body 11 is variously changed, the ratio h / D is 0.05 to 0. It is shown that the reaction force and bending stress can be sufficiently reduced when the range is defined within the range of 1. (see paragraph [0015] of Patent Document 1).

特開2002−5419号公報Japanese Patent Laid-Open No. 2002-5419

しかしながら、特許文献1に示された円筒体11の直径と高さの比と空気分散板6に発生する歪みまたは応力の関係は、円筒体の直径と円筒体の高さ以外の他の部位も含めた形状の結果であり、使用条件(円筒体直径や使用温度等)が異なった場合に、必ずしも十分な強度を有する構造を決定するものではない。   However, the relationship between the ratio of the diameter and height of the cylindrical body 11 shown in Patent Document 1 and the strain or stress generated in the air dispersion plate 6 is also applied to other parts other than the diameter of the cylindrical body and the height of the cylindrical body. This is a result of the shape included, and when the use conditions (cylinder diameter, use temperature, etc.) are different, a structure having sufficient strength is not necessarily determined.

また、他の部位も含めた形状を考慮するために、有限要素法などの数値解析を用いて形状をモデル化して歪みを予測する場合、計算時間等に多大なコストを要する。   In addition, in order to consider the shape including other parts, when modeling the shape using a numerical analysis such as a finite element method to predict the distortion, a large amount of calculation time is required.

本発明の目的は、炉本体鉄皮内面に空気分散板を円筒体及び支持板を介在して溶接して設けてなる円筒形流動層式焼却炉における円筒体と支持板の溶接部に生じる発生歪みを簡便に予測すると共に、十分な強度を有する円筒体及び支持板の最適な形状を求める円筒形流動層式焼却炉の最適形状算出方法を提供することである。   It is an object of the present invention to occur in a welded portion between a cylindrical body and a support plate in a cylindrical fluidized bed incinerator in which an air dispersion plate is welded to the inner surface of a furnace body iron core via a cylindrical body and a support plate. An object of the present invention is to provide a method for calculating the optimum shape of a cylindrical fluidized bed incinerator that easily predicts strain and obtains the optimum shape of a cylindrical body and a support plate having sufficient strength.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明に係る円筒形流動層式焼却炉の最適形状算出方法は、炉本体鉄皮内面に空気分散板を円筒体及び支持板を介在して溶接して設けてなる円筒形流動層式焼却炉における前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さ、及び、前記円筒形流動層式焼却炉の使用温度を用いて、前記円筒体と前記支持板の溶接部に発生する発生歪みを予測して、前記円筒体及び前記支持板の最適な形状を求めることを特徴とする。   The method for calculating the optimum shape of a cylindrical fluidized bed incinerator according to the present invention is a cylindrical fluidized bed incinerator in which an air dispersion plate is welded to the inner surface of the furnace main body through a cylindrical body and a support plate. The cylindrical body and the support plate using the thickness of the support plate, the ratio of the diameter and height of the cylindrical body, the thickness of the cylindrical body, and the operating temperature of the cylindrical fluidized bed incinerator The generation | occurrence | production distortion which generate | occur | produces in the welding part of this is estimated, and the optimal shape of the said cylindrical body and the said support plate is calculated | required.

これによると、炉本体鉄皮内面に空気分散板を円筒体及び支持板を介在して溶接して設けてなる円筒形流動層式焼却炉において、発生歪みに与える影響が大きい支持板の厚さ及び円筒体の直径と高さの比と、使用温度が発生歪みに与える影響が大きい円筒体の厚さに基づいて、円筒体と支持板の溶接部に発生する発生歪みを予測しているため、熱疲労寿命に優れる円筒体及び支持板の形状を容易に求めることができる。その結果、長期間にわたる円筒形流動層式焼却炉の起動停止の繰り返し運転が行われても、円筒体と支持板の溶接部に亀裂が生じるといった問題の懸念がなくなることが期待される。   According to this, in the cylindrical fluidized bed incinerator in which the air dispersion plate is welded to the inner surface of the furnace main body through the cylindrical body and the support plate, the thickness of the support plate that has a great influence on the generated strain And the generated strain generated in the welded part of the cylindrical body and the support plate is predicted based on the ratio of the diameter and height of the cylindrical body and the thickness of the cylindrical body where the operating temperature has a large effect on the generated strain. The shapes of the cylindrical body and the support plate that are excellent in thermal fatigue life can be easily obtained. As a result, it is expected that there is no concern about the problem of cracks occurring in the welded portion between the cylindrical body and the support plate even if repeated operation of starting and stopping of the cylindrical fluidized bed incinerator is performed over a long period of time.

