JP2006316709A - Detection device of egr gas flow rate and engine control method - Google Patents

Detection device of egr gas flow rate and engine control method Download PDF

Info

Publication number
JP2006316709A
JP2006316709A JP2005140560A JP2005140560A JP2006316709A JP 2006316709 A JP2006316709 A JP 2006316709A JP 2005140560 A JP2005140560 A JP 2005140560A JP 2005140560 A JP2005140560 A JP 2005140560A JP 2006316709 A JP2006316709 A JP 2006316709A
Authority
JP
Japan
Prior art keywords
flow rate
egr gas
gas flow
cylinder
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005140560A
Other languages
Japanese (ja)
Other versions
JP4449816B2 (en
Inventor
Yoshihiro Sukegawa
義寛 助川
Shiro Yamaoka
士朗 山岡
Noboru Tokuyasu
昇 徳安
Shinya Igarashi
信弥 五十嵐
Katsuaki Fukatsu
克明 深津
Takashi Kadohiro
崇 角広
Hidefumi Iwaki
秀文 岩城
Takanobu Ichihara
隆信 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005140560A priority Critical patent/JP4449816B2/en
Publication of JP2006316709A publication Critical patent/JP2006316709A/en
Application granted granted Critical
Publication of JP4449816B2 publication Critical patent/JP4449816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of the detection accuracy of a flow sensor caused by dirt and breakage of the sensor due to overheat by a flow sensor provided upstream of a throttle and by providing a flow sensor between a junction of EGR gas and fresh air and an intake pipe collector. <P>SOLUTION: A detection device of an EGR gas flow rate has the flow sensors 9, 10 provided upstream and downstream of the junction of fresh air and EGR gas and obtains EGR gas volume from a flow rate difference between the two sensors. An EGR rate for every cylinder is estimated from the time-series values of EGR gas volume, and injection timing, an injection quantity, a pilot injection ratio and an EGR gas mixing means for every cylinder are controlled based on the estimated rate. The accuracy deterioration and breakage of the flow sensors caused by dirt and overheat can be thus prevented. Discharge of NOx and soot from the engine can be inhibited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気の一部を吸気へ還流する内燃機関の排気還流ガスの流量検出装置及び制御方法に関する。   The present invention relates to an exhaust gas recirculation gas flow rate detection apparatus and control method for an internal combustion engine that recirculates part of exhaust gas to intake air.

内燃機関の燃焼過程においては、混合気中の不活性成分を多くすると、単位発熱量当たりのガス量の増加により燃焼温度が下がり、排気に含まれるNOxの排出量が少なくなるため、内燃機関から排出された排気の一部を吸気側に還流させ、混合気の燃焼温度を下げて排気中のNOxを低減する排気還流いわゆるEGR(Exhaust Gas Recirculation) が従来から広く採用されている。   In the combustion process of an internal combustion engine, increasing the amount of inert components in the air-fuel mixture decreases the combustion temperature due to an increase in the amount of gas per unit calorific value, and the amount of NOx contained in the exhaust gas decreases. Exhaust gas so-called EGR (Exhaust Gas Recirculation), in which a part of the discharged exhaust gas is recirculated to the intake side and NOx in the exhaust gas is reduced by lowering the combustion temperature of the air-fuel mixture, has been widely used.

このEGRを行うと、火炎核の生成遅れ,火炎伝幡遅れなどが発生するため、内燃機関の運転状態に応じた適切な制御が必要となり、安定した燃焼状態を維持するためにEGR制御に係る種々の提案がなされている。   When this EGR is performed, a delay in the generation of flame nuclei, a delay in flame propagation, and the like occur. Therefore, appropriate control according to the operation state of the internal combustion engine is necessary, and in order to maintain a stable combustion state, the EGR control is concerned. Various proposals have been made.

例えば、特開平6−74100号公報には、排気管の触媒下流側とマフラ上流側との間から延出した排気還流通路に流量センサを介装するとともに、上記排気還流通路の吸気管への合流部に制御弁を設け、前記流量センサからの信号に基づいて前記制御弁の弁開度を制御し、上記排気還流通路を流れる排気の流量が目標値となるようフィードバック制御することにより、大量の排気還流を実行する際に、正確な還流ガスの調量と混合を可能とするEGRの制御技術が開示されている。   For example, in Japanese Patent Laid-Open No. 6-74100, a flow rate sensor is interposed in an exhaust gas recirculation passage extending from between the catalyst downstream side and the muffler upstream side of the exhaust pipe, and the exhaust gas recirculation passage is connected to the intake pipe. By providing a control valve at the junction, controlling the valve opening of the control valve based on the signal from the flow sensor, and performing feedback control so that the flow rate of the exhaust gas flowing through the exhaust gas recirculation passage becomes a target value, When performing exhaust gas recirculation, an EGR control technique is disclosed that enables accurate metering and mixing of the recirculated gas.

特開平6−74100号公報JP-A-6-74100

EGRガス中には高濃度の煤やエンジンオイルなどの汚損物質が含まれており、さらに高温であるため、前記特開平6−74100号公報に記載のように排気還流通路に流量センサを備えると、EGRガス中の汚損物質によりセンサの特性変化やセンサ内部の目詰によってEGRガス流量の検出精度が低下したり、過熱によってセンサが破損したりする虞がある。前記特開平6−74100号公報においては、汚損防止のため流量センサ上部にフィルタを設ける事例が示されているが、EGRガス中に含まれるカーボン等の汚損物質には、数ミクロン程度の微小粒子が含まれていることから、これをフィルタで除去するのは困難である。   Since the EGR gas contains fouling substances such as high-concentration soot and engine oil and is at a higher temperature, a flow sensor is provided in the exhaust gas recirculation passage as described in JP-A-6-74100. There is a possibility that the detection accuracy of the EGR gas flow rate may be lowered due to a change in sensor characteristics or clogging inside the sensor due to the pollutant in the EGR gas, or the sensor may be damaged due to overheating. In JP-A-6-74100, there is shown an example in which a filter is provided on the upper part of the flow sensor to prevent fouling, but for fouling substances such as carbon contained in EGR gas, fine particles of about several microns are shown. Since it is included, it is difficult to remove it with a filter.

また排気還流通路は、排気脈動の影響を受けやすいため、排気還流通路内に逆流を生じたり、流量センサの応答性が低かったりすると、検出する流量誤差が大きくなるという課題がある。   Further, since the exhaust gas recirculation passage is easily affected by exhaust gas pulsation, there is a problem that the flow rate error to be detected becomes large when a back flow occurs in the exhaust gas recirculation passage or the response of the flow sensor is low.

