JP2006316135A - Polyimide resin composition, resin coating and insulated wire - Google Patents

Polyimide resin composition, resin coating and insulated wire Download PDF

Info

Publication number
JP2006316135A
JP2006316135A JP2005138449A JP2005138449A JP2006316135A JP 2006316135 A JP2006316135 A JP 2006316135A JP 2005138449 A JP2005138449 A JP 2005138449A JP 2005138449 A JP2005138449 A JP 2005138449A JP 2006316135 A JP2006316135 A JP 2006316135A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin composition
mol
aromatic
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138449A
Other languages
Japanese (ja)
Inventor
Hideyuki Kikuchi
英行 菊池
Yuzo Yukimori
雄三 行森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Magnet Wire Ltd
Original Assignee
Hitachi Magnet Wire Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Magnet Wire Ltd filed Critical Hitachi Magnet Wire Ltd
Priority to JP2005138449A priority Critical patent/JP2006316135A/en
Publication of JP2006316135A publication Critical patent/JP2006316135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting type aromatic polyimide resin composition, a resin coating and an insulated wire excellent in mechanical properties and hydrolysis. <P>SOLUTION: The polyimide resin composition is soluble in a polar solvent, etc. The polyimide resin is composed of an acid anhydride component mainly containing an aromatic tetracarboxylic dianhydride and an isocyanate component mainly containing an aromatic diisocyanate and the resin composition is obtained by decarboxylation and imidation reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はポリイミド樹脂に関し、ポリイミド樹脂を溶媒に可溶化した芳香族ポリイミド樹脂組成物及び樹脂塗料並びに絶縁電線に関するものである。   The present invention relates to a polyimide resin, and relates to an aromatic polyimide resin composition, a resin paint, and an insulated wire obtained by solubilizing a polyimide resin in a solvent.

ポリイミド樹脂は高分子材料中で最も高い耐熱性を有するものの一つであり、非常に優れた物性を有することから広い分野で用いられているが、一般に加工成形性に劣るため、溶剤への溶解性を有する芳香族ジアミンと芳香族テトラカルボン酸二無水物との合成から得られるポリアミック酸の段階で用いられていることが殆んどである。このポリアミック酸溶液をキャスト成形した後、脱水閉環イミド化することでポリイミドを得る。   Polyimide resin is one of the highest heat resistance among polymer materials and is used in a wide range of fields because of its excellent physical properties. However, since it is generally inferior in processability, it can be dissolved in a solvent. Most of them are used at the stage of polyamic acid obtained from the synthesis of aromatic diamine having aromaticity and aromatic tetracarboxylic dianhydride. After casting this polyamic acid solution, polyimide is obtained by dehydrating ring-closing imidization.

ポリアミック酸ポリイミドとしては、酸成分としてベンゼン環1個からなるピロメリツト酸二無水物(PMDA)や2個のベンゼン環を連結基で結んだ3,3’4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’−オキシジフタル酸二無水物(ODPA)、ビフェニル型で結んだ3,3’4,4’−ビフェニルテトラカルボン酸二無水物(S−BPDA)等の芳香族テトラカルボン酸二無水物類又はこれらの異性体が用いられ、連結部分はその要求性能により多種多様である。また場合によって耐熱性等の物性面で許容できる範囲でブタンテトラカルボン酸二無水物や5−(2,5‐ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物等の脂環式テトラカルボン酸二無水物類が用いられることもある。またアミン成分としてはベンゼン環1個からなるパラフェニレンジアミン(PPD)、2,4’−トリレンジアミン(TDA)や2個のベンゼン環を連結基で結んだ4,4’−ジアミノジフェニルメタン(DAM)、4,4’−ジアミノジフェニルエーテル(ODA)、4,4’−ジアミノジフェニルスルホン(DAS)、ビフェニル型で結んだビトリレンジアミン(TODA)等の芳香族ジアミン類又はこれらの異性体が用いられ、これも連結基は性能に応じ多種多様である。同様に脂環式ジアミン類が用いられることもある。更にこれらの酸無水物及びジアミン類においては各ベンゼン環の水素がアルキル基、フェニル基、場合によってはフッ素置換されることもある。   Polyamic acid polyimides include pyromellitic dianhydride (PMDA) consisting of one benzene ring as an acid component and 3,3'4,4'-benzophenonetetracarboxylic dianhydride in which two benzene rings are connected by a linking group. (BTDA), 4,4'-oxydiphthalic dianhydride (ODPA), biphenyl type 3,3'4,4'-biphenyltetracarboxylic dianhydride (S-BPDA), etc. Carboxylic dianhydrides or their isomers are used, and the connecting portion varies depending on the required performance. In some cases, butanetetracarboxylic dianhydride and 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-tolerate as long as they are acceptable in terms of physical properties such as heat resistance. Alicyclic tetracarboxylic dianhydrides such as dicarboxylic acid anhydrides may be used. The amine component includes paraphenylenediamine (PPD) consisting of one benzene ring, 2,4'-tolylenediamine (TDA), and 4,4'-diaminodiphenylmethane (DAM) in which two benzene rings are connected by a linking group. ), 4,4′-diaminodiphenyl ether (ODA), 4,4′-diaminodiphenyl sulfone (DAS), biphenylene-linked vitrylenediamine (TODA), or isomers thereof. Again, the linking group varies widely depending on performance. Similarly, alicyclic diamines may be used. Further, in these acid anhydrides and diamines, the hydrogen of each benzene ring may be substituted with an alkyl group, a phenyl group, and optionally a fluorine.