また、本発明に係る円筒形流動層式焼却炉の最適形状算出方法は、前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さ、及び、前記円筒形流動層式焼却炉の使用温度の関係から近似式で表現した前記発生歪みに基づいて、前記円筒形流動層式焼却炉の使用温度における前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さの最適値を算出して良い。   Further, the optimum shape calculation method of the cylindrical fluidized bed incinerator according to the present invention includes the thickness of the support plate, the ratio of the diameter and height of the cylindrical body, the thickness of the cylindrical body, and the cylindrical shape. The thickness of the support plate, the diameter and the height of the cylindrical body at the operating temperature of the cylindrical fluidized bed incinerator based on the generated strain expressed by an approximate expression from the relationship of the operating temperature of the fluidized bed incinerator And the optimum value of the thickness of the cylindrical body may be calculated.

これによると、2次元数値解析などの数値解析を用いて、発生歪みと、支持板の厚さ、円筒体の直径と高さの比、円筒体の厚さ、円筒形流動層式焼却炉の使用温度の関係をモデル化することにより、円筒形流動層式焼却炉の使用温度における発生歪みを簡便に予測して、最適な支持板の厚さ、円筒体の直径と高さの比、円筒体の厚さを求めることができる。   According to this, using numerical analysis such as two-dimensional numerical analysis, the generated strain and the thickness of the support plate, the ratio of the diameter and height of the cylindrical body, the thickness of the cylindrical body, the cylindrical fluidized bed incinerator By modeling the relationship between the service temperatures, the strain generated at the service temperature of the cylindrical fluidized bed incinerator can be easily predicted, and the optimal support plate thickness, cylindrical diameter-to-height ratio, cylinder The body thickness can be determined.

以下、本発明に係る円筒形流動層式焼却炉の最適形状算出方法の作用効果について、円筒形流動層式焼却炉の構成に基づいてより詳細に説明する。   Hereinafter, the effect of the optimal shape calculation method of the cylindrical fluidized bed incinerator according to the present invention will be described in more detail based on the configuration of the cylindrical fluidized bed incinerator.

本発明に係る円筒形流動層式焼却炉の最適形状算出方法を適用する円筒形流動層式焼却炉20は、図1に示すように、縦型円筒状の炉本体1を備え、炉本体1の炉頂部2には排ガス出口3が設けられ、炉下部4には流動層5を形成するための空気分散板6とその下に風箱7が設けられ、風箱7には燃焼用と流動化用とを兼ねた空気の吹き込み口8が設けられている。尚、空気分散板6上には断熱材10が設けられている。また、風箱7より上には燃焼室が形成されており、この部分の炉本体1は外側の炉本体鉄皮9と内側の耐火物(図示せず)とで構成される。また、燃焼室を構成する炉本体1には、図示しない焼却物の投入口、二次燃焼用空気の吹き込み口などが設けられている。また、図2に示すように、風箱7を構成する炉本体鉄皮9は、フランジ部分であるリブ13により、炉本体1を構成する炉本体鉄皮9と接続される。   As shown in FIG. 1, a cylindrical fluidized-bed incinerator 20 to which an optimum shape calculation method for a cylindrical fluidized-bed incinerator according to the present invention is provided includes a vertical cylindrical furnace body 1. The furnace top 2 is provided with an exhaust gas outlet 3, the furnace lower part 4 is provided with an air dispersion plate 6 for forming a fluidized bed 5 and a wind box 7 therebelow, and the wind box 7 is used for combustion and fluidization. An air blowing port 8 that also serves as a gasifier is provided. A heat insulating material 10 is provided on the air dispersion plate 6. Further, a combustion chamber is formed above the wind box 7, and the furnace body 1 in this portion is composed of an outer furnace body iron skin 9 and an inner refractory (not shown). In addition, the furnace body 1 constituting the combustion chamber is provided with an incinerator inlet (not shown) and a secondary combustion air inlet (not shown). Further, as shown in FIG. 2, the furnace main body iron skin 9 constituting the wind box 7 is connected to the furnace main body iron skin 9 constituting the furnace main body 1 by a rib 13 which is a flange portion.