さらに、通常のエンジンは複数気筒で構成されることが多いが、この場合には吸気管内でのガス流の偏流などにより、気筒毎のEGRガス流量に偏差が生じる虞がある。気筒毎のEGRガス流量の偏差が大きいと、EGRガス流量の多い気筒から大量の煤が排出されたり、逆にEGRガス流量の少ない気筒から大量のNOxが排出されたりする。このため、気筒毎のEGRガス流量を推定し、エンジンを適切に制御することが望ましい。しかし従来技術においては、このような課題を解決する手段が無かった。   Further, an ordinary engine is often composed of a plurality of cylinders. In this case, there is a possibility that a deviation occurs in the EGR gas flow rate for each cylinder due to a drift of the gas flow in the intake pipe. When the deviation of the EGR gas flow rate for each cylinder is large, a large amount of soot is discharged from the cylinder with a high EGR gas flow rate, or conversely, a large amount of NOx is discharged from a cylinder with a low EGR gas flow rate. For this reason, it is desirable to estimate the EGR gas flow rate for each cylinder and appropriately control the engine. However, the prior art has no means for solving such a problem.

上記課題は、スロットル上流に第一のガス流量検出手段を備え、EGRガスと新気との合流部と吸気管コレクタの間に第二のガス流量検出手段を備えると共に前記第二のガス流量検出手段が検出したガス流量値と前記第一のガス流量検出手段が検出したガス流量値との差分に基づいて、シリンダ内に流入するEGRガス流量を求めることを特徴とするEGRガス流量の検出装置により解決される。   The object is to provide a first gas flow rate detection means upstream of the throttle, a second gas flow rate detection means between the confluence of EGR gas and fresh air and the intake pipe collector, and the second gas flow rate detection. An EGR gas flow rate detection device for obtaining an EGR gas flow rate flowing into a cylinder based on a difference between a gas flow rate value detected by the means and a gas flow rate value detected by the first gas flow rate detection means It is solved by.

また上記課題は、EGRガス流量の検出装置を備えて、エンジンクランク軸が2回転する間に少なくともエンジン気筒数個以上のEGRガス流量の時系列値を用いて、気筒毎のEGRガス流量を推定する手段を有し、前記手段によって推定された気筒毎のEGRガス流量に関連して、気筒毎の燃料噴射タイミング、または気筒毎の燃料噴射回数、または気筒毎の燃料噴射量、または新気とEGRガスとの混合制御手段の操作量を決めることを特徴とするエンジンの制御方法によっても解決される。   Further, the above-described problem is provided with an EGR gas flow rate detection device, and estimates the EGR gas flow rate for each cylinder by using time series values of EGR gas flow rates of at least several engine cylinders while the engine crankshaft rotates twice. In relation to the EGR gas flow rate for each cylinder estimated by the means, the fuel injection timing for each cylinder, the number of fuel injections for each cylinder, the fuel injection amount for each cylinder, or fresh air The problem can also be solved by an engine control method characterized in that the operation amount of the mixing control means with EGR gas is determined.

また、上記課題は、直噴エンジンにおいて、気筒毎のEGRガス流量が多いと推定された気筒の燃料噴射タイミングを、EGRガス流量が少ないと推定された気筒の燃料噴射タイミングよりも進角することを特徴とするエンジンの制御方法により解決される。   Further, in the direct injection engine, the above-described problem is to advance the fuel injection timing of the cylinder that is estimated to have a high EGR gas flow rate for each cylinder more than the fuel injection timing of the cylinder that is estimated to have a low EGR gas flow rate. This is solved by an engine control method characterized by the above.

また、より好ましくは、1行程内に複数回の燃料噴射を行う直噴エンジンにおいて、
EGRガス流量が多いと推定された気筒の1行程内での燃料噴射回数を、EGRガス流量が少ないと推定された気筒の1行程内での燃料噴射回数よりも多くすることを特徴とするエンジンの制御方法により解決される。
More preferably, in a direct injection engine that performs fuel injection a plurality of times in one stroke,
An engine characterized in that the number of fuel injections in one stroke of a cylinder estimated to have a high EGR gas flow rate is greater than the number of fuel injections in one stroke of a cylinder estimated to have a low EGR gas flow rate. This is solved by the control method.

また、より好ましくは、1行程内に複数回の燃料噴射を行う直噴エンジンにおいて、
EGRガス流量が多いと推定された気筒の前段噴射量の割合を、EGRガス流量が少ないと推定された気筒の1行程内での前段噴射量の割合よりも多くすることを特徴とするエンジンの制御方法により解決される。
More preferably, in a direct injection engine that performs fuel injection a plurality of times in one stroke,
The ratio of the front-stage injection amount of the cylinder estimated to have a high EGR gas flow rate is made larger than the ratio of the front-stage injection amount in one stroke of the cylinder estimated to have a low EGR gas flow rate. It is solved by the control method.

また、より好ましくは、直噴エンジンにおいて、EGRガス流量が多いと推定された気筒の1行程内での燃料噴射割合を、EGRガス流量が少ないと推定された気筒の1行程内での燃料噴射割合よりも多くすることを特徴とするエンジンの制御方法により解決される。   More preferably, in the direct injection engine, the fuel injection ratio in one stroke of the cylinder estimated to have a high EGR gas flow rate is set to the fuel injection ratio in the one stroke of the cylinder estimated to have a low EGR gas flow rate. This is solved by an engine control method characterized in that the ratio is larger than the ratio.

また、より好ましくは、気筒間のEGRガス流量の偏差が所定値より小さくなるようにEGRガスと新気との混合度合いを調整する混合制御手段の操作量を決めることを特徴とするエンジンの制御方法により解決される。   More preferably, the amount of operation of the mixing control means for adjusting the degree of mixing of the EGR gas and fresh air is determined so that the deviation of the EGR gas flow rate between the cylinders becomes smaller than a predetermined value. Solved by the method.

以上に説明したに本発明によれば、スロットル上流に設けた流量センサとEGRガスと新気との合流部と吸気管コレクタの間に設けた流量センサを設けることで、高温,高濃度ダスト雰囲気のEGRガス配管内に流量センサを設置しなくてもEGRガス流量を検出することができる。これにより、流量センサの汚損による検出精度の低下や、過熱によるセンサの破損を防止することができる。   As described above, according to the present invention, the flow rate sensor provided upstream of the throttle, the flow rate sensor provided between the EGR gas and fresh air merging portion, and the intake pipe collector are provided. The EGR gas flow rate can be detected without installing a flow sensor in the EGR gas pipe. Thereby, the fall of the detection accuracy by the contamination of a flow sensor and the damage of the sensor by overheating can be prevented.