ポリアミック酸の溶剤としてはN−メチル−2−ピロリドン(NMP)やN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、ジメチルイミダゾリジノン(DMI)等が用いられ、芳香族アルキルベンゼンなどで希釈して用いられる場合もある。   As the solvent for polyamic acid, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethylimidazolidinone (DMI), etc. are used, and aromatic In some cases, it may be diluted with a group alkylbenzene.

ジイソシアネートは前記したジアミン類があれば、ホスゲン化することでアミノ基をイソシアネート基に換えることが可能である。現在ではウレタン原料となるイソシアネート、特にDAMをベースに得られる4,4’−ジフェニルメタンジイソシアネート(MDI)やTDAをベースに得られる2,4’−トリレンジイソシアネート(TDI)等の方がDAMやTDAよりも安価に入手可能である。   If the diisocyanate has the above-mentioned diamines, the amino group can be changed to an isocyanate group by phosgenation. Currently, isocyanates used as urethane raw materials, especially 4,4'-diphenylmethane diisocyanate (MDI) obtained on the basis of DAM and 2,4'-tolylene diisocyanate (TDI) obtained on the basis of TDA, are more suitable for DAM and TDA. Is available at a lower cost.

前記のように芳香族ジアミンと芳香族テトラカルボン酸二無水物との反応ではポリイミドの前駆体であり、溶剤に可溶なポリアミック酸の溶液が得られるが、芳香族テトラカルボン酸二無水物と芳香族ジイソシアネートとを反応させた場合、脱炭酸反応により直接イミド化するため、一般的には溶剤への溶解性は著しく劣ることになる。但し、PPDとPMDAなど結晶性や配向性が強い傾向にあるジアミン類と酸無水物類との反応で得られる溶液はポリアミック酸とはいえども溶解性は著しく悪化し、合成反応段階で析出し溶液として得られない。   As described above, the reaction between the aromatic diamine and the aromatic tetracarboxylic dianhydride is a polyimide precursor, and a solution of polyamic acid soluble in the solvent is obtained. When an aromatic diisocyanate is reacted, since it is directly imidized by a decarboxylation reaction, the solubility in a solvent is generally extremely inferior. However, the solution obtained by the reaction of diamines and acid anhydrides, such as PPD and PMDA, which have a strong tendency to crystallinity and orientation, is a polyamic acid, but the solubility is remarkably deteriorated and is precipitated in the synthesis reaction stage. It cannot be obtained as a solution.

イミド化が完結した溶剤可溶性ポリイミド樹脂も市販されているが、ポリアミック酸ポリイミドほどの耐熱性や耐溶剤性を有していない。   Although a solvent-soluble polyimide resin that has been imidized is also commercially available, it does not have the heat resistance and solvent resistance as polyamic acid polyimide.

特開平5−78484号公報Japanese Patent Laid-Open No. 5-78484 特開2003−119285号公報JP 2003-119285 A

ポリアミック酸ポリイミドはポリイミド樹脂を得るために脱水閉環反応が必要であり、これには高温の熱処理が必要である。従ってポリアミック酸溶液をキャストあるいは焼付塗装によってポリイミドフィルムを得たり、ポリイミド絶縁電線を得たりするなど何らかの成形を加える場合などに作業性の足枷となっていた。   Polyamic acid polyimide requires a dehydration ring-closing reaction to obtain a polyimide resin, which requires high-temperature heat treatment. Therefore, it has become a foothold in workability when some form is added such as obtaining a polyimide film by casting or baking coating a polyamic acid solution or obtaining a polyimide insulated wire.

またポリアミック酸ポリイミドは良好な性能を持つ反面、加水分解性は劣るものが殆どであった。この原因としては合成時の脱水イミド化反応の可逆性に起因するものか、樹脂中に僅かに残留する未反応カルボン酸等に起因するものと推測しているが定かではない。   Polyamic acid polyimides have good performance, but most have poor hydrolyzability. It is speculated that this may be due to the reversibility of the dehydration imidization reaction during synthesis or unreacted carboxylic acid remaining slightly in the resin.

イミド結合は剛直な分子構造を持っているにも拘らず、ポリアミック酸ポリイミドは耐摩耗性などの機械的な特性が期待したほど高くない場合があった。この原因として理想的にはリニアな樹脂構造を作ることができるが、実際には近隣に存在するモノマーと結合し架橋構造を持ってしまうためと推測しているが定かではない。   Although the imide bond has a rigid molecular structure, the polyamic acid polyimide sometimes has mechanical properties such as wear resistance that are not as high as expected. Although it is possible to make a linear resin structure ideally as the cause of this, it is speculated that it actually binds to a monomer existing in the vicinity and has a cross-linked structure.

ポリアミック酸溶液は常温でも僅かながら重合が進み、増粘するため溶液の貯蔵安定性は劣り一般的には低温保存を必要とする。   The polyamic acid solution undergoes a slight polymerization at room temperature and thickens, so that the storage stability of the solution is inferior and generally requires low-temperature storage.

イミド完結型の溶剤可溶性ポリイミドは熱硬化反応を伴わないため、熱可塑的であり軟化温度が低く、また耐溶剤性に劣る欠点を持つ。   Since the imide-complete solvent-soluble polyimide does not involve a thermosetting reaction, it is thermoplastic, has a low softening temperature, and has poor solvent resistance.

上記課題を解決するために、本発明の目的は、前記ポリイミド樹脂は原料をジアミンの換わりにジイソシアネートを用い、ポリイミドのイミド化を脱水反応から脱炭酸反応に変え、そしてまた原料であるジイソシアネートまたは酸二無水物にスルホン基を導入することで樹脂溶解性の低下を補うことにより、安定的なポリイミド樹脂塗料を得、且つ機械的特性や加水分解性の優れた熱硬化型の芳香族ポリイミド樹脂組成物及び樹脂塗料並びに絶縁電線を提供する。   In order to solve the above-mentioned problems, the object of the present invention is to use a diisocyanate instead of diamine as a raw material for the polyimide resin, change the imidization of the polyimide from a dehydration reaction to a decarboxylation reaction, and also use the diisocyanate or acid as the raw material. Thermosetting aromatic polyimide resin composition with excellent mechanical properties and hydrolyzability by obtaining a stable polyimide resin coating by compensating for a decrease in resin solubility by introducing a sulfone group into dianhydride Products, resin coatings and insulated wires.

上記の目的を達成するために、請求項1の発明は、極性溶媒などに可溶なポリイミド樹脂組成物において、芳香族テトラカルボン酸二無水物を主体とする酸無水物成分と芳香族ジイソシアネートを主体とするイソシアネート成分とからなり、脱炭酸イミド化反応させて得られることを特徴とする芳香族ポリイミド樹脂組成物である。   In order to achieve the above object, the invention of claim 1 is a polyimide resin composition soluble in a polar solvent or the like, wherein an acid anhydride component mainly composed of an aromatic tetracarboxylic dianhydride and an aromatic diisocyanate. An aromatic polyimide resin composition comprising an isocyanate component as a main component and obtained by decarbonation imidization reaction.

請求項2の発明は、酸無水物成分として、ジフェニルスルホンテトラカルボン酸二無水物20〜100モル%と数種類のテトラカルボン酸二無水物類0〜80モル%とを共重合させた請求項1に記載のポリイミド樹脂組成物である。   In the invention of claim 2, as an acid anhydride component, 20 to 100 mol% of diphenylsulfone tetracarboxylic dianhydride and 0 to 80 mol% of several tetracarboxylic dianhydrides are copolymerized. It is a polyimide resin composition as described in above.

請求項3の発明は、イソシアネート成分としてジフェニルスルホンジイソシアネート20〜100モル%と数種類のイソシアネート類0〜80モル%とを共重合させた請求項1または2に記載のポリイミド樹脂組成物である。   Invention of Claim 3 is a polyimide resin composition of Claim 1 or 2 which copolymerized 20-100 mol% of diphenyl sulfone diisocyanate and several types of isocyanates 0-80 mol% as an isocyanate component.

請求項4の発明は、請求項1〜3いずれかに記載のポリイミド樹脂組成物を、溶媒に可溶化させたことを特徴とするポリイミド樹脂塗料である。   The invention of claim 4 is a polyimide resin paint characterized by solubilizing the polyimide resin composition according to any one of claims 1 to 3 in a solvent.

請求項5の発明は、請求項4に記載のポリイミド樹脂塗料により導体上に皮膜を形成したことを特徴とする絶縁電線である。   The invention of claim 5 is an insulated wire characterized in that a film is formed on a conductor by the polyimide resin paint of claim 4.

本発明によるポリイミド樹脂塗料によれば、イソシアネート成分と酸二無水物成分との脱炭酸反応でイミド化するため、非常に良好な機械的特性及び耐加水分解性を示す。溶剤溶解性についてはスルホン基の含有と共重合効果によりNMPなどの溶媒に可溶でかつ常温安定性に優れたものとなる。従ってこのような特性を活かし、超耐熱分野など従来のポリアミック酸ポリイミドが用いられていた以外の耐加水分解性や耐傷性などを必要とする用途に使用可能で有り、トップコートにも使用することができる。   According to the polyimide resin coating material of the present invention, since it is imidized by decarboxylation reaction of an isocyanate component and an acid dianhydride component, very good mechanical properties and hydrolysis resistance are exhibited. The solvent solubility is soluble in a solvent such as NMP and has excellent room temperature stability due to the inclusion of the sulfone group and the copolymerization effect. Therefore, taking advantage of these characteristics, it can be used for applications that require hydrolysis resistance and scratch resistance other than those used in conventional polyamic acid polyimides such as in the super heat resistant field, and it can also be used for top coats. Can do.

以下に本発明におけるポリイミド樹脂組成物及び樹脂塗料並びに絶縁電線の実施の形態を説明する。   Embodiments of a polyimide resin composition, a resin paint, and an insulated wire in the present invention will be described below.

先ず、本発明におけるポリイミド樹脂塗料を用いた絶縁電線10は、図1に示すように、導体11上にポリイミド樹脂塗料を塗布、焼付けすることにより導体11の周囲に絶縁体の皮膜12を形成して得られる。   First, the insulated wire 10 using the polyimide resin paint according to the present invention forms an insulating film 12 around the conductor 11 by applying and baking the polyimide resin paint on the conductor 11 as shown in FIG. Obtained.

このポリイミド樹脂塗料は、ポリイミド樹脂組成物を溶剤に可溶化させて形成される。   This polyimide resin paint is formed by solubilizing a polyimide resin composition in a solvent.

本発明のポリイミド樹脂組成物は、芳香族テトラカルボン酸二無水物を主体とする酸無水物成分と芳香族ジイソシアネートを主体とするイソシアネート成分とを脱炭酸イミド化反応させて得られる。   The polyimide resin composition of the present invention is obtained by subjecting an acid anhydride component mainly composed of an aromatic tetracarboxylic dianhydride and an isocyanate component mainly composed of an aromatic diisocyanate to a decarbonation imidization reaction.

ポリイミド樹脂組成物低分子量芳香族ポリイミド樹脂塗料を塗工作業等の後、加熱硬化により高分子量化された芳香族ポリイミド樹脂を得ることが可能となる。   After the polyimide resin composition low molecular weight aromatic polyimide resin coating is applied, etc., it becomes possible to obtain a high molecular weight aromatic polyimide resin by heat curing.

ジイソシアネートと酸二無水物は、脱炭酸によって直接イミド化されるため塗料化の段階で溶剤への溶解性が著しく低下するが、原料特に2つベンゼン環を結ぶ連結基にスルホン基を用い、且つ数種類の芳香族テトラカルボン酸二無水物と芳香族ジイソシアネートを用いることにより、結晶性、配向性、秩序性を崩すことで、耐熱性等の諸特性を低下させること無く溶剤への溶解性を向上し、芳香族ポリイミド樹脂塗料を得ることが可能となる。   Since diisocyanate and acid dianhydride are directly imidized by decarboxylation, the solubility in a solvent is remarkably reduced at the stage of coating. However, a sulfone group is used as a linking group connecting two raw materials, particularly two benzene rings, and By using several types of aromatic tetracarboxylic dianhydrides and aromatic diisocyanates, the solubility in solvents is improved without degrading various properties such as heat resistance by breaking crystallinity, orientation, and order. Thus, an aromatic polyimide resin paint can be obtained.

具体的には酸二無水物として3,3’4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)が好適であり、その異性体についても使用可能である。配合量については20〜100モル%の範囲がよく、50〜100モル%の範囲がなお良い。また単独でも使用可能である。ジイソシアネートや併用する酸二無水物との組み合わせにもよるが、溶解性が比較的良好な原料用いる場合、DSDAは減量することが可能となる。   Specifically, 3,3'4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) is suitable as the acid dianhydride, and its isomer can also be used. The blending amount is preferably in the range of 20 to 100 mol%, and more preferably in the range of 50 to 100 mol%. It can also be used alone. Although depending on the combination with diisocyanate and acid dianhydride used in combination, DSDA can be reduced when a raw material having relatively good solubility is used.

DSDAと併用する酸二無水物としては特に限定は無いが、耐熱性などの観点からBTDA(N,N−ジメチルアセトアミド)、ODPA(4,4’−オキシジフタル酸二無水物)などの芳香族テトラカルボン酸二無水物が望ましい。PMDA(ピロメリツト酸二無水物)、S−BPDA(3,3’4,4’−ビフェニルテトラカルボン酸二無水物)なども使用可能であるが、溶解性が劣るため併用量は少なめに抑えられてしまう。また耐熱性等の物性面で許容できる範囲でブタンテトラカルボン酸二無水物や5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物等の脂環式テトラカルボン酸二無水物なども併用可能である。   The acid dianhydride used in combination with DSDA is not particularly limited. From the viewpoint of heat resistance, aromatic tetrahydrides such as BTDA (N, N-dimethylacetamide) and ODPA (4,4′-oxydiphthalic dianhydride) are used. Carboxylic dianhydrides are preferred. PMDA (pyromellitic dianhydride), S-BPDA (3,3'4,4'-biphenyltetracarboxylic dianhydride), etc. can also be used, but the combined amount can be suppressed to a small extent due to poor solubility. End up. Further, butanetetracarboxylic dianhydride and 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid are acceptable within the range acceptable in terms of physical properties such as heat resistance. An alicyclic tetracarboxylic dianhydride such as an anhydride may be used in combination.

ジイソシアネートとしては4,4’−ジフェニルスルホンジイソシアネート(SDI)が好適であり、その異性体についても使用可能である。配合量については20〜100モル%の範囲がよく、50〜95モル%の範囲がなお良い。また単独でも使用可能である。酸二無水物や併用するジイソシアネートとの組み合わせにもよるが、溶解性が比較的良好な原料用いる場合、SDIは減量することが可能となる。SDIと併用するジイソシアネートとしては特に限定は無いが芳香族ジイソシアネートが望ましい。汎用性や耐熱性など観点からMDI(4,4’−ジフェニルメタンジイソシアネート、及びその異性体を含む)やTDI(2,4’−トリレンジイソシアネート、及びその異性体を含む)、ジフェニルエーテルジイソシアネートなどがなお望ましい。ビトリレンジイソシアネート(TODI)、パラフェニレンジイソシアネート(PPDI)なども使用可能であるが、溶解性が劣るため併用量は少なめに抑えられてしまう。またキシシレンジイソシアネート(XDI)、ポリメリツクMDIや多量体も好適である。その他、耐熱性等の物性面で許容できる範囲でヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(H−MDI)など脂肪族、脂環族ジイソシアネートなども併用可能である。   As the diisocyanate, 4,4'-diphenylsulfone diisocyanate (SDI) is preferable, and isomers thereof can also be used. About the compounding quantity, the range of 20-100 mol% is good, and the range of 50-95 mol% is still better. It can also be used alone. Although depending on the combination with an acid dianhydride or a diisocyanate used in combination, the amount of SDI can be reduced when a raw material having relatively good solubility is used. The diisocyanate used in combination with SDI is not particularly limited, but aromatic diisocyanate is desirable. From the viewpoint of versatility and heat resistance, MDI (including 4,4′-diphenylmethane diisocyanate and its isomer), TDI (including 2,4′-tolylene diisocyanate and its isomer), diphenyl ether diisocyanate, etc. desirable. Vitrylene diisocyanate (TODI), paraphenylene diisocyanate (PPDI), and the like can be used, but the combined amount is suppressed to a small extent because of poor solubility. Also suitable are xylylene diisocyanate (XDI), polymer MDI and multimers. In addition, aliphatic and alicyclic diisocyanates such as hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate (H-MDI) can be used in combination as long as they are acceptable in terms of physical properties such as heat resistance.

溶剤としてはイミド化反応の阻害を起こさないものであれば特に限定は無いが、溶解性の高いNMP(N−メチル−2−ピロリドン)やDMAC(N,N−ジメチルアセトアミド)、DMF(N,N−ジメチルホルムアミド)、DMI(ジメチルイミダゾリジノン)等が望ましい。γ−ブチロラクトン、バレロラクトンなどの併用、あるいはまた希釈用途として芳香族アルキルベンゼン類などを用いても良い。   The solvent is not particularly limited as long as it does not inhibit the imidization reaction, but is highly soluble NMP (N-methyl-2-pyrrolidone), DMAC (N, N-dimethylacetamide), DMF (N, N-dimethylformamide), DMI (dimethylimidazolidinone) and the like are desirable. Aromatic alkylbenzenes and the like may be used in combination with γ-butyrolactone, valerolactone, or the like, or for dilution purposes.

ポリイミド樹脂塗料は適度な分子量で合成溶液中に残存しているイソシアネート成分をブロックすることで合成反応を止め、塗料として安定化させる。分子量についても特に限定はないが、20000以上が最終の加熱硬化時に優れた特性を得やすい。イソシアネートのブロック剤についてもフェノール類、アルコール類、オキシム類などがありこれらに特に限定はないが、塗料の安定化に寄与し、且つ加熱硬化時にブロックが解離し高分子量化が進むものが望ましく、用途や加熱硬化条件、塗料の保管条件などで選定が必要となる。   The polyimide resin paint stops the synthesis reaction by blocking the isocyanate component remaining in the synthesis solution with an appropriate molecular weight and stabilizes it as a paint. The molecular weight is not particularly limited, but 20000 or more tends to obtain excellent characteristics at the final heat curing. The isocyanate blocking agent also includes phenols, alcohols, oximes, etc., and is not particularly limited, but it is desirable that it contributes to the stabilization of the paint, and the block dissociates at the time of heat curing to increase the molecular weight. Selection is required depending on the application, heat curing conditions, paint storage conditions, and the like.

各実施例において、次のように行った。   In each Example, it carried out as follows.

ポリイミド樹脂塗料を撹拌機、還流冷却管、窒素流入管、温度計を備えたフラスコに下記実施例1〜3、比較例1〜5に示す原料をそれぞれ投入し、窒素雰囲気中で攪拌しながら約50℃で30分攪拌し、原料を完全に溶解させた後、約20分で100℃まで加熱、平均分子量約35000のポリイミド樹脂溶液が得られるように、この温度で1時間反応させた後、不揮発分20%となるように溶剤希釈して作製した。   Raw materials shown in Examples 1 to 3 and Comparative Examples 1 to 5 below were charged into a flask equipped with a stirrer, a reflux condenser, a nitrogen inflow pipe, and a thermometer, respectively, and the polyimide resin paint was stirred in a nitrogen atmosphere. After stirring at 50 ° C. for 30 minutes to completely dissolve the raw materials, the mixture is heated to 100 ° C. in about 20 minutes and reacted at this temperature for 1 hour so that a polyimide resin solution having an average molecular weight of about 35000 is obtained. The solvent was diluted so that the non-volatile content was 20%.

比較例2及び3についてはジアミンを完全溶解した後、酸二無水物を少量ずつ添加し、常温6時間反応させ、不揮発分20%となるポリアミック酸溶液を作製した。   In Comparative Examples 2 and 3, after dissolving diamine completely, acid dianhydride was added little by little and reacted at room temperature for 6 hours to prepare a polyamic acid solution having a nonvolatile content of 20%.

前記ポリイミド塗料をキャスト後300℃−5分加熱により30μm厚のフィルムを得、また0.8mmの銅導体上に塗布、焼付けし、皮膜厚30μmのエナメル線を得た。   After casting the polyimide coating, a film having a thickness of 30 μm was obtained by heating at 300 ° C. for 5 minutes, and applied and baked on a copper conductor having a thickness of 0.8 mm to obtain an enameled wire having a thickness of 30 μm.

図1は本発明に係るポリイミド塗料を塗布した電線を示す図である。
導体1上にポリイミド塗料を塗布、焼付けすることにより導体1の周囲に絶縁体の皮膜2が得られる。
FIG. 1 is a view showing an electric wire coated with a polyimide paint according to the present invention.
An insulating coating 2 is obtained around the conductor 1 by applying and baking a polyimide coating on the conductor 1.

実施例及び比較例における性状、得られたフィルム及びエナメル線の特性等については表1に示す。   Table 1 shows the properties of the examples and comparative examples, the properties of the obtained films and enameled wires.

Figure 2006316135
Figure 2006316135

試験はJISに準じて実施した。加水分解性については内容積300mlのガラス管に対撚りエナメル線と0.4Vol%の水を投入し、密封した後、120℃で1000h熱処理した後の絶縁破壊電圧の低下率を測定した。ガラス転移温度TgについてはDSCにて測定した。   The test was conducted according to JIS. For hydrolyzability, a twisted enameled wire and 0.4 Vol% water were put into a glass tube with an internal volume of 300 ml, sealed, and then the rate of decrease in dielectric breakdown voltage after heat treatment at 120 ° C. for 1000 h was measured. The glass transition temperature Tg was measured by DSC.

(実施例1)
イソシアネート成分として255.0g(1.02モル)のMDI(4,4’−ジフェニルメタンジイソシアネート)、酸成分として214.8g(0.6モル)のDSDA(3,3’4,4’−ジフェニルスルホンテトラカルボン酸二無水物)と128.8g(0.4モル)のBTDA(3,3'4,4'−ベンゾフェノンテトラカルボン酸二無水物)及び溶剤としてNMP(N−メチル−2−ピロリドン)1600gを投入し、合成を行った後、DMF(N,N−ジメチルホルムアミド)で希釈し、樹脂分濃度20重量%のポリイミド樹脂塗料を得た。
Example 1
255.0 g (1.02 mol) of MDI (4,4′-diphenylmethane diisocyanate) as the isocyanate component and 214.8 g (0.6 mol) of DSDA (3,3′4,4′-diphenylsulfone) as the acid component Tetracarboxylic dianhydride), 128.8 g (0.4 mol) of BTDA (3,3′4,4′-benzophenone tetracarboxylic dianhydride) and NMP (N-methyl-2-pyrrolidone) as solvent 1600 g was added and synthesized, and then diluted with DMF (N, N-dimethylformamide) to obtain a polyimide resin paint having a resin concentration of 20% by weight.

(実施例2)
イソシアネート成分として205.0g(0.82モル)の液状モノメリツクMDI(2,4’、4,4’異性体混合物)と34.8g(0.2モル)のTDI(2,4’−トリレンジイソシアネート)、酸成分として71.6g(0.2モル)のDSDA(3,3’4,4’−ジフェニルスルホンテトラカルボン酸二無水物)と257.6g(0.8モル)のBTDA(3,3'4,4'−ベンゾフェノンテトラカルボン酸二無水物)及び溶剤としてNMP1600gを投入し、合成を行った後、DMFで希釈し、樹脂分濃度20重量%のポリイミド樹脂塗料を得た。
(Example 2)
205.0 g (0.82 mol) liquid monomeric MDI (2,4 ′, 4,4 ′ isomer mixture) and 34.8 g (0.2 mol) TDI (2,4′-tolylene) as isocyanate components Isocyanate), 71.6 g (0.2 mol) of DSDA (3,3′4,4′-diphenylsulfone tetracarboxylic dianhydride) and 257.6 g (0.8 mol) of BTDA (3 mol) as the acid component. , 3′4,4′-benzophenonetetracarboxylic dianhydride) and 1600 g of NMP as a solvent were added and synthesized, and then diluted with DMF to obtain a polyimide resin paint having a resin concentration of 20% by weight.

(実施例3)
イソシアネート成分として55.0g(0.22モル)のMDIと240.0g(0.8モル)のSDI(4,4’−ジフェニルスルホンジイソシアネート)、酸成分として62.0g(0.2モル)のODPA(4,4'−オキシジフタル酸二無水物)と257.6g(0.8モル)のBTDA及び溶剤としてDMAC(N,N−ジメチルアセトアミド)1600gを投入し、合成を行った後、DMAC(N,N−ジメチルアセトアミド)で希釈し、樹脂分濃度20重量%のポリイミド樹脂塗料を得た。
(Example 3)
55.0 g (0.22 mol) of MDI and 240.0 g (0.8 mol) of SDI (4,4′-diphenylsulfone diisocyanate) as the isocyanate component and 62.0 g (0.2 mol) of the acid component ODPA (4,4′-oxydiphthalic dianhydride), 257.6 g (0.8 mol) of BTDA and 1600 g of DMAC (N, N-dimethylacetamide) as a solvent were added, and after synthesis, DMAC ( N, N-dimethylacetamide) to obtain a polyimide resin coating having a resin concentration of 20% by weight.

(比較例1)
イソシアネート成分として255.0g(1.02モル)のMDI、酸成分として322.0g(1.0モル)のBTDA及び溶剤としてNMP1600gを投入し合成を行った後、DMACで希釈し、樹脂分濃度20重量%のポリイミド樹脂塗料を得た。
(Comparative Example 1)
255.0 g (1.02 mol) of MDI as the isocyanate component, 322.0 g (1.0 mol) of BTDA as the acid component, and 1600 g of NMP as the solvent were synthesized, diluted with DMAC, and the resin content concentration A 20% by weight polyimide resin paint was obtained.

(比較例2)
アミン成分として200.0g(1.0モル)のODA、溶剤としてNMP2000gを投入、完全溶解した後、酸成分として322.0g(1.0モル)のBTDAを少量ずつ攪拌しながら投入し、常温6時間合成を行い、ポリイミド樹脂分濃度20重量%のポリアミック酸溶液を得た。
(Comparative Example 2)
After 200.0 g (1.0 mol) of ODA as an amine component and 2000 g of NMP as a solvent were completely dissolved, 322.0 g (1.0 mol) of BTDA as an acid component was added while stirring little by little. Synthesis was performed for 6 hours to obtain a polyamic acid solution having a polyimide resin concentration of 20% by weight.

(比較例3)
アミン成分として198.0g(1.0モル)のDAM、溶剤としてNMP2000gを投入、完全溶解した後、酸成分として322.0g(1.0モル)のBTDAを少量ずつ攪拌しながら投入し、常温6時間合成を行い、ポリイミド樹脂分濃度20重量%のポリアミック酸溶液を得た。
(Comparative Example 3)
After 198.0 g (1.0 mol) of DAM as an amine component and 2000 g of NMP as a solvent were completely dissolved, 322.0 g (1.0 mol) of BTDA as an acid component was added while stirring little by little. Synthesis was performed for 6 hours to obtain a polyamic acid solution having a polyimide resin concentration of 20% by weight.

(比較例4)
溶剤可溶性ポリイミド樹脂をNMP1600gに投入完全溶解し、ポリイミド樹脂分濃度20重量%のポリイミド樹脂塗料を得た。
(Comparative Example 4)
A solvent-soluble polyimide resin was added to 1600 g of NMP and completely dissolved to obtain a polyimide resin coating having a polyimide resin concentration of 20% by weight.

(比較例5)
イソシアネート成分として255.0g(1.02モル)のMDI、酸成分として192.0g(1.0モル)のTMA及び溶剤として1600gのNMPを投入し、合成を行った後、DMFで希釈し、樹脂分濃度20重量%のポリアミドイミド樹脂塗料を得た。
(Comparative Example 5)
255.0 g (1.02 mol) of MDI as an isocyanate component, 192.0 g (1.0 mol) of TMA as an acid component, and 1600 g of NMP as a solvent were added, and after synthesis, diluted with DMF, A polyamideimide resin paint having a resin concentration of 20% by weight was obtained.

表1に示されたように、実施例1から3で得られたポリイミド樹脂塗料は良好な常温安定性を示す。比較例1については溶解性に乏しく、ポリイミド樹脂塗料として得ることはできなかった。比較例2および3はポリアミック酸溶液であるため、常温で分子量の増加が見られ、常温安定性に乏しい。実施例1から3で得られたポリイミドエナメル線は比較例2および3に示す従来のポリアミック酸から得られるポリイミドエナメル線に比し、耐摩耗、耐加水分解性に非常に優れた特性を示し、従来のエナメル線の中で最も耐摩耗、耐加水分解性に優れた比較例5のポリアミドイミドエナメル線より、耐摩耗では良好、耐加水分解性ではほぼ同等の特性を示す。Tgは実施例1から3及び比較例1から4はいずれも300℃前後を示すが、比較例4は熱可塑性を示すため、エナメル線としての耐軟化温度が低い。   As shown in Table 1, the polyimide resin paints obtained in Examples 1 to 3 exhibit good room temperature stability. Comparative Example 1 was poor in solubility and could not be obtained as a polyimide resin paint. Since Comparative Examples 2 and 3 are polyamic acid solutions, an increase in molecular weight is observed at room temperature, and the room temperature stability is poor. The polyimide enamel wires obtained in Examples 1 to 3 have characteristics excellent in wear resistance and hydrolysis resistance as compared with the polyimide enamel wires obtained from the conventional polyamic acid shown in Comparative Examples 2 and 3. Compared with the polyamide-imide enamel wire of Comparative Example 5 which has the most excellent wear resistance and hydrolysis resistance among conventional enamel wires, the wear resistance is good and the hydrolysis resistance is almost the same. Tg of Examples 1 to 3 and Comparative Examples 1 to 4 are all around 300 ° C., but Comparative Example 4 exhibits thermoplasticity, and therefore has a low softening resistance as an enameled wire.

本発明で得られた絶縁電線の断面図である。It is sectional drawing of the insulated wire obtained by this invention.

符号の説明Explanation of symbols

10 絶縁電線
11 導体
12 皮膜
10 Insulated wire 11 Conductor 12 Film

Claims (5)

極性溶媒などに可溶なポリイミド樹脂組成物において、芳香族テトラカルボン酸二無水物を主体とする酸無水物成分と芳香族ジイソシアネートを主体とするイソシアネート成分とからなり、脱炭酸イミド化反応させて得られることを特徴とする芳香族ポリイミド樹脂組成物。   In a polyimide resin composition soluble in a polar solvent or the like, it comprises an acid anhydride component mainly composed of aromatic tetracarboxylic dianhydride and an isocyanate component mainly composed of aromatic diisocyanate, and is subjected to decarbonation imidization reaction. An aromatic polyimide resin composition obtained. 酸無水物成分として、ジフェニルスルホンテトラカルボン酸二無水物20〜100モル%と数種類のテトラカルボン酸二無水物類0〜80モル%とを共重合させた請求項1に記載のポリイミド樹脂組成物。   The polyimide resin composition according to claim 1, wherein 20 to 100 mol% of diphenylsulfone tetracarboxylic dianhydride and 0 to 80 mol% of several kinds of tetracarboxylic dianhydrides are copolymerized as an acid anhydride component. . イソシアネート成分としてジフェニルスルホンジイソシアネート20〜100モル%と数種類のイソシアネート類0〜80モル%とを共重合させた請求項1または2に記載のポリイミド樹脂組成物。   The polyimide resin composition according to claim 1 or 2, wherein 20 to 100 mol% of diphenylsulfone diisocyanate and 0 to 80 mol% of several kinds of isocyanates are copolymerized as an isocyanate component. 請求項1〜3いずれかに記載のポリイミド樹脂組成物を、溶媒に可溶化させたことを特徴とするポリイミド樹脂塗料。   A polyimide resin paint, wherein the polyimide resin composition according to claim 1 is solubilized in a solvent. 請求項4に記載のポリイミド樹脂塗料により導体上に皮膜を形成したことを特徴とする絶縁電線。
An insulated wire, wherein a film is formed on a conductor with the polyimide resin paint according to claim 4.
JP2005138449A 2005-05-11 2005-05-11 Polyimide resin composition, resin coating and insulated wire Pending JP2006316135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138449A JP2006316135A (en) 2005-05-11 2005-05-11 Polyimide resin composition, resin coating and insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138449A JP2006316135A (en) 2005-05-11 2005-05-11 Polyimide resin composition, resin coating and insulated wire

Publications (1)

Publication Number Publication Date
JP2006316135A true JP2006316135A (en) 2006-11-24

Family

ID=37537091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138449A Pending JP2006316135A (en) 2005-05-11 2005-05-11 Polyimide resin composition, resin coating and insulated wire

Country Status (1)

Country Link
JP (1) JP2006316135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012080A1 (en) * 2013-07-26 2015-01-29 国立大学法人 東京大学 Soluble polyimide polymer having imino group and method for producing same
CN116478401A (en) * 2023-03-31 2023-07-25 江苏环峰电工材料有限公司 High-water-solubility amino polyurethane modified resin and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012080A1 (en) * 2013-07-26 2015-01-29 国立大学法人 東京大学 Soluble polyimide polymer having imino group and method for producing same
JP2015025061A (en) * 2013-07-26 2015-02-05 国立大学法人 東京大学 Soluble polyimide polymer having imino group, and method of producing the same
CN116478401A (en) * 2023-03-31 2023-07-25 江苏环峰电工材料有限公司 High-water-solubility amino polyurethane modified resin and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5365899B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP4584014B2 (en) Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JP4473916B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
US20120318555A1 (en) Polyamide-imide resin insulating coating material, insulated wire and coil
JP5761151B2 (en) Insulated wires and coils
JP5473601B2 (en) POLYIMIDE RESIN COMPOSITION, POLYIMIDE PRECURSOR RESIN COMPOSITION PROVIDING THE POLYIMIDE RESIN COMPOSITION AND METHOD FOR PRODUCING THEM, POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME
JP6576409B2 (en) Polyimide polymer and polyimide film
JPH0126370B2 (en)
CN102911594A (en) Polyamide-imide resin insulating varnish and method of manufacturing the same, insulated wire and coil
KR101819783B1 (en) Polyimide seamless belt and process for production thereof, and polyimide precursor solution composition
JP5468575B2 (en) Polyamic acid composition and polyimide
CN113439101A (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for preparing polyamideimide film using the same, and polyamideimide film prepared by the same
JP3247697B2 (en) Low thermal expansion polyimide with improved elongation
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2006316135A (en) Polyimide resin composition, resin coating and insulated wire
JP5477327B2 (en) Method for producing polyimide resin
US9139696B1 (en) Aromatic diamines containing three ether-linked-benzonitrile moieties, polymers thereof, and methods of making the same
JP5712661B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
CN109929108B (en) Polyimide precursor resin composition and method for improving storage stability thereof
KR101240955B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
JPS59204619A (en) Aromatic polyamic acid solution composition
JP2010215785A (en) Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same
JP5622129B2 (en) Insulated wire