JP2006313238A - Light deflector - Google Patents

Light deflector Download PDF

Info

Publication number
JP2006313238A
JP2006313238A JP2005135956A JP2005135956A JP2006313238A JP 2006313238 A JP2006313238 A JP 2006313238A JP 2005135956 A JP2005135956 A JP 2005135956A JP 2005135956 A JP2005135956 A JP 2005135956A JP 2006313238 A JP2006313238 A JP 2006313238A
Authority
JP
Japan
Prior art keywords
transparent electrode
voltage
terminals
liquid crystal
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005135956A
Other languages
Japanese (ja)
Inventor
Masayuki Kamiyama
雅之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005135956A priority Critical patent/JP2006313238A/en
Publication of JP2006313238A publication Critical patent/JP2006313238A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To deflect light in a two dimensional direction in a light deflector utilizing a liquid crystal. <P>SOLUTION: A liquid crystal layer 3 is disposed between a first transparent substrate 4a on which a first transparent electrode 1a is formed, and a second transparent substrate 4b on which a second transparent electrode 1b is formed via a pair of facing alignment films 2a, 2b. Different voltages are applied to terminals 11a, 11b formed at facing side ends of the first transparent electrode by a first voltage application means 5. Different voltages are applied to terminals 12a, 12b formed at facing side ends of the second transparent electrode 1b in the direction perpendicular to the direction between the terminals 11a, 11b by a second voltage application means 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は液晶層を有する光偏向装置に関し、より詳細には液晶層に電圧を印加することによって光を偏向させる光偏向装置に関するものである。   The present invention relates to an optical deflecting device having a liquid crystal layer, and more particularly to an optical deflecting device that deflects light by applying a voltage to the liquid crystal layer.

従来、各種装置で用いられてきた光偏向装置は、ポリゴンミラーやホログラムスキャナ、振動ミラーなど機械的な動きによって光の偏向を行うものであった。このような機械的な動きによって光の偏向を行う装置は、機構が複雑で、組み立て作業も難しく、しかも消費電力が大きいという問題があった。   Conventionally, an optical deflecting device used in various apparatuses deflects light by mechanical movement such as a polygon mirror, a hologram scanner, and a vibrating mirror. An apparatus that deflects light by such a mechanical movement has a problem that a mechanism is complicated, an assembling work is difficult, and power consumption is large.

そこで、このような機械的な動きを用いずに光の偏向を行うことのできる、液晶を利用した光偏向装置がこれまでから種々提案されている(例えば特許文献1)。
特開昭63−240534号公報(特許請求の範囲、第2頁、第1図〜第3図)
Therefore, various types of optical deflecting devices using liquid crystals that can deflect light without using such mechanical movement have been proposed (for example, Patent Document 1).
Japanese Patent Laid-Open No. 63-240534 (Claims, page 2, FIGS. 1 to 3)

しかし、前記提案された光偏向装置では、1次元方向にしか光を偏向することができず、その用途も限られていた。   However, the proposed light deflecting device can deflect light only in a one-dimensional direction, and its application is limited.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、液晶を利用した光偏向装置において、2次元方向に光を偏向できるようにすることにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to enable light to be deflected in a two-dimensional direction in an optical deflecting device using liquid crystal.

前記目的を達成する本発明に係る光偏向装置は、第1透明電極が形成された第1透明基板と、第2透明電極が形成された第2透明基板との間に、対向する一対の配向膜を介して液晶層が挟まれてなる光偏向装置であって、第1透明電極の向かい合う側端に形成された端子間に電圧を印加する第1電圧印加手段と、第1透明電極に形成された端子間の方向と直交する方向の、第2透明電極の向かい合う側端に形成された端子間に、電圧を印加する第2電圧印加手段とを備えたことを特徴とする。   An optical deflecting device according to the present invention that achieves the above-described object provides a pair of opposing orientations between a first transparent substrate on which a first transparent electrode is formed and a second transparent substrate on which a second transparent electrode is formed. An optical deflecting device in which a liquid crystal layer is sandwiched through a film, the first voltage applying means for applying a voltage between terminals formed on opposite side edges of the first transparent electrode, and formed on the first transparent electrode And a second voltage applying means for applying a voltage between terminals formed on opposite side ends of the second transparent electrode in a direction orthogonal to the direction between the formed terminals.

もう一つの発明に係る光偏向装置は、第1透明電極が形成された第1透明基板と、第2透明電極が形成された第3基板との間に、対向する一対の配向膜を介して液晶層が挟まれてなる光偏向装置であって、第2透明電極と第3基板との間に光を反射させる反射層が形成され、第1透明電極の向かい合う側端に形成された端子間に電圧を印加する第1電圧印加手段と、第1透明電極に形成された端子間の方向と直交する方向の、第2透明電極の向かい合う側端に形成された端子間に、電圧を印加する第2電圧印加手段とを備えたことを特徴とする。   According to another aspect of the present invention, there is provided an optical deflecting device comprising a pair of opposing alignment films between a first transparent substrate on which a first transparent electrode is formed and a third substrate on which a second transparent electrode is formed. An optical deflecting device in which a liquid crystal layer is sandwiched, wherein a reflection layer for reflecting light is formed between a second transparent electrode and a third substrate, and between terminals formed on opposite side edges of the first transparent electrode A voltage is applied between the first voltage applying means for applying a voltage to the terminal and the terminal formed on the opposite end of the second transparent electrode in the direction orthogonal to the direction between the terminals formed on the first transparent electrode. And a second voltage applying means.

ここで、液晶層全体の平均屈折率を常に一定とする観点からは、第1透明電極および第2透明電極の所定の1点に印加される実効電圧が一定となるように、第1透明電極および第2透明電極に印加する電圧を制御するのが好ましい。   Here, from the viewpoint of always keeping the average refractive index of the entire liquid crystal layer constant, the first transparent electrode is set so that the effective voltage applied to a predetermined point of the first transparent electrode and the second transparent electrode is constant. It is preferable to control the voltage applied to the second transparent electrode.

また、2次元方向の光偏向を大きくする観点からは、第1透明電極および第2透明電極の電気抵抗値を100Ω〜1MΩの範囲とするのが好ましい。   Further, from the viewpoint of increasing the light deflection in the two-dimensional direction, it is preferable to set the electric resistance values of the first transparent electrode and the second transparent electrode in the range of 100Ω to 1MΩ.

本発明に係る光偏向装置では、第1透明電極の向かい合う側端に形成された端子間、および第1透明電極に形成された端子間の方向と直交する方向の、第2透明電極の向かい合う側端に形成された端子間に電圧を印加するので、2次元方向に光を偏向させることができるようになる。これにより本発明の光偏向装置は、光ディスクのトラッキング機構などに好適に用いることができるにようになる。   In the optical deflecting device according to the present invention, the opposite side of the second transparent electrode between the terminals formed on the opposite side ends of the first transparent electrode and in the direction orthogonal to the direction between the terminals formed on the first transparent electrode. Since a voltage is applied between terminals formed at the ends, light can be deflected in a two-dimensional direction. As a result, the optical deflection apparatus of the present invention can be suitably used for an optical disc tracking mechanism or the like.

もう一つの発明に係る光偏向装置では、前記の発明に係る光偏向装置の構成に反射層をさらに加えて液晶層を2度透過させるようにするので、一層大きな光偏向を得ることができるようになる。   In the optical deflecting device according to another aspect of the present invention, a reflection layer is further added to the configuration of the optical deflecting device according to the above invention so that the liquid crystal layer is transmitted twice, so that a larger optical deflection can be obtained. become.

2つの透明電極の所定の1点に印加される実効電圧を一定となるように、第1透明電極と第2透明電極に印加する電圧を制御すると、液晶層全体の平均屈折率が一定となり、光学系全体の光軸の光路長に影響を与えずに光を偏向させることができるようになる。   When the voltage applied to the first transparent electrode and the second transparent electrode is controlled so that the effective voltage applied to a predetermined point of the two transparent electrodes is constant, the average refractive index of the entire liquid crystal layer becomes constant, Light can be deflected without affecting the optical path length of the optical axis of the entire optical system.

以下、本発明について図に基づいて説明するが、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

図1に、本発明に係る光偏向装置の一例を示す斜視図を、図2に、図1の光偏向装置の概説図をそれぞれ示す。図2から理解されるように、この光偏向装置は、第1透明基板4aと第2透明基板4bとが離隔対向して配置され、第1透明基板4aと第2透明基板4bの対向する表面に第1透明電極1aと第2透明電極1bがそれぞれ形成されている。そして、第1透明電極1aの上に形成された第1配向膜2aと、第2透明電極1bの上に形成された第2配向膜2bとの間の、シール剤Sで周囲が封止された空間に液晶剤が封入され液晶層3が形成されている。   FIG. 1 is a perspective view showing an example of a light deflection apparatus according to the present invention, and FIG. 2 is a schematic view of the light deflection apparatus shown in FIG. As can be understood from FIG. 2, in this optical deflecting device, the first transparent substrate 4a and the second transparent substrate 4b are disposed so as to face each other, and the first transparent substrate 4a and the second transparent substrate 4b are opposed to each other. The first transparent electrode 1a and the second transparent electrode 1b are respectively formed. The periphery is sealed with a sealing agent S between the first alignment film 2a formed on the first transparent electrode 1a and the second alignment film 2b formed on the second transparent electrode 1b. The liquid crystal layer 3 is formed by enclosing a liquid crystal agent in the space.

図3に、第1透明電極1aと第2透明電極1bの平面図を示す。同図(a)に示すように、第1透明電極1aの上下方向の側端には端子11a,11bが形成されている。また同図(b)に示すように、第2透明電極1bの左右方向の側端には端子12a,12bが形成されている。なお、図3では、端子の形成方向が、第1透明電極1aでは上下方向で、第2透明電極1bでは左右方向であるが、これに限定されるものではなく、第1透明電極1aと第2透明電極1bの端子の形成方向が互いに直交する方向であればよい。   FIG. 3 shows a plan view of the first transparent electrode 1a and the second transparent electrode 1b. As shown in FIG. 2A, terminals 11a and 11b are formed at the side edges of the first transparent electrode 1a in the vertical direction. Further, as shown in FIG. 5B, terminals 12a and 12b are formed at the lateral ends of the second transparent electrode 1b. In FIG. 3, the terminals are formed in the vertical direction in the first transparent electrode 1a and in the horizontal direction in the second transparent electrode 1b. However, the present invention is not limited to this, and the first transparent electrode 1a and the first transparent electrode 1b It suffices if the forming directions of the terminals of the two transparent electrodes 1b are orthogonal to each other.

本発明で使用する高電気抵抗な第1透明電極1a及び第2透明電極1bとしては、例えばガリウム、アルミニウム、シリコン、イットリウム、インジウムなどの元素の1種又は2種以上をドープした酸化亜鉛膜;ケイ素、アンチモン、インジウム、ガリウムなどの元素の1種又は2種以上をドープした酸化スズ膜;ドープしない酸化亜鉛膜や酸化スズ膜、ITO膜などが挙げられる。この中でも、インジウムをドープした酸化亜鉛膜およびドープしない酸化スズ膜が好ましい。これらの電極膜の電気抵抗値としては100Ω〜1MΩの範囲が好ましい。   As the high electrical resistance first transparent electrode 1a and second transparent electrode 1b used in the present invention, for example, a zinc oxide film doped with one or more elements such as gallium, aluminum, silicon, yttrium, and indium; Examples thereof include a tin oxide film doped with one or more elements such as silicon, antimony, indium, and gallium; an undoped zinc oxide film, a tin oxide film, and an ITO film. Among these, a zinc oxide film doped with indium and a tin oxide film not doped are preferable. The electric resistance value of these electrode films is preferably in the range of 100Ω to 1MΩ.

図2に示すように、第1透明電極1aの端子11a,11b(図3に図示)には第1電圧印加手段5が接続され、第2透明電極1bの端子12a,12b(図3に図示)には第2電圧印加手段6が接続される。ここで例えば光を上下方向に偏向させる場合には、図4に示すように、第1電圧印加手段5によって、第1透明電極1aの端子11a,11bにそれぞれ異なった電圧V11,V12を印加する。すると、第1透明電極1aは高抵抗膜であるため、端子11aから端子11bに向かって直線状に変化する電位勾配が形成される。一方、液晶分子の立ち上がり角度は電位差が大きくなるほど大きくなる。液晶分子の長軸方向に沿って偏向した光線(異常光)に対する屈折率は、液晶分子の立ち上がり角度が大きくなるほど低くなるから、前記のような電位勾配が第1透明電極1aに形成されることによって、液晶層3の屈折率は上部では低く、下部では高くなる。このような屈折率分布が液晶層3に形成されることによって、液晶層3に水平に入射した光は下方へ偏向して出射し、プリズムと同様の効果が奏されるようになる。 As shown in FIG. 2, the first voltage applying means 5 is connected to the terminals 11a and 11b (shown in FIG. 3) of the first transparent electrode 1a, and the terminals 12a and 12b (shown in FIG. 3) of the second transparent electrode 1b. ) Is connected to the second voltage applying means 6. Here, for example, when light is deflected in the vertical direction, different voltages V 11 and V 12 are respectively applied to the terminals 11a and 11b of the first transparent electrode 1a by the first voltage applying means 5, as shown in FIG. Apply. Then, since the first transparent electrode 1a is a high-resistance film, a potential gradient that changes linearly from the terminal 11a to the terminal 11b is formed. On the other hand, the rising angle of the liquid crystal molecules increases as the potential difference increases. Since the refractive index with respect to the light beam (abnormal light) deflected along the major axis direction of the liquid crystal molecules decreases as the rising angle of the liquid crystal molecules increases, the potential gradient as described above is formed in the first transparent electrode 1a. Thus, the refractive index of the liquid crystal layer 3 is low at the top and high at the bottom. By forming such a refractive index distribution in the liquid crystal layer 3, the light incident horizontally on the liquid crystal layer 3 is deflected downward and emitted, and the same effect as the prism is achieved.

光を左右方向に偏向させる場合も同様にして、第2電圧印加手段6によって、第2透明電極1bの端子12a,12bに異なる電圧を印加すればよい。このように、第1電圧印加手段5および第2電圧印加手段6によって、端子11a,11bおよび端子12a,12bにそれぞれ異なった電圧を印加することによって、2次元方向に光を偏向させることができるようになる。   Similarly, when the light is deflected in the left-right direction, different voltages may be applied to the terminals 12a and 12b of the second transparent electrode 1b by the second voltage applying means 6. Thus, the light can be deflected in a two-dimensional direction by applying different voltages to the terminals 11a and 11b and the terminals 12a and 12b by the first voltage applying means 5 and the second voltage applying means 6, respectively. It becomes like this.

次に、各端子間に印加する電圧について具体的に説明する。第1透明電極1aの上下端に形成された端子11a,11bには、図5に示すように、第2透明電極1bの中心位置の電位V2(図3に図示)を基準として、波長と位相が同じで振幅の異なる電圧V11,V12が印加される。これにより、第1透明電極1aの端子間方向(図3の上下方向)に電位勾配が形成され、前述のように、液晶層3の屈折率が上下方向で変化し、光を上下方向に偏向させることができるようになる。なお、端子11a,11bに印加する電圧を変化させる、すなわち端子間の電位勾配を変化させる場合、上下方向中央の電位V10(図5の実線)は変化しないように両端子11a,11bに印加する電圧を設定するのが望ましい。かかる電圧設定による効果は後述する。 Next, the voltage applied between the terminals will be specifically described. As shown in FIG. 5, the terminals 11a and 11b formed at the upper and lower ends of the first transparent electrode 1a have a wavelength and a reference voltage V 2 (shown in FIG. 3) at the center position of the second transparent electrode 1b. Voltages V 11 and V 12 having the same phase and different amplitudes are applied. As a result, a potential gradient is formed in the direction between the terminals of the first transparent electrode 1a (vertical direction in FIG. 3), and as described above, the refractive index of the liquid crystal layer 3 changes in the vertical direction and deflects light in the vertical direction. To be able to. When the voltage applied to the terminals 11a and 11b is changed, that is, when the potential gradient between the terminals is changed, the potential V 10 at the center in the vertical direction (solid line in FIG. 5) is applied to both terminals 11a and 11b so as not to change. It is desirable to set the voltage to be used. The effect of this voltage setting will be described later.

第2透明電極1bの左右端に形成された端子12a,12bには、図6に示すように、左右方向中央の電位V20(図5の実線、図3(b)を参照)が常に一定となるように、電位V20を中心として線対称の電圧V21,V22が印加される。これにより、第2透明電極1bの端子間方向(図3の左右方向)に電位勾配が形成され、液晶層3の屈折率が左右方向で変化し、光を左右方向に偏向させることができるようになる。 The terminals 12a and 12b formed at the left and right ends of the second transparent electrode 1b have a constant potential V 20 (see the solid line in FIG. 5 and FIG. 3B) at the center in the left-right direction as shown in FIG. In such a manner, voltages V 21 and V 22 that are line symmetrical about the potential V 20 are applied. As a result, a potential gradient is formed in the direction between the terminals of the second transparent electrode 1b (the left-right direction in FIG. 3), the refractive index of the liquid crystal layer 3 changes in the left-right direction, and light can be deflected in the left-right direction. become.

第1透明電極1aおよび第2透明電極1bに以上のような電圧を印加すると、図7に示すように、第1透明電極1aおよび第2透明電極1bの中心点間の電位差(V1−V2)は、印加電圧を変化させても常に一定となる。これにより、液晶層3全体の平均屈折率を常に一定とすることができ、本発明の光偏向装置が使用された光学系全体の光軸上の光路長に影響を与えることなく、光を偏向させることができるようになる。 When the voltage as described above is applied to the first transparent electrode 1a and the second transparent electrode 1b, as shown in FIG. 7, the potential difference (V 1 −V) between the center points of the first transparent electrode 1a and the second transparent electrode 1b. 2 ) is always constant even when the applied voltage is changed. As a result, the average refractive index of the entire liquid crystal layer 3 can be made constant at all times, and light can be deflected without affecting the optical path length on the optical axis of the entire optical system in which the optical deflecting device of the present invention is used. To be able to.

次に、もう一つの発明に係る光偏向装置について説明する。この発明の光偏向装置が、先の発明の光偏向装置と異なるところは、第2透明電極1bと第3基板4cとの間に反射層7を設けた点にある。すなわち液晶層3を透過してきた光を反射層7で反射させて再び液晶層3を透過させる点が前述の光偏向装置と異なる。かかる相違に起因して、第2透明基板4bの代わりに第3基板4cを用いる。すなわち、本発明の光偏向装置では、第2透明電極1bを形成する基板として透明でないものを用いることができる。以下、この発明の光偏向装置について図に基づいて説明するが、前述の発明に係る光偏向装置と同じ部材および部分については同一符号とし、その説明を省略する。   Next, an optical deflecting device according to another invention will be described. The optical deflecting device of the present invention differs from the optical deflecting device of the previous invention in that a reflective layer 7 is provided between the second transparent electrode 1b and the third substrate 4c. In other words, the point that the light transmitted through the liquid crystal layer 3 is reflected by the reflective layer 7 and is transmitted through the liquid crystal layer 3 again is different from the above-described optical deflecting device. Due to this difference, the third substrate 4c is used instead of the second transparent substrate 4b. That is, in the optical deflecting device of the present invention, a non-transparent substrate can be used as the substrate on which the second transparent electrode 1b is formed. Hereinafter, the optical deflection apparatus of the present invention will be described with reference to the drawings. However, the same members and parts as those of the optical deflection apparatus according to the above-described invention are denoted by the same reference numerals, and the description thereof is omitted.

図8は、この発明に係る光偏向装置の一例を示す概略構成図である。図8の光偏向装置は、第1透明基板4aと第3基板4cとが離隔対向して配置されている。第1透明基板4aの表面には第1透明電極1aが形成され、その上に第1配向膜2aが積層されている。一方、第3基板4cの表面には反射層7が形成され、その上に第2透明電極1b、第2配向膜2bがこの順に積層されている。そして、第1透明基板4aと第3基板4cとの間のシール剤Sで封止された空間に液晶剤が封入され液晶層3が形成されている。   FIG. 8 is a schematic configuration diagram showing an example of an optical deflection apparatus according to the present invention. In the optical deflecting device of FIG. 8, the first transparent substrate 4a and the third substrate 4c are disposed so as to face each other. A first transparent electrode 1a is formed on the surface of the first transparent substrate 4a, and a first alignment film 2a is laminated thereon. On the other hand, the reflective layer 7 is formed on the surface of the third substrate 4c, and the second transparent electrode 1b and the second alignment film 2b are laminated on the reflective layer 7 in this order. And the liquid crystal agent is enclosed in the space sealed with the sealing agent S between the first transparent substrate 4a and the third substrate 4c, and the liquid crystal layer 3 is formed.

第1電圧印加手段5および第2電圧印加手段6によって第1透明電極1aおよび第2透明電極1bに前記と同様の電圧を印加すると、液晶層3の上下方向および左右方向に屈折率分布が形成され、液晶層3に入射した光は2次元方向に偏向される。そして液晶層3から出射した光は反射層7によって反射され、再び液晶層3に入射し2次元方向に偏向される。このようにこの発明の光偏向装置では、光は液晶層3を2度透過することになるので、前述の光偏向装置に比べて2倍の偏向効果を得ることができる、あるいは偏向効果が同等でよければ液晶層3の厚みを薄くでき、応答性を格段に向上できるようになる。   When the same voltage as above is applied to the first transparent electrode 1a and the second transparent electrode 1b by the first voltage applying means 5 and the second voltage applying means 6, a refractive index distribution is formed in the vertical and horizontal directions of the liquid crystal layer 3. The light incident on the liquid crystal layer 3 is deflected in a two-dimensional direction. Then, the light emitted from the liquid crystal layer 3 is reflected by the reflection layer 7, enters the liquid crystal layer 3 again, and is deflected in a two-dimensional direction. As described above, in the optical deflecting device of the present invention, the light passes through the liquid crystal layer 3 twice, so that it is possible to obtain a deflection effect twice that of the above-described optical deflecting device, or the deflection effect is equivalent. If so, the thickness of the liquid crystal layer 3 can be reduced, and the responsiveness can be remarkably improved.

本発明で使用する反射層7としては、光を反射するものであれば特に限定はなく、例えば第3基板4cの表面に絶縁性の金属膜を蒸着形成したものが例示される。   The reflective layer 7 used in the present invention is not particularly limited as long as it reflects light, and examples thereof include those in which an insulating metal film is formed on the surface of the third substrate 4c.

第1の発明に係る光偏向装置の一例を示す斜視図である。It is a perspective view which shows an example of the optical deflection apparatus based on 1st invention. 図1の光偏向装置の概説図である。FIG. 2 is a schematic diagram of the light deflection apparatus in FIG. 1. 図1の光偏向装置で使用する第1透明電極と第2透明電極の平面図である。It is a top view of the 1st transparent electrode and 2nd transparent electrode which are used with the optical deflection apparatus of FIG. 第1透明電極に電圧を印加した場合の作用を説明する図である。It is a figure explaining an effect | action at the time of applying a voltage to a 1st transparent electrode. 第1透明電極の端子間に印加する電圧波形図例である。It is an example of a voltage waveform diagram applied between the terminals of the first transparent electrode. 第2透明電極の端子間に印加する電圧波形図例である。It is an example of a voltage waveform diagram applied between the terminals of the second transparent electrode. 第1透明電極と第2透明電極の中心点間に印加される電圧波形図例である。It is an example of a voltage waveform diagram applied between the center points of the first transparent electrode and the second transparent electrode. 第2の発明に係る光偏向装置の一例を示す概説図である。It is a schematic diagram which shows an example of the optical deflection apparatus based on 2nd invention.

符号の説明Explanation of symbols

1a 第1透明電極
1b 第2透明電極
2a 第1配向膜
2b 第2配向膜
3 液晶層
4a 第1透明基板
4b 第2透明基板
4c 第3基板
5 第1電圧印加手段
6 第2電圧印加手段
7 反射層
11a,11b 端子
12a,12b 端子
DESCRIPTION OF SYMBOLS 1a 1st transparent electrode 1b 2nd transparent electrode 2a 1st alignment film 2b 2nd alignment film 3 Liquid crystal layer 4a 1st transparent substrate 4b 2nd transparent substrate 4c 3rd substrate 5 1st voltage application means 6 2nd voltage application means 7 Reflective layer 11a, 11b terminal 12a, 12b terminal

Claims (4)

第1透明電極が形成された第1透明基板と、第2透明電極が形成された第2透明基板との間に、対向する一対の配向膜を介して液晶層が挟まれてなる光偏向装置であって、
第1透明電極の向かい合う側端に形成された端子間に電圧を印加する第1電圧印加手段と、第1透明電極に形成された端子間の方向と直交する方向の、第2透明電極の向かい合う側端に形成された端子間に、電圧を印加する第2電圧印加手段とを備えたことを特徴とする光偏向装置。
An optical deflecting device in which a liquid crystal layer is sandwiched between a first transparent substrate on which a first transparent electrode is formed and a second transparent substrate on which a second transparent electrode is formed via a pair of opposing alignment films. Because
First voltage applying means for applying a voltage between terminals formed on opposite side edges of the first transparent electrode, and the second transparent electrode facing each other in a direction orthogonal to the direction between the terminals formed on the first transparent electrode An optical deflecting device comprising: a second voltage applying means for applying a voltage between terminals formed at the side ends.
第1透明電極が形成された第1透明基板と、第2透明電極が形成された第3基板との間に、対向する一対の配向膜を介して液晶層が挟まれてなる光偏向装置であって、
第2透明電極と第3基板との間に光を反射する反射層が形成され、
第1透明電極の向かい合う側端に形成された端子間に電圧を印加する第1電圧印加手段と、第1透明電極に形成された端子間の方向と直交する方向の、第2透明電極の向かい合う側端に形成された端子間に、電圧を印加する第2電圧印加手段とを備えたことを特徴とする光偏向装置。
An optical deflecting device in which a liquid crystal layer is sandwiched between a first transparent substrate on which a first transparent electrode is formed and a third substrate on which a second transparent electrode is formed via a pair of opposing alignment films. There,
A reflective layer for reflecting light is formed between the second transparent electrode and the third substrate;
First voltage applying means for applying a voltage between terminals formed on opposite side edges of the first transparent electrode, and the second transparent electrode facing each other in a direction orthogonal to the direction between the terminals formed on the first transparent electrode An optical deflecting device comprising: a second voltage applying means for applying a voltage between terminals formed at the side ends.
第1透明電極および第2透明電極の所定の1点に印加される実効電圧が一定となるように、第1透明電極および第2透明電極に印加する電圧を制御する請求項1又は2記載の光偏向装置。   The voltage applied to the first transparent electrode and the second transparent electrode is controlled so that the effective voltage applied to a predetermined point of the first transparent electrode and the second transparent electrode is constant. Optical deflection device. 第1透明電極および第2透明電極の電気抵抗値が100Ω〜1MΩの範囲である請求項1〜3のいずれかに記載の光偏向装置。   The optical deflection apparatus according to any one of claims 1 to 3, wherein the first transparent electrode and the second transparent electrode have an electric resistance value in a range of 100Ω to 1MΩ.
JP2005135956A 2005-05-09 2005-05-09 Light deflector Pending JP2006313238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135956A JP2006313238A (en) 2005-05-09 2005-05-09 Light deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135956A JP2006313238A (en) 2005-05-09 2005-05-09 Light deflector

Publications (1)

Publication Number Publication Date
JP2006313238A true JP2006313238A (en) 2006-11-16

Family

ID=37534759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135956A Pending JP2006313238A (en) 2005-05-09 2005-05-09 Light deflector

Country Status (1)

Country Link
JP (1) JP2006313238A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350226A (en) * 2005-06-20 2006-12-28 Sony Corp Optical coupler, optical waveguide device and optical waveguide coupling method using the optical coupler
JP2013205602A (en) * 2012-03-28 2013-10-07 Dhs:Kk Three-dimensional image display method
KR20170103963A (en) 2015-01-23 2017-09-13 기이찌 시부야 Liquid crystal devices, deflection elements, liquid crystal modules and electronic devices
US10209509B1 (en) 2017-07-28 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device that includes mirrors and optical waveguide region
CN110366699A (en) * 2017-04-20 2019-10-22 松下知识产权经营株式会社 Optical scanning device, optical receiving device and optical detection system
CN112346279A (en) * 2019-08-09 2021-02-09 电子科技大学 Optical device, imaging apparatus, zoom driving method, and lens center moving method
US11126059B2 (en) 2017-12-28 2021-09-21 Panasonic Intellectual Property Management Co., Ltd. Optical device
US11435571B2 (en) 2017-12-26 2022-09-06 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device with dual spacing non-waveguide regions and dual intermediate regions adjacent a waveguide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350226A (en) * 2005-06-20 2006-12-28 Sony Corp Optical coupler, optical waveguide device and optical waveguide coupling method using the optical coupler
JP2013205602A (en) * 2012-03-28 2013-10-07 Dhs:Kk Three-dimensional image display method
KR20170103963A (en) 2015-01-23 2017-09-13 기이찌 시부야 Liquid crystal devices, deflection elements, liquid crystal modules and electronic devices
US10095081B2 (en) 2015-01-23 2018-10-09 Osaka University Liquid crystal element, deflection element, liquid crystal module, and electronic device
CN110366699A (en) * 2017-04-20 2019-10-22 松下知识产权经营株式会社 Optical scanning device, optical receiving device and optical detection system
US11644540B2 (en) 2017-04-20 2023-05-09 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device, photoreceiver device, and photodetection system
CN110366699B (en) * 2017-04-20 2023-09-22 松下知识产权经营株式会社 Optical scanning device, optical receiving device, and optical detection system
US10422990B2 (en) 2017-07-28 2019-09-24 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device that includes mirrors and optical waveguide region
US10209509B1 (en) 2017-07-28 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device that includes mirrors and optical waveguide region
US11435571B2 (en) 2017-12-26 2022-09-06 Panasonic Intellectual Property Management Co., Ltd. Optical scanning device with dual spacing non-waveguide regions and dual intermediate regions adjacent a waveguide
US11126059B2 (en) 2017-12-28 2021-09-21 Panasonic Intellectual Property Management Co., Ltd. Optical device
CN112346279A (en) * 2019-08-09 2021-02-09 电子科技大学 Optical device, imaging apparatus, zoom driving method, and lens center moving method
JP2021028718A (en) * 2019-08-09 2021-02-25 ▲電▼子科技大学University of Electronic Science and Technology of China Optical element, imaging device, focus variable drive method and method for moving lens center
JP7082429B2 (en) 2019-08-09 2022-06-08 ▲電▼子科技大学 Optical element, image pickup device, variable focus drive method, and lens center movement method

Similar Documents

Publication Publication Date Title
JP2006313238A (en) Light deflector
JP4084203B2 (en) Optical deflection device
US20210356838A1 (en) Non-moving optical beam steering using non-pixelated liquid crystal optical phased arrays
EP1359455B1 (en) Micro-mirror device
US6903487B2 (en) Micro-mirror device with increased mirror tilt
US6310712B1 (en) Discrete element light modulating microstructure devices
US11106031B2 (en) Light deflector, optical scanning device, image projection device, and mobile object
JP2006313248A (en) Liquid crystal lens
US20180059490A1 (en) Electrically tunable optical phase modulation element
US11131754B2 (en) Beam steering device including a waveguide, a cladding layer, and an electrode layer, and system including the same
JPH07508387A (en) pixel intensity modulator
US20210364881A1 (en) Solid-state tip-tilt-phased array
JP3258029B2 (en) Phase modulation microstructure for very large integrated spatial light modulator
JP6793194B2 (en) Optical scanning element
JPH0764123A (en) Distributed-refractive-index type light deflector and method of optical deflection
WO2017154910A1 (en) Laser scanning device and method for driving same
US20170357075A1 (en) Optical element
JP4094864B2 (en) Optical deflection element and driving method thereof
JP7176331B2 (en) optical scanner
JP7232504B2 (en) optical switching element
US11156816B2 (en) Reflective spatial light modulator having non-conducting adhesive material, optical observation device and optical irradiation device
US8089677B2 (en) Dynamic optical grating device and associated method for modulating light
WO2021229689A1 (en) Optical scanning device and distance measuring device
JPS61129893A (en) Light beam deflector
JP5069267B2 (en) Variable focus lens