また、時系列に検出されたEGRガス流量から気筒毎のEGR量を推定し、気筒毎の
EGR量に関連して、燃料噴射時期,燃料噴射量,パイロット噴射割合を変えることで、煤とNOxの同時低減を図ることができる。
Further, by estimating the EGR amount for each cylinder from the EGR gas flow rate detected in time series, and changing the fuel injection timing, fuel injection amount, and pilot injection ratio in relation to the EGR amount for each cylinder, soot and NOx Can be reduced simultaneously.

以下、本発明の実施の形態について図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本実施形態に係るEGRガス流量検出装置の構成図を示す。本実施形態におけるEGRガス流量検出装置は、ディーゼル内燃機関を搭載した車両に適用したものである。本発明は、ディーゼル内燃機関に限らずガソリン内燃機関にも適用可能である。内燃機関2は、4サイクル4気筒エンジンであり、ターボチャージャ3を備えており、エアクリーナ17,インタークーラ13,吸気マニホルド,コレクタ16、などからなる吸気経路4が接続されている。また、内燃機関2には、排気マニホルド,触媒15、などからなる排気経路5が接続されている。   FIG. 1 shows a configuration diagram of an EGR gas flow rate detection apparatus according to the present embodiment. The EGR gas flow rate detection device in this embodiment is applied to a vehicle equipped with a diesel internal combustion engine. The present invention is applicable not only to a diesel internal combustion engine but also to a gasoline internal combustion engine. The internal combustion engine 2 is a four-cycle four-cylinder engine and includes a turbocharger 3 to which an intake path 4 including an air cleaner 17, an intercooler 13, an intake manifold, a collector 16, and the like is connected. The internal combustion engine 2 is connected to an exhaust path 5 including an exhaust manifold, a catalyst 15, and the like.

内燃機関2には、燃焼室に燃料を噴射するインジェクタ6が設けられている。インジェクタ6は、燃料を燃焼室へ供給する燃料噴射手段であり、内燃機関2に形成されるシリンダごとに設置されている。EGRガスを環流する環流配管7の途中にはEGRクーラ8が設けられている。   The internal combustion engine 2 is provided with an injector 6 for injecting fuel into the combustion chamber. The injector 6 is fuel injection means for supplying fuel to the combustion chamber, and is installed for each cylinder formed in the internal combustion engine 2. An EGR cooler 8 is provided in the middle of the circulation pipe 7 for circulating the EGR gas.

EGRクーラ8は、環流配管7を流通するEGRガスを冷却する冷却手段である。EGRクーラ8としては、例えば、水冷式のものが用いられ、冷却水の循環により環流配管7を流通するEGRガスを冷却する。また、EGRクーラ8は、積層型,多管型など何れの型式のものを用いてもよい。   The EGR cooler 8 is a cooling means for cooling the EGR gas flowing through the circulation pipe 7. As the EGR cooler 8, for example, a water-cooled type is used, and the EGR gas flowing through the circulation pipe 7 is cooled by circulation of cooling water. The EGR cooler 8 may be of any type such as a stacked type or a multi-tube type.

環流配管7の途中であってEGRクーラ8の下流側にはEGR制御弁10が設けられている。EGR制御弁10は、環流配管7を開閉する弁体であり、弁体の開閉によりEGRガスの環流量を調整する。図1では、EGRクーラ8が排気側に配置された構成例を示しているが、EGRクーラ8とEGR制御弁10の配置関係については特に制約はない。   An EGR control valve 10 is provided in the middle of the circulation pipe 7 and downstream of the EGR cooler 8. The EGR control valve 10 is a valve body that opens and closes the circulation pipe 7, and adjusts the flow rate of EGR gas by opening and closing the valve body. Although FIG. 1 shows a configuration example in which the EGR cooler 8 is arranged on the exhaust side, the arrangement relationship between the EGR cooler 8 and the EGR control valve 10 is not particularly limited.

吸気経路4と環流配管7はスロットル14の下流で接続され、この接続部とコレクタ
16の間に、流量センサ9が設けられている。またエアクリーナ17の下流には流量センサ12が設けられている。なお流量センサ12の取り付け位置は、吸気経路4と環流配管7の接続部より上流であれば、吸気経路4内のいずれの場所でもよい。流量センサ12は吸気経路を通過する新気の質量流量を検知するものであり、流量センサ9は吸気経路を通過する新気とEGRガス混合気の質量流量を検知するものである。EGRガスに新気が混ざることで、混合気の温度やカーボンダストやオイル等の汚損物質の濃度はEGRガスに比べて大幅に低くなる。従って、流量センサ9の耐熱性や耐汚損性への要求は環流配管7内に流量センサを設ける場合に比べて大幅に緩くなる。
The intake path 4 and the circulation pipe 7 are connected downstream of the throttle 14, and a flow rate sensor 9 is provided between the connecting portion and the collector 16. A flow rate sensor 12 is provided downstream of the air cleaner 17. The attachment position of the flow rate sensor 12 may be any location in the intake passage 4 as long as it is upstream from the connection portion between the intake passage 4 and the circulation pipe 7. The flow sensor 12 detects the mass flow rate of fresh air passing through the intake path, and the flow sensor 9 detects the mass flow rate of fresh air and EGR gas mixture passing through the intake path. By mixing fresh air with the EGR gas, the temperature of the air-fuel mixture and the concentration of fouling substances such as carbon dust and oil are significantly lower than that of the EGR gas. Therefore, the demand for heat resistance and antifouling property of the flow sensor 9 is significantly less than when the flow sensor is provided in the circulation pipe 7.

流量センサ9と12は、応答速度が速く、また対汚損性が高いものが望ましく、このような流量センサとしては、例えばホットワイヤや半導体基板上に形成したホットフィルムなどを利用した熱式の流量センサがある。熱式の流量センサでは、センサを加熱することで、センサ表面に付着したオイルミストや水分を蒸発させ、カーボンなどの固形ダストがセンサに付着するのを防止できる。また、カーボンがセンサに付着した場合でも、加熱によってカーボンを焼失することができるため、EGRガスに対する耐汚損性が高い。   It is desirable that the flow rate sensors 9 and 12 have a high response speed and a high antifouling property. As such a flow rate sensor, for example, a thermal flow rate using a hot wire or a hot film formed on a semiconductor substrate is used. There is a sensor. In a thermal type flow sensor, heating the sensor can evaporate oil mist and moisture adhering to the sensor surface, and prevent solid dust such as carbon from adhering to the sensor. Moreover, even when carbon adheres to the sensor, the carbon can be burned off by heating, so that the anti-fouling property against EGR gas is high.