空気分散板6は、円筒体11を介在させて炉本体鉄皮9に溶接して取り付けられる。即ち、円筒体11の下部内側に空気分散板6を溶接固定し、上部外側を外向きの支持板12に溶接固定して設けられている。更に、支持板12は、外周を炉本体鉄皮9の内側に溶接固定して設けられている。   The air dispersion plate 6 is attached by welding to the furnace body iron skin 9 with the cylindrical body 11 interposed. That is, the air dispersion plate 6 is fixed to the inside of the lower portion of the cylindrical body 11 by welding, and the upper outer side is fixed to the support plate 12 facing outward by welding. Further, the support plate 12 is provided with its outer periphery welded and fixed to the inside of the furnace body iron skin 9.

上述の構成からなる円筒形流動層式焼却炉20の空気分散板6の取付け構造では、円筒形流動層式焼却炉20の起動時に、砂などの流動層5を加熱昇温するために空気吹込み口8より高温ガスを吹き込んだ場合、空気分散板6の膨張に伴う円周方向応力によって円筒体11及び支持板12が広げられるとともに、円筒体11及び支持板12を介して更に外側の炉本体鉄皮9に伝達される。しかし、円筒体11及び支持板12から外側の炉本体鉄皮9に伝達される荷重自体は、円筒体11及び支持板12を変形して伝達されるために緩和される。   In the mounting structure of the air dispersion plate 6 of the cylindrical fluidized-bed incinerator 20 having the above-described configuration, when the cylindrical fluidized-bed incinerator 20 is started, air blowing is performed to heat and heat the fluidized bed 5 such as sand. When hot gas is blown from the inlet 8, the cylindrical body 11 and the support plate 12 are expanded by the circumferential stress accompanying the expansion of the air dispersion plate 6, and a further outer furnace is provided via the cylindrical body 11 and the support plate 12. It is transmitted to the main body skin 9. However, the load itself transmitted from the cylindrical body 11 and the support plate 12 to the outer furnace body core 9 is relieved because the cylindrical body 11 and the support plate 12 are deformed and transmitted.

