JP2006312150A - Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system - Google Patents

Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system Download PDF

Info

Publication number
JP2006312150A
JP2006312150A JP2005136658A JP2005136658A JP2006312150A JP 2006312150 A JP2006312150 A JP 2006312150A JP 2005136658 A JP2005136658 A JP 2005136658A JP 2005136658 A JP2005136658 A JP 2005136658A JP 2006312150 A JP2006312150 A JP 2006312150A
Authority
JP
Japan
Prior art keywords
photocatalyst
carbon monoxide
oxidation catalyst
fuel cell
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005136658A
Other languages
Japanese (ja)
Inventor
Rumi Takeuchi
留美 武内
Takashi Kamegawa
孝 亀川
Masaya Matsuoka
雅也 松岡
Shoichi Anpo
正一 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005136658A priority Critical patent/JP2006312150A/en
Publication of JP2006312150A publication Critical patent/JP2006312150A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation catalyst that can oxidize even a trace of carbon monoxide in a hydrogen-containing gas to carbon dioxide at high selectivity. <P>SOLUTION: At least one photocatalyst of a photocatalyst having at least one metal oxide selected from the group consisting of a molybdenum oxide, a vanadium oxide, a tungsten oxide and a chromium oxide carried by a silica carrier and a titanium dioxide photocatalyst is used as the oxidation catalyst for catalyzing oxidation reaction for oxidizing carbon monoxide to carbon dioxide in the hydrogen-containing gas. A photocatalyst having a molybdenum oxide carried by a silica carrier, a photocatalyst having a vanadium oxide carried by a silica carrier, a photocatalyst having a tungsten oxide carried on a silica carrier and a photocatalyst having a chromium oxide carried by a silica carrier are preferable as the above oxidation catalyst. The light to be used to irradiate the above photocatalyst includes, for example, visible light, ultraviolet rays and sunlight. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素含有ガス中において、選択的に一酸化炭素を二酸化炭素に酸化することが可能な酸化触媒、それを用いた一酸化炭素の除去方法、燃料電池用燃料精製装置および燃料電池発電装置に関する。   The present invention relates to an oxidation catalyst capable of selectively oxidizing carbon monoxide to carbon dioxide in a hydrogen-containing gas, a carbon monoxide removal method using the same, a fuel cell fuel purifier, and fuel cell power generation. Relates to the device.

燃料電池は、クリーンなエネルギー源として注目されている。水素―酸素型燃料電池としては、電解質の種類や電極の種類等により種々のタイプに分類され、代表的なものとしては、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型がある。この中でも、低温(通常100℃以下)で作動可能な固体高分子型燃料電池が注目を集め、近年自動車用低公害動力源としての開発・実用化が進んでいる。   Fuel cells are attracting attention as a clean energy source. Hydrogen-oxygen type fuel cells are classified into various types depending on the type of electrolyte and the type of electrode, and typical types are alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid high type. There are molecular types. Among these, a polymer electrolyte fuel cell that can operate at a low temperature (usually 100 ° C. or less) attracts attention, and in recent years, development and practical application as a low-pollution power source for automobiles is progressing.

固体高分子型燃料電池においては、純粋な水素を燃料源として用いることがエネルギー効率からは最も好ましい。しかし、安全性・インフラ整備等を考慮すると、メタノール、天然ガス、ガソリン等を燃料源として用い、これらを改質装置により水素リッチな改質ガスに転化させて用いることが現実的な方法として種々方面から検討されている。   In the polymer electrolyte fuel cell, it is most preferable from the viewpoint of energy efficiency to use pure hydrogen as a fuel source. However, considering safety and infrastructure development, there are various practical methods in which methanol, natural gas, gasoline, etc. are used as a fuel source, and these are converted into hydrogen-rich reformed gas using a reformer. It is being considered from the direction.

しかしながら、改質ガス中には、微量の一酸化炭素(CO)が含まれており、これが、燃料電池のPt電極触媒に対し触媒毒として作用し、この結果、燃料電池性能が低下するという問題がある。この問題を解決するためには、水素含有燃料中の一酸化炭素濃度を10ppm以下に低減する必要がある。一酸化炭素の除去方法としては、固体高分子型燃料電池の作動温度である100℃以下で、選択的に一酸化炭素を二酸化炭素に酸化する触媒を用いる方法がある。このような触媒としては、Pt、Rh、Auなどの貴金属担持触媒が報告されている。例えば、白金と、白金以外の少なくとも1種の遷移金属(鉄、銅、マンガン、コバルトおよびニッケル)とを含み、前記遷移金属は複数の酸化状態で存在するという触媒が提案されている(特許文献1)。しかしながら、これらの触媒は、水素中の一酸化炭素濃度が希薄な領域では一酸化炭素の酸化の選択率が低下し、特に一酸化炭素が存在しない場合には、水素の燃焼反応が進行するという問題点がある。
特開2004−49961号公報
However, the reformed gas contains a small amount of carbon monoxide (CO), which acts as a catalyst poison for the Pt electrode catalyst of the fuel cell, resulting in a problem that the fuel cell performance is deteriorated. There is. In order to solve this problem, it is necessary to reduce the carbon monoxide concentration in the hydrogen-containing fuel to 10 ppm or less. As a method for removing carbon monoxide, there is a method using a catalyst that selectively oxidizes carbon monoxide to carbon dioxide at an operating temperature of 100 ° C. or lower, which is an operating temperature of a polymer electrolyte fuel cell. As such a catalyst, a noble metal-supported catalyst such as Pt, Rh and Au has been reported. For example, a catalyst has been proposed that includes platinum and at least one transition metal other than platinum (iron, copper, manganese, cobalt, and nickel), and the transition metal exists in a plurality of oxidation states (Patent Literature). 1). However, in these catalysts, the selectivity of oxidation of carbon monoxide is lowered in a region where the concentration of carbon monoxide in hydrogen is dilute, and in the absence of carbon monoxide, the combustion reaction of hydrogen proceeds. There is a problem.
Japanese Patent Laid-Open No. 2004-49961

そこで、本発明は、水素含有ガス中において、低濃度の一酸化炭素であっても高い選択性で二酸化炭素に酸化可能である酸化触媒、それを用いた一酸化炭素の除去方法、燃料電池用燃料精製装置および燃料電池発電装置の提供を目的とする。   Accordingly, the present invention provides an oxidation catalyst that can be oxidized to carbon dioxide with high selectivity even in a low concentration of carbon monoxide in a hydrogen-containing gas, a method for removing carbon monoxide using the same, and a fuel cell An object is to provide a fuel purifier and a fuel cell power generator.