ECU11は、エンジン全体の制御を行うものであり、CPU,ROM,RAMを含むコンピュータを主体として構成されている。ROMにはエンジンの各種制御ルーチンが記憶されている。ECU11には、流量センサ9,12が接続され流量センサ9,12の出力信号を入力する。また、ECU11は各気筒のインジェクタ6と接続され、各インジェクタ6に独立に噴射制御信号を出力する。また、ECU11はEGR制御弁10と接続され、EGR制御弁10にEGR制御信号を出力する。   The ECU 11 controls the entire engine, and is mainly composed of a computer including a CPU, a ROM, and a RAM. Various control routines for the engine are stored in the ROM. Flow rate sensors 9 and 12 are connected to the ECU 11 and output signals from the flow rate sensors 9 and 12 are input. The ECU 11 is connected to the injector 6 of each cylinder and outputs an injection control signal to each injector 6 independently. The ECU 11 is connected to the EGR control valve 10 and outputs an EGR control signal to the EGR control valve 10.

またクランク角センサ19で検出された機関2のクランク角信号がECU11に入力される。   A crank angle signal of the engine 2 detected by the crank angle sensor 19 is input to the ECU 11.

本実施例におけるEGRガス流量の検出方法について図2を用いて説明する。図2は、流量センサ9および流量センサ12によって検出された流量の時間変化を示す。流量センサ9および流量センサ12の検出値は所定時間毎にECU11に取り込まれる。ECU11では流量センサ9で検出された新気とEGRガスとの混合気流量値20から流量センサ
12で検出された新気の流量値21を引くことで、EGRガス流量値22を求めることができる。
A method for detecting the EGR gas flow rate in this embodiment will be described with reference to FIG. FIG. 2 shows the time change of the flow rate detected by the flow sensor 9 and the flow sensor 12. Detection values of the flow sensor 9 and the flow sensor 12 are taken into the ECU 11 at predetermined time intervals. The ECU 11 can obtain the EGR gas flow value 22 by subtracting the fresh air flow value 21 detected by the flow sensor 12 from the mixed gas flow value 20 of the fresh air and EGR gas detected by the flow sensor 9. .

なお、流量センサ9と流量センサ12の位置間隔が大きいとき、またはガス速度が遅い場合には、流量センサ12で検出した新気が流量センサ12の位置に来るまでに時間差が大きくなり、同時刻の検出値を引き算したのでは、EGRガス流量の検出誤差が大きくなる。そこで、流量センサ12で検出した新気が流量センサ12の位置に到着するまでの時間遅れΔtを推定し、図3に示すように流量センサ12により求められた新気の流量値
21をΔtだけ遅らせた補正検出値21′を求め、20と21′の差からEGRガス流量22′を求めるようにすると、EGRガスの検出精度を高めることができる。ここで、時間遅れΔtは例えば式1によって推定できる。g1は、流量センサ12で検出した新気流量値であり、所定の時間毎に最新の検出値に更新される。Vは流量センサ12から流量センサ9の間の吸気経路の体積、ρは新気の密度である。
In addition, when the position interval of the flow sensor 9 and the flow sensor 12 is large, or when the gas velocity is slow, the time difference becomes large until the fresh air detected by the flow sensor 12 comes to the position of the flow sensor 12, and at the same time. If the detected value is subtracted, the detection error of the EGR gas flow rate becomes large. Therefore, a time delay Δt until the fresh air detected by the flow sensor 12 arrives at the position of the flow sensor 12 is estimated, and the flow rate value 21 of the fresh air obtained by the flow sensor 12 as shown in FIG. If the delayed corrected detection value 21 ′ is obtained and the EGR gas flow rate 22 ′ is obtained from the difference between 20 and 21 ′, the detection accuracy of the EGR gas can be improved. Here, the time delay Δt can be estimated by Equation 1, for example. g1 is a fresh air flow value detected by the flow sensor 12, and is updated to the latest detected value every predetermined time. V is the volume of the intake path between the flow sensor 12 and the flow sensor 9, and ρ is the density of fresh air.

Figure 2006316709
Figure 2006316709

次に、エンジンの各気筒に流入するEGRガス量を推定する方法について図4及び図5を用いて説明する。図4において(A)は、各気筒の吸気行程判別値である。各気筒が吸気行程にあるときに1、吸気行程以外の場合に0の値をとる。この吸気行程判別値は、
ECU11に取り込んだエンジンのクランク角センサ信号を用いて、ECU11内で作成される。本実施例においては、1番気筒,2番気筒,3番気筒,4番気筒の順で吸気行程がクランク角180度毎に切り替わる。図4(B)は流量センサ9および流量センサ12によって検出された流量の時間変化を示す。20は流量センサ9で検出された新気とEGRガスとの混合気流量値20,21は流量センサ12で検出された新気の流量値21,22は20から21を差し引いて求めたEGRガス流量値である。図4(C)は、各気筒の
EGRガス流量の推定課程を示している。
Next, a method for estimating the amount of EGR gas flowing into each cylinder of the engine will be described with reference to FIGS. In FIG. 4, (A) is the intake stroke discrimination value of each cylinder. The value is 1 when each cylinder is in the intake stroke, and 0 when the cylinder is not in the intake stroke. This intake stroke discrimination value is
It is created in the ECU 11 using the crank angle sensor signal of the engine taken into the ECU 11. In this embodiment, the intake stroke is switched every crank angle of 180 degrees in the order of the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder. FIG. 4B shows the change over time of the flow rate detected by the flow rate sensor 9 and the flow rate sensor 12. 20 is an EGR gas obtained by subtracting 21 from 20 for the flow rates 21 and 22 of fresh air detected by the flow sensor 12. Flow rate value. FIG. 4C shows an estimation process of the EGR gas flow rate of each cylinder.