ここで、円筒形流動層式焼却炉20の各部材が円筒体11と支持板12の溶接部に生じる発生歪みに与える影響を、品質工学の手法を用いて有限要素法解析を実施して調査した。円筒形流動層式焼却炉20の各部材として、図3に示すように、炉本体鉄皮9の厚さta、円筒体11の厚さtb、支持板12の厚さtc、リブ13から支持板12までの長さLa、円筒体の直径Dと高さhの比h/D、炉本体鉄皮9と円筒体11の距離Lcを用いた。図4に、各部材の形状を変化させたとき発生歪みに与える影響度を示し、図5に、円筒形流動層式焼却炉20の使用温度Tを変化させたときの各部材の発生歪みに与える影響度を示した。図4において、傾きの大きい部材が発生歪みへの影響が大きい部材であり、図5において、傾きの大きい部材が使用温度の変化が発生歪みに与える影響が大きい部材である。尚、図4及び図5における「外鉄皮厚」は炉本体鉄皮9の厚さtaを、「外筒厚」は円筒体11の厚さtbを、「管板支持板厚」は支持板12の厚さtcを、「外鉄皮長」はリブ13から支持板12までの長さLaを、「外筒長」は円筒体11の高さhを、「支持板長」は炉本体鉄皮9と円筒体11の距離Lcを意味している。   Here, the effect of each member of the cylindrical fluidized bed incinerator 20 on the generated strain generated in the welded portion of the cylindrical body 11 and the support plate 12 is investigated by conducting a finite element method analysis using a quality engineering technique. did. As shown in FIG. 3, the members of the cylindrical fluidized bed incinerator 20 are supported from the thickness ta of the furnace body iron skin 9, the thickness tb of the cylindrical body 11, the thickness tc of the support plate 12, and the ribs 13. The length La up to the plate 12, the ratio h / D of the diameter D and the height h of the cylindrical body, and the distance Lc between the furnace body iron skin 9 and the cylindrical body 11 were used. FIG. 4 shows the degree of influence on the generated strain when the shape of each member is changed, and FIG. 5 shows the generated strain of each member when the operating temperature T of the cylindrical fluidized bed incinerator 20 is changed. The degree of influence was shown. In FIG. 4, a member having a large inclination is a member having a large influence on the generated strain, and in FIG. 5, a member having a large inclination is a member having a large influence on the generated strain due to a change in operating temperature. 4 and 5, the “outer iron thickness” is the thickness ta of the furnace main body iron 9, the “outer cylinder thickness” is the thickness tb of the cylindrical body 11, and the “tube plate support plate thickness” is the support. The thickness tc of the plate 12, the “outer iron skin length” is the length La from the rib 13 to the support plate 12, the “outer cylinder length” is the height h of the cylindrical body 11, and the “support plate length” is the furnace It means the distance Lc between the main body skin 9 and the cylindrical body 11.

図4に示すとおり、発生歪みへの影響が大きい部材は、丸で囲んだ部材、即ち、「管板支持板厚」である支持板12の厚さtc及び「外筒長」である円筒体11の高さhであることがわかる。また、図5に示すとおり、使用温度Tの変化が発生歪みに与える影響が大きい部材は、丸で囲んだ部材、即ち、「外筒厚」である円筒体11の厚さtbであることがわかる。従って、支持板12の厚さtc、円筒体11の直径Dと高さhの比h/D、円筒体の厚さtb、円筒形流動層式焼却炉20の使用温度Tのみを用いて有限要素法などの数値解析を用いて、発生歪みとの関係をモデル化することができる。そして、簡便に発生歪みを予測することにより、想定する円筒形流動層式焼却炉20の使用温度T、円筒形流動層式焼却炉20の機器の保証寿命から決定される許容歪みに対し、最適な支持板12の厚さtc、円筒体11の直径Dと高さhの比h/D、円筒体の厚さtbの値を求めることができる。   As shown in FIG. 4, the member having a great influence on the generated strain is a member surrounded by a circle, that is, a cylindrical body having a thickness tc of the support plate 12 that is “tube plate support plate thickness” and an “outer tube length”. It can be seen that the height is 11 h. Further, as shown in FIG. 5, the member having a great influence on the generated strain due to the change in the use temperature T is a member surrounded by a circle, that is, the thickness tb of the cylindrical body 11 having the “outer cylinder thickness”. Recognize. Accordingly, only the thickness tc of the support plate 12, the ratio h / D of the diameter D and the height h of the cylindrical body 11, the thickness tb of the cylindrical body, and the operating temperature T of the cylindrical fluidized bed incinerator 20 are limited. Using numerical analysis such as the element method, the relationship with the generated distortion can be modeled. Then, by simply predicting the generated strain, it is optimal for the allowable strain determined from the assumed operating temperature T of the cylindrical fluidized bed incinerator 20 and the guaranteed lifetime of the equipment of the cylindrical fluidized bed incinerator 20. The thickness tc of the support plate 12, the ratio h / D of the diameter D to the height h of the cylindrical body 11, and the thickness tb of the cylindrical body can be obtained.

