JP2006313098A - Pipe diagnostic device - Google Patents

Pipe diagnostic device Download PDF

Info

Publication number
JP2006313098A
JP2006313098A JP2005135565A JP2005135565A JP2006313098A JP 2006313098 A JP2006313098 A JP 2006313098A JP 2005135565 A JP2005135565 A JP 2005135565A JP 2005135565 A JP2005135565 A JP 2005135565A JP 2006313098 A JP2006313098 A JP 2006313098A
Authority
JP
Japan
Prior art keywords
pipe
impedance
piping
corrosion
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005135565A
Other languages
Japanese (ja)
Other versions
JP4632434B2 (en
Inventor
Kazuhiro Oishi
和広 大石
Takeshi Kondo
健 近藤
Mitsuo Nanba
三男 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Pressure Gas Safety Institute of Japan
Original Assignee
High Pressure Gas Safety Institute of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Pressure Gas Safety Institute of Japan filed Critical High Pressure Gas Safety Institute of Japan
Priority to JP2005135565A priority Critical patent/JP4632434B2/en
Publication of JP2006313098A publication Critical patent/JP2006313098A/en
Application granted granted Critical
Publication of JP4632434B2 publication Critical patent/JP4632434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manage a buried pipe sufficiently by surely and directly grasping the occurrence of a defect such as corrosion or a damage of the buried pipe and its generation position, and to perform measurement simply without requiring a load. <P>SOLUTION: A pipe diagnostic device 100, which is a device for diagnosing existence of a defect caused by corrosion, a damage or the like of the pipe (buried pipe) 20, is characterized by being equipped with two cables 1, 2 arranged on two spots of the buried pipe 20 and having electrode terminals 1a, 2a on the tip, respectively, an impedance measuring means 31 for measuring the impedance between the electrode terminals 1a, 2a by applying an alternating voltage between the electrode terminals 1a, 2a of the two cables 1, 2, and a defect existence estimation means 32 for estimating existence of a defect caused by corrosion, a damage or the like of the buried pipe 20 from measurement results by the impedance measuring means 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土中や水中、海中の配管の腐食、損傷等による欠陥の有無の診断、その欠陥位置の特定、また酸化、腐食、損傷の状態の推定を行う配管診断装置に関するものである。   The present invention relates to a pipe diagnostic apparatus that diagnoses the presence or absence of defects due to corrosion, damage, or the like of piping in soil, water, or sea, identifies the position of the defects, and estimates the state of oxidation, corrosion, or damage.

ガス配管は、例えばLPガスボンベから家屋内のガス機器までの間で、土壌中に埋設されている場合がある。このため、土壌中で腐食や損傷が発生していても、外部からは観察できず、ガス漏れ等の原因となっていた。   The gas pipe may be embedded in the soil between the LP gas cylinder and the gas equipment in the house, for example. For this reason, even if corrosion or damage occurs in the soil, it cannot be observed from the outside, causing gas leakage and the like.

この埋設管の腐食、損傷の状態は、土を埋設管まで掘削することで直接観察することができるが、それでは費用と労力を要するため、掘削せずに観察する方法が、例えば下記の特許文献1で提案されている。
特開平5−128973号公報
The state of corrosion and damage of the buried pipe can be directly observed by excavating the soil up to the buried pipe. However, since this requires cost and labor, a method for observing without digging is, for example, the following patent document 1 is proposed.
Japanese Patent Laid-Open No. 5-128973

この特許文献1では、土壌中に埋設されたガス管の近傍に試験片を埋設しておき、試験片のACインピーダンスの測定結果から瞬時に解析して測定時における平均腐食速度を得、埋設ガス管の管理を行うようにしている。   In Patent Document 1, a test piece is embedded in the vicinity of a gas pipe embedded in soil, and an average corrosion rate at the time of measurement is obtained by instantaneous analysis from the measurement result of the AC impedance of the test piece. The tube is managed.

しかし、上記従来技術では、確かに掘削することなく腐食の管理を行うことができるが、測定対象は埋設ガス管ではなく、試験片であるため、埋設ガス管が腐食していても、その腐食が必ず試験片で観察できるとは限らず、埋設ガス管の腐食を確実に直接的に把握することができないという問題点を有していた。   However, in the above prior art, it is possible to manage corrosion without digging, but since the object to be measured is not a buried gas pipe but a test piece, even if the buried gas pipe is corroded, the corrosion However, there is a problem that it is not always possible to observe with a test piece, and corrosion of the buried gas pipe cannot be grasped directly and surely.

また、試験片の測定であるため、埋設ガス管に腐食が発生してもその位置を特定するには至らず、埋設ガス管の管理を十分に行うことができないという問題点も有していた。   In addition, because it is a test piece measurement, even if corrosion occurs in the buried gas pipe, the position cannot be specified, and there is a problem that the buried gas pipe cannot be managed sufficiently. .

さらに、ガス管を埋設する際に、同時に試験片も埋設しなければならず、またその試験片と測定回路とを接続するケーブルも予め地表まで延出しておかなければならないという手間を要し、この点で労力を要していた。   Furthermore, when embedding the gas pipe, it is necessary to embed a test piece at the same time, and the cable for connecting the test piece and the measurement circuit must be extended to the ground surface in advance. It was labor intensive in this respect.

そして、上記のガス配管(埋設ガス管)に対して言えることは、水中や海中の外部からは直視できない種々の配管に対しても同様であり、それらの維持管理も困難であった。   And what can be said for the above gas pipes (buried gas pipes) is the same for various pipes that cannot be directly viewed from the outside in water or underwater, and their maintenance is also difficult.