前記目的を達成するために、本発明の酸化触媒は、水素含有ガス中において、一酸化炭素を二酸化炭素に酸化する酸化反応を触媒する酸化触媒であって、シリカ担体に、モリブデン酸化物、バナジウム酸化物、タングステン酸化物およびクロム酸化物からなる群から選択される少なくとも一つの金属酸化物を担持させた光触媒および二酸化チタン光触媒の少なくとも一方の光触媒を含む酸化触媒である。   To achieve the above object, the oxidation catalyst of the present invention is an oxidation catalyst that catalyzes an oxidation reaction that oxidizes carbon monoxide to carbon dioxide in a hydrogen-containing gas. An oxidation catalyst comprising a photocatalyst supporting at least one metal oxide selected from the group consisting of oxide, tungsten oxide and chromium oxide and at least one photocatalyst of titanium dioxide photocatalyst.

本発明の一酸化炭素除去方法は、水素含有ガス中の一酸化炭素を除去する一酸化炭素除去方法であって、前記本発明の酸化触媒を用い、前記酸化触媒に光を照射しながら前記一酸化炭素を二酸化炭素に酸化することにより前記一酸化炭素を除去するという方法である。   The carbon monoxide removal method of the present invention is a carbon monoxide removal method of removing carbon monoxide in a hydrogen-containing gas, wherein the oxidation catalyst of the present invention is used and the oxidation catalyst is irradiated with light while the carbon monoxide is irradiated. In this method, the carbon monoxide is removed by oxidizing carbon oxide to carbon dioxide.

本発明の燃料電池用燃料精製装置は、前記本発明の酸化触媒と、前記酸化触媒に光を照射する光照射手段とを有する燃料電池用燃料精製装置である。   The fuel purification device for a fuel cell of the present invention is a fuel purification device for a fuel cell comprising the oxidation catalyst of the present invention and a light irradiation means for irradiating the oxidation catalyst with light.

本発明の燃料電池発電装置は、燃料電池と、燃料電池用燃料精製装置とを備える燃料電池発電装置であって、前記燃料電池用燃料精製装置が、前記本発明の燃料電池用燃料精製装置であるという構成である。   The fuel cell power generation device of the present invention is a fuel cell power generation device comprising a fuel cell and a fuel cell fuel purification device, wherein the fuel cell fuel purification device is the fuel cell fuel purification device of the present invention. It is a configuration that there is.

このように、本発明の酸化触媒は、シリカ担体に、モリブデン酸化物、バナジウム酸化物、タングステン酸化物およびクロム酸化物からなる群から選択される少なくとも一つの金属酸化物担持させた光触媒および二酸化チタン光触媒の少なくとも一方の光触媒を含むことを特徴とし、水素含有ガス中の一酸化炭素が微量であっても、水素の酸化を抑制しつつ、高い選択性で前記一酸化炭素を酸化して二酸化炭素に転化することが可能である。このため、本発明の酸化触媒を用いれば、例えば、固体高分子型燃料電池の燃料となる水素含有ガス中の微量な一酸化炭素を効果的に除去することができ、その結果、前記固体高分子型燃料電池の性能の低下を防止することが可能となる。   As described above, the oxidation catalyst of the present invention comprises a photocatalyst and titanium dioxide in which at least one metal oxide selected from the group consisting of molybdenum oxide, vanadium oxide, tungsten oxide and chromium oxide is supported on a silica support. It contains at least one photocatalyst of the photocatalyst and oxidizes the carbon monoxide with high selectivity while suppressing the oxidation of hydrogen even if the amount of carbon monoxide in the hydrogen-containing gas is small. It is possible to convert to For this reason, if the oxidation catalyst of the present invention is used, for example, a minute amount of carbon monoxide in a hydrogen-containing gas serving as a fuel of a polymer electrolyte fuel cell can be effectively removed. It is possible to prevent a decrease in the performance of the molecular fuel cell.

本発明の酸化触媒は、シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)、シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)、シリカ担体にタングステン酸化物を担持させた光触媒(W/SiO2)およびシリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)が好ましく、より好ましくは、シリカ担体にモリブデン(Mo/SiO2)を担持させた光触媒およびシリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)である。 The oxidation catalyst of the present invention includes a photocatalyst (Mo / SiO 2 ) in which molybdenum oxide is supported on a silica support, a photocatalyst (V / SiO 2 ) in which vanadium oxide is supported on a silica support, and tungsten oxide on a silica support. A supported photocatalyst (W / SiO 2 ) and a photocatalyst (Cr / SiO 2 ) in which chromium oxide is supported on a silica support are preferable, and more preferably, a photocatalyst in which molybdenum (Mo / SiO 2 ) is supported on a silica support. And a photocatalyst (Cr / SiO 2 ) in which chromium oxide is supported on a silica support.

本発明の酸化触媒は、前記光触媒を含んでいれば、特に制限されないが、その他の酸化触媒若しくは担体等の他の成分を含んでいても良い。例えば、Pt、Rh、Auなどの貴金属触媒を含んでいてもよい。   The oxidation catalyst of the present invention is not particularly limited as long as it contains the photocatalyst, but may contain other components such as other oxidation catalysts or carriers. For example, a noble metal catalyst such as Pt, Rh, or Au may be included.

シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)におけるモリブデン(Mo)の割合は、例えば、0.01〜20wt%の範囲であり、好ましくは0.1〜10wt%の範囲であり、より好ましくは0.3〜5.0wt%の範囲である。 The ratio of molybdenum (Mo) in the photocatalyst (Mo / SiO 2 ) having molybdenum oxide supported on a silica support is, for example, in the range of 0.01 to 20 wt%, preferably in the range of 0.1 to 10 wt%, and more preferably. Is in the range of 0.3-5.0 wt%.

シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)におけるモリブデン(V)の割合は、例えば、0.01〜20wt%の範囲であり、好ましくは0.1〜10wt%の範囲であり、より好ましくは0.3〜5.0wt%の範囲である。 The ratio of molybdenum (V) in the photocatalyst (V / SiO 2 ) in which the vanadium oxide is supported on the silica support is, for example, in the range of 0.01 to 20 wt%, preferably in the range of 0.1 to 10 wt%. Is in the range of 0.3-5.0 wt%.

シリカ担体にタングステン酸化物を担持させた光触媒(W/SiO2)におけるモリブデン(W)の割合は、例えば、0.01〜20wt%の範囲であり、好ましくは0.1〜10wt%の範囲であり、より好ましくは0.3〜5.0wt%の範囲である。 The ratio of molybdenum (W) in the photocatalyst (W / SiO 2 ) in which tungsten oxide is supported on a silica support is, for example, in the range of 0.01 to 20 wt%, preferably in the range of 0.1 to 10 wt%, and more preferably. Is in the range of 0.3-5.0 wt%.

シリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)におけるクロム(Cr)の割合は、例えば、0.01〜20wt%の範囲であり、好ましくは0.1〜10wt%の範囲であり、より好ましくは0.3〜5.0wt%の範囲である。 The ratio of chromium (Cr) in the photocatalyst (Cr / SiO 2 ) in which chromium oxide is supported on a silica support is, for example, in the range of 0.01 to 20 wt%, preferably in the range of 0.1 to 10 wt%, more preferably. Is in the range of 0.3-5.0 wt%.

シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)、シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)、シリカ担体にタングステン酸化物を担持させた光触媒(W/SiO2)、およびシリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)は、例えば、含浸法により製造できる。例えば、シリカ(SiO2)を、(NH4Mo7244H2O水溶液、NH4VO3水溶液、(NH4)10W12O415H2O水溶液、若しくはCr(NO339H2O水溶液に浸漬し、水をエバポレーターで蒸発乾固させる含浸法により調製できる。前記シリカ(SiO2)は、特に制限されないが、例えば、BET表面積が50〜400m2/gのものを使用でき、好ましくは、BET表面積が100〜350m2/gのものであり、より好ましくはBET表面積が200〜330m2/gのものである。得られた光触媒は、例えば、80〜150℃で12〜36時間の条件で乾燥処理をした後、例えば、350〜600℃で1〜10時間の条件で焼成処理することが好ましい。 Photocatalyst (Mo / SiO 2 ) having molybdenum oxide supported on a silica support, photocatalyst (V / SiO 2 ) having vanadium oxide supported on a silica support, photocatalyst (W / SiO 2 ) supporting tungsten oxide on a silica support SiO 2 ) and a photocatalyst (Cr / SiO 2 ) in which chromium oxide is supported on a silica support can be produced, for example, by an impregnation method. For example, silica (SiO 2 ), (NH 4 ) 6 Mo 7 O 24 4H 2 O aqueous solution, NH 4 VO 3 aqueous solution, (NH 4 ) 10 W 12 O 41 5H 2 O aqueous solution, or Cr (NO 3 ) 3 It can be prepared by an impregnation method in which it is immersed in a 9H 2 O aqueous solution and water is evaporated to dryness with an evaporator. Although the silica (SiO 2 ) is not particularly limited, for example, those having a BET surface area of 50 to 400 m 2 / g can be used, preferably those having a BET surface area of 100 to 350 m 2 / g, more preferably BET surface area is 200-330 m 2 / g. The obtained photocatalyst is preferably dried, for example, at 80 to 150 ° C. for 12 to 36 hours and then calcined at 350 to 600 ° C. for 1 to 10 hours.

これら、シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)、シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)、シリカ担体にタングステン酸化物を担持させた光触媒(W/SiO2)、およびシリカ担体にクロムを担持させた光触媒(Cr/SiO2)では、金属種酸化物種は、シリカ上において、それぞれ、Mo(VI)、V(V)、W(VI)およびCr(VI)の価数で四配位の状態で存在し、原子レベルでの孤立単分散状態で担持されている必要がある。前記各種の金属酸化物のシリカ上での高分散担持は、含浸法によるSiO2上への金属酸化物種の担持量の制御により実現できる。 These are photocatalyst (Mo / SiO 2 ) in which molybdenum oxide is supported on a silica support, photocatalyst (V / SiO 2 ) in which vanadium oxide is supported on a silica support, and photocatalyst (tungsten oxide supported on silica support (V / SiO 2 )). W / SiO 2 ) and a photocatalyst (Cr / SiO 2 ) in which chromium is supported on a silica support, the metal species oxide species are Mo (VI), V (V), and W (VI) on silica, respectively. And Cr (VI) must exist in a four-coordinate state and be supported in an isolated monodispersed state at the atomic level. The highly dispersed loading of the various metal oxides on silica can be realized by controlling the loading amount of the metal oxide species on SiO 2 by the impregnation method.

一方、二酸化チタンは一般的に、チタンイソプロポキシド(Ti〔OCH(CH3)24 )の加水分解やTiCl4、H2およびO2を高温で燃焼すること等により調製される。一般的に、高い光触媒活性を有する酸化チタン光触媒は、後者の方法で調製される。酸化チタン光触媒は、アナターゼ型のものが好ましいが、ルチル型のものを使用してもよく、アナターゼ型とルチル型の混在型を使用してもよい。 On the other hand, titanium dioxide is generally prepared by hydrolysis of titanium isopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ), burning TiCl 4 , H 2 and O 2 at a high temperature. In general, a titanium oxide photocatalyst having high photocatalytic activity is prepared by the latter method. The titanium oxide photocatalyst is preferably an anatase type, but a rutile type may be used, and a mixed type of anatase type and rutile type may be used.

本発明の酸化触媒を用いた一酸化炭素の除去方法は、水素含有ガス中の一酸化炭素を除去する一酸化炭素除去方法であって、前記本発明の酸化触媒に光を照射しながら前記一酸化炭素を二酸化炭素に酸化することにより前記一酸化炭素を除去するという方法である。   A method for removing carbon monoxide using the oxidation catalyst of the present invention is a carbon monoxide removal method for removing carbon monoxide in a hydrogen-containing gas. In this method, the carbon monoxide is removed by oxidizing carbon oxide to carbon dioxide.

前記本発明の一酸化炭素の除去方法において、前記酸化の酸素源として酸素ガスを用いることが好ましい。前記酸素ガスは、特に制限されないが、例えば、前記水素含有ガス中に含まれている酸素ガスを利用してもよい。例えば、メタンガス等の炭化水素ガスを改質した改質ガス(水素含有ガス)には、一酸化炭素と共に微量の酸素ガスを含んでいるから、この酸素ガスを利用することが好ましい。したがって、本発明の一酸化炭素の除去対象となる前記水素含有ガスは、水素を含んでいれば特に制限されないが、炭化水素ガスの改質ガス若しくは燃料電池用の水素含有ガスであることが好ましい。   In the method for removing carbon monoxide of the present invention, it is preferable to use oxygen gas as an oxygen source for the oxidation. The oxygen gas is not particularly limited, and for example, oxygen gas contained in the hydrogen-containing gas may be used. For example, a reformed gas (hydrogen-containing gas) obtained by reforming a hydrocarbon gas such as methane gas contains a small amount of oxygen gas together with carbon monoxide. Therefore, it is preferable to use this oxygen gas. Therefore, the hydrogen-containing gas to be removed of carbon monoxide of the present invention is not particularly limited as long as it contains hydrogen, but is preferably a reformed gas of hydrocarbon gas or a hydrogen-containing gas for fuel cells. .

前記本発明の一酸化炭素の除去方法において、100℃以下の温度条件で前記一酸化炭素を前記二酸化炭素に酸化することが好ましい。前記温度範囲の具体例としては、0〜25℃の範囲がある。   In the carbon monoxide removal method of the present invention, it is preferable to oxidize the carbon monoxide to the carbon dioxide under a temperature condition of 100 ° C. or lower. Specific examples of the temperature range include a range of 0 to 25 ° C.

本発明において、一酸化炭素を二酸化炭素に酸化する際に、本発明の酸化触媒に照射する光は、シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)、シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)およびシリカ担体にタングステン酸化物(W/SiO2)の場合は紫外光であるが、シリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)の場合は特に制限されず、例えば、可視光、紫外線、太陽光等があり、この中で、エネルギーコストの観点から太陽光が好ましい。 In the present invention, when oxidizing carbon monoxide to carbon dioxide, the light irradiated to the oxidation catalyst of the present invention is a photocatalyst (Mo / SiO 2 ) in which molybdenum oxide is supported on a silica support, and vanadium oxidation on a silica support. In the case of a photocatalyst (V / SiO 2 ) supporting a product and tungsten oxide (W / SiO 2 ) on a silica support, it is ultraviolet light, but a photocatalyst (Cr / SiO 2) supporting chromium oxide on a silica support ) Is not particularly limited, and examples thereof include visible light, ultraviolet light, and sunlight. Among these, sunlight is preferable from the viewpoint of energy cost.

光触媒の触媒反応に最適な光波長の範囲は、シリカ担体にモリブデン酸化物を担持させた光触媒(Mo/SiO2)、シリカ担体にバナジウム酸化物を担持させた光触媒(V/SiO2)およびタングステン酸化物の場合は、300nm〜400nmまでの紫外光であり、例えば、太陽光に含まれる紫外光を利用できる。シリカ担体にクロム酸化物を担持させた光触媒(Cr/SiO2)の場合、光触媒の触媒反応に最適な光波長の範囲は、350nm〜450nmまでの紫外光および可視光であり、室内光や太陽光を有効に利用できる。 The optimum light wavelength range for the catalytic reaction of the photocatalyst is a photocatalyst (Mo / SiO 2 ) in which molybdenum oxide is supported on a silica support, a photocatalyst (V / SiO 2 ) in which vanadium oxide is supported on silica support, and tungsten. In the case of an oxide, it is ultraviolet light from 300 nm to 400 nm, and for example, ultraviolet light contained in sunlight can be used. In the case of a photocatalyst (Cr / SiO 2 ) with chromium oxide supported on a silica support, the optimum light wavelength range for the catalytic reaction of the photocatalyst is ultraviolet light and visible light from 350 nm to 450 nm. Light can be used effectively.

前述のように、本発明の燃料電池用燃料精製装置は、前記本発明の酸化触媒と、前記酸化触媒に光を照射する光照射手段とを有する。前記光照射手段は、太陽光を利用した光照射手段であることが好ましい。   As described above, the fuel purifier for a fuel cell of the present invention includes the oxidation catalyst of the present invention and light irradiation means for irradiating the oxidation catalyst with light. The light irradiation means is preferably a light irradiation means using sunlight.

前述のように、本発明の燃料電池発電装置は、燃料電池と、燃料電池用燃料精製装置とを備える燃料電池発電装置であって、前記燃料電池用燃料精製装置が、前記本発明の燃料電池用燃料精製装置である。   As described above, the fuel cell power generation device of the present invention is a fuel cell power generation device including a fuel cell and a fuel cell fuel purification device, and the fuel cell fuel purification device is the fuel cell of the present invention. It is a fuel refining device.

つぎに、本発明の実施例について説明する。ただし、本発明は、下記の実施例により制限されない。   Next, examples of the present invention will be described. However, the present invention is not limited by the following examples.

Mo/SiO2光触媒(0.60wt%)は、日本アエロジル株式会社製SiO2(商品名aerosil300;degussa,BET表面積;300m2/g)を(NH4Mo7244H2O水溶液に浸漬し、水をエバポレーターで蒸発乾固させる含浸法により調製した。Cr/SiO2光触媒(0.33wt%)は、日本アエロジル株式会社製SiO2(商品名aerosil300;degussa,BET表面積;300m2/g)をCr(NO339H2O水溶液に浸漬し、水をエバポレーターで蒸発乾固させる含浸法により調製した。水溶液の蒸発乾固後、各前記光触媒は100℃で12時間乾燥し、その後空気中500℃で8時間焼成した。一方、二酸化チタン光触媒(TiO2、商品名P−25;degussa,BET表面積;50m2/g 、日本アエロジル株式会社製)は、空気中450℃で8時間焼成した。そして、過剰H2雰囲気下での微量COのO2による光触媒選択酸化除去反応は、閉鎖反応系において、H2=24.60μmol、O2=7.48μmol、CO=3.82μmol(反応体積101cm3)の存在下、高圧水銀灯(100W)の光を照射し、20℃で行った。可視光照射(λ>420nm)は、L-42カットフィルター(東芝ガラス株式会社製)を用いて、420nm以下の光をカットして行った。CO単独のO2による光触媒酸化反応およびH2単独のO2による光触媒酸化反応は、上述の反応条件において、それぞれH2若しくはCOが存在(混在)しない条件で行った。また、前記各種の光触媒については、UV−Vis吸収スペクトル分析およびPhotoluminescenceスペクトル分析による構造解析を行った。なお、前記各光触媒は、その前記分光測定および前記光触媒選択酸化除去反応前に、2.66kPa以上の酸素存在下で1時間焼成し、その後200℃で1時間真空排気処理を行った。これらの結果を、図1、図2、図3および図4のグラフと、下記表1とに示す。 Mo / SiO 2 photocatalyst (0.60 wt%) is made from Nippon Aerosil Co., Ltd. SiO 2 (trade name aerosil 300; degussa, BET surface area; 300 m 2 / g) into (NH 4 ) 6 Mo 7 O 24 4H 2 O aqueous solution. It was dipped and prepared by an impregnation method in which water was evaporated to dryness with an evaporator. A Cr / SiO 2 photocatalyst (0.33 wt%) was prepared by immersing SiO 2 (trade name aerosil 300; degussa, BET surface area; 300 m 2 / g) manufactured by Nippon Aerosil Co., Ltd. in a Cr (NO 3 ) 3 9H 2 O aqueous solution. It was prepared by an impregnation method in which water was evaporated to dryness with an evaporator. After the aqueous solution was evaporated to dryness, each photocatalyst was dried at 100 ° C. for 12 hours and then calcined in air at 500 ° C. for 8 hours. On the other hand, a titanium dioxide photocatalyst (TiO 2 , trade name P-25; degussa, BET surface area; 50 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) was calcined in air at 450 ° C. for 8 hours. Then, the photocatalytic selective oxidation removal reaction with O 2 of a trace amount of CO in an excess H 2 atmosphere is performed in a closed reaction system in which H 2 = 24.60 μmol, O 2 = 7.48 μmol, CO = 3.82 μmol (reaction volume 101 cm In the presence of 3 ), irradiation with light from a high-pressure mercury lamp (100 W) was performed at 20 ° C. Visible light irradiation (λ> 420 nm) was performed by cutting light of 420 nm or less using an L-42 cut filter (manufactured by Toshiba Glass Co., Ltd.). The photocatalytic oxidation reaction with O 2 of CO alone and the photocatalytic oxidation reaction with O 2 of H 2 alone were performed under the above-described reaction conditions under the condition that H 2 or CO was not present (mixed). The various photocatalysts were subjected to structural analysis by UV-Vis absorption spectrum analysis and photoluminescence spectrum analysis. Each photocatalyst was calcined in the presence of oxygen of 2.66 kPa or more for 1 hour before the spectroscopic measurement and the photocatalytic selective oxidation removal reaction, and then evacuated at 200 ° C. for 1 hour. These results are shown in the graphs of FIGS. 1, 2, 3 and 4 and Table 1 below.

図1のUV−Vis吸収スペクトル分析は、島津製作所株式会社製商品名UV-2200Aを用い、拡散反射法により常温で行った。図2のPhotoluminescenceスペクトル分析は、SPEX社の商品名Fluorolog-3 発光分光測定装置を用い常温で行い、発光スペクトルは300nmの励起下で、発光励起スペクトルは440nmの発光をモニターして測定した。また、図3,4における反応生成物の分析は、島津製作所株式会社製商品名GC-12Aガスクロマトグラフにて、TCD検出器を用いて測定した。CO、CO2およびO2の定量はHeキャリアーガスを用い、H2の定量はArキャリアーガスを用いて行った。 The UV-Vis absorption spectrum analysis of FIG. 1 was performed at room temperature by a diffuse reflection method using a product name UV-2200A manufactured by Shimadzu Corporation. The photoluminescence spectrum analysis of FIG. 2 was performed at room temperature using a trade name Fluorolog-3 emission spectrophotometer manufactured by SPEX, and the emission spectrum was measured under 300 nm excitation, and the emission excitation spectrum was monitored by monitoring the emission at 440 nm. Moreover, the analysis of the reaction product in FIGS. 3 and 4 was measured using a TCD detector by Shimadzu Corporation trade name GC-12A gas chromatograph. CO, CO 2 and O 2 were quantified using a He carrier gas, and H 2 was quantified using an Ar carrier gas.

図1のグラフにMo/SiO2光触媒のUV−Vis吸収スペクトル分析の結果を示す。図示のように、225nmおよび280nmに四配位のMo酸化物種に基づく吸収が見られ、またMoO3のような凝集種の吸収はなく、シリカ上で、Mo(VI)酸化物種が四配位の高分散状態で担持されていることがわかる。図2のグラフに、Mo/SiO2光触媒のPhotoluminescenceスペクトル分析の結果を示す。図示のように、Photoluminescenceスペクトル分析でも四配位のMo酸化物種に基づく500nm付近にピークが見られ前記UV−Vis吸収スペクトル分析の結果と一致した。図5の模式図に、シリカ上で、Mo(VI)酸化物種が四配位の高分散状態で担持されている状態を示す。その他の金属酸化物、すなわち、バナジウム酸化物、タングステン酸化物およびクロム酸化物も、同様の構造で、シリカ上において四配位で高分散状態で担持されている。 The graph of FIG. 1 shows the results of UV-Vis absorption spectrum analysis of the Mo / SiO 2 photocatalyst. As shown in the figure, absorption based on tetracoordinate Mo oxide species is observed at 225 nm and 280 nm, and there is no absorption of aggregated species such as MoO 3 , and Mo (VI) oxide species are tetracoordinated on silica. It can be seen that it is supported in a highly dispersed state. The graph of FIG. 2 shows the result of Photoluminescence spectrum analysis of the Mo / SiO 2 photocatalyst. As shown in the figure, a photoluminescence spectrum analysis also showed a peak around 500 nm based on a four-coordinate Mo oxide species, which was consistent with the results of the UV-Vis absorption spectrum analysis. The schematic diagram of FIG. 5 shows a state in which Mo (VI) oxide species are supported in a four-coordinate highly dispersed state on silica. Other metal oxides, that is, vanadium oxide, tungsten oxide, and chromium oxide are also supported in a highly dispersed state in a four-coordinate configuration on silica with a similar structure.

図3および図4(A)および(B)の各グラフに、前記光触媒選択酸化除去反応の結果を示す。前記両図において、縦軸はガス濃度(μmol)を示し、横軸は反応時間(分)を示す。図示のように、過剰水素、酸素およびCOの存在下でMo/SiO2光触媒に光照射すると気相中のCO量は減少し、それに対応して化学量論的なCO2の生成が確認された。生成したCO2量は、前記光触媒中のMo量を越えることから、COの酸素によるCO2への酸化反応が光触媒的に進行したといえる。また、この際、気相中の水素量は減少せず、Mo/SiO2触媒を用いて、水素を酸化することなく、選択的にCOをCO2へと酸化できた。また、図4(A)および(B)のグラフに示すように、個別に,COの酸化反応(図4(A))、水素の酸化反応(図4(B))のみについて検討した結果、水素およびCOの両方を共存させた図3の場合とほぼ同じ挙動を示した。すなわちMo/SiO2触媒上では、水素の存在に関わらず、COを選択的に酸化できた。 3 and 4A and 4B show the results of the photocatalytic selective oxidation removal reaction. In both figures, the vertical axis represents the gas concentration (μmol), and the horizontal axis represents the reaction time (minutes). As shown in the figure, when the Mo / SiO 2 photocatalyst is irradiated with light in the presence of excess hydrogen, oxygen, and CO, the amount of CO in the gas phase decreases, and the production of stoichiometric CO 2 is confirmed correspondingly. It was. Generated amount of CO 2 can be said because it exceeds the Mo amount of the photocatalyst, and the oxidation reaction to CO 2 by oxygen CO is proceeded photocatalytically. At this time, the amount of hydrogen in the gas phase did not decrease, and CO could be selectively oxidized to CO 2 without oxidizing hydrogen using a Mo / SiO 2 catalyst. Further, as shown in the graphs of FIGS. 4A and 4B, as a result of individually examining only the oxidation reaction of CO (FIG. 4A) and the oxidation reaction of hydrogen (FIG. 4B), The behavior was almost the same as in the case of FIG. 3 in which both hydrogen and CO coexisted. That is, CO could be selectively oxidized on the Mo / SiO 2 catalyst regardless of the presence of hydrogen.

下記表1に、各種光触媒を用いての過剰H2雰囲気下でのO2による微量COの光触媒選択酸化除去反応におけるCO転化率、CO選択率およびターンオーバー数を示す。 Table 1 below shows the CO conversion, CO selectivity, and turnover number in the photocatalytic selective oxidation removal reaction of trace amounts of CO with O 2 in an excess H 2 atmosphere using various photocatalysts.

Figure 2006312150
Figure 2006312150

前記表1に示すように、Mo/SiO2光触媒(0.60wt%)、Cr/SiO2光触媒(0.33wt%)および二酸化チタン光触媒において、過剰水素雰囲気中において、高い転化率および高い選択率で、一酸化炭素を二酸化炭素に酸化することができた。特に、Cr/SiO2触媒上では、これら反応は420nm以上の波長の可視光照射下において進行することが明らかとなった。なお、Cr/SiO2触媒上については、4配位孤立Cr(VI)酸化物種がシリカ上に生成していることは、UV−Vis吸収スペクトル分析およびPhotoluminescenceスペクトル分析により確認した。 As shown in Table 1, in the Mo / SiO 2 photocatalyst (0.60 wt%), the Cr / SiO 2 photocatalyst (0.33 wt%) and the titanium dioxide photocatalyst, high conversion and high selectivity in an excess hydrogen atmosphere So, we were able to oxidize carbon monoxide to carbon dioxide. In particular, it has been clarified that these reactions proceed on irradiation with visible light having a wavelength of 420 nm or more on a Cr / SiO 2 catalyst. Note that the Cr / SiO 2 over the catalyst, 4-coordinated isolated Cr (VI) oxide species that are generated on the silica was confirmed by UV-Vis absorption spectroscopy and Photoluminescence spectroscopy.

以上のように、本発明の酸化触媒によれば、水素含有ガス中の微量な一酸化炭素であっても、高い選択性で二酸化炭素に酸化できる。したがって、本発明の酸化触媒は、例えば、固体高分子型燃料電池の燃料中の一酸化炭素の除去に有用でかるが、本発明の用途は、これに制限されず、一酸化炭素を酸化する必要がある分野で広く適用可能である。   As described above, according to the oxidation catalyst of the present invention, even a small amount of carbon monoxide in the hydrogen-containing gas can be oxidized to carbon dioxide with high selectivity. Therefore, the oxidation catalyst of the present invention is useful for removing carbon monoxide in the fuel of a polymer electrolyte fuel cell, for example, but the application of the present invention is not limited to this, and oxidizes carbon monoxide. Widely applicable in fields where it is necessary.

図1は、本発明の光触媒の一実施例のUV−Visスペクトル分析の結果を示すグラフである。FIG. 1 is a graph showing the results of UV-Vis spectrum analysis of an example of the photocatalyst of the present invention. 図2は、前記実施例のPhotoluminescenceスペクトル分析の結果を示すグラフである。FIG. 2 is a graph showing the results of Photoluminescence spectrum analysis of the example. 図3は、前記実施例の光触媒選択酸化除去反応の結果を示すグラフである。FIG. 3 is a graph showing the results of the photocatalytic selective oxidation removal reaction of the above example. 図4(A)および(B)は、前記実施例の光触媒選択酸化除去反応の結果を示すグラフである。4 (A) and 4 (B) are graphs showing the results of the photocatalytic selective oxidation removal reaction of the above example. 図5は、本発明において、シリカ上にモリブデンが四配位で高分散状態で担持されている状態の一例を示す模式図である。FIG. 5 is a schematic view showing an example of a state in which molybdenum is supported in a four-coordinate and highly dispersed state on silica in the present invention.

Claims (11)

水素含有ガス中において、一酸化炭素を二酸化炭素に酸化する酸化反応を触媒する酸化触媒であって、シリカ担体に、モリブデン酸化物、バナジウム酸化物、タングステン酸化物およびクロム酸化物からなる群から選択される少なくとも一つの金属酸化物を担持させた光触媒および二酸化チタン光触媒の少なくとも一方の光触媒を含む酸化触媒。   An oxidation catalyst that catalyzes an oxidation reaction that oxidizes carbon monoxide to carbon dioxide in a hydrogen-containing gas, and the silica carrier is selected from the group consisting of molybdenum oxide, vanadium oxide, tungsten oxide, and chromium oxide An oxidation catalyst comprising at least one of a photocatalyst supporting at least one metal oxide and a titanium dioxide photocatalyst. 前記酸化触媒が、シリカ担体にモリブデン酸化物を担持させた光触媒、シリカ担体にバナジウム酸化物を担持させた光触媒、シリカ担体にタングステン酸化物を担持させた光触媒およびシリカ担体にクロム酸化物を担持させた光触媒からなる群から選択される少なくとも一つの光触媒である請求項1記載の酸化触媒。   The oxidation catalyst includes a photocatalyst having a molybdenum support supporting molybdenum oxide, a photocatalyst having a silica support supporting vanadium oxide, a photocatalyst having a silica support supporting tungsten oxide, and a silica support having a chromium oxide supported. The oxidation catalyst according to claim 1, which is at least one photocatalyst selected from the group consisting of photocatalysts. 前記酸化触媒が、シリカ担体にモリブデン酸化物を担持させた光触媒である請求項1記載の酸化触媒。   The oxidation catalyst according to claim 1, wherein the oxidation catalyst is a photocatalyst in which molybdenum oxide is supported on a silica carrier. 水素含有ガス中の一酸化炭素を除去する一酸化炭素除去方法であって、請求項1から3のいずれか一項に記載の酸化触媒を用い、前記酸化触媒に光を照射しながら前記一酸化炭素を二酸化炭素に酸化することにより前記一酸化炭素を除去する一酸化炭素除去方法。   A carbon monoxide removal method for removing carbon monoxide in a hydrogen-containing gas, wherein the oxidation catalyst according to any one of claims 1 to 3 is used, and the oxidation catalyst is irradiated with light. A carbon monoxide removing method for removing the carbon monoxide by oxidizing carbon to carbon dioxide. 前記酸化の酸素源として酸素ガスを用いる請求項4記載の一酸化炭素除去方法。   The method for removing carbon monoxide according to claim 4, wherein oxygen gas is used as an oxygen source for the oxidation. 前記水素含有ガスが、炭化水素ガスの改質ガスである請求項4または5記載の一酸化炭素除去方法。   The carbon monoxide removal method according to claim 4 or 5, wherein the hydrogen-containing gas is a reformed gas of hydrocarbon gas. 前記水素含有ガスが、燃料電池用の水素含有ガスである請求項4または5記載の一酸化炭素除去方法。   The carbon monoxide removal method according to claim 4 or 5, wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell. 100℃以下の温度条件で前記一酸化炭素を前記二酸化炭素に酸化する請求項4から7のいずれか一項に記載の一酸化炭素除去方法。   The carbon monoxide removal method according to any one of claims 4 to 7, wherein the carbon monoxide is oxidized to the carbon dioxide under a temperature condition of 100 ° C or lower. 燃料電池用燃料精製装置であって、請求項1から3のいずれか一項に記載の酸化触媒と、前記酸化触媒に光を照射する光照射手段とを有する燃料電池用燃料精製装置。   A fuel cell fuel purification apparatus, comprising: the oxidation catalyst according to any one of claims 1 to 3; and a light irradiation means for irradiating the oxidation catalyst with light. 前記光照射手段が、太陽光を利用した光照射手段である請求項9記載の燃料電池用燃料精製装置。   The fuel purifier for a fuel cell according to claim 9, wherein the light irradiation means is light irradiation means using sunlight. 燃料電池と、燃料電池用燃料精製装置とを備える燃料電池発電装置であって、前記燃料電池用燃料精製装置が、請求項9または10記載の燃料電池用燃料精製装置である燃料電池発電装置。   11. A fuel cell power generation device comprising a fuel cell and a fuel cell fuel purification device, wherein the fuel cell fuel purification device is the fuel cell fuel purification device according to claim 9 or 10.
JP2005136658A 2005-05-09 2005-05-09 Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system Withdrawn JP2006312150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136658A JP2006312150A (en) 2005-05-09 2005-05-09 Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136658A JP2006312150A (en) 2005-05-09 2005-05-09 Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system

Publications (1)

Publication Number Publication Date
JP2006312150A true JP2006312150A (en) 2006-11-16

Family

ID=37533857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136658A Withdrawn JP2006312150A (en) 2005-05-09 2005-05-09 Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system

Country Status (1)

Country Link
JP (1) JP2006312150A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302357A (en) * 2007-05-07 2008-12-18 Honjo Chemical Corp Method for photooxidizing carbon monoxide in gas phase to carbon dioxide
JP2010010101A (en) * 2008-06-30 2010-01-14 Toshiba Corp Cathode for fuel cell
JP2014080851A (en) * 2007-09-05 2014-05-08 Toshiba Corp Interior material
CN105396618A (en) * 2015-11-03 2016-03-16 浙江工业大学 N regulated Pt/UiO-67 composite material with high stability as well as preparation method and application thereof
US9598584B2 (en) 2007-09-05 2017-03-21 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, method of manufacturing the same, and visible-light-responsive photocatalytic material, photocatalytic coating material and photocatalytic product each using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302357A (en) * 2007-05-07 2008-12-18 Honjo Chemical Corp Method for photooxidizing carbon monoxide in gas phase to carbon dioxide
EP2158965A1 (en) * 2007-05-07 2010-03-03 The Honjo Chemical Corporation Method for photooxidation of carbon monoxide in gas phase into carbon dioxide
EP2158965A4 (en) * 2007-05-07 2012-01-18 Honjo Chem Kk Method for photooxidation of carbon monoxide in gas phase into carbon dioxide
JP2014073956A (en) * 2007-05-07 2014-04-24 Honjo Chemical Corp Method of oxidizing carbon monoxide to carbon dioxide by light
JP2014080851A (en) * 2007-09-05 2014-05-08 Toshiba Corp Interior material
US9598584B2 (en) 2007-09-05 2017-03-21 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, method of manufacturing the same, and visible-light-responsive photocatalytic material, photocatalytic coating material and photocatalytic product each using the same
US9670369B2 (en) 2007-09-05 2017-06-06 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, and visible-light-responsive photocatalytic material, photocatalytic coating material and photocatalytic product each using the same
JP2010010101A (en) * 2008-06-30 2010-01-14 Toshiba Corp Cathode for fuel cell
CN105396618A (en) * 2015-11-03 2016-03-16 浙江工业大学 N regulated Pt/UiO-67 composite material with high stability as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
Tan et al. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation
Kim et al. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature
Luengnaruemitchai et al. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst
Bagheri et al. Titanium dioxide as a catalyst support in heterogeneous catalysis
Quiroz et al. Total oxidation of formaldehyde over MnO x-CeO2 catalysts: The effect of acid treatment
Lais et al. Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: a review
Shan et al. Structural Characteristics and Redox Behaviors of Ce1-x Cu x O y Solid Solutions
Xiao et al. Ni-doping-induced oxygen vacancy in Pt-CeO2 catalyst for toluene oxidation: Enhanced catalytic activity, water-resistance, and SO2-tolerance
CA2336847C (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
Sankir et al. Hydrogen production technologies
Yentekakis et al. Grand challenges for catalytic remediation in environmental and energy applications toward a cleaner and sustainable future
US9139433B2 (en) Gold catalysts for co oxidation and water gas shift reactions
Chen et al. Chemisorbed superoxide species enhanced the high catalytic performance of Ag/Co3O4 nanocubes for soot oxidation
Papavasiliou et al. A novel post‐synthesis modification of CuO‐CeO2 catalysts: effect on their activity for selective CO oxidation
JP2007252988A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
Soni et al. Abatement of formaldehyde with photocatalytic and catalytic oxidation: A review
JP2006312150A (en) Oxidation catalyst, method for removing carbon monoxide, apparatus for purifying fuel for use in fuel cell and fuel cell power system
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2001017861A (en) Selective oxidizing catalyst of carbon monoxide in modified gas
Chong et al. Quenching-induced defect-rich platinum/metal oxide catalysts promote catalytic oxidation
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP3697591B2 (en) Thin film photocatalytic chemical converter
Fu et al. Role of Water in Methanol Photochemistry on TiO2 Nanocrystals: An In Situ DRIFTS Study
JP2008047294A (en) Electrode catalyst for fuel cell containing photocatalyst having silicon oxide film
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805