以下、図面を参照しつつ、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態に係る円筒形流動層式焼却炉の最適形状算出方法について説明する。尚、本発明の実施形態に係る円筒形流動層式焼却炉の最適形状算出方法を適用する円筒形流動層式焼却炉の構成は、上述した図1〜図3の円筒形流動層式焼却炉20の構成と同様であり、その説明を省略する。   An optimum shape calculation method for a cylindrical fluidized bed incinerator according to an embodiment of the present invention will be described. The configuration of the cylindrical fluidized bed incinerator to which the optimum shape calculation method for the cylindrical fluidized bed incinerator according to the embodiment of the present invention is applied is the cylindrical fluidized bed incinerator of FIGS. The configuration is the same as that of No. 20, and the description thereof is omitted.

本発明の実施形態に係る円筒形流動層式焼却炉の最適形状算出方法として、具体的には、例えば、汚泥処理量120トン/日の円筒形流動層式焼却炉20において、各部材をSUS304製とし、円筒形流動層式焼却炉20の使用温度T=900℃(一定)、円筒体11の厚さtb=6mm(一定)とした場合の、円筒体11と支持板12の溶接部に生じる発生歪みEを求める。図6に、簡単な2次元数値解析で求めた、発生歪みEと、円筒体11の直径Dと高さhの比(図中の円筒長さ)h/D及び支持板12の厚さtcとの関係を示す。図6から、発生歪みEは、下記の近似式(式1)で表すことができる。   As an optimal shape calculation method for the cylindrical fluidized bed incinerator according to the embodiment of the present invention, specifically, for example, in the cylindrical fluidized bed incinerator 20 with a sludge treatment amount of 120 tons / day, each member is replaced with SUS304. When the working temperature of the cylindrical fluidized bed incinerator 20 is T = 900 ° C. (constant) and the thickness of the cylindrical body tb is 6 mm (constant), the welded portion of the cylindrical body 11 and the support plate 12 is The generated distortion E is determined. FIG. 6 shows the generated strain E obtained by simple two-dimensional numerical analysis, the ratio of the diameter D to the height h of the cylindrical body 11 (cylinder length in the drawing) h / D, and the thickness tc of the support plate 12. Shows the relationship. From FIG. 6, the generated strain E can be expressed by the following approximate expression (Expression 1).

E=A(h/D−0.08)2−0.005・・・(式1)
ここで、A=0.003×tc+0.12
E = A (h / D−0.08) 2 −0.005 (Formula 1)
Here, A = 0.003 × tc + 0.12

従って、この近似式(式1)によって、簡便に発生歪みEを算出することが可能である。そして、円筒形流動層式焼却炉20の使用温度T=900℃、円筒体11の厚さtb=6mmとした場合の円筒形流動層式焼却炉20の機器の保証寿命から決まる許容歪みに対して、各部材(円筒体11の直径Dと高さhの比h/D、支持板12の厚さtc)の許容形状が決まる。   Therefore, the generated strain E can be easily calculated by this approximate expression (Expression 1). And with respect to the allowable strain determined from the guaranteed life of the equipment of the cylindrical fluidized bed incinerator 20 when the operating temperature T of the cylindrical fluidized bed incinerator 20 is 900 ° C. and the thickness tb of the cylindrical body 11 is 6 mm. Thus, the allowable shape of each member (ratio h / D of diameter D and height h of cylindrical body 11 and thickness tc of support plate 12) is determined.

以上に説明したように、本実施形態に係る円筒形流動層式焼却炉の最適形状算出方法によると、炉本体鉄皮9内面に空気分散板6を円筒体11及び支持板12を介在して溶接して設けてなる円筒形流動層式焼却炉20において、円筒体11と支持板12の溶接部に生じる発生歪みEに与える影響が大きい支持板12の厚さtc及び円筒体11の直径Dと高さhの比h/Dと、円筒形流動層式焼却炉20の使用温度Tが発生歪みEに与える影響が大きい円筒体の厚さtbに基づいて、空気分散板6と円筒体11の溶接部に発生する発生歪みEを予測しているため、熱疲労寿命に優れる円筒体11及び支持板12の形状を容易に求めることができる。その結果、長期間にわたる円筒形流動層式焼却炉20の起動停止の繰り返し運転が行われても、円筒体11と支持板12の溶接部に亀裂が生じるといった問題の懸念がなくなることが期待される。   As described above, according to the method for calculating the optimum shape of the cylindrical fluidized bed incinerator according to this embodiment, the air dispersion plate 6 is interposed on the inner surface of the furnace body iron skin 9 with the cylindrical body 11 and the support plate 12 interposed therebetween. In the cylindrical fluidized bed incinerator 20 formed by welding, the thickness tc of the support plate 12 and the diameter D of the cylindrical body 11 have a great influence on the generated strain E generated in the welded portion of the cylindrical body 11 and the support plate 12. The air dispersion plate 6 and the cylindrical body 11 are based on the ratio h / D of the height h and the thickness tb of the cylindrical body in which the use temperature T of the cylindrical fluidized bed incinerator 20 has a great influence on the generated strain E. Since the generated strain E generated in the welded portion is predicted, the shapes of the cylindrical body 11 and the support plate 12 having excellent thermal fatigue life can be easily obtained. As a result, even if repeated starting and stopping operations of the cylindrical fluidized bed incinerator 20 are performed over a long period of time, it is expected that there is no concern about the problem of cracks occurring in the welded portion of the cylindrical body 11 and the support plate 12. The

また、2次元数値解析などの数値解析を用いて、円筒体11と支持板12の溶接部に生じる発生歪みEと、支持板12の厚さtc、円筒体11の直径Dと高さhの比h/D、円筒体11の厚さtb、円筒形流動層式焼却炉20の使用温度Tの関係をモデル化することにより、円筒形流動層式焼却炉20の使用温度Tにおける発生歪みEを簡便に予測して、最適な支持板12の厚さtc、円筒体11の直径Dと高さhの比h/D、円筒体11の厚さtbを求めることができる。   Further, by using numerical analysis such as two-dimensional numerical analysis, the generated strain E generated in the welded portion of the cylindrical body 11 and the support plate 12, the thickness tc of the support plate 12, the diameter D and the height h of the cylindrical body 11 are as follows. By modeling the relationship between the ratio h / D, the thickness tb of the cylindrical body 11, and the use temperature T of the cylindrical fluidized bed incinerator 20, the generated strain E at the use temperature T of the cylindrical fluidized bed incinerator 20 is modeled. Can be easily predicted, and the optimum thickness tc of the support plate 12, the ratio h / D of the diameter D and the height h of the cylindrical body 11, and the thickness tb of the cylindrical body 11 can be obtained.

以上、本発明の好適な実施形態について説明したが、本発明はその趣旨を超えない範囲において変更が可能である。   As mentioned above, although preferred embodiment of this invention was described, this invention can be changed in the range which does not exceed the meaning.

上述の実施形態においては、円筒形流動層式焼却炉20の使用温度Tと円筒体11の厚さtbを一定にして、円筒体11と支持板12の溶接部に生じる発生歪みEと、円筒体11の直径Dと高さhの比h/D及び支持板12の厚さtcとの関係を2次元数値解析などの数値解析を用いて求めているがそれに限らない。円筒形流動層式焼却炉20の使用温度Tと円筒体11の厚さtbは変化させてもよく、かかる場合は、別途、発生歪みEと、円筒形流動層式焼却炉20の使用温度T、円筒体11の厚さtb、円筒体11の直径Dと高さhの比h/D、支持板12の厚さtcとの関係を2次元数値解析などの数値解析を用いて求める。   In the above-described embodiment, the generated temperature E generated in the welded portion between the cylindrical body 11 and the support plate 12 is fixed with the operating temperature T of the cylindrical fluidized bed incinerator 20 and the thickness tb of the cylindrical body 11 being constant. Although the relationship between the diameter D of the body 11 and the ratio h / D of the height h and the thickness tc of the support plate 12 is obtained using numerical analysis such as two-dimensional numerical analysis, it is not limited thereto. The operating temperature T of the cylindrical fluidized bed incinerator 20 and the thickness tb of the cylindrical body 11 may be changed. In such a case, the generated strain E and the operating temperature T of the cylindrical fluidized bed incinerator 20 are separately provided. The relationship between the thickness tb of the cylindrical body 11, the ratio h / D of the diameter D and height h of the cylindrical body 11, and the thickness tc of the support plate 12 is obtained using numerical analysis such as two-dimensional numerical analysis.

本発明に係る円筒形流動層式焼却炉における空気分散板の取付け構造の断面模式図である。It is a cross-sectional schematic diagram of the attachment structure of the air dispersion plate in the cylindrical fluidized bed type incinerator according to the present invention. 本発明に係る円筒形流動層式焼却炉におけるリブの構造を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of the rib in the cylindrical fluidized bed type incinerator which concerns on this invention. 発生歪みに与える影響を調査した本発明に係る円筒形流動層式焼却炉における各部材を示した一部断面模式図である。It is the partial cross section schematic diagram which showed each member in the cylindrical fluidized-bed-type incinerator based on this invention which investigated the influence which it has on generation | occurrence | production distortion. 有限要素法解析による円筒形流動層式焼却炉の各部材を変化させたとき発生歪みに与える影響度を示すものである。It shows the degree of influence on the generated strain when each member of the cylindrical fluidized bed incinerator is changed by finite element method analysis. 有限要素法解析による円筒形流動層式焼却炉の使用温度を変化させたときの円筒形流動層式焼却炉の各部材の発生歪みに与える影響度を示すものである。It shows the degree of influence on the generated strain of each member of the cylindrical fluidized bed incinerator when the operating temperature of the cylindrical fluidized bed incinerator is changed by the finite element method analysis. 本実施形態に係る円筒形流動層式焼却炉の最適形状算出方法における発生歪みEと円筒体11の直径Dと高さhの比、支持板12の厚さtcとの関係を示した図である。It is the figure which showed the relationship between the generation | occurrence | production distortion E in the optimal shape calculation method of the cylindrical fluidized-bed-type incinerator which concerns on this embodiment, the ratio of the diameter D of the cylindrical body 11, and the height h, and the thickness tc of the support plate 12. is there. 従来の一般的な円筒形流動層式焼却炉における空気分散板の取付け構造の断面模式図である。It is a cross-sectional schematic diagram of the attachment structure of the air dispersion plate in the conventional general cylindrical fluidized bed type incinerator.

符号の説明Explanation of symbols

1 炉本体
6 空気分散板
9 炉本体鉄皮
11 円筒体
12 支持板
13 リブ
20 円筒形流動層式焼却炉
DESCRIPTION OF SYMBOLS 1 Furnace main body 6 Air dispersion plate 9 Furnace main body iron core 11 Cylindrical body 12 Support plate 13 Rib 20 Cylindrical fluidized bed type incinerator

Claims (2)

炉本体鉄皮内面に空気分散板を円筒体及び支持板を介在して溶接して設けてなる円筒形流動層式焼却炉における前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さ、及び、前記円筒形流動層式焼却炉の使用温度を用いて、前記円筒体と前記支持板の溶接部に発生する発生歪みを予測して、前記円筒体及び前記支持板の最適な形状を求めることを特徴とする円筒形流動層式焼却炉の最適形状算出方法。   Thickness of the support plate in a cylindrical fluidized bed incinerator in which an air dispersion plate is welded to the inner surface of the furnace main body through a cylindrical body and a support plate, and the ratio of the diameter and height of the cylindrical body Predicting the generated strain in the welded portion of the cylindrical body and the support plate using the thickness of the cylindrical body and the operating temperature of the cylindrical fluidized bed incinerator, and the cylindrical body and the An optimum shape calculation method for a cylindrical fluidized bed incinerator characterized by obtaining an optimum shape of a support plate. 前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さ、及び、前記円筒形流動層式焼却炉の使用温度の関係から近似式で表現した前記発生歪みに基づいて、前記円筒形流動層式焼却炉の使用温度における前記支持板の厚さ、前記円筒体の直径と高さの比、前記円筒体の厚さの最適値を算出することを特徴とする請求項1に記載の円筒形流動層式焼却炉の最適形状算出方法。