この発明は上記に鑑み提案されたもので、外部からは直視できない配管の腐食や損傷等の欠陥の発生、およびその発生位置を確実に直接的に把握して、その配管の管理を十分に行うことができ、また測定も労力を要さず簡単に行うことができる配管診断装置を提供することを目的とする。   The present invention has been proposed in view of the above, and the occurrence of defects such as corrosion and damage of pipes that cannot be directly seen from the outside, and the occurrence position thereof are surely directly grasped, and the pipes are sufficiently managed. It is an object of the present invention to provide a piping diagnostic apparatus that can perform measurement easily without requiring labor.

上記目的を達成するために、請求項1に記載の発明は、土中や水中、海中の配管の腐食、損傷等による欠陥の有無を診断する配管診断装置において、上記配管の2カ所に配置する、それぞれ先端に電極端子を有する2本のケーブルと、上記2本のケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測するインピーダンス計測手段と、上記インピーダンス計測手段の計測結果から配管の腐食、損傷等による欠陥の有無を推定する欠陥有無推定手段と、を備えることを特徴としている。   In order to achieve the above object, the invention described in claim 1 is arranged at two locations on the piping in a piping diagnostic apparatus for diagnosing the presence or absence of defects due to corrosion, damage, etc. of piping in the soil, water or sea. From the two cables each having an electrode terminal at the tip, an impedance measuring means for measuring an impedance between the electrode terminals by applying an AC voltage between the electrode terminals of the two cables, and a measurement result of the impedance measuring means And a defect presence / absence estimation means for estimating the presence / absence of a defect due to corrosion, damage, or the like of the pipe.

また、請求項2に記載の発明は、上記した請求項1に記載の発明の構成に加えて、上記2本のケーブルは、双方とも配管の近傍に配置するか、双方とも配管に接触させて配置するか、一方は配管に接触させ他方は配管の近傍に配置するかのいずれかである、ことを特徴としている。   Further, in the invention described in claim 2, in addition to the configuration of the invention described in claim 1 described above, both of the two cables are arranged in the vicinity of the pipe, or both are in contact with the pipe. One of them is arranged, or one is in contact with the pipe and the other is arranged in the vicinity of the pipe.

請求項3に記載の発明は、上記した請求項1または2に記載の発明の構成に加えて、上記インピーダンス計測手段は、配管のインピーダンス周波数特性を求め、そのインピーダンス周波数特性に基づいて配管の腐食、損傷等による欠陥の有無を推定する、ことを特徴としている。   In the invention described in claim 3, in addition to the configuration of the invention described in claim 1 or 2, the impedance measuring means obtains the impedance frequency characteristic of the pipe and corrodes the pipe based on the impedance frequency characteristic. It is characterized by estimating the presence or absence of defects due to damage or the like.

請求項4に記載の発明は、上記した請求項から3の何れかに記載の発明の構成に加えて、上記インピーダンス計測手段により配管に欠陥があると推定されたとき、2本のケーブルの電極端子の内、一方の位置を固定し、他方を配管に沿って移動させつつインピーダンスを計測し、インピーダンスが最小となるときの他方の電極端子位置に配管の欠陥があると推定する、ことを特徴としている。   In the invention according to claim 4, in addition to the configuration of the invention according to any of claims 3 to 3, when it is estimated that the piping is defective by the impedance measuring means, the electrodes of the two cables One of the terminals is fixed, the impedance is measured while moving the other along the pipe, and it is estimated that there is a pipe defect at the other electrode terminal position when the impedance is minimized. It is said.

請求項5に記載の発明は、上記した請求項1から4の何れかに記載の発明の構成に加えて、上記配管はプラスチック被覆鋼ガス管あるいは防食テープ巻白ガス管である、ことを特徴としている。   The invention according to claim 5 is characterized in that, in addition to the configuration of the invention according to any one of claims 1 to 4, the pipe is a plastic-coated steel gas pipe or an anticorrosion tape white gas pipe. It is said.

請求項6に記載の発明は、土中や水中、海中の配管の酸化、腐食、損傷の状態を診断する配管診断装置において、上記配管の2カ所に配置する、それぞれ先端に電極端子を有する2本のケーブルと、上記2本のケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測するインピーダンス計測手段と、上記インピーダンス計測手段の計測結果から配管の酸化、腐食、損傷の状態を推定する状態推定手段と、を備えることを特徴としている。   The invention according to claim 6 is a pipe diagnostic apparatus for diagnosing the state of oxidation, corrosion, and damage of pipes in the soil, water, and sea. Impedance measurement means for applying an AC voltage between the electrode terminals of the two cables and measuring the impedance between the electrode terminals, and the state of oxidation, corrosion and damage of the pipe from the measurement result of the impedance measurement means And a state estimating means for estimating.

請求項7に記載の発明は、上記した請求項6に記載の発明の構成に加えて、上記状態推定手段は、計測して得られたインピーダンスからインピーダンス複素数線図を求め、そのインピーダンス複素数線図に基づいて配管の酸化、腐食、損傷の状態を推定する、ことを特徴としている。   In the seventh aspect of the invention, in addition to the configuration of the sixth aspect of the invention described above, the state estimating means obtains an impedance complex diagram from the impedance obtained by measurement, and the impedance complex diagram is obtained. It is characterized by estimating the state of oxidation, corrosion and damage of piping based on the above.

また、請求項8に記載の発明は、上記した請求項6または7に記載の発明の構成に加えて、上記配管は白ガス管あるいは亜鉛メッキを施した白ガス管である、ことを特徴としている。   The invention described in claim 8 is characterized in that, in addition to the configuration of the invention described in claim 6 or 7, the pipe is a white gas pipe or a galvanized white gas pipe. Yes.