図5にクランク軸が2回転した後の各気筒のEGRガス量を求める手順を示す。処理
(51)によって気筒番号がnに設定され、処理(52)で現在気筒のEGRガス量が求まる配列EGR(n)が0に初期化される。処理(53)で吸気行程判別信号により現在の気筒が吸気行程にあるか否かが判定され、吸気行程であれば、処理(54)により流量センサ値から新気の流量値21と新気とEGRガスとの混合気流量値20が読み込まれる。次に処理(55)で、新気とEGRガスとの混合気流量値20と新気の流量値21の差からEGR流量値22が求められる。続いて処理(56)により、EGR流量値22と流量の検出間隔δtとの積がEGR(n)へ足しこまれて、時間積分が行われる。処理
(54)から処理(56)が現在の気筒nの吸気行程中、繰り返されて、EGR(n)には、吸気行程間のEGRガス流量の時間積分値、すなわち現在のシリンダ内に流入した
EGRガス量が求められる。吸気行程が終わると、処理(57)で気筒番号nが次の気筒に更新され、処理(52)に戻る。処理(58)でn>4になると、全ての気筒のEGRガス量が配列EGR(n)に求まる。
FIG. 5 shows a procedure for obtaining the EGR gas amount of each cylinder after the crankshaft has rotated twice. In step (51), the cylinder number is set to n, and in step (52), the array EGR (n) in which the EGR gas amount of the current cylinder is obtained is initialized to zero. In process (53), it is determined whether or not the current cylinder is in the intake stroke based on the intake stroke determination signal. If it is in the intake stroke, the flow rate value 21 of fresh air and the fresh air are determined from the flow rate sensor value in process (54). A gas mixture flow value 20 with EGR gas is read. Next, in the process (55), an EGR flow value 22 is obtained from the difference between the mixture flow value 20 of fresh air and EGR gas and the flow value 21 of fresh air. Subsequently, in the process (56), the product of the EGR flow rate value 22 and the flow rate detection interval δt is added to EGR (n), and time integration is performed. Processes (54) to (56) are repeated during the intake stroke of the current cylinder n, and EGR (n) flows into the current cylinder, ie, the time integral value of the EGR gas flow rate during the intake stroke. The amount of EGR gas is determined. When the intake stroke ends, the cylinder number n is updated to the next cylinder in the process (57), and the process returns to the process (52). When n> 4 in the process (58), the EGR gas amounts of all the cylinders are obtained in the array EGR (n).

なお、流量センサ9,12の応答時間が吸気行程期間と同程度の場合は、流量センサは吸気行程内での細かい流量変動は捕らえられず、ほぼ吸気行程中の平均流量を検出すると考えられる。この場合には流量の積分時間間隔δtを吸気行程期間とほぼ同じとして、吸気行程中で1回のみ流量を検出して、その流量値から現在気筒のEGRガス量を求めてもよい。すなわちクランク軸が2回転する間に、各気筒について処理(54)から(56)を最低1回ずつ行うことで、気筒毎のEGR量を求めることができる。   When the response times of the flow sensors 9, 12 are approximately the same as the intake stroke period, it is considered that the flow sensor does not capture fine flow rate fluctuations in the intake stroke, and detects an average flow rate during the intake stroke. In this case, the integral time interval δt of the flow rate may be substantially the same as the intake stroke period, and the flow rate may be detected only once during the intake stroke, and the EGR gas amount of the current cylinder may be obtained from the flow rate value. That is, the EGR amount for each cylinder can be obtained by performing the processes (54) to (56) at least once for each cylinder while the crankshaft rotates twice.

気筒毎のEGR量に基づき、気筒毎に最適制御を行うことで、エンジンのエミッションを低減できる。次に、気筒毎の噴射時期の制御方法について図6を用いて説明する。図6は各気筒のEGR量に対する燃料噴射時期の補正特性を示している。本実施例では、気筒間の平均EGR量を例えば次の算術平均で求める。   By performing optimal control for each cylinder based on the EGR amount for each cylinder, engine emissions can be reduced. Next, a method for controlling the injection timing for each cylinder will be described with reference to FIG. FIG. 6 shows the correction characteristic of the fuel injection timing with respect to the EGR amount of each cylinder. In the present embodiment, the average EGR amount between the cylinders is obtained by, for example, the following arithmetic average.

EGR0={EGR(1)+EGR(2)+EGR(3)+EGR(4)}/4
平均EGR量EGR0,吸入新気量,エンジン回転数などに基づき、ECU11内の
ROMに予め格納された運転マップに基づき、基準噴射時期Ti0を求める。次に、各気筒の燃料噴射時期を図6の補正特性に基づき決める。本補正特性では、気筒毎EGR量がEGR0より多い場合は噴射時期が基準噴射時期より進角補正され、また気筒毎EGR量がEGR0より少ない場合は噴射時期が基準噴射時期より遅角補正される。これは、次の理由による。気筒内に多くのEGRガスが入っている場合は、不活性ガス濃度が高いため着火後の燃焼が緩慢となり煤が発生しやすくなる。この場合には、その気筒の燃料噴射時期を早めて熱発生を進角させることで燃焼期間を長くとり煤の発生を抑える必要がある。
EGR0 = {EGR (1) + EGR (2) + EGR (3) + EGR (4)} / 4
Based on the average EGR amount EGR0, the intake fresh air amount, the engine speed, and the like, a reference injection timing Ti0 is obtained based on an operation map stored in advance in a ROM in the ECU 11. Next, the fuel injection timing of each cylinder is determined based on the correction characteristics shown in FIG. In this correction characteristic, when the EGR amount for each cylinder is larger than EGR0, the injection timing is corrected to advance from the reference injection timing, and when the EGR amount for each cylinder is less than EGR0, the injection timing is corrected to be retarded from the reference injection timing. . This is due to the following reason. When a large amount of EGR gas is contained in the cylinder, the inert gas concentration is high, so that combustion after ignition becomes slow and soot tends to be generated. In this case, it is necessary to suppress the generation of soot by extending the combustion period by advancing the heat generation by advancing the fuel injection timing of the cylinder.

一方、気筒内のEGRガスが少ない場合には燃焼速度が上がるためNOx排出が増える。従ってその気筒の噴射時期を遅らすことで着火を遅くしてシリンダ内の最高到達温度を下げるのがNOx低減に有効である。   On the other hand, when the amount of EGR gas in the cylinder is small, NOx emissions increase because the combustion speed increases. Therefore, it is effective in reducing NOx to delay ignition by delaying the injection timing of the cylinder and lower the maximum temperature reached in the cylinder.