The generated strain expressed by an approximate expression from the relationship between the thickness of the support plate, the ratio of the diameter and height of the cylindrical body, the thickness of the cylindrical body, and the operating temperature of the cylindrical fluidized bed incinerator Based on the above, the thickness of the support plate at the use temperature of the cylindrical fluidized bed incinerator, the ratio of the diameter and height of the cylindrical body, and the optimum value of the thickness of the cylindrical body are calculated. The optimal shape calculation method of the cylindrical fluidized bed type incinerator according to claim 1.

JP2005140653A 2005-05-13 2005-05-13 Method of computing optimum shape of cylindrical fluidized bed type incinerator Pending JP2006317083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140653A JP2006317083A (en) 2005-05-13 2005-05-13 Method of computing optimum shape of cylindrical fluidized bed type incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140653A JP2006317083A (en) 2005-05-13 2005-05-13 Method of computing optimum shape of cylindrical fluidized bed type incinerator

Publications (1)

Publication Number Publication Date
JP2006317083A true JP2006317083A (en) 2006-11-24

Family

ID=37537916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140653A Pending JP2006317083A (en) 2005-05-13 2005-05-13 Method of computing optimum shape of cylindrical fluidized bed type incinerator

Country Status (1)

Country Link
JP (1) JP2006317083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915423A (en) * 2010-08-26 2010-12-15 北京中科通用能源环保有限责任公司 Refuse burning system and method with functions of deacidifying flue gas and retarding dioxin generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915423A (en) * 2010-08-26 2010-12-15 北京中科通用能源环保有限责任公司 Refuse burning system and method with functions of deacidifying flue gas and retarding dioxin generation
CN101915423B (en) * 2010-08-26 2012-10-31 北京中科通用能源环保有限责任公司 Refuse burning system and method with functions of deacidifying flue gas and retarding dioxin generation

Similar Documents

Publication Publication Date Title
JP2006317083A (en) Method of computing optimum shape of cylindrical fluidized bed type incinerator
EP3124862B1 (en) Heat transfer tube for fluidized-bed boiler
JP4928182B2 (en) Thermoelectric conversion system and its construction method
CN101684515B (en) In-situ piecewise heat treatment method of large pressure container
JP2009024966A (en) Thermal expansion absorbing structure and thermal expansion absorbing method of waste melting furnace
KR20210133253A (en) Carbonization Emulsification Furnace
JP5179030B2 (en) Combustion gas extraction probe
JP4401995B2 (en) Heat transfer tube repair and removal method for high temperature air heater
CN201495274U (en) Well-type gas carburizing furnace
JP6458930B2 (en) Sludge incinerator repair method
CN101724738A (en) Upright thermal treatment furnace for pressure container factory
KR102522883B1 (en) Heat transfer tube for fluidized-bed boiler
JP2001272175A (en) Mounting structure and mounting method for refractory material
CN101713020B (en) Internal combustion segmental heat treatment method for pressure container
JP2002005419A (en) Mounting structure of air dispersing plate in cylindrical fluidized bed type incinerator
JP5251182B2 (en) Separation furnace bottom connection seal structure
CN214009996U (en) Support structure of fuming furnace exhaust-heat boiler cover
JP6653186B2 (en) Refractory structures
CN103791720B (en) Large arch-shaped porous high-temperature electric furnace top structure
CN213955365U (en) Horizontal boiler fire hole brick fixed knot constructs
JP2007262552A (en) Exhaust gas collecting facility of converter and maintenance process of the facility
US20070042304A1 (en) Method at a gas burner and a combined gas burner and cooler
JPH01189409A (en) Furnace bed plate construction for fluidized bed type incinerator
CN112461009A (en) Support structure of fuming furnace exhaust-heat boiler cover
JP5802471B2 (en) Heat exchanger