JP2006312193A - Precision casting process and precision-cast product - Google Patents

Precision casting process and precision-cast product Download PDF

Info

Publication number
JP2006312193A
JP2006312193A JP2005136065A JP2005136065A JP2006312193A JP 2006312193 A JP2006312193 A JP 2006312193A JP 2005136065 A JP2005136065 A JP 2005136065A JP 2005136065 A JP2005136065 A JP 2005136065A JP 2006312193 A JP2006312193 A JP 2006312193A
Authority
JP
Japan
Prior art keywords
molten metal
casting
precision
shell mold
precision casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005136065A
Other languages
Japanese (ja)
Other versions
JP4689342B2 (en
Inventor
Kazuyoshi Chikugo
一義 筑後
Shigemasa Sato
茂征 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA SEIMITSU CHUZO KK
IHI Corp
Original Assignee
ISHIKAWAJIMA SEIMITSU CHUZO KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA SEIMITSU CHUZO KK, IHI Corp filed Critical ISHIKAWAJIMA SEIMITSU CHUZO KK
Priority to JP2005136065A priority Critical patent/JP4689342B2/en
Publication of JP2006312193A publication Critical patent/JP2006312193A/en
Application granted granted Critical
Publication of JP4689342B2 publication Critical patent/JP4689342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precision casting process for inexpensively producing a material as cast having satisfactory surface properties, and to provide a precision-cast product. <P>SOLUTION: The precision casting process is provided for producing the precision-cast product 10 by pouring molten metal nto a cavity of a shell mold and performing casting. The precision casting process is characterized in that when the pouring is performed using the molten metal having high reactivity with the shell mold, the shell mold is arranged in a pressure vessel, thereafter, the inside of the pressure vessel is evacuated, subsequently, inert gas or gaseous nitrogen is introduced into the pressure vessel to control the pressure in the atmosphere to 1 Pa to the atmospheric pressure (about 0.1 MPa), and while the atmospheric pressure is held at the state, the molten metal is poured into the cavity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ロストワックスなどの消失型模型を用いた精密鋳造法及び精密鋳造品に関するものである。   The present invention relates to a precision casting method and a precision cast product using a disappearing model such as lost wax.

形状が複雑で、高い寸法精度が必要とされる鋳造品を製造する際、ロストワックスなどの消失型模型を用いる精密鋳造法(インベストメント鋳造法)が用いられる。   When producing a cast product having a complicated shape and requiring high dimensional accuracy, a precision casting method (investment casting method) using a disappearing model such as lost wax is used.

精密鋳造法は、通常、大気雰囲気下又は真空雰囲気下の溶解炉内で金属溶湯(合金溶湯)の溶解、鋳込みを行っている。ここで、金属溶湯の鋳込みを真空雰囲気下で行うのは、大気中に含まれる酸素によって鋳造品が酸化したり、金属溶湯原料の溶解中に酸化物が生成するのを抑制するためである。この時、真空ポンプを用いて溶解炉内を真空引きしたとしても、完全に真空になるわけではなく、1Pa〜10-10Pa程度のガスが残存する。このガスは大気であり、大気と同じ酸素分圧を有する。 In the precision casting method, a molten metal (alloy molten metal) is usually melted and cast in a melting furnace in an air atmosphere or a vacuum atmosphere. Here, the casting of the molten metal is performed in a vacuum atmosphere in order to prevent the cast product from being oxidized by oxygen contained in the atmosphere and the generation of oxides during the melting of the molten metal raw material. At this time, even if the inside of the melting furnace is evacuated using a vacuum pump, it does not become a complete vacuum, but a gas of about 1 Pa to 10 −10 Pa remains. This gas is the atmosphere and has the same oxygen partial pressure as the atmosphere.

精密鋳造法で製造される合金の1つであるNi基超合金やCo基超合金は、Al、Ti、又はHfなどの活性な元素を含んでいるため、鋳造時に、金属溶湯が残存大気や、鋳型の構成材(酸化物)と反応することがある。前者の反応によって鋳造品の表層に反応物が生成される。後者の反応によって生成した反応物は、鋳造品の表層に取り込まれて一体化される。また、この反応物が鋳造品の表層に取り込まれる際、反応物と固着したキャビティ面表層の一部が剥離され、反応物と一緒に取り込まれてしまうおそれがある。表層に反応物や剥離材が取り込まれた鋳造品は表面性状が悪い(表面粗さが粗い)ことから、ケミカルミリングや機械的切削などにより表面仕上げ処理を施す必要がある。その結果、鋳造品の製造工程数が増大し、製品コストの上昇及び生産性の低下を招くという問題があった。   Ni-base super alloys and Co-base super alloys, which are one of the alloys manufactured by precision casting, contain active elements such as Al, Ti, or Hf. , May react with the component of the mold (oxide). By the former reaction, a reaction product is generated on the surface layer of the casting. The reaction product produced by the latter reaction is incorporated into the surface layer of the casting and integrated. Further, when the reactant is taken into the surface layer of the casting, a part of the cavity surface layer fixed to the reactant may be peeled off and taken together with the reactant. Cast products in which reactants and release materials are incorporated into the surface layer have poor surface properties (rough surface roughness), and therefore surface finishing treatment must be performed by chemical milling or mechanical cutting. As a result, there is a problem that the number of manufacturing steps of the cast product increases, leading to an increase in product cost and a decrease in productivity.

そこで、精密鋳造法で製造された鋳放し状態の鋳造品(鋳放し材)の表面性状を向上させるべく、略球形の充填剤微粒子を有する消失模型を用いて鋳型を形成する方法がある(例えば、特許文献1参照)。   Therefore, in order to improve the surface properties of the cast product (as cast material) in an as-cast state manufactured by a precision casting method, there is a method of forming a mold using a disappearing model having substantially spherical filler particles (for example, , See Patent Document 1).

特開平10−166105号公報JP-A-10-166105

ところで、前述した特許文献1記載の方法は、充填剤微粒子の作製工程を必要とすると共に、充填剤微粒子は再利用が困難であることから、製品コストの上昇及び生産性の低下を招くという問題を十分に解決できない。   By the way, the method described in Patent Document 1 described above requires a process for producing filler fine particles, and the filler fine particles are difficult to reuse, leading to an increase in product cost and a decrease in productivity. Cannot be solved sufficiently.

また、Ni基超合金やCo基超合金においては、鋳造品の結晶粒界を強化するためにC成分を含有させる場合がある。このようなNi基超合金やCo基超合金の金属溶湯は、C成分含有によって粘性が低くなっていることから、金属溶湯が鋳型のキャビティ面に差し込み(食い込み)易くなってしまう。その結果、鋳造品の表面性状が悪くなると共に、金属溶湯と鋳型の接触面積が更に大きくなってしまい、前述した反応物がより生成され易くなってしまうという問題があった。   In addition, in the Ni-base superalloy and the Co-base superalloy, a C component may be included in order to strengthen the grain boundary of the cast product. Since the metal melt of such a Ni-base superalloy or Co-base superalloy has a low viscosity due to the inclusion of the C component, the metal melt is likely to be inserted (bite into) the cavity surface of the mold. As a result, the surface properties of the cast product are deteriorated, the contact area between the molten metal and the mold is further increased, and there is a problem that the reaction product described above is more easily generated.

さらに、精密鋳造用鋳型は、蒸気を用いて脱ロウを行うことから、蒸気の通りが良くなるように微細な空隙を有するポーラス構造となっている。微細空隙の隙間が大きい程、蒸気の通りは良くなる。しかし、この場合、金属溶湯が微細空隙に差し込み易くなってしまい、鋳造品の表面性状が悪くなると共に、前述した反応物がより生成され易くなってしまうという問題があった。一方、微細空隙の隙間を小さくすると(キャビティ面を緻密にすると)、鋳造品の表面性状は良くなる。しかし、この場合、脱ロウ時に鋳型に割れ(脱ロウ割れ)が生じたり、鋳型の構成材であるセラミックスラリーの寿命が短くなってしまうという問題があった。   Further, since the casting mold for precision casting is dewaxed using steam, it has a porous structure having fine voids so that the passage of steam is improved. The larger the gap between the fine gaps, the better the passage of steam. However, in this case, there is a problem that the molten metal is easily inserted into the fine gap, the surface property of the cast product is deteriorated, and the reaction product described above is more easily generated. On the other hand, when the gap between the fine gaps is reduced (the cavity surface is made dense), the surface properties of the cast product are improved. However, in this case, there is a problem that cracks (dewaxing cracks) occur in the mold at the time of dewaxing, and the life of the ceramic slurry that is a constituent material of the mold is shortened.

以上の事情を考慮して創案された本発明の目的は、表面性状が良好な鋳放し材を安価に製造可能な精密鋳造法及び精密鋳造品を提供することにある。   An object of the present invention, which was created in view of the above circumstances, is to provide a precision casting method and a precision cast product that can manufacture an as-cast material having a good surface property at low cost.

上記目的を達成すべく本発明に係る精密鋳造法は、シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
上記シェル鋳型との反応性が高い金属溶湯を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むものである。
In order to achieve the above object, the precision casting method according to the present invention is a method of casting a molten metal in a cavity of a shell mold to produce a precision cast product,
When casting using a molten metal that is highly reactive with the shell mold,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, the molten metal is cast into the cavity while maintaining the atmospheric pressure in that state.

ここで、シェル鋳型との反応性が高い金属溶湯は、酸素に対する活性の高い元素を含んだNi基超合金、又はCo基超合金が好ましい。   Here, the molten metal having high reactivity with the shell mold is preferably a Ni-base superalloy or a Co-base superalloy containing an element having high activity against oxygen.

また、本発明に係る精密鋳造法は、シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
ポーラスで通気性が良好な上記シェル鋳型を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むものである。
Further, the precision casting method according to the present invention is a method of casting a molten metal into a cavity of a shell mold to perform casting, and manufacturing a precision casting product,
When casting using the above shell mold that is porous and has good air permeability,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, the molten metal is cast into the cavity while maintaining the atmospheric pressure in that state.

さらに、本発明に係る精密鋳造法は、シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
粘性の低い上記金属溶湯を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むものである。
Furthermore, the precision casting method according to the present invention is a method of casting a molten metal into a cavity of a shell mold to perform casting, and manufacturing a precision casting product,
When casting using the above molten metal with low viscosity,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, the molten metal is cast into the cavity while maintaining the atmospheric pressure in that state.

ここで、粘性の低い金属溶湯は、結晶粒界強化のためのC成分を含んだNi基超合金、又はCo基超合金が好ましい。   Here, the molten metal having a low viscosity is preferably a Ni-base superalloy or a Co-base superalloy containing a C component for strengthening grain boundaries.

金属溶湯を一方向凝固させ、一方向凝固合金の精密鋳造品を製造することが好ましい。また、金属溶湯を単結晶成長させ、単結晶合金の精密鋳造品を製造することが好ましい。   It is preferable to produce a precision casting of a unidirectionally solidified alloy by unidirectionally solidifying the molten metal. Moreover, it is preferable to produce a precision casting of a single crystal alloy by growing a single crystal of the molten metal.

一方、本発明に係る精密鋳造品は、前述した精密鋳造法によって製造されたものであり、鋳放し材の平均表面粗さRaが3.2μm以下のものである。   On the other hand, the precision cast product according to the present invention is manufactured by the precision casting method described above, and the average surface roughness Ra of the as-cast material is 3.2 μm or less.

また一方、本発明に係る精密鋳造装置は、溶解した金属溶湯を鋳型のキャビティ内に鋳込んで精密鋳造品を製造する精密鋳造装置において、
鋳型が配置されると共に、金属を溶解させて金属溶湯を形成する溶解炉と、
溶解炉内を真空引きするための排気手段と、
溶解炉内に不活性ガス又は窒素ガスを供給するためのガス供給手段と、
不活性ガス又は窒素ガスの供給量を制御するための制御手段と、
を備えたものである。
On the other hand, the precision casting apparatus according to the present invention is a precision casting apparatus for producing a precision casting product by casting a molten metal into a mold cavity.
A melting furnace for arranging a mold and melting a metal to form a molten metal;
Evacuation means for evacuating the melting furnace;
Gas supply means for supplying an inert gas or nitrogen gas into the melting furnace;
Control means for controlling the supply of inert gas or nitrogen gas;
It is equipped with.

ここで、鋳型はシェル鋳型であることが好ましい。   Here, the mold is preferably a shell mold.

本発明によれば、表面性状が良好な鋳放し材を得ることができるという優れた効果を発揮する。   According to the present invention, an excellent effect that an as-cast material having a good surface property can be obtained is exhibited.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

(第1の実施形態)
本発明の好適一実施の形態に係る精密鋳造法は、シェル鋳型との反応性が高い金属溶湯を用いて鋳込みを行う際に有効な方法である。
(First embodiment)
The precision casting method according to a preferred embodiment of the present invention is an effective method when casting is performed using a molten metal having high reactivity with a shell mold.

具体的には、先ず、目的とする精密鋳造品と同形状、同サイズのロウ型を予め作製しておく。そのロウ型の周囲に、初層スラリーを塗布した後、初層スタッコ塗布を行い、その後、乾燥させ、初層スラリー膜が形成される。続いて、初層スラリー膜の周囲に、後層スラリーを塗布した後、後層スタッコ塗布を行い、その後、乾燥させ、後層スラリー膜が形成される。後層スラリー膜の形成工程は、適宜繰り返し行われ、これによって、後層スラリー膜の膜厚が所望の厚さに制御される。スラリーの付着方法としては、浸漬法、吹き付け法、塗布法が挙げられるが、浸漬法が好ましい。その後、蒸気を用いてロウ型の脱ロウを行った後、焼成処理を施すことでシェル鋳型が得られる。   Specifically, first, a wax mold having the same shape and size as the target precision casting product is prepared in advance. After the initial layer slurry is applied around the wax shape, the initial layer stucco is applied and then dried to form the initial layer slurry film. Subsequently, after the rear layer slurry is applied around the first layer slurry film, the rear layer stucco is applied and then dried to form the rear layer slurry film. The formation process of the back layer slurry film is repeatedly performed as appropriate, whereby the film thickness of the back layer slurry film is controlled to a desired thickness. Examples of the method for attaching the slurry include an immersion method, a spraying method, and a coating method, and the immersion method is preferable. Then, after performing wax-type dewaxing using steam, a shell mold is obtained by performing a baking treatment.

初層スラリーは、例えば、20〜40%のコロイダルシリカバインダ1kgに対して、フィラーを2〜4kgの割合で混合したものである。フィラーとしては、アルミナ(Al2O3)及びムライト(Al2O3・SiO2)を主成分とし、20重量%以下の割合でシリカ、ジルコニア、ジルコン、セリアなどの酸化物を含有したものが挙げられる。また、初層スタッコ(初層スラリー表面に振りかけて付着させる耐火物粒子)としては、例えば、約♯60〜160メッシュのアルミナが使用可能であるが、粒度、材質は特に限定するものではない。後層スラリー及び後層スタッコの構成材は特に限定するものではなく、シェル鋳型用のスラリー及びスタッコとして慣用的に用いられているものであれば、全て適用可能である。 The initial layer slurry is, for example, a mixture of 2 to 4 kg of filler to 1 kg of 20 to 40% colloidal silica binder. The filler is mainly composed of alumina (Al 2 O 3 ) and mullite (Al 2 O 3 · SiO 2 ), and contains oxides such as silica, zirconia, zircon, ceria at a ratio of 20% by weight or less. Can be mentioned. Further, as the first layer stucco (refractory particles to be sprinkled and adhered to the surface of the first layer slurry), for example, alumina of about # 60 to 160 mesh can be used, but the particle size and material are not particularly limited. The constituent materials of the rear layer slurry and the rear layer stucco are not particularly limited, and any material can be used as long as it is conventionally used as the slurry and stucco for the shell mold.

次に、シェル鋳型を圧力容器(溶解炉)内に配置した後、その圧力容器内を排気手段(例えば、真空ポンプ)を用いて真空引きする。その後、ガス供給手段におけるガス供給ラインから、圧力容器内に不活性ガス(又は窒素ガス)が供給される。この時、雰囲気圧力が1Pa〜大気圧(約0.1MPa(1×105Pa))、好ましくは1Pa〜1×104Pa、より好ましくは1×103Pa〜1×104Paに昇圧、調整されるように、制御手段を用いて不活性ガスの供給量が制御される。 Next, after the shell mold is placed in a pressure vessel (melting furnace), the inside of the pressure vessel is evacuated using an exhaust means (for example, a vacuum pump). Thereafter, an inert gas (or nitrogen gas) is supplied into the pressure vessel from a gas supply line in the gas supply means. At this time, the atmospheric pressure is increased to 1 Pa to atmospheric pressure (about 0.1 MPa (1 × 10 5 Pa)), preferably 1 Pa to 1 × 10 4 Pa, more preferably 1 × 10 3 Pa to 1 × 10 4 Pa. The supply amount of the inert gas is controlled using the control means so as to be adjusted.

ここで、本実施の形態に係る精密鋳造法において、雰囲気圧力を1Pa〜大気圧に調整することに最大の特徴がある。雰囲気圧力が1Pa未満だと、不活性ガス(又は窒素ガス)の供給による酸素分圧の低減効果が得られないと共に、第2の実施形態で後述するガス圧が得られないためである。また、雰囲気圧力が大気圧を超えると湯回り(湯流れ)が悪化し、精密鋳造性が悪くなるためである。雰囲気圧力は、不活性ガス(又は窒素ガス)の導入量を調整することで自在に調整可能である。不活性ガスとしてはArガス、Heガスのいずれを用いてもよいが、安価なArガスが好ましい。また、真空引き時の真空度は、例えば、1×10-4Pa〜100Pa、好ましくは1×10-1Paとされる。 Here, in the precision casting method according to the present embodiment, the greatest feature is that the atmospheric pressure is adjusted to 1 Pa to atmospheric pressure. This is because if the atmospheric pressure is less than 1 Pa, the effect of reducing the oxygen partial pressure due to the supply of the inert gas (or nitrogen gas) cannot be obtained, and the gas pressure described later in the second embodiment cannot be obtained. Further, when the atmospheric pressure exceeds atmospheric pressure, the hot water circumference (hot water flow) is deteriorated, and the precision castability is deteriorated. The atmospheric pressure can be freely adjusted by adjusting the amount of inert gas (or nitrogen gas) introduced. As the inert gas, either Ar gas or He gas may be used, but inexpensive Ar gas is preferable. The degree of vacuum during evacuation is, for example, 1 × 10 −4 Pa to 100 Pa, preferably 1 × 10 −1 Pa.

次に、不活性ガス(又は窒素ガス)の雰囲気圧力を1Pa〜大気圧に保ったまま、予熱しておいたシェル鋳型のキャビティ内に、シェル鋳型との反応性が高い金属溶湯を注湯し、鋳込みが行われる。シェル鋳型との反応性が高い金属としては、酸素に対する活性の高い元素(Al、Ti、又はHfなど)を含んだNi基超合金、又はCo基超合金が挙げられる。例えば、Hfを比較的多く含むNi基超合金として、一方向凝固合金用のRene'142、CM247LC、PWA1426(いずれも登録商標)、普通鋳造合金用のRene'125、Inco713C、MarM247(いずれも登録商標)などが挙げられる。また、Alを比較的多く含むCo基超合金として、AiResist 213、AiResist 215(共に登録商標)などが挙げられる。金属溶湯の鋳込み方法としては、置注ぎ、遠心鋳造、吸引鋳造(低圧鋳造)などが適用可能である。   Next, a molten metal having high reactivity with the shell mold is poured into the cavity of the pre-heated shell mold while maintaining the atmospheric pressure of the inert gas (or nitrogen gas) at 1 Pa to atmospheric pressure. Casting is performed. Examples of the metal having high reactivity with the shell mold include a Ni-base superalloy or a Co-base superalloy containing an element (Al, Ti, Hf, etc.) having high activity against oxygen. For example, as a Ni-base superalloy containing a relatively large amount of Hf, Rene'142, CM247LC, PWA1426 (all registered trademarks) for unidirectionally solidified alloys, Rene'125, Inco713C, MarM247 (all registered) for ordinary casting alloys Trademark). Examples of the Co-base superalloy containing a relatively large amount of Al include AiResist 213 and AiResist 215 (both are registered trademarks). As a method for casting a molten metal, it is possible to apply pouring, centrifugal casting, suction casting (low pressure casting) and the like.

次に、鋳型を冷却することで金属溶湯が凝固され、鋳造が完了する。これによって、シェル鋳型内に鋳造体が形成される。その後、シェル鋳型を高温のアルカリ浴などに浸漬して、シェル、すなわち精密鋳造用鋳型を溶解除去し、型ばらしがなされる。これによって、鋳放し材(精密鋳造品)が得られる。型ばらしとしては、高温のアルカリ浴を用いた化学的手法以外に、物理的手法(例えば、ブラストクリーニング)を用いてもよい。ブラストクリーニングとしては、サンドブラスト、ショットブラスト、又はウォータジェット(高圧水の吹き付け)のいずれでもよい。また、ブラストクリーニング以外の物理的手法として、シェイクアウトを用いてもよい。   Next, the molten metal is solidified by cooling the mold, and casting is completed. Thereby, a cast body is formed in the shell mold. Thereafter, the shell mold is immersed in a hot alkaline bath or the like to dissolve and remove the shell, that is, the precision casting mold, and the mold is released. As a result, an as-cast material (precision cast product) is obtained. As the mold release, a physical method (for example, blast cleaning) may be used in addition to a chemical method using a high-temperature alkaline bath. As the blast cleaning, any of sand blasting, shot blasting, and water jet (high-pressure water spraying) may be used. Further, shakeout may be used as a physical method other than blast cleaning.

本実施の形態に係る精密鋳造法では、通常の真空雰囲気下ではなく、1Pa〜大気圧の不活性ガス雰囲気(以下、不活性ガス減圧雰囲気という)下で鋳込みを行っている。この不活性ガス減圧雰囲気と真空雰囲気を比較すると、不活性ガス減圧雰囲気の方が酸素分圧が相対的に低くなっている。   In the precision casting method according to the present embodiment, casting is performed not in a normal vacuum atmosphere but in an inert gas atmosphere (hereinafter referred to as an inert gas decompression atmosphere) of 1 Pa to atmospheric pressure. When this inert gas decompression atmosphere is compared with the vacuum atmosphere, the oxygen partial pressure is relatively lower in the inert gas decompression atmosphere.

このため、本実施の形態に係る精密鋳造法の鋳込み時には、酸素(残存大気)と金属溶湯の反応が抑制されると共に、キャビティ面表層と金属溶湯の反応が抑制される。その結果、反応物の生成自体が抑制され、反応物が鋳造品の表層に生成したり、鋳造品の表層に反応物が取り込まれるおそれはほとんどなくなる。また、キャビティ面表層と金属溶湯の反応が抑制されることから、キャビティ面表層の一部が反応物によって剥離されるおそれもほとんどない。   For this reason, at the time of casting of the precision casting method according to the present embodiment, the reaction between oxygen (residual air) and the molten metal is suppressed, and the reaction between the cavity surface layer and the molten metal is suppressed. As a result, the generation of the reaction product itself is suppressed, and there is almost no possibility that the reaction product is generated on the surface layer of the cast product or that the reaction product is taken into the surface layer of the cast product. Further, since the reaction between the cavity surface layer and the molten metal is suppressed, there is almost no possibility that a part of the cavity surface layer is peeled off by the reactant.

また、本実施の形態に係る精密鋳造法は、普通鋳造合金は言うまでもなく、一方向凝固合金や単結晶合金に特に有効である。なぜなら、一方向凝固合金や単結晶合金は、長時間に亘って高温の金属溶湯がキャビティ面表層に接触されることから、金属溶湯とキャビティ面表層の反応がどうしても生じ易いためである。そこで、本実施の形態に係る精密鋳造法を用いて一方向凝固合金や単結晶合金の精密鋳造品を製造することで、キャビティ面表層と金属溶湯の反応を著しく抑制することができる。   In addition, the precision casting method according to the present embodiment is particularly effective for unidirectionally solidified alloys and single crystal alloys as well as ordinary cast alloys. This is because a unidirectionally solidified alloy or a single crystal alloy is apt to cause a reaction between the molten metal and the surface of the cavity surface because the molten metal of high temperature is brought into contact with the surface of the cavity surface for a long time. Therefore, the reaction between the cavity surface layer and the molten metal can be remarkably suppressed by producing a precision cast product of a unidirectionally solidified alloy or a single crystal alloy using the precision casting method according to the present embodiment.

以上、本実施の形態に係る精密鋳造法によって得られた精密鋳造品は、その表層に反応物や剥離材がほとんど存在しないため、鋳放し材の表面性状は良好である。例えば、本実施の形態に係る精密鋳造品は、鋳放し材の平均表面粗さRaが3.2μm以下、好ましくはRaが1.6μm以下である。したがって、鋳放し材に、ケミカルミリングや機械的切削などの表面仕上げ処理を施す必要がない(又は表面仕上げが僅かで済む)ことから、鋳造品の製造工程数を低減することができる。その結果、製品コストの低減及び生産性の向上を図ることができる。   As described above, the precision cast product obtained by the precision casting method according to the present embodiment has almost no reactants or release material on the surface layer, and thus the surface properties of the as-cast material are good. For example, in the precision cast product according to the present embodiment, the average surface roughness Ra of the as-cast material is 3.2 μm or less, preferably Ra is 1.6 μm or less. Therefore, it is not necessary to subject the as-cast material to surface finishing treatment such as chemical milling or mechanical cutting (or the surface finishing is very small), and therefore the number of manufacturing steps of the cast product can be reduced. As a result, the product cost can be reduced and the productivity can be improved.

本実施の形態に係る精密鋳造法は、鋳込み時の雰囲気である不活性ガス(又は窒素ガス)のガス圧が低いほど、不活性ガスの使用量が少なくなると共に、ガス導入に要する時間も短くなるため、より低い製造コスト、及びより良好な生産性で精密鋳造品を製造することができる。一方、不活性ガスのガス圧が高いほど、酸素分圧がより小さくなるため、キャビティ面表層と金属溶湯の反応をより抑制することができ、表面性状がより良好な精密鋳造品を製造することができる。   In the precision casting method according to the present embodiment, the lower the gas pressure of the inert gas (or nitrogen gas) that is the atmosphere during casting, the smaller the amount of inert gas used and the shorter the time required for gas introduction. Therefore, a precision casting can be manufactured at a lower manufacturing cost and better productivity. On the other hand, the higher the gas pressure of the inert gas, the smaller the oxygen partial pressure, so that the reaction between the cavity surface layer and the molten metal can be further suppressed, and a precision cast product with better surface properties can be produced. Can do.

なお、本実施の形態に係る精密鋳造法においては、圧力容器内を真空引きした後、圧力容器内に不活性ガス(又は窒素ガス)を導入し、雰囲気圧力を1Pa〜大気圧に昇圧、調整させる場合を例に挙げて説明を行ったが、特にこれに限定するものではない。例えば、先ず、圧力容器内に十分な量の不活性ガス(又は窒素ガス)を導入した後、圧力容器内を真空引きし、雰囲気圧力を1Pa〜大気圧に減圧、調整させるようにしてもよい。   In the precision casting method according to the present embodiment, after evacuating the pressure vessel, an inert gas (or nitrogen gas) is introduced into the pressure vessel, and the atmospheric pressure is increased to 1 Pa to atmospheric pressure and adjusted. However, the present invention is not particularly limited to this. For example, first, after introducing a sufficient amount of inert gas (or nitrogen gas) into the pressure vessel, the inside of the pressure vessel is evacuated to reduce and adjust the atmospheric pressure from 1 Pa to atmospheric pressure. .

本実施の形態に係る精密鋳造法は、ジェットエンジン用又はガスタービンエンジン用の回転部材や羽根部材などの鋳造工程に適用可能であるが、特にこれに限定するものではない。例えば、表面性状が良好であることが好ましい鋳造製品の鋳造工程に全て適用可能である。   The precision casting method according to the present embodiment can be applied to a casting process for a rotating member or a blade member for a jet engine or a gas turbine engine, but is not particularly limited thereto. For example, the present invention can be applied to all casting processes for cast products that preferably have good surface properties.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

(第2の実施形態)
本発明の他の好適一実施の形態に係る精密鋳造法は、ポーラスで通気性が良好なシェル鋳型を用いて鋳込みを行う際に有効な方法である。
(Second Embodiment)
The precision casting method according to another preferred embodiment of the present invention is an effective method when casting is performed using a shell mold that is porous and has good air permeability.

具体的には、前述した第1の実施形態に係る精密鋳造法と同様にしてシェル鋳型が作製される。このシェル鋳型は、通気性を良好とするために、シェル鋳型本体内に微小な空隙を有するポーラス構造となっている。例えば、その空隙サイズは10μm以下、好ましくは3μm以下であり、空隙率(シェル鋳型本体に占める空隙の割合)は30%以上、好ましくは40〜60%とされる。空隙サイズ及び空隙率は、スラリーを構成するフィラーの粒度やスタッコの粒度を調整することで自在に制御することができる。一例として、フィラーの粒度やスタッコの粒度を大きくすると、空隙サイズは大きく、空隙率は高くなり、逆に、フィラーの粒度やスタッコの粒度を小さくすると、空隙サイズは小さく、空隙率は低くなる。   Specifically, a shell mold is produced in the same manner as the precision casting method according to the first embodiment described above. This shell mold has a porous structure having minute voids in the shell mold body in order to improve air permeability. For example, the void size is 10 μm or less, preferably 3 μm or less, and the porosity (ratio of voids in the shell mold body) is 30% or more, preferably 40 to 60%. The void size and void ratio can be freely controlled by adjusting the particle size of the filler constituting the slurry and the particle size of the stucco. As an example, when the filler particle size or stucco particle size is increased, the void size is increased and the void ratio is increased. Conversely, when the filler particle size or stucco particle size is decreased, the void size is decreased and the void ratio is decreased.

次に、このシェル鋳型を用い、第1の実施形態に係る精密鋳造法と同様にして不活性ガス減圧雰囲気下で鋳込みを行う。   Next, using this shell mold, casting is performed in an inert gas reduced pressure atmosphere in the same manner as the precision casting method according to the first embodiment.

この時、不活性ガスのガス圧が、金属溶湯の表面に作用する。このガス圧によって金属溶湯が押され、金属溶湯がシェル鋳型のキャビティ面に差し込まれる。しかしながら、これと同時に、空隙を介してシェル鋳型本体内に不活性ガスが導入され、キャビティ面の全面からガス圧が金属溶湯に作用する。よって、金属溶湯に作用するガス圧同士が相殺される。   At this time, the gas pressure of the inert gas acts on the surface of the molten metal. The molten metal is pushed by this gas pressure, and the molten metal is inserted into the cavity surface of the shell mold. However, at the same time, an inert gas is introduced into the shell mold main body through the gap, and the gas pressure acts on the molten metal from the entire cavity surface. Therefore, the gas pressures acting on the molten metal are offset.

その結果、金属溶湯のシェル鋳型のキャビティ面への差し込みが抑制され、所謂、差込欠陥の少ない精密鋳造品が得られる。また、通気性が良好なシェル鋳型を用いることで、脱ロウ割れに強く(脱ロウ割れが生じにくく)なる。さらに、金属溶湯の差し込みが生じにくいことから、鋳型のキャビティ面を多少粗く(例えば、平均表面粗さ(Ra)が3〜20μm)することができ、延いてはフィラーの粒度をある一定の範囲で大きくすることができる。その結果、セラミックスラリーのゲル化が発生しにくくなり、ゲル化を防ぐためのスラリーの管理が不要となると共に、スラリーライフ(寿命)の長寿命化を図ることができる。   As a result, insertion of the molten metal into the cavity surface of the shell mold is suppressed, and a so-called precision casting product with few insertion defects is obtained. Further, by using a shell mold having good air permeability, the shell mold is resistant to dewaxing cracking (dewaxing cracking is difficult to occur). Furthermore, since it is difficult for molten metal to be inserted, the cavity surface of the mold can be made somewhat rough (for example, the average surface roughness (Ra) is 3 to 20 μm), and the particle size of the filler can be set within a certain range. Can be enlarged. As a result, the gelation of the ceramic slurry is difficult to occur, the management of the slurry for preventing the gelation is unnecessary, and the life of the slurry can be extended.

また、本実施の形態に係る精密鋳造法においても、第1の実施形態に係る精密鋳造法と同様の作用効果が得られ、表面性状が良好で、表面仕上げが不要な(又は簡便な)精密鋳造品が得られる。   Also, in the precision casting method according to the present embodiment, the same effects as those of the precision casting method according to the first embodiment can be obtained, the surface properties are good, and surface finishing is unnecessary (or simple). A casting is obtained.

(第3の実施形態)
本発明の別の好適一実施の形態に係る精密鋳造法は、粘性の低い金属溶湯を用いて鋳込みを行う際に有効な方法である。
(Third embodiment)
The precision casting method according to another preferred embodiment of the present invention is an effective method when casting is performed using a molten metal having low viscosity.

具体的には、前述した第1の実施形態に係る精密鋳造法と同様にしてシェル鋳型が作製される。このシェル鋳型を用い、第1の実施形態に係る精密鋳造法と同様にして不活性ガス減圧雰囲気下で鋳込みを行う。この時、シェル鋳型に注湯される金属溶湯の一例として、Ni基超合金又はCo基超合金があるが、これらの合金系は、単結晶合金用の一部を除いて、結晶粒界強化のためのC成分を含有している。例えば、C成分を多く含む(例えば、0.05wt%以上)普通鋳造合金用のNi基超合金として、Inconel 713C(登録商標)などが挙げられる。また、C成分を多く含む一方向凝固合金用のNi基超合金として、GTD111、PWA1426(共に登録商標)などが挙げられる。さらに、C成分を含む単結晶合金用のNi基超合金として、YH61、Rene'N5、Rene'N6(いずれも登録商標)などが挙げられる。また、C成分を含むCo基超合金として、AiResist 213、AiResist 215(共に登録商標)などが挙げられる。   Specifically, a shell mold is produced in the same manner as the precision casting method according to the first embodiment described above. Using this shell mold, casting is performed under an inert gas reduced pressure atmosphere in the same manner as the precision casting method according to the first embodiment. At this time, as an example of the molten metal poured into the shell mold, there is a Ni-base superalloy or a Co-base superalloy. These alloy systems, except for a part for single crystal alloys, strengthen grain boundaries. C component for For example, Inconel 713C (registered trademark) and the like can be cited as a Ni-base superalloy for ordinary casting alloys containing a large amount of C component (for example, 0.05 wt% or more). Examples of Ni-base superalloys for unidirectionally solidified alloys containing a large amount of C component include GTD111 and PWA1426 (both are registered trademarks). Furthermore, YH61, Rene'N5, Rene'N6 (all are registered trademarks) etc. are mentioned as Ni base superalloy for single crystal alloys containing C component. Examples of the Co-base superalloy containing the C component include AiResist 213 and AiResist 215 (both are registered trademarks).

ここで、C成分を含んだ合金系は、通常、金属溶湯の粘性が低くなり、濡れ性が向上する。このため、C成分を含んだ合金系の金属溶湯は、鋳込んだ際、シェル鋳型のキャビティ面に差し込まれ易い。しかしながら、本実施の形態に係る精密鋳造法においては、不活性ガス減圧雰囲気で鋳込みを行っており、また、シェル鋳型はポーラス構造を有している。よって、シェル鋳型の空隙を介してシェル鋳型本体内に不活性ガスが導入され、キャビティ面の全面からガス圧が金属溶湯に作用する。これによって、粘性の低い金属溶湯であっても、金属溶湯のキャビティ面への差し込みが抑制され、所謂、差込欠陥の少ない精密鋳造品が得られる。   Here, in the alloy system containing the C component, the viscosity of the molten metal is usually lowered and the wettability is improved. For this reason, the alloy-based metal melt containing the C component is easily inserted into the cavity surface of the shell mold when cast. However, in the precision casting method according to the present embodiment, casting is performed in an inert gas decompression atmosphere, and the shell mold has a porous structure. Therefore, the inert gas is introduced into the shell mold body through the voids of the shell mold, and the gas pressure acts on the molten metal from the entire cavity surface. As a result, even if the molten metal has a low viscosity, the insertion of the molten metal into the cavity surface is suppressed, and a so-called precision casting product with few insertion defects can be obtained.

また、本実施の形態に係る精密鋳造法においても、第1及び第2の実施形態に係る精密鋳造法と同様の作用効果が得られ、表面性状が良好で、表面仕上げが不要な(又は簡便な)精密鋳造品が得られる。   Also, in the precision casting method according to the present embodiment, the same effects as those of the precision casting methods according to the first and second embodiments can be obtained, the surface properties are good, and surface finishing is unnecessary (or simple). N) Precision castings can be obtained.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

ロウ型の周囲に、30%のコロイダルシリカバインダ1kgに対して、フィラー(アルミナ及びムライトを主成分とし、20重量%以下の割合でシリカ、ジルコニア、ジルコン、セリアなどの酸化物を含有)を約3kgの割合で混合した初層スラリーを塗布した。その後、約♯60〜160メッシュのアルミナからなる初層スタッコ塗布を行い、その後、乾燥させ、初層スラリー膜を形成した。続いて、初層スラリー膜の周囲に、後層スラリーを塗布した後、後層スタッコ塗布を行い、その後、乾燥させ、後層スラリー膜を形成した。その後、蒸気を用いてロウ型の脱ロウを行った後、焼成処理を施し、シェル鋳型を作製した。   About 1% of colloidal silica binder of 30% around the wax type, filler (mainly composed of alumina and mullite and containing oxides such as silica, zirconia, zircon, and ceria at a ratio of 20% by weight or less) The first layer slurry mixed at a rate of 3 kg was applied. Thereafter, an initial layer stucco made of about # 60 to 160 mesh alumina was applied and then dried to form an initial layer slurry film. Subsequently, after applying the rear layer slurry around the first layer slurry film, the rear layer stucco was applied and then dried to form the rear layer slurry film. Then, after wax-type dewaxing was performed using steam, a baking treatment was performed to produce a shell mold.

このシェル鋳型を溶解炉内にセットし、1520℃に予熱した後、そのキャビティ内に、シェル鋳型のキャビティ面表層との反応性が高い金属(Rene'142(登録商標))の溶湯を鋳込んだ。溶湯温度は、鋳型の予熱温度と同じ1520℃とした。その後、鋳型を冷却して金属溶湯を凝固させ、精密鋳造品を作製した。   This shell mold is set in a melting furnace, preheated to 1520 ° C, and then a molten metal (Rene'142 (registered trademark)) with high reactivity with the surface of the cavity surface of the shell mold is cast into the cavity. It is. The molten metal temperature was 1520 ° C., the same as the mold preheating temperature. Thereafter, the mold was cooled to solidify the molten metal, thereby producing a precision casting.

ここで、金属溶湯を鋳込む際、先ず、溶解炉内を約1×10-1Paの真空度に真空引きした後、溶解炉内にArガスを導入して雰囲気圧を0.005MPaに調整し、不活性ガス減圧雰囲気下で鋳造を行い、精密鋳造品(鋳放し材)を作製した(実施例)。一方、金属溶湯を鋳込む際、溶解炉内を約1×10-2Paの真空度に真空引きした後、そのまま真空雰囲気下で鋳造を行い、精密鋳造品(鋳放し材)を作製した(従来例)。 Here, when casting the molten metal, first, the melting furnace was evacuated to a vacuum degree of about 1 × 10 −1 Pa, and Ar gas was introduced into the melting furnace to adjust the atmospheric pressure to 0.005 MPa. Then, casting was performed under an inert gas decompression atmosphere to produce a precision cast product (as cast material) (Example). On the other hand, when casting molten metal, the inside of the melting furnace was evacuated to a vacuum of about 1 × 10 -2 Pa, and then cast in a vacuum atmosphere to produce a precision cast product (as cast material) ( Conventional example).

実施例及び従来例の各精密鋳造品の断面観察図を、図1,図2及び図3,図4に示す。図1〜図4の各左側が精密鋳造品の断面部であり、各右側の黒い部分は背景部である。   Cross-sectional observation views of the precision castings of Examples and Conventional Examples are shown in FIGS. The left side of each of FIGS. 1 to 4 is a cross section of a precision casting, and the black part on the right is a background.

図3,図4に示すように、従来例の精密鋳造品30は、その表層のほぼ全面に、反応物や剥離材の層(層厚約40〜60μm)41が形成されていた。また、精密鋳造品30の表層には、鋳込み時に金属溶湯がシェル鋳型のキャビティ面に差し込んだ跡(深さ約60〜100μm)、所謂、差込欠陥42が観察され、平均表面粗さRaは約20μmと大きかった。   As shown in FIGS. 3 and 4, the precision cast product 30 of the conventional example has a reaction product or release material layer (layer thickness of about 40 to 60 μm) 41 formed on almost the entire surface. Further, on the surface layer of the precision casting 30, a trace (depth of about 60 to 100 μm) of the molten metal inserted into the cavity surface of the shell mold at the time of casting, a so-called insertion defect 42 is observed, and the average surface roughness Ra is It was as large as about 20 μm.

これに対して、図1,図2に示すように、実施例の精密鋳造品10は、その表層に、反応物や剥離材の層はほとんどなかった。また、精密鋳造品10の表層には差込欠陥は観察されず、平均表面粗さRaは約1.2μmと小さかった。   On the other hand, as shown in FIGS. 1 and 2, the precision cast product 10 of the example had almost no reactant or release material layer on its surface layer. Further, no insertion defect was observed on the surface layer of the precision casting product 10, and the average surface roughness Ra was as small as about 1.2 μm.

以上より、本発明に係る精密鋳造法を用い、不活性ガス減圧雰囲気下で鋳造を行うことで、表面性状が良好な鋳放し材が得られることが確認できた。   From the above, it has been confirmed that an as-cast material having a good surface property can be obtained by casting in an inert gas decompression atmosphere using the precision casting method according to the present invention.

[実施例]における実施例の精密鋳造品の断面観察図である。It is a cross-sectional observation figure of the precision casting goods of the Example in [Example]. 図1における要部Aの拡大図である。It is an enlarged view of the principal part A in FIG. [実施例]における従来例の精密鋳造品の断面観察図である。It is a cross-sectional observation figure of the precision casting product of the prior art example in [Example]. 図3における要部Bの拡大図である。It is an enlarged view of the principal part B in FIG.

符号の説明Explanation of symbols

10 精密鋳造品
10 Precision castings

Claims (12)

シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
上記シェル鋳型との反応性が高い金属溶湯を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むことを特徴とする精密鋳造法。
In a method of casting a molten metal into a cavity of a shell mold and casting to produce a precision casting product,
When casting using a molten metal that is highly reactive with the shell mold,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, a precision casting method characterized by casting a molten metal into the cavity while maintaining the atmospheric pressure in that state.
上記シェル鋳型との反応性が高い金属溶湯が、酸素に対する活性の高い元素を含んだNi基超合金である請求項1記載の精密鋳造法。   2. The precision casting method according to claim 1, wherein the molten metal having high reactivity with the shell mold is a Ni-based superalloy containing an element having high activity against oxygen. 上記シェル鋳型との反応性が高い金属溶湯が、酸素に対する活性の高い元素を含んだCo基超合金である請求項1記載の精密鋳造法。   2. The precision casting method according to claim 1, wherein the molten metal having high reactivity with the shell mold is a Co-base superalloy containing an element having high activity against oxygen. シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
ポーラスで通気性が良好な上記シェル鋳型を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むことを特徴とする精密鋳造法。
In a method of casting a molten metal into a cavity of a shell mold and casting to produce a precision casting product,
When casting using the above shell mold that is porous and has good air permeability,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, a precision casting method characterized by casting a molten metal into the cavity while maintaining the atmospheric pressure in that state.
シェル鋳型のキャビティ内に金属溶湯を鋳込んで鋳造を行い、精密鋳造品を製造する方法において、
粘性の低い上記金属溶湯を用いて鋳込みを行う際、
シェル鋳型を圧力容器内に配置した後、その圧力容器内を真空引きし、その後、圧力容器内に不活性ガス又は窒素ガスを導入して雰囲気圧力を1Pa〜大気圧(約0.1MPa)に調整し、雰囲気圧力をその状態に保ったまま、キャビティ内に金属溶湯を鋳込むことを特徴とする精密鋳造法。
In a method of casting a molten metal into a cavity of a shell mold and casting to produce a precision casting product,
When casting using the above molten metal with low viscosity,
After placing the shell mold in the pressure vessel, the inside of the pressure vessel is evacuated, and then the atmosphere pressure is adjusted from 1 Pa to atmospheric pressure (about 0.1 MPa) by introducing an inert gas or nitrogen gas into the pressure vessel. Then, a precision casting method characterized by casting a molten metal into the cavity while maintaining the atmospheric pressure in that state.
粘性の低い金属溶湯が、結晶粒界強化のためのC成分を含んだNi基超合金である請求項5記載の精密鋳造法。   6. The precision casting method according to claim 5, wherein the molten metal having a low viscosity is a Ni-base superalloy containing a C component for strengthening grain boundaries. 粘性の低い金属溶湯が、結晶粒界強化のためのC成分を含んだCo基超合金である請求項5記載の精密鋳造法。   The precision casting method according to claim 5, wherein the molten metal having a low viscosity is a Co-base superalloy containing a C component for strengthening grain boundaries. 上記金属溶湯を一方向凝固させ、一方向凝固合金の上記精密鋳造品を製造する請求項1から7いずれかに記載の精密鋳造法。   The precision casting method according to any one of claims 1 to 7, wherein the molten metal is unidirectionally solidified to produce the precision cast product of a unidirectionally solidified alloy. 上記金属溶湯を単結晶成長させ、単結晶合金の上記精密鋳造品を製造する請求項1から7いずれかに記載の精密鋳造法。   The precision casting method according to any one of claims 1 to 7, wherein the molten metal is grown as a single crystal to produce the precision cast product of a single crystal alloy. 請求項1〜9いずれかに記載の精密鋳造法によって製造されたものであり、鋳放し材の平均表面粗さRaが3.2μm以下であることを特徴とする精密鋳造品。   A precision casting product produced by the precision casting method according to claim 1, wherein an average surface roughness Ra of the as-cast material is 3.2 μm or less. 溶解した金属溶湯を鋳型のキャビティ内に鋳込んで精密鋳造品を製造する精密鋳造装置において、
上記鋳型が配置されると共に、金属を溶解させて上記金属溶湯を形成する溶解炉と、
溶解炉内を真空引きするための排気手段と、
溶解炉内に不活性ガス又は窒素ガスを供給するためのガス供給手段と、
不活性ガス又は窒素ガスの供給量を制御するための制御手段と、
を備えたことを特徴とする精密鋳造装置。
In precision casting equipment that manufactures precision castings by casting molten metal into the mold cavity,
A melting furnace in which the mold is disposed and the metal is melted to form the molten metal;
Evacuation means for evacuating the melting furnace;
Gas supply means for supplying an inert gas or nitrogen gas into the melting furnace;
Control means for controlling the supply of inert gas or nitrogen gas;
A precision casting apparatus characterized by comprising:
上記鋳型がシェル鋳型である請求項11記載の精密鋳造装置。
The precision casting apparatus according to claim 11, wherein the mold is a shell mold.
JP2005136065A 2005-05-09 2005-05-09 Precision casting and precision casting Active JP4689342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136065A JP4689342B2 (en) 2005-05-09 2005-05-09 Precision casting and precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136065A JP4689342B2 (en) 2005-05-09 2005-05-09 Precision casting and precision casting

Publications (2)

Publication Number Publication Date
JP2006312193A true JP2006312193A (en) 2006-11-16
JP4689342B2 JP4689342B2 (en) 2011-05-25

Family

ID=37533896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136065A Active JP4689342B2 (en) 2005-05-09 2005-05-09 Precision casting and precision casting

Country Status (1)

Country Link
JP (1) JP4689342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005698A (en) * 2008-06-24 2010-01-14 General Electric Co <Ge> Alloy casting having protective layer and method of making the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684165A (en) * 1979-12-12 1981-07-09 Nissan Motor Co Ltd Casting method of heat-resistant alloy
JPS5792461U (en) * 1981-07-13 1982-06-07
JPS58100960A (en) * 1981-12-10 1983-06-15 Mitsubishi Heavy Ind Ltd Argon substituting method for mold
JPS62279066A (en) * 1986-05-26 1987-12-03 Kawasaki Steel Corp Replacement method for inert gas in reduced casting method
JPS63177954A (en) * 1987-01-19 1988-07-22 Nippon Mining Co Ltd Casting method and mold
JPH02220763A (en) * 1989-02-21 1990-09-03 Nissan Motor Co Ltd Method for casting active metal material
JPH05293589A (en) * 1992-04-23 1993-11-09 Honda Motor Co Ltd Casting method for metallic mold
JP2001518847A (en) * 1997-04-03 2001-10-16 ヤスイ・ショウズイ Methods and casting equipment for precision casting
JP2004025308A (en) * 2002-06-27 2004-01-29 Howmet Research Corp Investment casting process by filling molten material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684165A (en) * 1979-12-12 1981-07-09 Nissan Motor Co Ltd Casting method of heat-resistant alloy
JPS5792461U (en) * 1981-07-13 1982-06-07
JPS58100960A (en) * 1981-12-10 1983-06-15 Mitsubishi Heavy Ind Ltd Argon substituting method for mold
JPS62279066A (en) * 1986-05-26 1987-12-03 Kawasaki Steel Corp Replacement method for inert gas in reduced casting method
JPS63177954A (en) * 1987-01-19 1988-07-22 Nippon Mining Co Ltd Casting method and mold
JPH02220763A (en) * 1989-02-21 1990-09-03 Nissan Motor Co Ltd Method for casting active metal material
JPH05293589A (en) * 1992-04-23 1993-11-09 Honda Motor Co Ltd Casting method for metallic mold
JP2001518847A (en) * 1997-04-03 2001-10-16 ヤスイ・ショウズイ Methods and casting equipment for precision casting
JP2004025308A (en) * 2002-06-27 2004-01-29 Howmet Research Corp Investment casting process by filling molten material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005698A (en) * 2008-06-24 2010-01-14 General Electric Co <Ge> Alloy casting having protective layer and method of making the same
US8906170B2 (en) 2008-06-24 2014-12-09 General Electric Company Alloy castings having protective layers and methods of making the same

Also Published As

Publication number Publication date
JP4689342B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
EP1857198B1 (en) Methods for attaching casting cores
EP1764170B1 (en) Method for core removal in lost wax casting
US11213885B2 (en) Castings and manufacture methods
JP4451907B2 (en) Mold, its manufacturing method, and casting using the mold
US5297615A (en) Complaint investment casting mold and method
JP5869747B2 (en) Method for producing an alloy casting having a protective layer
US6951239B1 (en) Methods for manufacturing investment casting shells
JP5632136B2 (en) Disintegrating mold and manufacturing method thereof
US9803923B2 (en) Crucible and extrinsic facecoat compositions and methods for melting titanium and titanium aluminide alloys
US7389809B2 (en) Tool for producing cast components, method for producing said tool, and method for producing cast components
US9908175B2 (en) Die casting system and method utilizing sacrificial core
JP6334526B2 (en) Crucible and facecoat composition, and method for melting titanium and titanium aluminide alloy
JP2015531733A5 (en)
JP2005349472A (en) Lost wax casting method using contact layer
JP4689342B2 (en) Precision casting and precision casting
JP6344034B2 (en) Casting method of TiAl alloy
US20220048097A1 (en) Casting slurry for the production of shell molds
JP3269474B2 (en) High-strength precision casting mold and method of manufacturing the same
JPH04333343A (en) Manufacture of ceramic shell mold
JP2010188360A (en) Precision casting mold, method of manufacturing the same, and precision casting product
CN112828241B (en) Casting heating coating and preparation method thereof
JP2007069247A (en) Mold for titanium aluminum alloy
CN109475928B (en) Method for producing a shell mould
JPH08309478A (en) Die for precision casting gas turbine blade, and manufacture of gas turbine blade
JP4422008B2 (en) Precision casting mold and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250