この発明の配管診断装置では、配管の2カ所に配置したケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測し、その計測結果から配管の腐食、損傷等による欠陥の有無を推定するようにしたので、配管の腐食や損傷の発生を確実に直接的に把握することができ、その配管の管理を十分に行うことができ、また測定も労力を要さず簡単に行うことができる。   In the piping diagnostic device of the present invention, an AC voltage is applied between the electrode terminals of the cables arranged at two locations of the piping, the impedance between the electrode terminals is measured, and the presence or absence of defects due to corrosion, damage, etc. of the piping is determined from the measurement results. Since the estimation was made, it was possible to directly and reliably grasp the occurrence of corrosion and damage to the pipes, manage the pipes sufficiently, and perform the measurement easily and without labor. Can do.

また、配管に欠陥があると推定されたとき、2本のケーブルの電極端子の内、一方の位置を固定し、他方を配管に沿って移動させつつインピーダンスを計測し、インピーダンスが最小となるときの他方の電極端子位置に配管の欠陥があると推定するようにしたので、配管の欠陥位置を特定することができ、欠陥位置の特定を簡単に行うことができるとともに、その修復工事等も的確に行うことができる。   When it is estimated that there is a defect in the piping, when one of the electrode terminals of the two cables is fixed and the impedance is measured while moving the other along the piping, the impedance is minimized Because it was estimated that there was a pipe defect at the other electrode terminal position, the defect position of the pipe could be identified, the defect position could be easily identified, and the repair work, etc. was also accurate. Can be done.

また、この発明の配管診断装置では、配管の2カ所に配置したケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測し、その計測結果から配管の腐食、損傷の状態を推定するようにしたので、配管の腐食や損傷の発生を確実に直接的に把握することができ、配管の管理を十分に行うことができ、また測定も労力を要さず簡単に行うことができる。   In the piping diagnostic device of the present invention, an AC voltage is applied between the electrode terminals of the cables arranged at two locations of the pipe, the impedance between the electrode terminals is measured, and the corrosion or damage state of the pipe is estimated from the measurement result. As a result, the occurrence of corrosion and damage to the pipes can be ascertained directly, management of the pipes can be performed sufficiently, and measurement can be easily performed without requiring labor. .

以下にこの発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1はこの発明の配管診断装置による測定の説明図である。この発明の配管診断装置100は、土中や水中、海中の配管20の腐食、損傷等による欠陥部21の有無を診断する装置であり、2本のケーブル1,2と装置本体3とを有している。なお、ここでは、配管20は、土中に埋設されたガス供給用配管(埋設管)であるとする。   FIG. 1 is an explanatory diagram of measurement by the piping diagnostic device of the present invention. The piping diagnostic device 100 according to the present invention is a device for diagnosing the presence or absence of a defective portion 21 due to corrosion, damage, or the like of piping 20 in the soil, underwater or underwater, and has two cables 1 and 2 and a device body 3. is doing. Here, it is assumed that the pipe 20 is a gas supply pipe (buried pipe) buried in the soil.

埋設管20は、プラスチック被覆鋼ガス管あるいは防食テープ巻白ガス管であり、例えば高圧ガス容器91とガスメータ92との間の土中に設けられ、高圧ガス容器91およびガスメータ92の近傍では地表に露出して配管されている。   The buried pipe 20 is a plastic-coated steel gas pipe or an anticorrosion tape-rolled white gas pipe, and is provided, for example, in the soil between the high-pressure gas container 91 and the gas meter 92. Exposed and piped.

2本のケーブル1,2は、各一端側が上記の装置本体3に電気的に接続され、また各他端側の電極端子1a,2aは埋設管20の2カ所に配置されている。ケーブル1の電極端子1aは、埋設管20のガスメータ92側の地表露出部分22に接触して固定され、ケーブル2の電極端子2aは、土中の埋設管20の近傍に配置されている。   The two cables 1 and 2 are electrically connected at one end side to the apparatus main body 3, and the electrode terminals 1 a and 2 a at the other end side are arranged at two locations on the buried pipe 20. The electrode terminal 1a of the cable 1 is fixed in contact with the ground exposed portion 22 of the buried pipe 20 on the gas meter 92 side, and the electrode terminal 2a of the cable 2 is disposed in the vicinity of the buried pipe 20 in the soil.

装置本体3は、2本のケーブル1,2の電極端子1a,2a間に交流電圧を印加し電極端子1a,2a間のインピーダンスを計測するインピーダンス計測手段31と、このインピーダンス計測手段31の計測結果から埋設管20の腐食、損傷等による欠陥部21の有無を推定する欠陥有無推定手段32とを備えている。   The apparatus main body 3 includes an impedance measuring unit 31 that measures an impedance between the electrode terminals 1a and 2a by applying an AC voltage between the electrode terminals 1a and 2a of the two cables 1 and 2, and a measurement result of the impedance measuring unit 31. And a defect presence / absence estimation means 32 for estimating the presence / absence of the defect portion 21 due to corrosion, damage or the like of the buried pipe 20.

このインピーダンス計測手段31および欠陥有無推定手段32は、例えばマイコンを中心に構築され、メモリに格納された本発明に係るソフトウェアに従ってCPUが動作する機能を含めて構成されている。   The impedance measuring means 31 and the defect presence / absence estimating means 32 are constructed around a microcomputer, for example, and include a function for operating the CPU in accordance with the software according to the present invention stored in a memory.

図2は配管診断装置によるインピーダンス計測結果を示す図である。配管診断装置3のインピーダンス計測手段31は、上記のように、2本のケーブル1,2の電極端子1a,2a間に印加された交流電圧に基づいて、電極端子1a,2a間のインピーダンスを計測し、図2に示すような、交流電圧の周波数を変化させたときのインピーダンス周波数特性を求める。図2の横軸は周波数、縦軸はインピーダンス絶対値である。   FIG. 2 is a diagram showing the result of impedance measurement by the piping diagnostic device. The impedance measuring means 31 of the pipe diagnostic device 3 measures the impedance between the electrode terminals 1a and 2a based on the alternating voltage applied between the electrode terminals 1a and 2a of the two cables 1 and 2 as described above. Then, the impedance frequency characteristic when the frequency of the AC voltage is changed as shown in FIG. 2 is obtained. In FIG. 2, the horizontal axis represents frequency and the vertical axis represents impedance absolute value.

このインピーダンス周波数特性において、埋設管20に欠陥がなく正常な場合は、図2の計測線Aに示すように、傾きが略「−1」の左上がりの直線に近い軌跡を描くようになる。一方、埋設管20に腐食、損傷等による欠陥があれば、図2の計測線B,Cに示すように、周波数の低い領域でフラットに近い軌跡を描くようになる。このような軌跡を描くのは概略次のような理由によるものである。   In this impedance frequency characteristic, when the buried pipe 20 is normal without a defect, a locus close to a straight line with a slope of substantially “−1” is drawn as shown by a measurement line A in FIG. On the other hand, if the buried pipe 20 has a defect due to corrosion, damage, or the like, as shown by measurement lines B and C in FIG. 2, a locus close to flat is drawn in a low frequency region. Such a trajectory is drawn for the following general reason.

図3は埋設管の等価回路を示す図、図4はインピーダンス周波数特性計測の概念を説明するための図である。ここで、埋設管20がプラスチック被覆鋼ガス管であり欠陥を有しているとすると、この埋設管20の等価回路は、浮遊容量(配管診断装置3と埋設管20との間の電気容量)、直列体M、および直列体Nの並列回路となる。ここで、直列体Mは、欠陥がない場合のプラスチック被覆の電気容量CH、および電極端子2aから埋設管20までの最短距離における土壌抵抗RS1が直列に接続されて構成されている。また、直列体Nは、欠陥がある場合のその欠陥部21での分極抵抗RPと欠陥部21の電気容量CPとが並列に接続された並列体N1と、電極端子2aから埋設管20の欠陥部21までの最短距離における土壌抵抗RS2とが直列に接続されて構成されている。 FIG. 3 is a diagram showing an equivalent circuit of the buried pipe, and FIG. 4 is a diagram for explaining the concept of impedance frequency characteristic measurement. Here, if the buried pipe 20 is a plastic-coated steel gas pipe and has a defect, the equivalent circuit of the buried pipe 20 has a floating capacity (electric capacity between the pipe diagnostic device 3 and the buried pipe 20). , The serial body M and the parallel body of the serial body N. Here, the serial body M is configured by connecting in series the electric resistance C H of the plastic coating when there is no defect and the soil resistance R S1 at the shortest distance from the electrode terminal 2 a to the buried pipe 20. In addition, the serial body N has a parallel body N1 in which the polarization resistance R P at the defective portion 21 and the electric capacity C P of the defective portion 21 when there is a defect, and the buried tube 20 from the electrode terminal 2a. The soil resistance R S2 at the shortest distance to the defective portion 21 is connected in series.

そして、インピーダンス周波数特性の計測において、周波数が高い領域では、等価回路の電気容量CHおよび土壌抵抗RS1からなるインピーダンス[{1/(ωCH)}+RS1]が測定され、周波数が低く、(RS2)>[{1/(ωCH)}+RS1]が成立する領域では、欠陥部21に起因する直列体Nによるインピーダンスが測定され、その結果、インピーダンス周波数特性は、図2の計測線B,Cに示すように、周波数の低い領域でフラットに近い軌跡を描くようになる。 In the measurement of impedance frequency characteristics, in the region where the frequency is high, the impedance [{1 / (ωC H )} + R S1 ] composed of the electric capacity C H and the soil resistance R S1 of the equivalent circuit is measured, and the frequency is low. In the region where (R S2 )> [{1 / (ωC H )} + R S1 ] is established, the impedance due to the series body N caused by the defect portion 21 is measured, and as a result, the impedance frequency characteristic is measured in FIG. As shown by lines B and C, a locus close to flat is drawn in a low frequency region.

上記の欠陥有無推定手段32は、計測して得られたインピーダンス周波数特性において、周波数が低い領域、例えば1〜100Hzの間で、インピーダンス絶対値が106Ω以上であれば、埋設管20に欠陥は存在しないと判定し、インピーダンス絶対値が106Ω以下であれば、埋設管20に欠陥が存在すると判定する。 If the impedance absolute value is 10 6 Ω or more in the low frequency region, for example, between 1 and 100 Hz, the above defect presence / absence estimation means 32 is defective in the buried pipe 20. If the absolute value of impedance is 10 6 Ω or less, it is determined that there is a defect in the buried pipe 20.

埋設管20に腐食、損傷等による欠陥部21が存在すると判定されたとき、その欠陥部21の位置は次のようにして特定する。   When it is determined that the buried pipe 20 has a defective portion 21 due to corrosion, damage, or the like, the position of the defective portion 21 is specified as follows.

図5は埋設管の欠陥部位置を特定する場合の説明図である。図の横軸は埋設管の長さ方向での位置を示し、縦軸はインピーダンス絶対値である。埋設管20に欠陥部21が存在すると判定されたとき、図1において、電極端子2aを埋設管20の長さ方向(管路)に沿って、所定間隔(例えば1m間隔や2m間隔)で移動させ、それぞれの位置でインピーダンスを測定する。この場合の周波数は低い値、例えば1〜100Hzの間の一定の値に設定しておく。欠陥部21が存在する場合、低い周波数で測定すると、インピーダンスは電極端子2aと欠陥部21との間の土壌抵抗RS2に支配され、欠陥部21の存在する位置の真上付近に電極端子2aが移動してきたときに、その土壌抵抗RS2は最小となる。したがって、電極端子2aを埋設管20の管路に沿って移動させつつインピーダンスを測定したときに、そのインピーダンス絶対値が最小となる位置(図5のP点)に、欠陥部21が存在していることになる。 FIG. 5 is an explanatory diagram when the position of a defective portion of the buried pipe is specified. The horizontal axis in the figure indicates the position of the buried pipe in the length direction, and the vertical axis indicates the impedance absolute value. When it is determined that the defective portion 21 exists in the buried pipe 20, the electrode terminal 2a is moved at a predetermined interval (for example, 1 m interval or 2 m interval) along the length direction (pipe) of the buried tube 20 in FIG. And measure the impedance at each position. The frequency in this case is set to a low value, for example, a constant value between 1 and 100 Hz. When the defect portion 21 exists, when measured at a low frequency, the impedance is dominated by the soil resistance R S2 between the electrode terminal 2 a and the defect portion 21, and the electrode terminal 2 a is located immediately above the position where the defect portion 21 exists. As the soil moves, its soil resistance R S2 is minimized. Therefore, when the impedance is measured while moving the electrode terminal 2a along the pipe line of the buried pipe 20, the defect portion 21 exists at a position where the absolute value of the impedance is minimum (point P in FIG. 5). Will be.

以上述べたように、この発明の配管診断装置100では、埋設管20の2カ所に配置したケーブル1,2の電極端子1a,2a間に交流電圧を印加し電極端子1a,2a間のインピーダンスを計測し、その計測結果から埋設管20の腐食、損傷等による欠陥の有無を推定するようにしたので、埋設管20の腐食や損傷の発生を確実に直接的に把握することができ、その埋設管20の管理を十分に行うことができ、また測定も労力を要さず簡単に行うことができる。   As described above, in the piping diagnostic device 100 according to the present invention, an AC voltage is applied between the electrode terminals 1a and 2a of the cables 1 and 2 arranged at two locations of the buried pipe 20 to reduce the impedance between the electrode terminals 1a and 2a. Since measurement was performed and the presence or absence of defects due to corrosion, damage, or the like of the buried pipe 20 was estimated from the measurement results, the occurrence of corrosion or damage of the buried pipe 20 can be ascertained directly and directly. The tube 20 can be sufficiently managed, and the measurement can be easily performed without requiring labor.

また、埋設管20に欠陥があると推定されたとき、2本のケーブル1,2の電極端子1a,2aの内、一方の電極端子1aの位置を固定し、他方の電極端子2aを埋設管20に沿って移動させつつインピーダンスを計測し、インピーダンス絶対値が最小となるときの他方の電極端子2aの位置に埋設管20の欠陥があると推定するようにしたので、埋設管20の欠陥位置を特定することができ、欠陥位置の特定を簡単に行うことができるとともに、その修復工事等も的確に行うことができる。   When it is estimated that the buried pipe 20 is defective, the position of one of the electrode terminals 1a and 2a of the two cables 1 and 2 is fixed, and the other electrode terminal 2a is fixed to the buried pipe. 20, the impedance is measured while moving along the line 20, and it is estimated that there is a defect in the buried pipe 20 at the position of the other electrode terminal 2 a when the impedance absolute value is minimized. The defect position can be easily identified, and the repair work can be accurately performed.

次にこの発明の配管診断装置の第2の実施形態を図6および図7を用いて説明する。   Next, a second embodiment of the piping diagnostic device of the present invention will be described with reference to FIGS.

図6はこの発明の配管診断装置の第2の実施形態による測定の説明図である。図において、上記の第1の実施形態と同一の構成要素には同一の符号を付してその説明を省略する。   FIG. 6 is an explanatory view of the measurement according to the second embodiment of the piping diagnostic apparatus of the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

この第2の実施形態における配管診断装置100Aは、白ガス管あるいは亜鉛メッキを施した白ガス管からなる埋設管20の酸化、腐食、損傷の状態を診断する装置であり、この点において、上記の第1の実施形態と相違している。装置本体3Aは、2本のケーブル1,2の電極端子1a,2a間に交流電圧を印加し電極端子1a,2a間のインピーダンスを計測するインピーダンス計測手段31Aと、そのインピーダンス計測手段31Aの計測結果から埋設管20の酸化、腐食、損傷の状態を推定する状態推定手段32Aと、を備えている。   The piping diagnostic device 100A in this second embodiment is a device for diagnosing the state of oxidation, corrosion, and damage of the buried pipe 20 made of a white gas pipe or a galvanized white gas pipe. This is different from the first embodiment. The apparatus body 3A includes an impedance measuring means 31A for measuring an impedance between the electrode terminals 1a and 2a by applying an AC voltage between the electrode terminals 1a and 2a of the two cables 1 and 2, and a measurement result of the impedance measuring means 31A. And a state estimating means 32A for estimating the state of oxidation, corrosion, and damage of the buried pipe 20.

この状態推定手段32Aは、計測して得られたインピーダンスからインピーダンス複素数線図を求め、そのインピーダンス複素数線図に基づいて埋設管の酸化、腐食、損傷の状態を推定する。   The state estimation means 32A obtains an impedance complex diagram from the impedance obtained by measurement, and estimates the state of oxidation, corrosion, and damage of the buried pipe based on the impedance complex diagram.

このインピーダンス計測手段31Aおよび状態推定手段32Aは、例えばマイコンを中心に構築され、メモリに格納された本発明に係るソフトウェアに従ってCPUが動作する機能を含めて構成されている。   The impedance measuring unit 31A and the state estimating unit 32A are constructed including, for example, a microcomputer, and include a function for operating the CPU in accordance with software according to the present invention stored in a memory.

図7は第2の実施形態の配管診断装置によるインピーダンス計測結果を示す図である。配管診断装置3Aのインピーダンス計測手段31Aは、上記のように、2本のケーブル1,2の電極端子1a,2a間に印加された交流電圧に基づいて、電極端子1a,2a間のインピーダンスを計測し、図7に示すような、交流電圧の値を変化させたときのインピーダンス複素数線図を求める。図7の横軸はインピーダンス実数部、縦軸はインピーダンス虚数部である。   FIG. 7 is a diagram illustrating an impedance measurement result obtained by the piping diagnosis apparatus according to the second embodiment. The impedance measuring means 31A of the piping diagnostic device 3A measures the impedance between the electrode terminals 1a and 2a based on the alternating voltage applied between the electrode terminals 1a and 2a of the two cables 1 and 2 as described above. Then, as shown in FIG. 7, an impedance complex diagram when changing the value of the AC voltage is obtained. The horizontal axis in FIG. 7 is the real part of impedance, and the vertical axis is the imaginary part of impedance.

このインピーダンス複素数線図において、埋設管20に酸化、腐食、損傷等の欠陥がなく正常な場合は、図7の計測線Xに示すように、緩やかに上昇し緩やかに下降する曲線を描くようになる。一方、埋設管20に酸化が発生していれば、図7の計測線Yに示すように、右肩上がりの略直線の軌跡を描くようになる。また、埋設管20に腐食が発生していれば、図7の計測線Zに示すように、一旦上昇した後急な勾配で下降する軌跡を描き、インピーダンス実数部、インピーダンス虚数部が双方ともに小さな値に留まる結果となる。このように、埋設管20のインピーダンス複素数線図は、埋設管の酸化等の状態に応じて特徴ある軌跡を描く。   In this impedance complex diagram, when the buried pipe 20 is normal without defects such as oxidation, corrosion, damage, etc., as shown by the measurement line X in FIG. Become. On the other hand, if oxidation has occurred in the buried pipe 20, as shown by the measurement line Y in FIG. Also, if corrosion has occurred in the buried pipe 20, as shown by the measurement line Z in FIG. 7, a trace that once rises and then drops with a steep slope is drawn, and both the real impedance part and the impedance imaginary part are both small. The result will remain in value. As described above, the impedance complex diagram of the buried pipe 20 draws a characteristic trajectory according to the state of the buried pipe such as oxidation.

以上述べたように、この発明の第2の実施形態における配管診断装置100Aでは、埋設管20の2カ所に配置したケーブル1,2の電極端子1a,2a間に交流電圧を印加し電極端子1a,2a間のインピーダンスを計測し、その計測結果から埋設管20の酸化、腐食、損傷の状態を推定するようにしたので、埋設管20の酸化や腐食、損傷の発生を確実に直接的に把握することができ、埋設管の管理を十分に行うことができ、また測定も労力を要さず簡単に行うことができる。   As described above, in the piping diagnostic apparatus 100A according to the second embodiment of the present invention, an AC voltage is applied between the electrode terminals 1a and 2a of the cables 1 and 2 disposed at two locations of the buried pipe 20 to thereby form the electrode terminal 1a. , 2a is measured, and the state of oxidation, corrosion, and damage of the buried pipe 20 is estimated from the measurement result, so that the occurrence of oxidation, corrosion, and damage of the buried pipe 20 can be grasped directly and directly. Therefore, the buried pipe can be sufficiently managed, and the measurement can be easily performed without requiring labor.

なお、上記の説明では配管を土中に埋設されたガス配管であるとしたが、本発明は、ガス配管だけでなく、水中や海中の種々の配管に対しても同様に適用することができる。水中や海水中の場合は、土壌抵抗を水や海水の抵抗値に置換することで、同様の結果が得られた。   In the above description, the pipe is a gas pipe embedded in the soil, but the present invention can be applied not only to the gas pipe but also to various pipes in water and underwater. . In the case of underwater or seawater, the same result was obtained by substituting the resistance of soil with the resistance of water or seawater.

また、ガス配管だけでなく、灯油タンクやガソリンタンク、水タンク等から延出され埋設された配管に対しても、同様に本発明を適用することができる。   Further, the present invention can be similarly applied not only to gas pipes but also to pipes extending from a kerosene tank, a gasoline tank, a water tank, and the like and embedded therein.

この発明の配管診断装置による測定の説明図である。It is explanatory drawing of the measurement by the piping diagnostic apparatus of this invention. 配管診断装置によるインピーダンス計測結果を示す図である。It is a figure which shows the impedance measurement result by a piping diagnostic apparatus. 埋設管の等価回路を示す図である。It is a figure which shows the equivalent circuit of a buried pipe. インピーダンス周波数特性計測の概念を説明するための図である。It is a figure for demonstrating the concept of an impedance frequency characteristic measurement. 図5は埋設管の欠陥部位置を特定する場合の説明図である。FIG. 5 is an explanatory diagram when the position of a defective portion of the buried pipe is specified. この発明の配管診断装置の第2の実施形態による測定の説明図である。It is explanatory drawing of the measurement by 2nd Embodiment of the piping diagnostic apparatus of this invention. 第2の実施形態の配管診断装置によるインピーダンス計測結果を示す図である。It is a figure which shows the impedance measurement result by the piping diagnostic apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1 ケーブル
1a 電極端子
2 ケーブル
2a 電極端子
3 装置本体
3A 装置本体
20 埋設管
21 欠陥部
22 地表露出部分
31 インピーダンス計測手段
31A インピーダンス計測手段
32 欠陥有無推定手段
32A 状態推定手段
91 高圧ガス容器
92 ガスメータ
100 配管診断装置
100A 配管診断装置
DESCRIPTION OF SYMBOLS 1 Cable 1a Electrode terminal 2 Cable 2a Electrode terminal 3 Apparatus main body 3A Apparatus main body 20 Buried pipe 21 Defect part 22 Exposed surface part 31 Impedance measurement means 31A Impedance measurement means 32 Defect existence estimation means 32A State estimation means 91 High pressure gas container 92 Gas meter 100 Piping diagnostic device 100A Piping diagnostic device

Claims (8)

土中や水中、海中の配管の腐食、損傷等による欠陥の有無を診断する配管診断装置において、
上記配管の2カ所に配置する、それぞれ先端に電極端子を有する2本のケーブルと、
上記2本のケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測するインピーダンス計測手段と、
上記インピーダンス計測手段の計測結果から配管の腐食、損傷等による欠陥の有無を推定する欠陥有無推定手段と、
を備えることを特徴とする配管診断装置。
In piping diagnostic equipment that diagnoses the presence or absence of defects due to corrosion, damage, etc. of piping in the soil, water, and sea,
Two cables arranged at two locations of the pipe, each having an electrode terminal at the tip;
Impedance measuring means for applying an alternating voltage between the electrode terminals of the two cables and measuring the impedance between the electrode terminals;
Defect presence / absence estimation means for estimating the presence / absence of defects due to corrosion, damage, etc. of piping from the measurement result of the impedance measurement means,
A piping diagnostic device comprising:
上記2本のケーブルは、双方とも配管の近傍に配置するか、双方とも配管に接触させて配置するか、一方は配管に接触させ他方は配管の近傍に配置するかのいずれかである、請求項1に記載の配管診断装置。   The two cables are either arranged in the vicinity of the pipe, both are arranged in contact with the pipe, or one is in contact with the pipe and the other is arranged in the vicinity of the pipe. Item 2. The piping diagnostic device according to Item 1. 上記インピーダンス計測手段は、配管のインピーダンス周波数特性を求め、そのインピーダンス周波数特性に基づいて配管の腐食、損傷等による欠陥の有無を推定する、請求項1または2に記載の配管診断装置。   The pipe diagnostic apparatus according to claim 1 or 2, wherein the impedance measuring means obtains impedance frequency characteristics of the pipe and estimates the presence or absence of a defect due to corrosion, damage or the like of the pipe based on the impedance frequency characteristic. 上記インピーダンス計測手段により配管に欠陥があると推定されたとき、2本のケーブルの電極端子の内、一方の位置を固定し、他方を配管に沿って移動させつつインピーダンスを計測し、インピーダンスが最小となるときの他方の電極端子位置に配管の欠陥があると推定する、請求項1から3の何れかに記載の配管診断装置。   When it is estimated that the piping has a defect by the impedance measuring means, the impedance is minimized by fixing one position of the electrode terminals of the two cables and moving the other along the pipe. The piping diagnostic device according to any one of claims 1 to 3, wherein the other electrode terminal position is estimated to have a piping defect. 上記配管はプラスチック被覆鋼ガス管あるいは防食テープ巻白ガス管である、請求項1から4の何れかに記載の配管診断装置。   The piping diagnosis device according to any one of claims 1 to 4, wherein the piping is a plastic-coated steel gas tube or a corrosion-resistant tape-wound gas tube. 土中や水中、海中の配管の酸化、腐食、損傷の状態を診断する配管診断装置において、
上記配管の2カ所に配置する、それぞれ先端に電極端子を有する2本のケーブルと、
上記2本のケーブルの電極端子間に交流電圧を印加し電極端子間のインピーダンスを計測するインピーダンス計測手段と、
上記インピーダンス計測手段の計測結果から配管の酸化、腐食、損傷の状態を推定する状態推定手段と、
を備えることを特徴とする配管診断装置。
In piping diagnostic equipment that diagnoses the state of oxidation, corrosion, and damage of piping in soil, water, and sea,
Two cables arranged at two locations of the pipe, each having an electrode terminal at the tip;
Impedance measuring means for applying an alternating voltage between the electrode terminals of the two cables and measuring the impedance between the electrode terminals;
State estimation means for estimating the state of oxidation, corrosion and damage of the pipe from the measurement result of the impedance measurement means;
A piping diagnostic device comprising:
上記状態推定手段は、計測して得られたインピーダンスからインピーダンス複素数線図を求め、そのインピーダンス複素数線図に基づいて配管の酸化、腐食、損傷の状態を推定する、請求項6に記載の配管診断装置。   The pipe diagnosis according to claim 6, wherein the state estimation means obtains an impedance complex diagram from the impedance obtained by measurement, and estimates the state of oxidation, corrosion, and damage of the pipe based on the impedance complex diagram. apparatus. 上記配管は白ガス管あるいは亜鉛メッキを施した白ガス管である、請求項6または7に記載の配管診断装置。   The pipe diagnosis apparatus according to claim 6 or 7, wherein the pipe is a white gas pipe or a galvanized white gas pipe.
JP2005135565A 2005-05-09 2005-05-09 Piping diagnostic device Expired - Fee Related JP4632434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135565A JP4632434B2 (en) 2005-05-09 2005-05-09 Piping diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135565A JP4632434B2 (en) 2005-05-09 2005-05-09 Piping diagnostic device

Publications (2)

Publication Number Publication Date
JP2006313098A true JP2006313098A (en) 2006-11-16
JP4632434B2 JP4632434B2 (en) 2011-02-16

Family

ID=37534642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135565A Expired - Fee Related JP4632434B2 (en) 2005-05-09 2005-05-09 Piping diagnostic device

Country Status (1)

Country Link
JP (1) JP4632434B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271540A (en) * 2006-03-31 2007-10-18 Tokiko Techno Kk Corrosion estimation apparatus and corrosion estimation method
KR100947664B1 (en) * 2008-02-28 2010-03-12 한국건설기술연구원 System for Inspecting a Wrong Connecting of a Drain Pipe using a Electricity Conductivity and Method using the Same
JP2010256224A (en) * 2009-04-27 2010-11-11 Mitsubishi Electric Corp Piping diagnosing device and air conditioner
JP2015175612A (en) * 2014-03-13 2015-10-05 日本電信電話株式会社 Corrosion measurement method
WO2020036342A1 (en) * 2018-08-13 2020-02-20 주식회사 금정 Metering device for collective maintenance
KR102303297B1 (en) * 2020-11-23 2021-09-23 송재순 Pipe line diagnosis apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111401A (en) * 1984-11-06 1986-05-29 Nippon Sharyo Seizo Kaisha Ltd Method for detecting corrosion of buried pipe or the like
JPH0387669A (en) * 1989-08-01 1991-04-12 Eniricerche Spa Method and apparatus for monitoring safety of metal structural body
JPH05203600A (en) * 1992-01-28 1993-08-10 Toho Gas Co Ltd Calculation of impedance index and measuring method for degree of pipe corrosion by use of the index
JP2004198410A (en) * 2002-12-02 2004-07-15 Osaka Gas Co Ltd Method for inspecting defect in coated pipe, and method for diagnosing corrosion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111401A (en) * 1984-11-06 1986-05-29 Nippon Sharyo Seizo Kaisha Ltd Method for detecting corrosion of buried pipe or the like
JPH0387669A (en) * 1989-08-01 1991-04-12 Eniricerche Spa Method and apparatus for monitoring safety of metal structural body
JPH05203600A (en) * 1992-01-28 1993-08-10 Toho Gas Co Ltd Calculation of impedance index and measuring method for degree of pipe corrosion by use of the index
JP2004198410A (en) * 2002-12-02 2004-07-15 Osaka Gas Co Ltd Method for inspecting defect in coated pipe, and method for diagnosing corrosion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271540A (en) * 2006-03-31 2007-10-18 Tokiko Techno Kk Corrosion estimation apparatus and corrosion estimation method
KR100947664B1 (en) * 2008-02-28 2010-03-12 한국건설기술연구원 System for Inspecting a Wrong Connecting of a Drain Pipe using a Electricity Conductivity and Method using the Same
JP2010256224A (en) * 2009-04-27 2010-11-11 Mitsubishi Electric Corp Piping diagnosing device and air conditioner
JP2015175612A (en) * 2014-03-13 2015-10-05 日本電信電話株式会社 Corrosion measurement method
WO2020036342A1 (en) * 2018-08-13 2020-02-20 주식회사 금정 Metering device for collective maintenance
KR102303297B1 (en) * 2020-11-23 2021-09-23 송재순 Pipe line diagnosis apparatus

Also Published As

Publication number Publication date
JP4632434B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2757306A1 (en) Method and equipment for identifying and measuring alternating current interference in buried ducts
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
JP4632434B2 (en) Piping diagnostic device
CN112430817B (en) Split type device and method for buried metal pipeline corrosion parameter test probe
CN105695997A (en) Safety protection method for underground metal pipeline
CN104233314A (en) Dynamic interference potential test system for buried pipeline
NO145034B (en) PROCEDURE AND DEVICE FOR PERFORMING ELECTRICAL INSPECTIONS OF OFFSHORE CONSTRUCTIONS
JP2007278843A (en) Device and method for diagnosing corrosion in underground buried steel structure
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP4599203B2 (en) Embedded pipe corrosion diagnosis system and buried pipe corrosion diagnosis method
JP5515680B2 (en) Heavy anti-corrosion coated steel and its durability monitoring method
JP4698318B2 (en) Anticorrosion state monitoring method and system
US6262578B1 (en) Detection and location of current leakage paths and detection of oscillations
JP2007271540A (en) Corrosion estimation apparatus and corrosion estimation method
JP2007271541A (en) Corrosion diagnosis device of underground embedded structure, and corrosion diagnostic method
JP4522289B2 (en) Corrosion estimation method
JP5027628B2 (en) Method and apparatus for inspecting coating defects on inner surface of metal tube
RU2157424C1 (en) Cathode protection system and diagnostics of pipe-lines
CN219777442U (en) Device for evaluating pipeline protection effect of crossing section under complex soil environment
Rondinella et al. Development of a warning system for defects onset in organic coatings on large surfaces
CN210135456U (en) Instrument for diagnosing overlapping phenomenon between oil pipelines
CN212107901U (en) Underground water supply and drainage pipeline leakage detection system
JP2006275623A (en) Ground resistance measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4632434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees