JP2006312754A - Treatment method for surface of anodized aluminum - Google Patents

Treatment method for surface of anodized aluminum Download PDF

Info

Publication number
JP2006312754A
JP2006312754A JP2005111028A JP2005111028A JP2006312754A JP 2006312754 A JP2006312754 A JP 2006312754A JP 2005111028 A JP2005111028 A JP 2005111028A JP 2005111028 A JP2005111028 A JP 2005111028A JP 2006312754 A JP2006312754 A JP 2006312754A
Authority
JP
Japan
Prior art keywords
aluminum
fluorine
anodized
containing resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111028A
Other languages
Japanese (ja)
Inventor
Rokuro Ito
六郎 伊藤
Kenichiro Ito
健一郎 伊藤
Kenji Akahori
顕治 赤堀
Yasuo Sakura
康男 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAKI KK
Original Assignee
MIYAKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAKI KK filed Critical MIYAKI KK
Priority to JP2005111028A priority Critical patent/JP2006312754A/en
Publication of JP2006312754A publication Critical patent/JP2006312754A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for attaining the improvement of the corrosion preventability for the surface of anodized aluminum, the improvement of the elution properties from the coated anodized aluminum or the like, i.e., a coating method. <P>SOLUTION: In the treatment method for the surface of an aluminum forming material, an aluminum forming material is anodized, and thereafter, fluorinated resin emulsion is mixed with a cationic or anionic surfactant so as to make an electrodeposition coating material, which is electrodeposited to stick a fluorinated resin coating film, and next, the fluorinated resin coating film is heat-treated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、陽極酸化アルミニウムの表面の防食性の改善、被覆された陽極酸化アルミニウムからの溶出性の改善などを目的とする処理方法すなわち、被覆方法に関するものである。   The present invention relates to a treatment method aimed at improving the anticorrosion property of the surface of anodized aluminum and improving the elution from the coated anodized aluminum, that is, a coating method.

アルミニウムは軽量であり、船外機ケースの如き船舶のエンジン部品、シャーシーの如き自動車用部品、ビルのパネルの如き屋外構造物、各種航空宇宙用機器等に使用されている。しかしながらその防食は通常陽極酸化であり、多数の微細孔を有するので、封孔処理がされているが、いまだ防食効果は不十分であり、このため種々のプラスチック塗料を塗工する提案がある。
金属にフッ素樹脂を塗工する方法の一例はフッ素樹脂をバインダーを用いてコーティングして付着させ、次に高温で熱処理することにより緻密化され防食性の大きい物が得られている。また、変性フッ素樹脂と、アクリル酸をグラフトしたものを用い、溶剤接着型として金属に塗布焼き付ける方法が知られている。又、アルミニウム部材のフッ素樹脂塗装に際して、クロム酸クロメート処理や陽極酸化処理して、フッ素樹脂を含む塗料を塗布する方法が知られている。しかしこの方法によるものはフッ素樹脂の皮膜厚さが大きいことと、アルミニウムへの接着性が小さくクロム酸の如き接着層を設けるか、エポキシ樹脂、アクリル樹脂又はポリエステル樹脂などのプライマー層を設けることが行われている(特開2003−71381号公報)。又カチオン性を付与するアクリル酸とアクリル酸のフッ化アルキルエステルの共重合体を架橋材とともに用い、フッ素樹脂粉末も添加した電着性樹脂組成物が知られている(特開2002−38078号公報)この樹脂皮膜は、フッ素樹脂単独よりも機械的強度や化学的性質が劣るほか、耐熱性も劣るものである。
なお、上記の各方法では皮膜の化学的、機械的強度は不十分で、衝撃や磨耗の機会の大きい部品では利用分野に制限があるという問題がある。
Aluminum is lightweight and is used in ship engine parts such as outboard motor cases, automobile parts such as chassis, outdoor structures such as building panels, and various aerospace equipment. However, the anticorrosion is usually anodized and has a large number of micropores, so that it is sealed, but the anticorrosion effect is still insufficient, and therefore there are proposals to apply various plastic paints.
An example of a method for applying a fluororesin to a metal is to obtain a densified and highly anticorrosive material by coating the fluororesin with a binder and attaching it to the metal, followed by heat treatment at a high temperature. Further, there is known a method in which a modified fluororesin and a grafted acrylic acid are used and applied to a metal as a solvent adhesion type. In addition, when a fluororesin is applied to an aluminum member, a method is known in which a chromic acid chromate treatment or an anodizing treatment is applied and a paint containing a fluororesin is applied. However, in this method, the film thickness of the fluororesin is large, and the adhesion to aluminum is small and an adhesive layer such as chromic acid is provided, or a primer layer such as epoxy resin, acrylic resin or polyester resin is provided. (Japanese Patent Laid-Open No. 2003-71381). Also known is an electrodepositable resin composition in which a copolymer of acrylic acid and a fluorinated alkyl ester of acrylic acid imparting cationic properties is used together with a crosslinking material, and a fluororesin powder is also added (Japanese Patent Laid-Open No. 2002-38078). Publication) This resin film is inferior in mechanical strength and chemical properties as compared with a fluororesin alone, and inferior in heat resistance.
Each of the above methods has a problem in that the chemical and mechanical strength of the film is insufficient, and there is a limitation in the field of application for parts having a large opportunity for impact and wear.

又、アクリル酸やメタアクリル酸をイソシヤネートやポリシロキサン及びフッ素樹脂微粉末と混合したものを有機酸で中和したエマルジョンを電着する提案があるが、フッ素樹脂単独ではないので、それだけ皮膜に化学的、機械的な弱点がある(特開2001−19897号公報)。アクリル樹脂と、フッ素樹脂とアミノ樹脂からなる電着塗料もあるが、これもフッ素樹脂単独の皮膜より耐食性が劣り、耐摩耗性などの機械的強度も劣り、耐熱性も劣るものである、(特開2002−249702号公報)。
なお、上記の各方法では皮膜の化学的、機械的強度は不十分で、衝撃や磨耗の機会の大きい部品では利用分野に制限があるという問題がある。
なお、この電着塗装方法には、製品を陽極にして陽極析出型電着塗料を用いて電解するアニオン電着塗料と、製品を陰極にして陰極析出型電着塗料を用いて電解するカチオン電着方法がある。

特開2001−19897号公報 特開2002−249702号公報 特開2002−38078号公報 特開2003−71381号号公報
There is also a proposal to electrodeposit an emulsion obtained by mixing acrylic acid or methacrylic acid with isocyanate, polysiloxane and fluororesin fine powder with organic acid, but it is not a fluororesin alone. And mechanical weaknesses (Japanese Patent Laid-Open No. 2001-19897). There are also electrodeposition paints consisting of acrylic resin, fluororesin and amino resin, but this is also inferior in corrosion resistance, inferior in mechanical strength such as wear resistance, and inferior in heat resistance. JP 2002-249702 A).
Each of the above methods has a problem in that the chemical and mechanical strength of the film is insufficient, and there is a limitation in the field of application for parts having a large opportunity for impact and wear.
This electrodeposition coating method includes an anionic electrodeposition paint that is electrolyzed using an anodic deposition electrodeposition paint with the product as an anode, and a cationic electrode that is electrolyzed with a cathodic deposition electrodeposition paint using the product as a cathode. There is a wearing method.
.
JP 2001-19897 A JP 2002-249702 A JP 2002-38078 A JP 2003-71381 A

発明が解決しようとする問題点は、アルミニウム製品は陽極酸化しただけのものでは防食効果が不十分であり、また、フッ素樹脂を直接アルミニウム製品もしくはその陽極酸化製品にコーティングしても、一応の防食効果はえられるものの、過酷な条件で使用される機器などにおいては、更に防食性の良いもので、しかもイオンの溶出が少ないものが求められている。   The problem to be solved by the invention is that an aluminum product that has only been anodized is insufficient in its anticorrosive effect, and even if a fluororesin is directly coated on the aluminum product or its anodized product, it is temporarily anticorrosive. Although effective, equipment used under severe conditions is required to have better anticorrosion properties and less ion elution.

本発明は、上記の問題点を解決するためになされたもので、請求項1の発明は、アルミニウム成形材料を陽極酸化したのち、フッ素含有樹脂のエマルジョン塗料をアニオン又はカチオン界面活性剤とともに2次電解してフッ素含有樹脂皮膜を電着させ、次に、該フッ素含有樹脂皮膜を加熱処理することを特徴とするアルミニウム成形材料の表面の処理方法であり、請求項2の発明は、アルミニウム成形材料が展伸用アルミニウム合金、鋳物用アルミニウム合金から選択されたことを特徴とする請求項1に記載のアルミニウム成形材料の表面処理方法である。   The present invention has been made in order to solve the above-mentioned problems. The invention of claim 1 is directed to anodizing an aluminum molding material, and then subjecting a fluorine-containing resin emulsion paint to a secondary solution together with an anionic or cationic surfactant. A method of treating the surface of an aluminum molding material, characterized by electrolyzing and electrodepositing a fluorine-containing resin film, and then heat-treating the fluorine-containing resin film. The surface treatment method for an aluminum molding material according to claim 1, wherein is selected from an aluminum alloy for drawing and an aluminum alloy for casting.

ここに用いられるアルミニウム基材は、純アルミニウムは勿論、展伸用アルミニウム合金、鋳物用アルミニウム合金のいずれでもよい。まず、脱脂、洗浄し、必要に応じてエッチング処理、酸洗浄を行う。次に当該アルミニウム合金を陽極にして、鉛もしくはグラフィトを陰極にして直流又はパルス波形にて電解する。かくして多数の孔すなわちボアと称される微細孔を有する陽極酸化皮膜が生成する。   The aluminum substrate used here may be pure aluminum as well as aluminum alloy for drawing and aluminum alloy for casting. First, degreasing and cleaning are performed, and etching and acid cleaning are performed as necessary. Next, the aluminum alloy is used as an anode, and lead or graphite is used as a cathode, and electrolysis is performed with a direct current or a pulse waveform. Thus, an anodic oxide film having a large number of holes or micropores called bores is formed.

陽極酸化の電解浴には硫酸、蓚酸、リン酸、クロム酸、芳香族スルフォン酸などの水溶液を電解浴として用いる。
陽極酸化皮膜の厚さは、2〜50μ、より好ましくは5〜10μであり、2μより薄い場合は該皮膜が薄すぎて、後に施す樹脂皮膜が陽極酸化でできた孔(ボア)の深さが浅過ぎて後に生成されるフッ素含有樹脂皮膜がその中に投錨する程度が少なくなるので好ましくない。また、50μより厚い場合は必要以上のボアの深いものが生成するので、陽極酸化にコストがかかり過ぎ、また、耐熱性、放熱性、寸法安定性に問題があり好ましくない。
このようにした陽極酸化皮膜を有するアルミニウム基材に、フッ素含有樹脂のエマルジョン塗料をアニオン又はカチオン界面活性剤とともに2次電解してフッ素含有樹脂皮膜を電着させる。ここに用いられる樹脂としては4フッ化エチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニルエチレン/テトラフルオロエチレン、エチレン/クロロトリフルオロエチレン等フッ素系樹脂が挙げられる。なお、4フッ化エチレン樹脂がもっとも耐食性、耐摩耗性等に優れており好ましく、パーフルオロアルキル化合物は、アルキル基の影響もあり、好ましくない、しかし用途によっては上記フッ素含有樹脂に限定されるものではない。
An aqueous solution of sulfuric acid, oxalic acid, phosphoric acid, chromic acid, aromatic sulfonic acid or the like is used as the electrolytic bath for the anodic oxidation electrolytic bath.
The thickness of the anodized film is 2 to 50 μm, more preferably 5 to 10 μm. When the film is thinner than 2 μm, the film is too thin, and the depth of the hole (bore) formed in the resin film to be applied later is anodized. Is too shallow, it is not preferable because the fluorine-containing resin film produced later is less cast. On the other hand, when the thickness is larger than 50 μm, a deeper bore than necessary is generated, so that the anodic oxidation costs too much, and there are problems in heat resistance, heat dissipation, and dimensional stability.
A fluorine-containing resin film is electrodeposited on the aluminum base material having the anodized film as described above by secondarily electrolyzing a fluorine-containing resin emulsion paint together with an anionic or cationic surfactant. The resin used here is a fluororesin such as tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinylethylene fluoride / tetrafluoroethylene, ethylene / chlorotrifluoroethylene, etc. Is mentioned. It is to be noted that tetrafluoroethylene resin is most preferable because it is most excellent in corrosion resistance, wear resistance, etc., and perfluoroalkyl compounds are not preferable because of the influence of alkyl groups, but are limited to the above-mentioned fluorine-containing resins depending on applications. is not.

電着に当たっては、該樹脂をカチオン性の界面活性剤とともに使用し、乳酸、酢酸などの有機酸と水とを加えて、ディスパーやホモミキサー等の混合機でよく混合して電着塗装をする。
フッ素系のカチオン系界面活性剤としてはパーフルオロアルキル第4級アミン塩が用いられる。
フッ素含有樹脂の配合量は、イオン性水溶液100重量部に対して5〜100重量部が好ましく用いられる。
カチオン性界面活性剤を用いる場合は、被塗物が陰極となるので、金属イオンの溶出がないためアルミニウムに変色が起こらない。
電着塗装された樹脂の皮膜は内部では陽極酸化アルミニウムのボア内に投錨しながら、厚さ1〜100μ好ましくは5〜50μに形成される。皮膜厚が1μ未満ではボア内への投錨による樹脂の保持効果が不十分であり、且つ衝撃や磨耗などの特性も不十分で防食効果が上がらない、100μを越えて厚い場合は製品に必要以上の樹脂保護皮膜が形成されるため、コスト高となり、且つ精密な部品設計上好ましくない。
In electrodeposition, the resin is used together with a cationic surfactant, and an organic acid such as lactic acid or acetic acid is added to water and mixed well with a mixer such as a disper or a homomixer to perform electrodeposition coating. .
A perfluoroalkyl quaternary amine salt is used as the fluorine-based cationic surfactant.
The blending amount of the fluorine-containing resin is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the ionic aqueous solution.
When a cationic surfactant is used, the object to be coated serves as a cathode, so that there is no elution of metal ions, so no discoloration occurs in aluminum.
The electrodeposition-coated resin film is formed to have a thickness of 1 to 100 μm, preferably 5 to 50 μm, while being cast in an anodized aluminum bore. If the film thickness is less than 1μ, the resin holding effect by throwing into the bore is insufficient, and the properties such as impact and wear are not sufficient, and the anticorrosion effect does not increase. If it exceeds 100μ, the product is more than necessary. Since the resin protective film is formed, the cost is high, and it is not preferable for precise component design.

本発明の方法によれば、アルミニウムの陽極酸化した表面の外部に、フッ素含有樹脂のエマルジョン塗料をカチオン界面活性剤とともに2次電解し電着した結果該樹脂が陽極酸化皮膜の多孔(ボア)の入り口の一部に入り込み投錨効果を有してフッ素含有樹脂皮膜が形成されるため、塩水噴霧クロスカット試験で明らかなとおり、樹脂皮膜は薄くても強固に接合され、且つフッ素を分子構造中に有することにより、耐熱性と耐腐食性に優れたものが得られる。更にフッ素含有樹脂の電着皮膜は、焼結もしくは焼成により、樹脂粒子は完全に一体化してより強固な皮膜を形成し、防食性を担保することができる。また、溶出試験時の導電率及び硫酸イオンの溶出量の変化の状態から見て本発明によるものは、フッ素含有樹脂皮膜の電解付着により導電率が低く、硫酸イオンの溶出量も極めて低いので、その効果が著しいことがわかる。又更に、耐熱水性、耐酸、耐アルカリ性も非常に高いことが判る。よって、このよう軽量なアルミニウム素材に、耐食性皮膜を設けることにより、船舶のエンジン部品、自動車用部品、屋外構造物、航空宇宙用機器などの耐食性を要求される部品として効果的であり、溶出試験の結果から見て純度の高い化学機器の部品として好適なものを提供することができる。   According to the method of the present invention, as a result of the secondary electrolysis and electrodeposition of a fluorine-containing resin emulsion paint together with a cationic surfactant on the outside of the anodized surface of aluminum, the resin is porous (bore) in the anodized film. Since a fluorine-containing resin film is formed with a penetration effect by entering part of the entrance, the resin film is firmly bonded even if it is thin, and fluorine is incorporated into the molecular structure, as is apparent from the salt spray crosscut test. By having it, the thing excellent in heat resistance and corrosion resistance is obtained. Furthermore, the electrodeposition film of the fluorine-containing resin can be completely integrated with the resin particles by sintering or firing to form a stronger film, thereby ensuring corrosion resistance. In addition, as seen from the state of change in conductivity and sulfate ion elution amount during the elution test, according to the present invention, the electroconductivity of the fluorine-containing resin film has low conductivity, and the sulfate ion elution amount is also extremely low. It turns out that the effect is remarkable. Furthermore, it can be seen that the hot water resistance, acid resistance, and alkali resistance are very high. Therefore, by providing a corrosion-resistant coating on such a lightweight aluminum material, it is effective as a component that requires corrosion resistance, such as marine engine parts, automotive parts, outdoor structures, and aerospace equipment. As a result, it is possible to provide a component suitable for a chemical instrument having a high purity.

アルミニウム成形材料を陽極酸化したのち、フッ素含有樹脂エマルジョンを陽イオン界面活性剤とともに2次電解してフッ素含有樹脂皮膜を電着させ、次に、該フッ素含有樹脂皮膜を焼結又は焼成することを特徴とするが、その温度は樹脂により異なるが硬化点以上が好ましい。図1は本発明で得られた製品の拡大断面図であり、アルミニウム基材1の陽極酸化による多孔2内に一部入り込んで投錨したフッ素樹脂皮膜3が形成される。次に180℃〜200℃で焼結もしくは焼成により該樹脂皮膜の微細孔を完全に固化して緻密化することができる。
本発明は通常アルミ二ウム材に実施される熱水等により封孔処理をするという技術常識を排除し、また、多孔内にモリブデンなどの2次電解充填をすることなく、直接フッ素含有樹脂を電着することにより、従来考えられなかったような耐熱性、耐化学薬品性、耐磨耗性等フッ素含有樹脂が本来有する特性を完全に保有し、かつ、フッ素含有樹脂を粉末塗装や溶融塗装したものに比べて、アルミニウム材と強固に接合した皮膜を得ることができるので、従来のアルミニウム材より遥かに優れた表面を有する物を提供することができる。
After anodizing the aluminum molding material, the fluorine-containing resin emulsion is subjected to secondary electrolysis with a cationic surfactant to electrodeposit the fluorine-containing resin film, and then the fluorine-containing resin film is sintered or fired. Although it is characterized, the temperature varies depending on the resin, but is preferably above the curing point. FIG. 1 is an enlarged cross-sectional view of a product obtained by the present invention, in which a fluororesin film 3 that is partially penetrated into an aperture 2 by anodization of an aluminum base 1 and cast is formed. Next, the fine pores of the resin film can be completely solidified and densified by sintering or firing at 180 ° C. to 200 ° C.
The present invention eliminates the technical common sense that sealing treatment is usually performed with hot water or the like, which is usually performed on aluminum materials, and also without directly filling the pores with a secondary electrolytic material such as molybdenum. By electrodeposition, it completely retains the properties inherent to fluorine-containing resins, such as heat resistance, chemical resistance, and abrasion resistance, which were not previously thought of, and it is also possible to apply fluorine-containing resins to powder coating and melt coating. Since a film strongly bonded to an aluminum material can be obtained as compared with the above-described one, a product having a surface far superior to that of a conventional aluminum material can be provided.

実施例1
AC4CHの鋳物用アルミニウム合金からなる長さ50mm、幅25mm厚さ3.5mm 板を、アルカリ脱脂洗浄、水洗乾燥したのち、硫酸27%、温度3℃、電流密度3A/dmで30分間陽極酸化処理をし、陽極酸化膜厚10μのものを得た。次に水洗して中性とした後、陽イオン界面活性剤とともにフッ素含有樹脂として4フッ化エチレン樹脂ディスパージョンを用い、処理電圧80V、電解時間90秒で電着して樹脂皮膜厚10μの製品を得た。これを100℃、10分で一次焼付けを行い、180℃、4分で二次焼付けを行いフッ素含有樹脂皮膜を熱硬化して微細孔を消滅させ、本発明によるフッ素含有樹脂皮膜を有する陽極酸化アルミニウムを得た。
Example 1
AC4CH casting aluminum alloy 50mm long, 25mm wide, 3.5mm thick Plate was alkali degreased, washed and dried, then anodized for 30 minutes at 27% sulfuric acid, temperature 3 ° C, current density 3A / dm 2 Processing was performed to obtain an anodized film having a thickness of 10 μm. Next, after neutralizing by washing with water, a product with a resin film thickness of 10 μm is obtained by electrodeposition with a treatment voltage of 80 V and an electrolysis time of 90 seconds using a tetrafluoroethylene resin dispersion as a fluorine-containing resin together with a cationic surfactant. Got. This is subjected to primary baking at 100 ° C. for 10 minutes, secondary baking at 180 ° C. for 4 minutes to thermally cure the fluorine-containing resin film to eliminate micropores, and anodization having the fluorine-containing resin film according to the present invention Aluminum was obtained.

実施例2
JIS A記号5052の展伸用アルミニウム合金からなる直径100mm、厚み10mmのパイプを用意し、脱脂、アルカリ洗浄洗浄、水洗乾燥したのち、硫酸27%、温度15℃、電流密度2.5A/dmで15分間陽極酸化処理をし陽極酸化膜厚10μのものを得た。次に水洗して中性とした後、陽イオン表面活性剤とともにフッ素含有樹脂として4フッ化エチレン樹脂ディスパージョンを用い、処理電圧80V、電解時間90秒で電着して皮膜厚10μの製品を得た。
次に水洗して中性とした後、これを水洗乾燥した後、100℃、10分で一次熱処理を行い、180℃、40分で二次熱処理を行いフッ素含有樹脂皮膜を熱硬化して微細孔を消滅させ、本発明によるフッ素樹脂皮膜を有する陽極酸化アルミニウムを得た。
Example 2
A pipe having a diameter of 100 mm and a thickness of 10 mm made of an aluminum alloy for extension of JIS A symbol 5052 is prepared, degreased, washed with alkali, washed with water, dried with sulfuric acid 27%, temperature 15 ° C., current density 2.5 A / dm 2 Was anodized for 15 minutes to obtain an anodized film having a thickness of 10 μm. Next, after neutralization by washing with water, a cationic fluorosurfactant and a tetrafluoroethylene resin dispersion are used as a fluorine-containing resin, and electrodeposition is performed at a treatment voltage of 80 V and an electrolysis time of 90 seconds. Obtained.
Next, after washing with water to neutrality, this was washed with water and dried, then subjected to primary heat treatment at 100 ° C. for 10 minutes, and then subjected to secondary heat treatment at 180 ° C. for 40 minutes to thermally cure the fluorine-containing resin film and fine The pores were extinguished to obtain anodized aluminum having a fluororesin film according to the present invention.

実施例3
JIS A記号2024の展伸用アルミニウム合金、長さ100mm、幅100mm、厚さ1.0mmを用意し、脱脂、アルカリ洗浄洗浄、水洗乾燥したのち、硫酸25%、温度10±1℃、電流密度3A/dm15分間陽極酸化処理をし、陽極酸化膜厚15μのものを得た。次に水洗して中性とした後、陽イオン表面活性剤とともにフッ素含有樹脂として4フッ化エチレン樹脂ディスパージョンを用い、処理電圧80V、電解時間90秒で電着して皮膜厚10μの製品を得た。
次に水洗して中性とした後、これを水洗乾燥した後、100℃、10分で一次熱処理を行い、180℃、40分で二次熱処理を行いフッ素含有樹脂皮膜を熱硬化して微細孔を消滅させ、本発明によるフッ素含有樹脂皮膜を有する陽極酸化アルミニウムを得た。
実施例2と同様な展伸用アルミニウム合金の長さ50mm、幅25mm、厚さ10mmの板材を用意し、フッ素含有樹脂としてポリクロロトリフルオロエチレン樹脂のディスパージョンを用い、実施例2と同様な条件で脱脂から電解処理を行い、皮膜厚10μの製品を得た。
Example 3
JIS A2024 expansion aluminum alloy, length 100mm, width 100mm, thickness 1.0mm prepared, degreased, washed with alkali, washed with water, dried with sulfuric acid 25%, temperature 10 ± 1 ° C, current density in 3A / dm 2, the anodic oxidation treatment for 15 minutes to obtain those anodic oxide film thickness 15.mu.. Next, after neutralization by washing with water, a cationic fluorosurfactant and a tetrafluoroethylene resin dispersion are used as a fluorine-containing resin, and electrodeposition is performed at a treatment voltage of 80 V and an electrolysis time of 90 seconds. Obtained.
Next, after washing with water to neutrality, this was washed with water and dried, then subjected to primary heat treatment at 100 ° C. for 10 minutes, and then subjected to secondary heat treatment at 180 ° C. for 40 minutes to thermally cure the fluorine-containing resin film and fine The pores were extinguished to obtain anodized aluminum having a fluorine-containing resin film according to the present invention.
A plate material having a length of 50 mm, a width of 25 mm, and a thickness of 10 mm, which is the same as that of Example 2, is prepared, and a dispersion of polychlorotrifluoroethylene resin is used as the fluorine-containing resin. An electrolytic treatment was carried out from degreasing under conditions to obtain a product having a film thickness of 10 μm.

比較例1
実施例1に示したものと同じ材料で、同一の方法で陽極酸化し、脱脂、洗浄、水洗乾燥したのち、同じフッ素含有樹脂の塗料を塗布し、樹脂皮膜厚10μの製品を得た。これを100℃、10分で一次熱処理を行い、250℃、30分二次熱処理を行い比較用のフッ素含有樹脂皮膜を有する陽極酸化アルミニウムを得た。
Comparative Example 1
The same material as shown in Example 1 was anodized by the same method, degreased, washed, washed with water and dried, and then the same fluorine-containing resin coating was applied to obtain a product with a resin film thickness of 10 μm. This was subjected to a primary heat treatment at 100 ° C. for 10 minutes, and then subjected to a secondary heat treatment at 250 ° C. for 30 minutes to obtain an anodized aluminum having a fluorine-containing resin film for comparison.

比較例2
実施例2に示したものと同じ材料で、同一の方法で、脱脂、洗浄、水洗乾燥したのち、実施例2に示したものと同じフッ素含有樹脂塗料を実施例2と同様に電着し、100℃、10分で一次加熱処理を行い、180℃、40分で2次加熱処理して比較用のフッ素含有樹脂皮膜を有するアルミニウム板を得た。
Comparative Example 2
After degreasing, washing, washing with water and drying with the same materials as those shown in Example 2, the same fluorine-containing resin paint as that shown in Example 2 was electrodeposited in the same manner as in Example 2, Primary heat treatment was performed at 100 ° C. for 10 minutes, and secondary heat treatment was performed at 180 ° C. for 40 minutes to obtain an aluminum plate having a comparative fluorine-containing resin film.

比較例3
実施例3に示したものと同じ材料で、同一の方法で陽極酸化し、脱脂、洗浄、水洗乾燥したのち、アクリル樹脂塗料を塗布し、145℃、30分加熱処理して比較用のアクリル樹脂皮膜を有する陽極酸化アルミニウムを得た。
Comparative Example 3
The same material as shown in Example 3, anodized by the same method, degreased, washed, washed with water and dried, then coated with acrylic resin paint, heat treated at 145 ° C. for 30 minutes, and comparative acrylic resin An anodized aluminum having a coating was obtained.

前記実施例及び比較例について、下記の試験を行った。
<塩水噴霧試験>
テストピース塩水噴霧前にナイフカットを行いJIS Z 2371「塩水噴霧試験」により、336時間塩水噴霧を行い、表面状態を顕微鏡により考察した。
これによれば、代表例として、実施例2のものと、比較例2のものとのナイフカットした状態の顕微鏡写真を模式的に示したものがそれぞれ図2、及び図3に示されている。
なお、図1の本発明の実施例によるものは、全く異常がないが、図3の比較例のものは7箇所に黒点を生じている。この黒点はフッ素樹脂皮膜の剥離している部分を示すものである。
なお、図3において、黒点の位置を1〜7の符号で示してあるが、(イ)(ロ)(ハ)(ニ)は、図4、図5、図6、図7に拡大図として示す。
本発明によるものは図2に示すとおり、黒点の発生が認められなかったが、比較例のものは、図3に示すとおり黒点が7箇所発生した。黒点の位置により1〜7の符号を付してある。また、この部分の拡大図のために、点線の四角で、(イ)、(ロ)、(ハ)、(ニ)の4箇所を区画して示してあり、この(イ)、(ロ)、(ハ)、(ニ)は、それぞれ図4、図5、図6及び図7の拡大図でアル。また、欄外にし示したメジャーにより黒点の位置とサイズを判読することができる。
なお、フッ素樹脂以外の樹脂をコーティングしたものは、上記のような試験を行うことなく、耐食性、耐薬品性、耐水性などの特性が悪いので、比較試験は省略してある。
The following tests were conducted on the examples and comparative examples.
<Salt spray test>
Prior to spraying the test piece with salt water, knife cutting was performed, and salt water was sprayed for 336 hours according to JIS Z 2371 “Salt water spray test”, and the surface state was examined with a microscope.
According to this, as a representative example, what typically showed the micrograph of the state of knife-cut of the thing of Example 2 and the thing of the comparative example 2 is shown by FIG. 2 and FIG. 3, respectively. .
1 according to the embodiment of the present invention has no abnormality, but the comparative example in FIG. 3 has black spots at seven locations. This black dot indicates the part where the fluororesin film is peeled off.
In FIG. 3, the positions of the black spots are indicated by reference numerals 1 to 7, but (a), (b), (c), and (d) are enlarged views in FIGS. 4, 5, 6, and 7. Show.
As shown in FIG. 2, no black spots were observed in the sample according to the present invention, but in the comparative example, seven black spots were generated as shown in FIG. Reference numerals 1 to 7 are given depending on the positions of the black spots. In addition, for the enlarged view of this part, four squares (b), (b), (c), and (d) are shown by dotted-line squares. , (C) and (d) are enlarged views of FIGS. 4, 5, 6 and 7, respectively. Also, the position and size of the black spot can be read by the measure shown outside the box.
In addition, since what coated resin other than a fluororesin does not perform a test as mentioned above, but has characteristics, such as corrosion resistance, chemical resistance, and water resistance, a comparative test is abbreviate | omitted.

<導電率>
500mlの密封容器中に試料を入れ、80℃にて168時間浸漬して試料から硫酸イオンの溶出性をテストしたときの前後の導電率を測定した。初期の水は0.00μSであり、168時間経過後は表1に示すとおりである。
<耐磨耗試験>
樹脂皮膜を加熱処理温度で、1時間処理し、外観及び密着を調べた。
<導電率>
500mlの密封容器に入れた純水、及び該純水の中にテストピースを入れて80℃、168時間浸漬後の硫酸イオンの溶出量を測定した。
<硫酸イオンの溶出量>
500mlの密封容器に入れた純水、及び該純水の中にテストピースを入れて80℃、168時間浸漬後硫酸イオンの溶出量を測定した。初期の水は0.00ppmである。
<耐熱水試験>
テストピースを沸騰水に6時間浸漬し、外観及び密着を調べた。
<耐硫酸性試験>
テストピースを濃度1%の硫酸中に、常温で24時間浸漬して異常の有無を調べた。
<耐アルカリ性試験>
テストピースを濃度5g/lの苛性ゾーダ中に、20℃で24時間浸漬して異常の有無を調べた。
<耐食性試験>
JIS Z 2371に基づき、塩水噴霧試験を1000時間行い、その前後でJIS K 5400 8.5.2に基づく碁盤目試験(1mm平方)にて皮膜の剥がれ方を観察した100/100が全面合格である。
<Conductivity>
The sample was placed in a 500 ml sealed container and immersed at 80 ° C. for 168 hours to measure the conductivity before and after the elution of sulfate ions from the sample was tested. The initial water is 0.00 μS, as shown in Table 1 after 168 hours.
<Abrasion resistance test>
The resin film was treated at the heat treatment temperature for 1 hour, and the appearance and adhesion were examined.
<Conductivity>
Pure water placed in a 500 ml sealed container, and a test piece was placed in the pure water, and the elution amount of sulfate ions after immersion at 80 ° C. for 168 hours was measured.
<Elution amount of sulfate ion>
Pure water placed in a 500 ml sealed container, and a test piece placed in the pure water were immersed in 80 ° C. for 168 hours, and the elution amount of sulfate ions was measured. The initial water is 0.00 ppm.
<Heat resistant water test>
The test piece was immersed in boiling water for 6 hours and examined for appearance and adhesion.
<Sulfuric acid resistance test>
The test piece was immersed in sulfuric acid having a concentration of 1% at room temperature for 24 hours to examine whether there was any abnormality.
<Alkali resistance test>
The test piece was immersed in caustic soda having a concentration of 5 g / l at 20 ° C. for 24 hours to examine whether there was any abnormality.
<Corrosion resistance test>
Based on JIS Z 2371, a salt spray test was conducted for 1000 hours, and before and after that, 100/100 was observed in the cross section test (1 mm square) based on JIS K 5400 8.5.2. is there.

上記各試験の結果は表1に示すとおりであり、本発明の実施例のものは、いずれの試験項目も優れていたが、特に塩水噴霧試験では比較例のものよりも格段に優れているとの結果を得た。また、比較例のものは硫酸イオンの溶出も実施例よりも多かった。
なお、上記試験では硫酸中で陽極酸化した試料について硫酸イオンの溶出量を測定したが、リン酸中で陽極酸化した場合は、当然リン酸イオンの溶出を考える必要があるが、硫酸イオンと同じ傾向と考えてよい。
The results of the above tests are as shown in Table 1, and the examples of the present invention were excellent in all test items, but the salt spray test was particularly superior to the comparative example in the salt spray test. The result was obtained. In the comparative example, sulfate ions were eluted more than in the examples.
In the above test, the elution amount of sulfate ion was measured for the sample anodized in sulfuric acid. However, when anodized in phosphoric acid, it is necessary to consider elution of phosphate ion, but it is the same as sulfate ion. You can think of it as a trend.

Figure 2006312754
Figure 2006312754

本発明の方法により得られたフッ素含有樹脂コーティング製品の拡大断面図Expanded sectional view of a fluorine-containing resin-coated product obtained by the method of the present invention 本発明の方法により得られたフッ素含有樹脂コーティング製品のJIS Z 2371「塩水噴霧試験」により、336時間塩水噴霧を行い、ナイフカット試験を行った状態の顕微鏡写真の模式図Schematic diagram of the micrograph of the state in which the knife-cut test was performed by performing salt spray for 336 hours according to JIS Z 2371 “Salt spray test” of the fluorine-containing resin coating product obtained by the method of the present invention. 比較例の陽極酸化皮膜に直接フッ素含有樹脂をコーティングした製品のJIS Z 2371「塩水噴霧試験」により、336時間塩水噴霧を行い、ナイフカット試験を行った状態の顕微鏡写真の模式図Schematic diagram of a microphotograph showing a state in which a knife-cut test was performed by spraying salt water for 336 hours according to JIS Z 2371 “Salt spray test” of a product in which a fluorine-containing resin was directly coated on the anodized film of the comparative example 図3の(イ)の拡大模式図Enlarged schematic diagram of (a) in FIG. 図3の(ロ)の拡大模式図Enlarged schematic diagram of (b) in FIG. 図3の(ハ)の拡大模式図Enlarged schematic diagram of (c) in FIG. 図3の(ニ)の拡大模式図Enlarged schematic diagram of (d) in FIG.

符号の説明Explanation of symbols

1 アルミニウム基材
2 陽極酸化による多孔
3 フッ素含有樹脂皮膜
1 Aluminum substrate 2 Anodized porous 3 Fluorine-containing resin film

Claims (2)

アルミニウム成形材料を陽極酸化したのち、フッ素含有樹脂のエマルジョン塗料をアニオン又はカチオン界面活性剤とともに2次電解してフッ素含有樹脂皮膜を電着させ、次に、該フッ素含有樹脂皮膜を加熱処理することを特徴とするアルミニウム成形材料の表面の処理方法。   After anodizing the aluminum molding material, secondarily electrolyzing the fluorine-containing resin emulsion paint with an anionic or cationic surfactant to electrodeposit the fluorine-containing resin film, and then heat-treating the fluorine-containing resin film A method for treating the surface of an aluminum molding material. アルミニウム成形材料が展伸用アルミニウム合金、鋳物用アルミニウム合金から選択されたことを特徴とする請求項1に記載のアルミニウム成形材料の表面の処理方法。 2. The method for treating a surface of an aluminum molding material according to claim 1, wherein the aluminum molding material is selected from a wrought aluminum alloy and a casting aluminum alloy.
JP2005111028A 2005-04-04 2005-04-07 Treatment method for surface of anodized aluminum Pending JP2006312754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111028A JP2006312754A (en) 2005-04-04 2005-04-07 Treatment method for surface of anodized aluminum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005107146 2005-04-04
JP2005111028A JP2006312754A (en) 2005-04-04 2005-04-07 Treatment method for surface of anodized aluminum

Publications (1)

Publication Number Publication Date
JP2006312754A true JP2006312754A (en) 2006-11-16

Family

ID=37534359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111028A Pending JP2006312754A (en) 2005-04-04 2005-04-07 Treatment method for surface of anodized aluminum

Country Status (1)

Country Link
JP (1) JP2006312754A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138232A (en) * 2005-11-17 2007-06-07 Tajima Seisakusho:Kk Method for forming lubrication coating
CN101880904A (en) * 2010-07-15 2010-11-10 南昌航空大学 Method for cast aluminum alloy micro-arc oxidation pretreatment
WO2012061872A1 (en) * 2010-11-08 2012-05-18 Mezurx Pty Ltd Sample analyser
JP2012197482A (en) * 2011-03-22 2012-10-18 Lixil Corp Functional aluminum material and electrolytic treatment method therefor
CN103132117A (en) * 2011-12-02 2013-06-05 关西涂料株式会社 Film-forming method
CN103526258A (en) * 2013-09-18 2014-01-22 山东省科学院新材料研究所 Two-step cast aluminium alloy micro-arc oxidation treatment method
US9187839B2 (en) 2010-10-07 2015-11-17 Michael Sheehy Process for the manufacture of sealed anodized aluminum components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138232A (en) * 2005-11-17 2007-06-07 Tajima Seisakusho:Kk Method for forming lubrication coating
CN101880904A (en) * 2010-07-15 2010-11-10 南昌航空大学 Method for cast aluminum alloy micro-arc oxidation pretreatment
US9187839B2 (en) 2010-10-07 2015-11-17 Michael Sheehy Process for the manufacture of sealed anodized aluminum components
WO2012061872A1 (en) * 2010-11-08 2012-05-18 Mezurx Pty Ltd Sample analyser
JP2012197482A (en) * 2011-03-22 2012-10-18 Lixil Corp Functional aluminum material and electrolytic treatment method therefor
CN103132117A (en) * 2011-12-02 2013-06-05 关西涂料株式会社 Film-forming method
CN103526258A (en) * 2013-09-18 2014-01-22 山东省科学院新材料研究所 Two-step cast aluminium alloy micro-arc oxidation treatment method

Similar Documents

Publication Publication Date Title
US7922889B2 (en) Anodising aluminum alloy
JP2006312754A (en) Treatment method for surface of anodized aluminum
JP4686728B2 (en) Method for producing magnesium or magnesium alloy product having an anodized film on the surface
JP5878133B2 (en) Method for surface treatment of metal members
US4624752A (en) Surface pretreatment of aluminium and aluminium alloys prior to adhesive bonding, electroplating or painting
RU2614917C1 (en) Method for protective composite coatings production on magnesium alloy
CA2624579A1 (en) Procedure for anodising aluminium or aluminium alloys
TWI762503B (en) Method to create thin functional coatings on light alloys
CN107400905B (en) Coating method for clad steel and coating solution for coating clad steel
JP6528051B2 (en) Alumite member, method of manufacturing alumite member and treating agent
Bestetti et al. Anodic oxidation and powder coating for corrosion protection of AM6oB magnesium alloys
KR101923897B1 (en) Anodizing method of subject
JP6499930B2 (en) Aluminum coating material and method for producing the same
KR100777176B1 (en) Method for Treating the Surface of Magnesium and Its Alloys
JPH07268687A (en) Aluminum or its alloy and its surface treatment
KR101701268B1 (en) Electrolyte solution for PEO on magnesium alloy and PEO method using the same
Palraj et al. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries.
JP2004059997A (en) Coated alumite having polyimide film and method for producing the same
JP2017052844A (en) Composition for film formation of plating tool, plating tool and plating treatment method
Patel et al. Microplasmic ceramic coating
GB2141139A (en) Pretreatment of aluminium prior to bonding electroplating or painting
KR20190048157A (en) Method for manufacturing inner coating layer of magnesium alloy through dispersion of nanoparticles and surface treatment method using same
KR20190035423A (en) Manufacturing method for zinc alloy electroplated steel sheet using conducting polymer and zinc alloy electroplated steel thereof
JP2006283193A (en) Method for producing aluminum material for coating, and method for producing aluminum material for coating of coating material using resin having polar group
US20090181258A1 (en) Conversion coating for aluminum and its alloys and articles thereof