図7は、気筒毎の燃料噴射量を補正する例である。EGR量が多い気筒では煤の発生を防止するため、燃料噴射量を少なくする必要がある。そこで図7の噴射量補正特性では、EGR量の多い気筒では噴射量を減量補正する。一方、EGR量が少なく煤に対して余裕がある気筒は噴射量を増量補正することでエンジンのトルク低下を防止する。   FIG. 7 is an example of correcting the fuel injection amount for each cylinder. In a cylinder having a large EGR amount, it is necessary to reduce the fuel injection amount in order to prevent generation of soot. Therefore, in the injection amount correction characteristic of FIG. 7, the injection amount is corrected to decrease in a cylinder having a large EGR amount. On the other hand, in a cylinder with a small EGR amount and a margin for soot, the engine torque is prevented from decreasing by correcting the injection amount to be increased.

ディーゼルエンジンにおいては、パイロット噴射により主噴射後の着火遅れを低減することができる。そこで気筒毎のEGR量に従ってパイロット噴射の割合(全噴射量に対するパイロット噴射の量)を変える制御も考えられる。図8は、気筒毎EGR量に対するパイロット噴射割合の補正特性を示している。EGR量が平均EGR量より多い気筒ではパイロット噴射の割合を増やすことで主燃焼の着火遅れを低減し、煤の発生を抑える。一方、EGR量の少ない気筒では、パイロット噴射の割合を減らすことで、主燃焼の着火遅れを大きくしてNOxの低減を図ることができる。パイロット噴射の割合は、パイロット噴射の噴射パルス幅、もしくはパイロット噴射の噴射回数によって変更することができる。具体的にはパイロット噴射の割合を多くするには、パイロット噴射の回数を増やすか、パイロット噴射の噴射パルス幅を広くすればよい。   In a diesel engine, ignition delay after main injection can be reduced by pilot injection. Therefore, it is conceivable to control the ratio of pilot injection (the amount of pilot injection with respect to the total injection amount) according to the EGR amount for each cylinder. FIG. 8 shows the correction characteristic of the pilot injection ratio with respect to the EGR amount for each cylinder. In a cylinder where the EGR amount is larger than the average EGR amount, the ignition delay of main combustion is reduced by increasing the ratio of pilot injection, and soot generation is suppressed. On the other hand, in a cylinder having a small EGR amount, the ignition delay of main combustion can be increased to reduce NOx by reducing the ratio of pilot injection. The ratio of pilot injection can be changed by the injection pulse width of pilot injection or the number of pilot injections. Specifically, in order to increase the ratio of pilot injection, the number of pilot injections may be increased or the injection pulse width of pilot injection may be increased.

その他に、EGRガスと新気との混合度合いを、気筒毎のEGR量偏差に基づき操作する制御方法も考えられる。図9,図10を用いて、EGRガスと新気との混合度合いを、気筒毎のEGR量偏差に基づき操作する制御方法の一実施例について説明する。   In addition, a control method for operating the degree of mixing of EGR gas and fresh air based on the EGR amount deviation for each cylinder is also conceivable. An embodiment of a control method for operating the degree of mixing of EGR gas and fresh air based on the EGR amount deviation for each cylinder will be described with reference to FIGS.

図9はEGRガスと新気の混合度合いを調整する手段の例を示している。環流配管7と吸気経路4の合流部の下流側に、バイパス管91を設けて、バイパス管91への混合気の配分量を、図示しないECUの指令値に基づき開度変更可能なバタフライ弁93によって調整する。バイパス管91内の断面には多孔板92が設けられており、バイパス管内を流れるガスは多孔板92が生成する乱流渦により混合が促進される。図9の混合調整手段を使えば、バタフライ弁93を閉めると、バイパス管91へのガス分配が多くなるので、
EGRガスと新気との混合度合いが強くなる。一方で、バイパス管91での圧力損失は多孔板92のために大きいので、バタフライ弁93を閉めるに従って、新気,EGRガス混合気の圧力損失は大きくなる。従って、バタフライ弁93の開度によって、EGRガスと新気の混合度合いと、圧力損失を調整できる。
FIG. 9 shows an example of means for adjusting the degree of mixing of EGR gas and fresh air. A butterfly valve 93 is provided on the downstream side of the junction between the circulation pipe 7 and the intake passage 4 so that the distribution amount of the air-fuel mixture to the bypass pipe 91 can be changed in opening degree based on a command value of an ECU (not shown). Adjust by. A porous plate 92 is provided in a cross section in the bypass pipe 91, and mixing of gas flowing in the bypass pipe is promoted by turbulent vortices generated by the porous plate 92. If the mixing adjusting means of FIG. 9 is used, when the butterfly valve 93 is closed, the gas distribution to the bypass pipe 91 increases.
The degree of mixing of EGR gas and fresh air increases. On the other hand, since the pressure loss in the bypass pipe 91 is large due to the perforated plate 92, the pressure loss of the fresh air and the EGR gas mixture increases as the butterfly valve 93 is closed. Therefore, the degree of mixing of EGR gas and fresh air and the pressure loss can be adjusted by the opening degree of the butterfly valve 93.

図10は気筒間のEGR量偏差(標準偏差)に対するバタフライ弁93の開度の決め方を示している。気筒間のEGR量偏差が大きい場合にはバタフライ弁93の開度を小さくして、新気とEGRガスの混合をより促進するようにして、気筒間のEGR量偏差を小さくする。一方、気筒間のEGR量偏差が小さい場合にはバタフライ弁93の開度を大きくして、混合気の圧力損失を低減する。このように、気筒間のEGR量偏差に基づいて、新気とEGRガスの混合度合いを制御することによって、EGRガスの気筒間偏差と圧力損失の低減を図ることができる。   FIG. 10 shows how to determine the opening degree of the butterfly valve 93 with respect to the EGR amount deviation (standard deviation) between the cylinders. When the EGR amount deviation between the cylinders is large, the opening degree of the butterfly valve 93 is reduced to further promote the mixing of fresh air and EGR gas, thereby reducing the EGR amount deviation between the cylinders. On the other hand, when the EGR amount deviation between the cylinders is small, the opening degree of the butterfly valve 93 is increased to reduce the pressure loss of the air-fuel mixture. In this way, by controlling the degree of mixing of fresh air and EGR gas based on the EGR amount deviation between the cylinders, it is possible to reduce the EGR gas inter-cylinder deviation and the pressure loss.

本実施形態に係るEGRガス流量の検出装置を備えた機関の基本構成図。The basic block diagram of the engine provided with the detection apparatus of the EGR gas flow rate which concerns on this embodiment. 本実施形態に係る新気流量,EGRガス流量,新気,EGRガス混合気流量の検出値の例。The example of the detected value of the fresh air flow volume based on this embodiment, an EGR gas flow volume, a fresh air, and an EGR gas mixed gas flow volume. 本実施形態に係る新気の時間遅れ補正を考慮した場合の、EGRガス混合気流量の検出値の例。The example of the detected value of EGR gas mixture flow volume when the time delay correction | amendment of the fresh air which concerns on this embodiment is considered. 本実施形態に係る気筒毎の吸気行程信号,新気,EGRガス,混合気流量の検出値の例。The example of the detected value of the intake stroke signal for every cylinder which concerns on this embodiment, fresh air, EGR gas, and air-fuel | gaseous mixture flow volume. 本実施形態に係る気筒毎のEGRガス量を求める手順。The procedure which calculates | requires EGR gas amount for every cylinder which concerns on this embodiment. 本実施形態に係る気筒毎EGR量に対する噴射時期補正パターン。The injection timing correction pattern with respect to EGR amount for every cylinder which concerns on this embodiment. 本実施形態に係る気筒毎EGR量に対する噴射量補正パターン。The injection amount correction pattern with respect to the EGR amount for each cylinder according to the present embodiment. 本実施形態に係る気筒毎EGR量に対するパイロット噴射割合補正パターン。The pilot injection ratio correction pattern with respect to the EGR amount for each cylinder according to the present embodiment. 新気とEGRガスとの混合調整手段の例。The example of the mixing adjustment means of fresh air and EGR gas. 本実施形態に係る気筒間EGR偏差とバタフライ弁開度パターン。The inter-cylinder EGR deviation and butterfly valve opening pattern according to the present embodiment.

符号の説明Explanation of symbols

1…排気環流装置、2…機関、3…ターボチャージャ、4…吸気経路、5…排気経路、6…インジェクタ、7…環流配管、8…EGRクーラ、9,12…流量センサ、10…
EGR制御弁、11…ECU、13…インタークーラ、14…スロットル、15…触媒、16…コレクタ、17…エアクリーナ、19…クランク角センサ、20…新気とEGRガス混合気流量検出値、21…新気の流量値、22…EGRガス流量値、91…バイパス管、92…多孔板、93…バタフライ弁。
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas recirculation apparatus, 2 ... Engine, 3 ... Turbocharger, 4 ... Intake path, 5 ... Exhaust path, 6 ... Injector, 7 ... Recirculation piping, 8 ... EGR cooler, 9, 12 ... Flow sensor, 10 ...
EGR control valve, 11 ... ECU, 13 ... intercooler, 14 ... throttle, 15 ... catalyst, 16 ... collector, 17 ... air cleaner, 19 ... crank angle sensor, 20 ... fresh air and EGR gas mixture flow rate detection value, 21 ... Fresh air flow value, 22 ... EGR gas flow value, 91 ... Bypass pipe, 92 ... Perforated plate, 93 ... Butterfly valve.

Claims (8)

スロットル上流に設けられた第一のガス流量検出手段と、EGRガスと新気との合流部と吸気管コレクタの間に設けられた第二のガス流量検出手段と、前記第二のガス流量検出手段が検出したガス流量値と前記第一のガス流量検出手段が検出したガス流量値との差分に基づいて、シリンダ内に流入するEGRガス流量を求めることを特徴とするEGRガス流量の検出装置。   A first gas flow rate detection means provided upstream of the throttle; a second gas flow rate detection means provided between a confluence of EGR gas and fresh air and the intake pipe collector; and the second gas flow rate detection An EGR gas flow rate detecting device for obtaining an EGR gas flow rate flowing into a cylinder based on a difference between a gas flow rate value detected by the means and a gas flow rate value detected by the first gas flow rate detecting means. . ガス流量検出手段が熱式流量センサであることを特徴とする請求項1記載のEGRガスの検出装置。   2. The EGR gas detection device according to claim 1, wherein the gas flow rate detection means is a thermal flow rate sensor. EGRガス流量の検出装置を備えて、エンジンクランク軸が2回転する間に少なくともエンジン気筒数個以上のEGRガス流量の時系列値を用いて、気筒毎のEGRガス流量を推定する手段を有し、前記手段によって推定された気筒毎のEGRガス流量に関連して、気筒毎の燃料噴射タイミング、または気筒毎の燃料噴射回数、または気筒毎の燃料噴射量、または新気とEGRガスとの混合制御手段の操作量を決めることを特徴とするエンジンの制御方法。   EGR gas flow rate detection device is provided, and means for estimating the EGR gas flow rate for each cylinder by using time series values of EGR gas flow rates of at least several engine cylinders while the engine crankshaft rotates twice In relation to the EGR gas flow rate for each cylinder estimated by the means, the fuel injection timing for each cylinder, the number of fuel injections for each cylinder, the fuel injection amount for each cylinder, or the mixture of fresh air and EGR gas An engine control method characterized by determining an operation amount of a control means. 直噴エンジンにおいて、気筒毎のEGRガス流量が多いと推定された気筒の燃料噴射タイミングを、EGRガス流量が少ないと推定された気筒の燃料噴射タイミングよりも進角することを特徴とする請求項3記載のエンジンの制御方法。   The fuel injection timing of a cylinder estimated to have a large EGR gas flow rate per cylinder in a direct injection engine is advanced from the fuel injection timing of a cylinder estimated to have a low EGR gas flow rate. 3. The engine control method according to 3. 1行程内に複数回の燃料噴射を行う直噴エンジンにおいて、EGRガス流量が多いと推定された気筒の1行程内での燃料噴射回数を、EGRガス流量が少ないと推定された気筒の1行程内での燃料噴射回数よりも多くすることを特徴とする請求項3記載のエンジンの制御方法。   In a direct injection engine that performs fuel injection a plurality of times in one stroke, the number of fuel injections in one stroke of the cylinder that is estimated to have a high EGR gas flow rate is the same as the one stroke of the cylinder that is estimated to have a low EGR gas flow rate. 4. The method of controlling an engine according to claim 3, wherein the number of times of fuel injection in the engine is increased. 1行程内に複数回の燃料噴射を行う直噴エンジンにおいて、EGRガス流量が多いと推定された気筒の前段噴射量の割合を、EGRガス流量が少ないと推定された気筒の1行程内での前段噴射量の割合よりも多くすることを特徴とする請求項3記載のエンジンの制御方法。   In a direct-injection engine that performs multiple fuel injections in one stroke, the ratio of the pre-stage injection amount of the cylinder that is estimated to have a high EGR gas flow rate is the same as that in one stroke of the cylinder that is estimated to have a low EGR gas flow rate. 4. The engine control method according to claim 3, wherein the ratio is larger than the ratio of the upstream injection amount. 直噴エンジンにおいて、EGRガス流量が多いと推定された気筒の1行程内での燃料噴射割合を、EGRガス流量が少ないと推定された気筒の1行程内での燃料噴射割合よりも多くすることを特徴とする請求項3記載のエンジンの制御方法。   In a direct injection engine, the fuel injection ratio in one stroke of a cylinder estimated to have a high EGR gas flow rate should be greater than the fuel injection ratio in one stroke of a cylinder estimated to have a low EGR gas flow rate. The engine control method according to claim 3. 気筒間のEGRガス流量の偏差が所定値より小さくなるようにEGRガスと新気との混合度合いを調整する混合制御手段の操作量を決めることを特徴とする請求項3記載のエンジンの制御方法。

4. The engine control method according to claim 3, wherein the operation amount of the mixing control means for adjusting the degree of mixing of EGR gas and fresh air is determined so that the deviation of the EGR gas flow rate between the cylinders becomes smaller than a predetermined value. .

JP2005140560A 2005-05-13 2005-05-13 EGR gas flow rate detection device and engine control method Expired - Fee Related JP4449816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140560A JP4449816B2 (en) 2005-05-13 2005-05-13 EGR gas flow rate detection device and engine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140560A JP4449816B2 (en) 2005-05-13 2005-05-13 EGR gas flow rate detection device and engine control method

Publications (2)

Publication Number Publication Date
JP2006316709A true JP2006316709A (en) 2006-11-24
JP4449816B2 JP4449816B2 (en) 2010-04-14

Family

ID=37537600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140560A Expired - Fee Related JP4449816B2 (en) 2005-05-13 2005-05-13 EGR gas flow rate detection device and engine control method

Country Status (1)

Country Link
JP (1) JP4449816B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133737A (en) * 2006-11-27 2008-06-12 Toyota Motor Corp Sensor washing device in internal combustion engine
JP2009108713A (en) * 2007-10-26 2009-05-21 Denso Corp Egr distribution variation sensing device
JP2009180218A (en) * 2008-01-29 2009-08-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2012524857A (en) * 2009-04-24 2012-10-18 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Exhaust gas recirculation system for internal combustion engines
JP2013515895A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for measuring and controlling the EGR rate of a combustion engine
WO2015146209A1 (en) * 2014-03-25 2015-10-01 日立オートモティブシステムズ株式会社 Engine control system
JP2020037912A (en) * 2018-09-05 2020-03-12 株式会社豊田自動織機 Control system of engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133737A (en) * 2006-11-27 2008-06-12 Toyota Motor Corp Sensor washing device in internal combustion engine
EP2053223A3 (en) * 2007-10-26 2014-07-02 Denso Corporation Exhaust gas recirculation distribution variation sensing device
JP2009108713A (en) * 2007-10-26 2009-05-21 Denso Corp Egr distribution variation sensing device
JP4525729B2 (en) * 2007-10-26 2010-08-18 株式会社デンソー EGR distribution variation detection device
US7921707B2 (en) 2007-10-26 2011-04-12 Denso Corporation Exhaust gas recirculation distribution variation sensing device
JP2009180218A (en) * 2008-01-29 2009-08-13 Honda Motor Co Ltd Control device for internal combustion engine
JP4615573B2 (en) * 2008-01-29 2011-01-19 本田技研工業株式会社 Control device for internal combustion engine
JP2012524857A (en) * 2009-04-24 2012-10-18 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Exhaust gas recirculation system for internal combustion engines
JP2013515895A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for measuring and controlling the EGR rate of a combustion engine
US9267452B2 (en) 2009-12-23 2016-02-23 Fpt Motorenforschung Ag Method and apparatus for measuring and controlling the EGR rate in a combustion engine
WO2015146209A1 (en) * 2014-03-25 2015-10-01 日立オートモティブシステムズ株式会社 Engine control system
JP2015183599A (en) * 2014-03-25 2015-10-22 日立オートモティブシステムズ株式会社 Engine control device
CN106103950A (en) * 2014-03-25 2016-11-09 日立汽车系统株式会社 Engine control system
US10227935B2 (en) 2014-03-25 2019-03-12 Hitachi Autmotive Systems, Ltd. Engine control system
JP2020037912A (en) * 2018-09-05 2020-03-12 株式会社豊田自動織機 Control system of engine

Also Published As

Publication number Publication date
JP4449816B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US7178326B2 (en) Exhaust gas purifying apparatus
JP4501877B2 (en) Control device for internal combustion engine
JP4449816B2 (en) EGR gas flow rate detection device and engine control method
US8137434B2 (en) Exhaust gas purification device of internal combustion engine
JP4622719B2 (en) PM deposition amount estimation device
JP4670884B2 (en) Exhaust gas recirculation device for internal combustion engine
US8515650B2 (en) Control system of internal combustion engine
US7769531B2 (en) Control device of internal combustion engine
JP2009114871A (en) Exhaust gas recirculation control device for internal combustion engine
JP2009047130A (en) Control device for internal combustion engine
US20170276080A1 (en) Control apparatus for internal combustion engine
JP2006214275A (en) Exhaust circulating device of internal combustion engine
US20180066557A1 (en) Exhaust purification system, and control method for exhaust purification system
JP2007303364A (en) Fuel injection control device for internal combustion engine
JP5076879B2 (en) Fuel injection control system for internal combustion engine
US7367184B2 (en) Fuel injection control device for internal combustion engine
US11208936B2 (en) Exhaust purification system of internal combustion engine
JP2009114870A (en) Exhaust gas recirculation control device for internal combustion engine
JP2008014179A (en) Air-fuel ratio control device of internal combustion engine
JP2005069207A (en) Exhaust emission control device of internal combustion engine
JP2010090848A (en) Method and device for recirculating exhaust gas of internal combustion engine
JP2011157942A (en) Egr control device of internal combustion engine
JP5815296B2 (en) Exhaust gas purification device for internal combustion engine
JP7260347B2 (en) Combustion control device for internal combustion engine
JP2018119422A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees