JP2006315904A - Method for producing alkali iodide - Google Patents

Method for producing alkali iodide Download PDF

Info

Publication number
JP2006315904A
JP2006315904A JP2005139901A JP2005139901A JP2006315904A JP 2006315904 A JP2006315904 A JP 2006315904A JP 2005139901 A JP2005139901 A JP 2005139901A JP 2005139901 A JP2005139901 A JP 2005139901A JP 2006315904 A JP2006315904 A JP 2006315904A
Authority
JP
Japan
Prior art keywords
alkali
reaction
iodine
hydrazine
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005139901A
Other languages
Japanese (ja)
Other versions
JP4976660B2 (en
Inventor
Haruo Ezawa
晴雄 江澤
Jiro Suzuki
二郎 鈴木
Yasuhiko Otani
康彦 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Original Assignee
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GODO SHIGEN SANGYO CO Ltd, GODO SHIGEN SANGYO KK filed Critical GODO SHIGEN SANGYO CO Ltd
Priority to JP2005139901A priority Critical patent/JP4976660B2/en
Publication of JP2006315904A publication Critical patent/JP2006315904A/en
Application granted granted Critical
Publication of JP4976660B2 publication Critical patent/JP4976660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high purity alkali iodide, by which an unreacted reductant is not left behind by using the reductant of one reaction equivalent to iodine in a low cost reaction bath and the reaction efficiency can be enhanced, and which enables mass production. <P>SOLUTION: An alkali compound represented by an alkali hydroxide, an alkali carbonate, an alkali bicarbonate or the like of an amount of 0.8-0.95 times of the reaction equivalent to iodine and hydrazine of one reaction equivalent to iodine are added to set the pH to 4-8, and finally, the shortage amount of the reaction equivalent of the alkali hydroxide, the alkali carbonate or the alkali bicarbonate is additionally added to complete the reaction. Thereby, a violent reaction under an alkaline condition can be suppressed and the aqueous solution of an alkali iodide can be produced in a reaction bath lined with glass without using the excess amount of hydrazine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工業用原料、医薬、多分野用途での添加剤または反応試剤として用いられる ヨウ化アルカリの製造法に関する。   The present invention relates to a method for producing an alkali iodide used as an industrial raw material, a pharmaceutical, an additive or a reaction reagent in various fields.

ヨウ化アルカリは工業用又は医薬用での製造原料、写真用乳剤、シンチレーションカウ ンター用レンズ、ナイロン繊維添加剤、偏光フィルム素材等に幅広く利用され、安価で、 高純度で、大量生産出来る製造技術が期待されている。   Alkaline iodide is widely used in industrial or pharmaceutical manufacturing raw materials, photographic emulsions, scintillation counter lenses, nylon fiber additives, polarizing film materials, etc., and is a low-cost, high-purity manufacturing technology that can be mass-produced. Is expected.

従来、ヨウ化アルカリを製造する方法として、1)ヨウ素を鉄粉で還元する方法(例えば、 非特許文献1参照)、2)ギ酸、シュウ酸などの有機酸により還元する方法(例えば、特許文献1、特許文献2参照)、3)ヨウ素をアルカリ性でヒドラジンで還元する方法(例えば、特許文献3参照)、4)ヨウ素をアルミニウムや亜鉛で還元する方法(例えば、特許文献4参照)、5)ヨウ化水素酸水溶液とアルカリ水酸化物との中和反応(例えば、非特許文献2参照)などが公知である。   Conventionally, as a method for producing alkali iodide, 1) a method of reducing iodine with iron powder (for example, see Non-Patent Document 1), 2) a method of reducing with an organic acid such as formic acid and oxalic acid (for example, Patent Document 1, see Patent Document 2), 3) a method in which iodine is alkaline and reduced with hydrazine (see, for example, Patent Document 3), 4) a method in which iodine is reduced with aluminum or zinc (see, for example, Patent Document 4), 5) A neutralization reaction between an aqueous hydroiodic acid solution and an alkali hydroxide (for example, see Non-Patent Document 2) is known.

これらの方法は一般的に次のような欠点がある。1)、4)の方法では重金属を使用するため、製品中へこれらが混入してしまう場合もあり、またこれら重金属を処理するためのコストが高くなるという問題点もある。また、2)の方法では、有機酸の還元力が弱いため、反応温度を70℃以上、pHを4〜11とし、有機酸使用量はヨウ素の反応当量に対し1.05以上に亘り過剰でなければならず、そのため未反応の有機酸処理に時間を要するという問題がある。5)は非常に簡便な方法であるが、ヨウ化水素酸水溶液が高価であり、コストアップに繋がるという問題点がある。   These methods generally have the following drawbacks. In the methods 1) and 4), since heavy metals are used, they may be mixed into the product, and there is a problem that the cost for processing these heavy metals is increased. Further, in the method 2), since the reducing power of the organic acid is weak, the reaction temperature is set to 70 ° C. or higher, the pH is set to 4 to 11, and the amount of the organic acid used is not excessive for 1.05 or more with respect to the reaction equivalent of iodine. Therefore, there is a problem that it takes time to treat the unreacted organic acid. Although 5) is a very simple method, there is a problem that the hydroiodic acid aqueous solution is expensive, leading to an increase in cost.

3)の方法では、反応後分解生成物が窒素ガスと水であるという品質上非常に好ましい還元剤であるヒドラジンを使用しているが、強アルカリ性下における強い還元力を用いているため、ヒドラジンに加え、水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリをヨウ素の反応当量に対して過剰に添加しなければならず、このため反応が激しくなり、生成効率も悪くなる。その結果、反応完結後において、未反応のヒドラジンに加え、水酸化アルカリ、炭酸アルカリ、重炭酸アルカリが残留するため、その処理をしなければならないという問題点も出てくる。
特公平5−80410号公報 特開平7−242414号公報 特開昭61−48403号公報 米国特許第2828184号 亀谷哲治著、「無機製造化学・下巻」廣川書店出版、1959年9月10 日発行、p.284〜286 日本化学会編、「新実験化学講座8・無機化合物の合成[II]」丸善 株式会社出版、1977年3月20日発行、p.473、522
In the method 3), hydrazine, which is a very preferable reducing agent in terms of quality in which the decomposition product after reaction is nitrogen gas and water, is used. However, since hydrazine is used under strong alkalinity, hydrazine is used. In addition, alkali hydroxide or alkali carbonate or bicarbonate must be added in excess with respect to the reaction equivalent of iodine, which makes the reaction violent and the production efficiency poor. As a result, after the completion of the reaction, in addition to unreacted hydrazine, alkali hydroxide, alkali carbonate, and alkali bicarbonate remain, which causes a problem that the treatment must be performed.
Japanese Patent Publication No. 5-80410 JP-A-7-242414 JP 61-48403 A U.S. Pat. No. 2,828,184 Tetsuji Kameya, “Inorganic Manufacturing Chemistry, Volume 2” published by Yodogawa Shoten, September 10, 1959, p.284-286 The Chemical Society of Japan, “New Experimental Chemistry Lecture 8, Synthesis of Inorganic Compounds [II]” published by Maruzen Co., Ltd., published on March 20, 1977, p.473, 522

一般にヨウ素と水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリとは反応当量で下記反応式(7)、(8)、(9)のようにヨウ化アルカリとヨウ素酸アルカリが生成する。これら反応式において、Aはアルカリ金属を示す。
3I+6AOH → 5AI+AIO+3HO・・・・・(7)
3I+3ACO → 5AI+AIO+3CO・・・・・(8)
3I+6AHCO → 5AI+AIO+3HO+6CO・・・・・(9)
In general, iodine and an alkali hydroxide or an alkali carbonate or an alkali bicarbonate are equivalent in reaction, and an alkali iodide and an alkali iodate are produced as shown in the following reaction formulas (7), (8), and (9). In these reaction formulas, A represents an alkali metal.
3I 2 + 6AOH → 5AI + AIO 3 + 3H 2 O (7)
3I 2 + 3A 2 CO 3 → 5AI + AIO 3 + 3CO 2 (8)
3I 2 + 6AHCO 3 → 5AI + AIO 3 + 3H 2 O + 6CO 2 (9)

この反応で生成したAIOを水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリ過 剰にして、強アルカリ性下における次の反応式(10)によりヒドラジンの還元力を用いてAIにするというのが上記3)の方法である。
2AIO+3N → 2AI+6HO+3N・・・・・(10)
AIO 3 produced by this reaction is converted to AI by using the reducing power of hydrazine according to the following reaction formula (10) under strong alkalinity by using alkali hydroxide, alkali carbonate or bicarbonate excess. ) Method.
2AIO 3 + 3N 2 H 4 → 2AI + 6H 2 O + 3N 2 (10)

ヒドラジンは反応生成物が窒素ガスと水でありヨウ化アルカリの品質上大変優れた還元剤であるが、上記のように強アルカリ性下における反応の激しさのため効率が悪く、次のような問題点があった。   Hydrazine is a reducing agent that is very excellent in terms of the quality of alkali iodide because the reaction products are nitrogen gas and water. However, as described above, it is inefficient due to the intense reaction under the strong alkalinity. There was a point.

[1] 強アルカリ性下で反応させるため、水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリをヨウ素の反応当量に対し過剰に添加しなければならない。又、過剰に添加した水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリはそのまま残留するので酸性溶液等で中和しなければならない。   [1] In order to react under strong alkalinity, an alkali hydroxide, an alkali carbonate or an alkali bicarbonate must be added in excess with respect to the reaction equivalent of iodine. Moreover, since the excessively added alkali hydroxide, alkali carbonate or bicarbonate remains as it is, it must be neutralized with an acidic solution or the like.

[2] 強アルカリ性下でのヒドラジンの反応が激しいため効率が悪く、ヒドラジンをヨウ素の反応当量に対し過剰に添加しなければならない。又、過剰に添加したヒドラジンは一部残留するので酸化剤を用いて分解しなければならない。   [2] Since the reaction of hydrazine under strong alkalinity is intense, the efficiency is poor, and hydrazine must be added in excess of the reaction equivalent of iodine. Moreover, since the hydrazine added excessively partially remains, it must be decomposed using an oxidizing agent.

[3] 炭酸アルカリ及び重炭酸アルカリを用いた場合は発熱が小さいが、水酸化アルカリを用いた場合は発熱が大きく、反応液が沸騰する位まで液温が上昇する。   [3] When alkali carbonate or bicarbonate is used, the exotherm is small, but when alkali hydroxide is used, the exotherm is large and the liquid temperature rises to the point where the reaction liquid boils.

[4] 反応が激しいのでヒドラジンの添加速度又は濃度で反応を制御しなければならない。   [4] Since the reaction is intense, the reaction must be controlled by the addition rate or concentration of hydrazine.

[5] ヨウ素を使用するのでSUS等の金属製の反応槽を使用することが出来ない。   [5] Since iodine is used, a metal reaction vessel such as SUS cannot be used.

[6] 強アルカリ性下で反応させるのでガラスライニングを施した反応槽を使用出来な い。   [6] Because the reaction is carried out under strong alkalinity, a reaction vessel with glass lining cannot be used.

[7] 水酸化アルカリを使用した場合、反応液が沸騰する位まで液温が上昇するのでプラスチック製の反応槽を使用することが出来ない。   [7] When alkali hydroxide is used, the temperature of the reaction solution rises to the point where it boils, so a plastic reaction vessel cannot be used.

このような問題から3)の方法で安価な反応槽を用いて、大量に効率良くヨウ化アルカリを製造することが出来なかった。   Due to such problems, alkali iodide could not be efficiently produced in large quantities using an inexpensive reaction tank by the method 3).

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、還元剤として優れている3)のヒドラジンを用いてヨウ化アルカリ溶液を製造するに際し、ヨウ素酸アルカリとヒドラジンの反応及びヨウ素とヒドラジンの反応を併用することにより、安価な反応槽で、ヨウ素に対する還元剤の使用量を1反応当量で行い未反応の還元剤を残さず、高純度で、反応効率が高く、大量生産が可能なヨウ化アルカリの製造方法を提供することにある。   Therefore, the present invention has been devised in view of the above-mentioned problems, and the object of the present invention is to produce an alkali iodide solution using hydrazine, which is excellent as a reducing agent, By combining the reaction of alkali iodate and hydrazine and the reaction of iodine and hydrazine, the amount of reducing agent used for iodine is 1 reaction equivalent in an inexpensive reaction tank, leaving no unreacted reducing agent, and high purity. An object of the present invention is to provide a method for producing an alkali iodide which has high reaction efficiency and enables mass production.

本発明者らは、上記の目的を達成するために鋭意研究した結果、ヨウ素に対し0.8〜0.95反応当量の水酸化アルカリ,炭酸アルカリ,重炭酸アルカリ等に代表されるアルカリ化合物と、ヨウ素に対し1反応当量のヒドラジンを添加することにより、pHを4〜8にして、最後に反応当量不足分の水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを加えて反応を完結することにより、アルカリ性下での激しい反応を抑制出来、ガラスラインニング製の反応槽で過剰のヒドラジンを使用することなく、ヨウ化アルカリ水溶液を製造することが出来る点に着目し、下記の発明を案出した。   As a result of diligent research to achieve the above object, the present inventors have found that an alkaline compound represented by alkali hydroxide, alkali carbonate, alkali bicarbonate, etc. having a reaction equivalent of 0.8 to 0.95 with respect to iodine and By adding 1 reaction equivalent of hydrazine to iodine, the pH is adjusted to 4-8, and finally the reaction is performed by adding an insufficient amount of alkali hydroxide, alkali carbonate or bicarbonate to complete the reaction. The following invention has been devised, focusing on the fact that an alkaline iodide aqueous solution can be produced without using an excess of hydrazine in a glass-lined reaction vessel, while suppressing intense reactions under alkaline conditions.

即ち、第1の発明は、水に浸漬したヨウ素に対して反応当量未満の1価のアルカリ化合物と、上記ヨウ素に対して反応当量のヒドラジンを添加し、最後に反応当量不足分の上記アルカリ化合物を添加することにより反応を完結させることを特徴とする。   That is, the first invention adds a monovalent alkali compound having a reaction equivalent to less than the reaction equivalent to iodine immersed in water, and a reaction equivalent of hydrazine to the iodine, and finally the alkali compound having a shortage of reaction equivalent. The reaction is completed by adding.

また、第2の発明は、第1の発明におけるアルカリ化合物として、水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを添加する。   In the second invention, an alkali hydroxide, an alkali carbonate, or an alkali bicarbonate is added as the alkali compound in the first invention.

また、第3の発明は、第1又は第2の発明において、上記反応をpH4〜8の範囲で進める。   Moreover, 3rd invention advances the said reaction in the range of pH 4-8 in 1st or 2nd invention.

また、第4の発明は、第1〜第3の発明において、未反応のヒドラジンの残留量が0.5mg/l以下となるように上記反応を完結させる。   Moreover, 4th invention completes the said reaction so that the residual amount of unreacted hydrazine may be 0.5 mg / l or less in 1st-3rd invention.

また、第5の発明は、第1〜第4の発明において、水に浸漬したヨウ素に対して0.4〜0.99反応当量のアルカリ化合物を添加する。   Moreover, 5th invention adds 0.4-0.99 reaction equivalent alkali compound with respect to the iodine immersed in water in 1st-4th invention.

また、第6の発明は、第5の発明において、水に浸漬したヨウ素に対して0.8〜0.95反応当量のアルカリ化合物を添加する。   Moreover, 6th invention adds 0.8-0.95 reaction equivalent alkali compound with respect to the iodine immersed in water in 5th invention.

また、第7の発明は、第1〜第6の発明において、上記反応を完結させた後の溶液について熱風を吹き付けて水分を蒸発させる工程をさらに有する。   Moreover, 7th invention has further the process of spraying a hot air with respect to the solution after completing said reaction in 1st-6th invention, and evaporating a water | moisture content.

上述したように還元剤として優れているヒドラジンを用いて、pH4〜8の中性若しくは弱酸性でヨウ素酸アルカリとヒドラジンの反応及びヨウ素とヒドラジンの反応を併用することにより、未反応のヒドラジンを残さず、安価な反応槽を用いて大量に、又噴霧流動造粒乾燥に最も適し、更にJIS規格にも適合する高純度のヨウ化アルカリを反応当量の原料を用いて効率良く製造することが可能である。   As described above, by using hydrazine which is excellent as a reducing agent, the reaction of alkali iodate and hydrazine and the reaction of iodine and hydrazine in combination with neutral or weak acid at pH 4 to 8 leaves unreacted hydrazine. In addition, it is possible to efficiently produce high-purity alkali iodide using a reaction equivalent raw material in a large amount using an inexpensive reaction tank, and most suitable for spray flow granulation drying and also conforming to JIS standards. It is.

以下、本発明を適用したヨウ化アルカリの製造方法について説明をする。
本発明を適用したヨウ化アルカリの製造方法では、先ず、水に浸漬したヨウ素に対して反応当量未満の1価のアルカリ化合物と、上記ヨウ素に対して反応当量のヒドラジンを添加する。
Hereafter, the manufacturing method of the alkali iodide to which this invention is applied is demonstrated.
In the method for producing an alkali iodide to which the present invention is applied, first, a monovalent alkali compound having a reaction equivalent to less than the equivalent of iodine immersed in water and a reaction equivalent of hydrazine to the iodine are added.

1価のアルカリ化合物は、例えば、水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリ等である。一般にヨウ素と水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリとは反応当量で下記反応式(1)、(2)、(3)のようにヨウ化アルカリとヨウ素酸アルカリが生成する。これら反応式において、Aはアルカリ金属を示す。
3I+6AOH → 5AI+AIO+3HO・・・・・(1)
3I+3ACO → 5AI+AIO+3CO・・・・・(2)
3I+6AHCO → 5AI+AIO+3HO+6CO・・・・・(3)
The monovalent alkali compound is, for example, an alkali hydroxide, an alkali carbonate, an alkali bicarbonate, or the like. In general, iodine and an alkali hydroxide or an alkali carbonate or an bicarbonate are alkali equivalents, and an alkali iodide and an alkali iodate are formed as shown in the following reaction formulas (1), (2), and (3). In these reaction formulas, A represents an alkali metal.
3I 2 + 6AOH → 5AI + AIO 3 + 3H 2 O (1)
3I 2 + 3A 2 CO 3 → 5AI + AIO 3 + 3CO 2 (2)
3I 2 + 6AHCO 3 → 5AI + AIO 3 + 3H 2 O + 6CO 2 (3)

この反応で生成したAIOを次の反応式(4)によりヒドラジンの還元力を用いてAIにする。
2AIO+3N → 2AI+6HO+3N・・・・・(4)
AIO 3 produced by this reaction is converted to AI using the reducing power of hydrazine according to the following reaction formula (4).
2AIO 3 + 3N 2 H 4 → 2AI + 6H 2 O + 3N 2 (4)

本発明では、更に下記反応式(5)が進行する。
2I+N → 4HI+N・・・・・・・・・(5)
この反応式(5)で生成するヨウ化水素酸を利用して反応液のpHを常に8以下、好ましくは4〜8の中性若しくは酸性側で行うことにより反応を制御しつつ、ヨウ素反応当量に対し過剰にヒドラジン及び水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを添加せず、ガラスラインニングを施した反応槽を用いて、大量に効率よくヨウ化アルカリを生産する。
In the present invention, the following reaction formula (5) further proceeds.
2I 2 + N 2 H 4 → 4HI + N 2 (5)
Using the hydriodic acid generated in this reaction formula (5), the reaction solution is always controlled to have a pH of 8 or less, preferably 4 to 8 on the neutral or acidic side. In contrast, hydrazine and alkali hydroxide, alkali carbonate, or bicarbonate are not added excessively, and a large amount of alkali iodide is efficiently produced in a large amount using a reaction vessel subjected to glass line.

即ち、本発明の製法ではヨウ素に対し水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリをヨウ素に対し0.4〜0.99反応当量、望ましくは0.8〜0.95反応当量添加後、濃度既知の例えば水加ヒドラジン(N・HO)、炭酸ヒドラジン((N・CO)等のヒドラジン(望ましくは50%〜80%)をヨウ素に対し1反応当量分添加し、最後に反応当量不足分の水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを加えて反応を完結させるというものである。この製法で行うと反応溶液のpHは常に8以下であり、強アルカリ性にならないので反応槽としてガラスライニング製のものが使用出来る。 That is, in the production method of the present invention, alkali hydroxide or alkali carbonate or bicarbonate is added to iodine in an amount of 0.4 to 0.99 reaction equivalent to iodine, desirably 0.8 to 0.95 reaction equivalent, and then the concentration is known. Of hydrazine (preferably 50% to 80%) such as hydrated hydrazine (N 2 H 4 .H 2 O), hydrazine carbonate ((N 2 H 4 ) 2 .CO 2 ), etc. Finally, the reaction is completed by adding an alkali hydroxide, alkali carbonate, or alkali bicarbonate short of the reaction equivalent. When this method is used, the pH of the reaction solution is always 8 or less and does not become strongly alkaline, so that a reaction vessel made of glass lining can be used.

上述したヒドラジンの反応は、強アルカリ性下における反応に比較すると非常に穏やかであり、ヒドラジン自身が分解することなく効率よくヨウ素酸アルカリを還元出来る。ヨウ素酸アルカリの生成量及び溶液pHは添加した水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリ量によって決まり、ヨウ素に対し反応当量未満の添加であれば溶液pHは6〜8の間になる。次に生成したヨウ素酸アルカリをヒドラジン添加により還元している間も溶液pHは変化なく最初のpHである6〜8を維持し、ヨウ素酸アルカリの還元が終了すると(5)の反応式で示したように未反応のヨウ素がヒドラジンにより還元されヨウ化水素酸が出来始めるため溶液pHが下がり始める。そして溶液PHが4以下になると反応が非常に穏やかになるため、不足分の水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを少しずつ添加してpHを上げ、ヨウ化水素酸の生成と水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリによる中和を繰り返しながら、pHを上げ下げする。最終的にpHが下がらなくなり、pHが7を越え始めたら反応を完結する。この時点で溶液色は無色又は薄い黄色をしており、P−ジメチルアミノベンズアルデヒド吸光光度法により残留ヒドラジン量を分析した結果、定量下限の0.5mg/l以下であった。   The reaction of hydrazine described above is very mild compared to the reaction under strong alkalinity, and hydrazine itself can be efficiently reduced without decomposition. The amount of alkali iodate produced and the solution pH are determined by the amount of alkali hydroxide, alkali carbonate or bicarbonate added, and the solution pH is between 6 and 8 if the addition is less than the reaction equivalent to iodine. Next, while the generated alkali iodate is reduced by addition of hydrazine, the solution pH remains unchanged and the initial pH of 6-8 is maintained. When the reduction of alkali iodate is completed, the reaction formula (5) shows As described above, since unreacted iodine is reduced by hydrazine and hydroiodic acid begins to be formed, the solution pH starts to fall. And since the reaction becomes very gentle when the solution PH becomes 4 or less, a short amount of alkali hydroxide, alkali carbonate or alkali bicarbonate is added little by little to raise the pH, thereby generating hydroiodic acid and alkali hydroxide. Alternatively, the pH is raised or lowered while repeating neutralization with alkali carbonate or bicarbonate. Eventually, when the pH does not drop and the pH starts to exceed 7, the reaction is completed. At this time, the solution color was colorless or light yellow, and the amount of residual hydrazine was analyzed by P-dimethylaminobenzaldehyde absorptiometry. As a result, it was 0.5 mg / l or less as the lower limit of quantification.

本発明の製法で水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリの添加量をヨウ素量に対し0.8〜0.95反応当量としたのは、次の理由による。(1)〜(3)の反応式で示したようにヨウ素と水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリはAI及びAIOを生成するが、反応当量以下であれば上記のようにこの溶液のpHは6〜8になる。この時、未反応のヨウ素は生成したヨウ化アルカリにより以下の(6)式のように三ヨウ化アルカリAIとして溶解する。
AI+I → AI・・・・・(6)
In the production method of the present invention, the addition amount of alkali hydroxide, alkali carbonate or alkali bicarbonate is set to 0.8 to 0.95 reaction equivalent to the iodine amount for the following reason. As shown in the reaction formulas (1) to (3), iodine and alkali hydroxide or alkali carbonate or alkali bicarbonate produce AI and AIO 3 , but if the reaction equivalent is less than this, The pH is 6-8. At this time, unreacted iodine is dissolved as alkali triiodide AI 3 by the generated alkali iodide as shown in the following formula (6).
AI + I 2 → AI 3 (6)

(6)の反応では水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリがヨウ素に対し0.4反応当量あれば、未反応分のヨウ素を溶解するには十分であるが、水酸化アルカリを用いた場合、上記のようにヨウ素との反応並びにヨウ素酸アルカリとヒドラジンとの反応熱が大きく、溶液が沸騰状態になりヨウ素が蒸気となって系外へ揮散してしまう。その揮散防止のためヨウ化アルカリの含有割合を大きくしてヨウ化アルカリに対するヨウ素の保持力を強めるためである。最初に添加する水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリは高純度であれば45wt%以上又は固体を用いても良い。   In the reaction of (6), if alkali hydroxide or alkali carbonate or bicarbonate is 0.4 reaction equivalent to iodine, it is sufficient to dissolve the unreacted iodine, but when alkali hydroxide is used. As described above, the reaction with iodine and the heat of reaction between alkali iodate and hydrazine are large, so that the solution becomes a boiling state and iodine is vaporized and volatilized out of the system. This is to increase the content of alkali iodide to prevent the volatilization and increase the retention of iodine with respect to alkali iodide. The alkali hydroxide or alkali carbonate or bicarbonate bicarbonate added first may be 45 wt% or more or a solid as long as the purity is high.

本発明において添加するヒドラジンは濃度が既知であればどの濃度でも良いが、ヨウ化アルカリ製品を結晶析出乾燥法又は噴霧流動造粒乾燥法等により粒状固形製品を製造する場合、ヨウ化アルカリ濃度として45〜50wt%がコスト的に良く、従ってヒドラジン濃度は50〜80wt%のものを使用するのが好ましい。又、添加するヒドラジン量は強アルカリによる分解がないため、ヨウ素量に対し1反応当量で良く過剰に添加する必要はない。   The concentration of hydrazine added in the present invention is not particularly limited as long as the concentration is known. However, when producing a granular solid product from an alkali iodide product by a crystal precipitation drying method or a spray flow granulation drying method, the alkali iodide concentration is 45 to 50 wt% is good in terms of cost. Therefore, it is preferable to use a hydrazine concentration of 50 to 80 wt%. Further, since the amount of hydrazine to be added is not decomposed by a strong alkali, it may be one reaction equivalent with respect to the amount of iodine and does not need to be added excessively.

本発明において反応当量不足分の水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリはpHが4以下になったら添加し、7以上になったら停止するという操作を繰り返しながら実施する。このようにpHの上げ下げをして、ヨウ化水素酸の生成と水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリによる中和を繰り返しながら、pHが下がらなくなり、pHが7を越え始めたら反応を完結する。   In the present invention, the alkali hydroxide or alkali carbonate or alkali bicarbonate short of the reaction equivalent is added when the pH is 4 or less, and is stopped when the pH is 7 or more. In this way, the pH is raised and lowered to repeat the generation of hydroiodic acid and neutralization with alkali hydroxide, alkali carbonate, or alkali bicarbonate, and the pH is not lowered and the reaction is completed when the pH starts to exceed 7. .

本発明において炭酸アルカリ又は重炭酸アルカリを使用した場合は反応熱が小さいのでプラスチック製の反応槽を使用出来るが、水酸化アルカリを用いて45〜50wt%のヨウ化アルカリ溶液100l以上を製造する場合は反応熱が大きいため、熱伝導度の小さいプラスチック製の反応槽では冷却が出来ないため使用出来ない。しかし、本発明ではpHが8以上に上がることがないため、アルカリ性で使用出来ない冷却効果の大きいガラスライニング製の反応槽を使用出来るという利点があり、大量生産を行うことが出来る。   In the present invention, when alkali carbonate or bicarbonate is used, the reaction heat is small so that a plastic reaction vessel can be used. However, when producing a 45 to 50 wt% alkali iodide solution of 100 l or more using alkali hydroxide. Since the reaction heat is large, it cannot be used in a plastic reaction tank with low thermal conductivity because it cannot be cooled. However, in the present invention, since the pH does not increase to 8 or more, there is an advantage that a reaction vessel made of glass lining that is alkaline and cannot be used and has a large cooling effect can be used, and mass production can be performed.

本発明のヨウ化アルカリを大量に粒状固形品として製造するためには、従来から実施している濃縮、晶出操作による分別晶析法よりは、前記の高品質で安定な特徴を生かしたヨウ化アルカリ溶液を噴霧流動造粒乾燥することにより連続的に製造することが好ましい。噴霧流動造粒乾燥は、通常、熱風中にヨウ化アルカリ溶液を適宜の方法で噴霧することにより行われ、使用できる装置としては、例えば噴霧流動造粒乾燥機を挙げることができる。   In order to produce a large amount of the alkali iodide of the present invention as a granular solid product, it is necessary to use the above-mentioned high-quality and stable characteristics, compared with the fractional crystallization method by concentration and crystallization operations. It is preferable to continuously produce the alkali fluoride solution by spray-flow granulation drying. Spray fluid granulation drying is usually performed by spraying an alkali iodide solution in hot air by an appropriate method, and examples of devices that can be used include a spray fluid granulation dryer.

熱風温度は、ヨウ化アルカリ溶液の沸点以上であることが望ましいが、あまり高すぎると乾燥した直後にヨウ化アルカリが熱による変質のおそれもあるので、熱風温度は100〜280℃程度であればよく、望ましくは130〜180℃である。更に必要に応じて分級し、所望の粒径のヨウ化アルカリ固形品を得ることもできる。   The hot air temperature is desirably higher than the boiling point of the alkali iodide solution, but if it is too high, the alkali iodide may be altered by heat immediately after drying, so the hot air temperature is about 100 to 280 ° C. It is preferably 130 to 180 ° C. Furthermore, it classifies as needed and the alkali iodide solid product of a desired particle size can also be obtained.

図1は、この噴霧流動造粒乾燥機11の例を示している。前記の方法で製造されたヨウ化アルカリ溶液を投入口12から投入するとともに、乾燥機本体13内においてスプレーノズル15等を経て噴霧させ、本体下部から送られるヨウ化アルカリ溶液の水分を蒸発させ得る熱風を吹きつけ、ヨウ化アルカリ溶液中の水分が蒸発排気され、析出したヨウ化アルカリ粉体は層内で造粒され、分級機構14において分級し最終的な製品化を行うことが可能となる。   FIG. 1 shows an example of the spray fluidized granulator / dryer 11. The alkali iodide solution produced by the above method can be introduced from the inlet 12 and sprayed through the spray nozzle 15 or the like in the dryer main body 13 to evaporate the moisture of the alkali iodide solution sent from the lower part of the main body. By blowing hot air, the water in the alkali iodide solution is evaporated and exhausted, and the precipitated alkali iodide powder is granulated in the layer and classified in the classification mechanism 14 to be finally commercialized. .

以下、実施例により本発明の製造方法を更に説明する。得られたヨウ化カリウムはJIS K 8913(1996)によ5り、またヨウ化ナトリウムは、JIS K 8918に従い分析をして、JIS規格と比較した。   Hereinafter, the production method of the present invention will be further described with reference to examples. The obtained potassium iodide was analyzed according to JIS K 8913 (1996), and sodium iodide was analyzed according to JIS K 8918 and compared with JIS standards.

実施例1
500mlビーカーにヨウ素250g及び蒸留水126mlを入れ、48.5%KOH溶液を145ml(ヨウ素に対し0.95反応当量)加え、撹拌、溶解した。次に80wt%水加ヒドラジンを30ml(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH2であった。その後反応当量不足分の48.5%KOH溶液を8ml加え、反応を終了した。終了後のpHは7.5であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液をエバポレーターにて水分を蒸発後、得られた結晶を分析した結果、JIS規格に適合した。
Example 1
In a 500 ml beaker, 250 g of iodine and 126 ml of distilled water were added, and 145 ml of a 48.5% KOH solution (0.95 reaction equivalent to iodine) was added and stirred and dissolved. Next, 30 ml of 80 wt% hydrated hydrazine (one reaction equivalent with respect to iodine) was added little by little. The pH during the reaction was maintained at 7 to 8, and the pH was 2 at the end of the addition of hydrated hydrazine. Thereafter, 8 ml of a 48.5% KOH solution lacking in reaction equivalent was added to complete the reaction. The pH after completion was 7.5. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. As a result of analyzing the crystal obtained after evaporating water from the solution with an evaporator, the solution conformed to JIS standards.

実施例2
500mlビーカーにヨウ素250g及び蒸留水126mlを入れ、48.5%KOH溶液を122ml(ヨウ素に対し0.8反応当量)加え、撹拌、溶解した。次に80wt%水加ヒドラジンを30ml(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH1であった。その後反応当量不足分の48.5%KOH溶液を31ml加え、反応を終了した。終了後のpHは7.3であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液をエバポレーターにて水分を蒸発後、得られた結晶を分析した結果、JIS規格に適合した。
Example 2
In a 500 ml beaker, 250 g of iodine and 126 ml of distilled water were added, 122 ml of 48.5% KOH solution (0.8 reaction equivalent to iodine) was added, and the mixture was stirred and dissolved. Next, 30 ml of 80 wt% hydrated hydrazine (one reaction equivalent with respect to iodine) was added little by little. The pH during the reaction was maintained at 7-8, and the pH was 1 at the end of the addition of hydrazine hydrate. Thereafter, 31 ml of a 48.5% KOH solution lacking in reaction equivalent was added to complete the reaction. The pH after completion was 7.3. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. As a result of analyzing the crystal obtained after evaporating water from the solution with an evaporator, the solution conformed to JIS standards.

実施例3
500mlビーカーにヨウ素250g及び蒸留水64mlを入れ、99.8wt%NaHCO粉末を157g(ヨウ素に対し0.95反応当量)加え、撹拌、溶解した。次に80wt%水加ヒドラジンを30ml(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH2であった。その後反応当量不足分の99.8wt%NaHCO粉末を8g加え、反応を終了した。終了後のpHは7.4であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液をエバポレーターにて水分を蒸発後、得られた結晶を分析した結果、JIS規格に適合した。
Example 3
In a 500 ml beaker, 250 g of iodine and 64 ml of distilled water were added, and 157 g of 99.8 wt% NaHCO 3 powder (0.95 reaction equivalent to iodine) was added and stirred and dissolved. Next, 30 ml of 80 wt% hydrated hydrazine (one reaction equivalent with respect to iodine) was added little by little. The pH during the reaction was maintained at 7 to 8, and the pH was 2 at the end of the addition of hydrated hydrazine. Thereafter, 8 g of 99.8 wt% NaHCO 3 powder in a shortage of reaction equivalent was added to complete the reaction. The pH after completion was 7.4. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. As a result of analyzing the crystal obtained after evaporating water from the solution with an evaporator, the solution conformed to JIS standards.

実施例4
500mlビーカーにヨウ素250g及び蒸留水64mlを入れ、99.8wt%NaHCO粉末を132g(ヨウ素に対し0.8反応当量)加え、撹拌、溶解した。次に80wt%水加ヒドラジンを30ml(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH1であった。その後反応当量不足分の99.8wt%NaHCO粉末を33g加え、反応を終了した。終了後のPHは7.4であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液をエバポレーターにて水分を蒸発後、得られた結晶を分析した結果、JIS規格に適合した。
Example 4
In a 500 ml beaker, 250 g of iodine and 64 ml of distilled water were added, and 132 g (0.8 reaction equivalent to iodine) of 99.8 wt% NaHCO 3 powder was added and stirred and dissolved. Next, 30 ml of 80 wt% hydrated hydrazine (one reaction equivalent with respect to iodine) was added little by little. The pH during the reaction was maintained at 7-8, and the pH was 1 at the end of the addition of hydrazine hydrate. Thereafter, 33 g of 99.8 wt% NaHCO 3 powder in a shortage of reaction equivalent was added to complete the reaction. The PH after completion was 7.4. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. As a result of analyzing the crystal obtained after evaporating water from the solution with an evaporator, the solution conformed to JIS standards.

実施例5
1mガラスラインニング製反応槽にヨウ素500kg及び蒸留水232lを入れ、48.5%KOH溶液を274l(ヨウ素に対し0.9反応当量)加え、撹拌、溶解した。次に60wt%水加ヒドラジンを80l(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH1.7であった。その後反応当量不足分の48.5%KOH溶液を30ml加え、反応を終了した。終了後のpHは7.3であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液400lをステンレス製の晶析釜に入れ、加熱、濃縮、冷却して得られた結晶を分析した結果、JIS規格に適合した。又、この溶液100lを噴霧流動造粒乾燥機にて造粒乾燥した結晶を分析した結果、JIS規格に適合した。
Example 5
500 kg of iodine and 232 l of distilled water were placed in a 1 m 3 glass lined reaction tank, and 274 l of a 48.5% KOH solution (0.9 reaction equivalent to iodine) was added and stirred and dissolved. Next, 80 l of 60 wt% hydrazine hydrate (one reaction equivalent with respect to iodine) was added in small portions. The pH during the reaction was maintained at 7 to 8, and the pH was 1.7 at the end of the addition of hydrazine hydrate. Thereafter, 30 ml of a 48.5% KOH solution lacking in reaction equivalent was added to complete the reaction. The pH after completion was 7.3. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. As a result of analyzing the crystals obtained by putting 400 l of this solution in a crystallization pot made of stainless steel, heating, concentrating and cooling, it conformed to JIS standards. In addition, as a result of analyzing crystals obtained by granulating and drying 100 l of this solution with a spray fluidized granulator, it conformed to JIS standards.

実施例6
1mポリエチレン製反応槽にヨウ素500kg及び蒸留水108lを入れ、99.8wt%NaHCO粉末を281kg(ヨウ素に対し0.85反応当量)加え、撹拌、溶解した。次に60wt%水加ヒドラジンを80l(ヨウ素に対し1反応当量)を少量ずつ添加した。反応中のpHは7〜8を維持し、水加ヒドラジンを添加終了時はpH1であった。その後反応当量不足分の99.8wt%NaHCO粉末を50kg加え、反応を終了した。終了後のpHは7.5であった。この溶液中のヒドラジン濃度をP−ジメチルアミノベンズアルデヒド吸光光度法で測定した結果、0.5mg/l以下であった。又、イオンクロマト法にてヨウ素酸イオンを分析した所、5mg/l以下であった。この溶液300lをステンレス製の晶析釜に入れ、加熱、濃縮、冷却して得られた結晶を分析した結果、JIS規格に適合した。又、この溶液100lを噴霧流動造粒乾燥機にて造粒乾燥した結晶を分析した結果、JIS規格に適合した。
Example 6
In a 1 m 3 polyethylene reaction tank, 500 kg of iodine and 108 l of distilled water were added, and 281 kg (0.85 reaction equivalent to iodine) of 99.8 wt% NaHCO 3 powder was added, and stirred and dissolved. Next, 80 l of 60 wt% hydrazine hydrate (one reaction equivalent with respect to iodine) was added in small portions. The pH during the reaction was maintained at 7-8, and the pH was 1 at the end of the addition of hydrazine hydrate. Thereafter, 50 kg of 99.8 wt% NaHCO 3 powder in a shortage of reaction equivalent was added to complete the reaction. The pH after completion was 7.5. As a result of measuring the hydrazine concentration in this solution by P-dimethylaminobenzaldehyde spectrophotometry, it was 0.5 mg / l or less. Moreover, when the iodate ion was analyzed by the ion chromatography method, it was 5 mg / l or less. 300 liters of this solution was put into a stainless steel crystallization vessel, and the crystals obtained by heating, concentrating and cooling were analyzed, and as a result, they met JIS standards. In addition, as a result of analyzing crystals obtained by granulating and drying 100 l of this solution with a spray fluidized granulator, it conformed to JIS standards.

噴霧流動造粒乾燥機の例を示す図である。It is a figure which shows the example of a spray flow granulation dryer.

符号の説明Explanation of symbols

11 噴霧流動造粒乾燥機
12 投入口
13 乾燥機本体
14 分級機構
15 スプレーノズル
11 Spray Flow Granulator / Dryer 12 Input Port 13 Dryer Body 14 Classification Mechanism 15 Spray Nozzle

Claims (7)

水に浸漬したヨウ素に対して反応当量未満の1価のアルカリ化合物と、上記ヨウ素に対して反応当量のヒドラジンを添加し、
最後に反応当量不足分の上記アルカリ化合物を添加することにより反応を完結させること
を特徴とするヨウ化アルカリの製造方法。
Add a monovalent alkali compound less than the reaction equivalent to iodine immersed in water and a reaction equivalent of hydrazine to the iodine,
Finally, the reaction is completed by adding the above-mentioned alkali compound in a shortage of reaction equivalents. A method for producing an alkali iodide, comprising:
上記アルカリ化合物として、水酸化アルカリ又は炭酸アルカリ又は重炭酸アルカリを添加すること
を特徴とする請求項1記載のヨウ化アルカリの製造方法。
The method for producing an alkali iodide according to claim 1, wherein an alkali hydroxide, an alkali carbonate or an alkali bicarbonate is added as the alkali compound.
上記反応をpH4〜8の範囲で進めること
を特徴とする請求項1又は2記載のヨウ化アルカリの製造方法。
The method for producing an alkali iodide according to claim 1 or 2, wherein the reaction is allowed to proceed in the range of pH 4-8.
未反応のヒドラジンの残留量が0.5mg/l以下となるように上記反応を完結させること
を特徴とする請求項1〜3のうち何れか1項記載のヨウ化アルカリの製造方法。
The method for producing an alkali iodide according to any one of claims 1 to 3, wherein the reaction is completed so that a residual amount of unreacted hydrazine is 0.5 mg / l or less.
水に浸漬したヨウ素に対して0.4〜0.99反応当量のアルカリ化合物を添加すること
を特徴とする請求項1〜4のうち何れか1項記載のヨウ化アルカリの製造方法。
The method for producing alkali iodide according to any one of claims 1 to 4, wherein an alkali compound having a reaction equivalent of 0.4 to 0.99 is added to iodine immersed in water.
水に浸漬したヨウ素に対して0.8〜0.95反応当量のアルカリ化合物を添加すること
を特徴とする請求項5記載のヨウ化アルカリの製造方法。
The method for producing an alkali iodide according to claim 5, wherein an alkali compound having a reaction equivalent of 0.8 to 0.95 is added to iodine immersed in water.
上記反応を完結させた後の溶液について熱風を吹き付けて水分を蒸発させ粒状固形化する工程をさらに有すること
を特徴とする請求項1〜6のうち何れか1項記載のヨウ化アルカリの製造方法。
The method for producing an alkali iodide according to any one of claims 1 to 6, further comprising a step of spraying hot air on the solution after completing the reaction to evaporate moisture to form a solid solid. .
JP2005139901A 2005-05-12 2005-05-12 Method for producing alkali iodide Active JP4976660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139901A JP4976660B2 (en) 2005-05-12 2005-05-12 Method for producing alkali iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139901A JP4976660B2 (en) 2005-05-12 2005-05-12 Method for producing alkali iodide

Publications (2)

Publication Number Publication Date
JP2006315904A true JP2006315904A (en) 2006-11-24
JP4976660B2 JP4976660B2 (en) 2012-07-18

Family

ID=37536899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139901A Active JP4976660B2 (en) 2005-05-12 2005-05-12 Method for producing alkali iodide

Country Status (1)

Country Link
JP (1) JP4976660B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111574A1 (en) * 2007-03-13 2008-09-18 Nippoh Chemicals Co., Ltd. Alkali iodide metal salt solution and process for producing the same
JP2009091223A (en) * 2007-10-11 2009-04-30 Godo Shigen Sangyo Kk Production method for granulated sodium iodide
TWI383840B (en) * 2007-11-15 2013-02-01 Ise Chemicals Corp Preparation method of trousers type metal iodide
JP2013103851A (en) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
JP2014065638A (en) * 2012-09-26 2014-04-17 Nippo Kagaku Kk Method of producing lithium iodide aqueous solution and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148403A (en) * 1984-08-10 1986-03-10 Takekoshi Kagaku:Kk Manufacture of alkali iodide
JPH01261224A (en) * 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk Production of alkali iodide
JPH07242414A (en) * 1994-03-04 1995-09-19 Mitsui Toatsu Chem Inc Production of alkali metal iodic salt
JPH09156920A (en) * 1995-11-30 1997-06-17 Nippo Kagaku Kk Granule of metal iodide and method for granulating the same
JP2004217467A (en) * 2003-01-15 2004-08-05 Godo Shigen Sangyo Kk Metallic iodide product and package of metallic iodide product
JP2006117488A (en) * 2004-10-22 2006-05-11 Nippon Chem Ind Co Ltd Barium iodide hydrate powder and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148403A (en) * 1984-08-10 1986-03-10 Takekoshi Kagaku:Kk Manufacture of alkali iodide
JPH01261224A (en) * 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk Production of alkali iodide
JPH07242414A (en) * 1994-03-04 1995-09-19 Mitsui Toatsu Chem Inc Production of alkali metal iodic salt
JPH09156920A (en) * 1995-11-30 1997-06-17 Nippo Kagaku Kk Granule of metal iodide and method for granulating the same
JP2004217467A (en) * 2003-01-15 2004-08-05 Godo Shigen Sangyo Kk Metallic iodide product and package of metallic iodide product
JP2006117488A (en) * 2004-10-22 2006-05-11 Nippon Chem Ind Co Ltd Barium iodide hydrate powder and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111574A1 (en) * 2007-03-13 2008-09-18 Nippoh Chemicals Co., Ltd. Alkali iodide metal salt solution and process for producing the same
JP2008222498A (en) * 2007-03-13 2008-09-25 Nippo Kagaku Kk Alkali metal iodide salt solution and its manufacturing method
US8124046B2 (en) 2007-03-13 2012-02-28 Nippon Chemicals Co., Ltd. Alkali metal iodide salt solution and method for producing the same
KR101414866B1 (en) 2007-03-13 2014-07-03 닛포가가쿠 가부시키가이샤 Alkali iodide metal salt solution and process for producing the same
JP2009091223A (en) * 2007-10-11 2009-04-30 Godo Shigen Sangyo Kk Production method for granulated sodium iodide
TWI383840B (en) * 2007-11-15 2013-02-01 Ise Chemicals Corp Preparation method of trousers type metal iodide
JP2013103851A (en) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
JP2014065638A (en) * 2012-09-26 2014-04-17 Nippo Kagaku Kk Method of producing lithium iodide aqueous solution and use thereof

Also Published As

Publication number Publication date
JP4976660B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4976660B2 (en) Method for producing alkali iodide
KR100680326B1 (en) Method of preparing liquid calcium chloride using shell
CA1213717A (en) Continuous production of highly concentrated sodium hypochlorite solution
JP2014169215A (en) Sodium hypochlorite pentahydrate crystal and method for manufacturing the same
JPH06510517A (en) Production method of high purity hydroxylammonium nitrate
CN109384198A (en) A method of hydrochloric acid is produced with sodium chloride
CN109574174A (en) A kind of method that rare-earth smelting technical process chlorine-contained wastewater is administered
WO2016110081A1 (en) Acid waste gas treatment and resource utilization
JP2006225175A (en) Method of manufacturing transparent liquid fertilizer
JPH11322722A (en) Production of potassium oxonate
JPWO2017208501A1 (en) Surface-modified sodium hypochlorite pentahydrate crystal, and method for producing the same
NZ510785A (en) Method of ammonium sulfate purification
JPH0580410B2 (en)
JPH03265514A (en) Method for treatment of etching waste liquid containing fluorine compd.
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
EP1140702A1 (en) Method of producing zinc bromide
CN108358862A (en) A kind of new 2,4,6- tri-(Aminocaproic Acid base)The synthetic method of -1,3,5- triazines
JPS59116237A (en) Manufacture of 1,2-dichloroethane
JP2004043353A (en) Method for continuously producing organic titanium peroxo compound and device therefor
JPH10130026A (en) Treatment of waste hydrochloric acid
WO2019009278A1 (en) COMPOSITION CONTAINING C8F17Br AND METHOD FOR PRODUCING C8F17Br
US5397557A (en) Tetrathiocarbonate batch process
US2605168A (en) Process for the preparation of chlorine dioxide
EP0494933A1 (en) Tetrathiocarbonate process
CA1152726A (en) Process for forming calcium nitrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250