JP2006311740A - Power supply and method of reducing dip during parallel operation of power supplies - Google Patents

Power supply and method of reducing dip during parallel operation of power supplies Download PDF

Info

Publication number
JP2006311740A
JP2006311740A JP2005132832A JP2005132832A JP2006311740A JP 2006311740 A JP2006311740 A JP 2006311740A JP 2005132832 A JP2005132832 A JP 2005132832A JP 2005132832 A JP2005132832 A JP 2005132832A JP 2006311740 A JP2006311740 A JP 2006311740A
Authority
JP
Japan
Prior art keywords
power supply
output voltage
circuit
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005132832A
Other languages
Japanese (ja)
Other versions
JP4720280B2 (en
Inventor
Takeshi Chiba
健 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005132832A priority Critical patent/JP4720280B2/en
Publication of JP2006311740A publication Critical patent/JP2006311740A/en
Application granted granted Critical
Publication of JP4720280B2 publication Critical patent/JP4720280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply that reduces the amplitude of a dip voltage with a simple circuit that reduces sharp load fluctuation in order to reduce a dip that occurs to an output voltage, and a method of reducing the dip during the parallel operation of power supplies. <P>SOLUTION: In a plurality of the power supplies SP1, SP2 driven in parallel using a MOS field-effect transistor (FET1) for preventing countercurrent, on/off control signals of a drive amplification circuit OP1 is supplied to the gate electrode G of the FET1. A voltage of dip amplitude Dp is reduced by supplying the gate signal to a reference voltage source of a comparison circuit OP2 for output voltage control through a series circuit of a resistor R5 and a diode D2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の電源装置による並列運転時の負荷変動を軽減した電源装置及び並列電源運転時のデップ低減方法に係わり、特に、並列運転時に1方の電源装置を切換制御した時に他方の電源装置の出力電圧ラインに発生ずるデップ(Dip)波形を減衰させるようにした電源装置及び並列電源運転時のデップ低減方法に関するものである。   The present invention relates to a power supply device that reduces load fluctuations during parallel operation by a plurality of power supply devices and a dip reduction method during parallel power supply operation, and in particular, when one power supply device is switched and controlled during parallel operation, the other power supply The present invention relates to a power supply apparatus that attenuates a dip (Dip) waveform generated in an output voltage line of the apparatus, and a dip reduction method during parallel power supply operation.

従来から、並列冗長運転では、複数の電源装置の出力電圧ラインに逆流防止用のダイオードが接続されるために大量の出力電流が流れた場合の順方向電圧降下が避けられない、従って、これらのダイオードにより、出力電流に比例した電力損失が発生し、効率の低下や発熱を来していた。この様な並列冗長運転時において電力損失や効率の低下を向上させた電源装置は特許文献1に開示されている。   Conventionally, in parallel redundant operation, since a diode for preventing backflow is connected to the output voltage lines of a plurality of power supply devices, a forward voltage drop is unavoidable when a large amount of output current flows. The diode caused a power loss proportional to the output current, resulting in a decrease in efficiency and heat generation. Patent Document 1 discloses a power supply device that improves power loss and efficiency reduction during such parallel redundant operation.

図6は特許文献1に開示の電源装置を示すものである。図6に於いて、1は複数の電源回路本体の1つを示し、出力端子+T、−Tから所定の直流電圧+V、−V を供給する、図示しないが、他の電源回路本体1nも並列冗長運転が可能なように、それぞれ負荷2に並列接続される。FET1は電源回路本体1 のプラス側出力端子+Tと負荷2との間の出力電圧ラインに挿入接続されるMOS型の電界効果トランジスタ(以下FETと記す)であり、このFET1のドレインDとソースS間には、ソースS側にアノードがドレインD側にカソードが接続された逆流防止用のダイオードD1が接続されている。3は電源回路本体1の出力電流Io を検出する電流検出抵抗R5と、この抵抗R5の両端に発生する電圧降下に基づき電源回路本体1の故障を検出するコンパレータ4を備え、出力電圧ラインに逆方向電流が発生したときにFET1をオフさせる電流検出回路である。   FIG. 6 shows a power supply device disclosed in Patent Document 1. In FIG. In FIG. 6, reference numeral 1 denotes one of a plurality of power supply circuit bodies, which supply predetermined DC voltages + V and -V from output terminals + T and -T. Although not shown, other power supply circuit bodies 1n are also connected in parallel. Each is connected in parallel to the load 2 so that redundant operation is possible. The FET 1 is a MOS field effect transistor (hereinafter referred to as FET) that is inserted and connected to an output voltage line between the positive output terminal + T of the power supply circuit body 1 and the load 2, and the drain D and source S of the FET 1. In the meantime, a backflow prevention diode D1 having an anode connected to the source S side and a cathode connected to the drain D side is connected. 3 includes a current detection resistor R5 for detecting the output current Io of the power circuit body 1 and a comparator 4 for detecting a failure of the power circuit body 1 based on a voltage drop generated at both ends of the resistor R5. This is a current detection circuit that turns off the FET 1 when a directional current is generated.

電流検出回路3の抵抗R5は電源回路本体1の出力端子−Tと負荷2との間の電圧ラインに挿入接続され、抵抗R5の一端と電源回路本体1の出力端子+T間には、分圧用の抵抗R1、R2の直列回路が接続され、抵抗R5の他端と電源回路本体1の出力端子+T間にも、分圧用の抵抗R3、R4の直列回路が接続される。抵抗R1、R2及び抵抗R3、R4の接続点はコンパレータ4の反転入力端子−及び非反転入力端子+に接続されている。コンパレータ4の出力端子はFET1のゲートに接続されるが、このFET1のゲートGとコンパレータ4の動作電圧Vccラインとの間には、抵抗R6が接続されて動作電圧VccがFET1のゲートGに供給される。又、コンパレータ4のグランドは、抵抗R5の他端と負荷2との接続点に接続される。   A resistor R5 of the current detection circuit 3 is inserted and connected to a voltage line between the output terminal -T of the power supply circuit body 1 and the load 2, and a voltage divider is provided between one end of the resistor R5 and the output terminal + T of the power supply circuit body 1 A series circuit of resistors R1 and R2 is connected, and a series circuit of resistors R3 and R4 for voltage division is also connected between the other end of the resistor R5 and the output terminal + T of the power supply circuit body 1. The connection points of the resistors R1 and R2 and the resistors R3 and R4 are connected to the inverting input terminal − and the non-inverting input terminal + of the comparator 4. The output terminal of the comparator 4 is connected to the gate of the FET 1. A resistor R 6 is connected between the gate G of the FET 1 and the operating voltage Vcc line of the comparator 4 so that the operating voltage Vcc is supplied to the gate G of the FET 1. Is done. The ground of the comparator 4 is connected to the connection point between the other end of the resistor R5 and the load 2.

尚、電流検出回路3では、FET1を確実にターンオンさせるために、出力電圧Vo にFET1のゲートGとソースS間に加えた電圧値よりも動作電圧VCCを高くする必要がある。又、電源回路本体1の正常時において、コンパレータ4の非反転入力端子+の電圧レベルが反転入力端子−の電圧レベルよりも高くなるように、各抵抗R1〜R4の抵抗値が定められる。この場合、一方の抵抗R1、R3の抵抗値を同一に設定すれば、他方の抵抗R2、R4の抵抗値を適宜調整するだけで、FET1のオン/オフ制御時の動作点を簡単に変えることができる。 In the current detection circuit 3, the operating voltage VCC needs to be higher than the voltage value applied to the output voltage Vo between the gate G and the source S of the FET 1 in order to reliably turn on the FET 1. Further, the resistance values of the resistors R1 to R4 are determined so that the voltage level of the non-inverting input terminal + of the comparator 4 is higher than the voltage level of the inverting input terminal − when the power supply circuit body 1 is normal. In this case, if the resistance values of one of the resistors R1 and R3 are set to be the same, the operating point at the time of on / off control of the FET1 can be changed simply by appropriately adjusting the resistance values of the other resistors R2 and R4. Can do.

上記構成の作用を説明すると、電源回路本体1の正常並列運転時においては、負荷2から出力端子−Tに向かって出力電流Io が流れるため、抵抗R5の一端側の電圧レベルV1よりも、抵抗R5の他端側の電圧レベルV2が高くなり、コンパレータ4の非反転入力端子の電圧レベルV2は、反転入力端子の電圧レベルV1よりも高くなり、このコンパレータ4の出力端子はHレベルとなるためにFET1のソースSとドレインD間をオンさせるのに十分な動作電圧VCCがゲートGに供給され、電源回路本体1側の出力端子+Tから、出力端子電圧+V→FET1(又は、ダイオードD1)→負荷2→抵抗R5→出力端子−Tの経路で出力電流Io が供給される。 The operation of the above configuration will be described. Since the output current Io flows from the load 2 toward the output terminal -T during normal parallel operation of the power supply circuit body 1, the resistance is higher than the voltage level V1 on one end side of the resistor R5. The voltage level V2 on the other end side of R5 becomes higher, the voltage level V2 of the non-inverting input terminal of the comparator 4 becomes higher than the voltage level V1 of the inverting input terminal, and the output terminal of the comparator 4 becomes H level. An operating voltage VCC sufficient to turn on the source S and drain D of the FET 1 is supplied to the gate G, and the output terminal voltage + V → FET 1 (or the diode D 1) from the output terminal + T on the power circuit body 1 side. The output current Io is supplied through the path of the load 2 → the resistor R5 → the output terminal −T.

これに対して、電源回路本体1が何等かの原因で故障し、出力電流Io の供給が停止して、出力電流Io とは逆方向の電流が出力電圧ラインに発生すると、抵抗R5の他端側の電圧レベルV2よりも、抵抗R5の一端側の電圧レベルV1が高くなる。従って、今度はコンパレータ4の反転入力端子−の電圧レベルV1が非反転入力端子+の電圧レベルV2よりも高くなって、コンパレータ4の出力端子は直ちにLレベルになり、FET1がターンオフして、故障した電源回路本体1の出力端子+Tへの逆電流の流入は阻止される。この場合、負荷2には、引き続き故障した電源回路本体1を除く例えば、N台の電源回路本体から電力が供給され続ける。   On the other hand, if the power supply circuit body 1 fails for some reason, the supply of the output current Io stops, and a current in the opposite direction to the output current Io is generated in the output voltage line, the other end of the resistor R5 The voltage level V1 on one end side of the resistor R5 becomes higher than the voltage level V2 on the side. Therefore, this time, the voltage level V1 of the inverting input terminal − of the comparator 4 becomes higher than the voltage level V2 of the non-inverting input terminal +, the output terminal of the comparator 4 immediately becomes L level, and the FET 1 is turned off. Inflow of the reverse current to the output terminal + T of the power supply circuit body 1 is prevented. In this case, power is continuously supplied to the load 2 from, for example, N power supply circuit bodies excluding the failed power supply circuit body 1.

前記一連の動作において、コンパレータ4による電源回路本体1の異常判定は、各抵抗R1 〜R3の抵抗値に依存する。今、抵抗R1、R3を同一の抵抗値に設定した場合、抵抗R2と抵抗R3の抵抗値を同一に設定すると、出力電流Io が零になった時点で、FET1のオン,オフが切換わる。又、抵抗R2の抵抗値を抵抗R4の抵抗値よりも大きく(R2 >R4 )設定すると、出力電流Io が零になる前にFET1のオン,オフが切換わる。この場合、出力電流Io が比較的小さい時点にFET1のオン,オフが切換わるように各抵抗R2 、R3の抵抗値を設定して、ダイオードD1の電力損失を少なくしている。   In the series of operations, the abnormality determination of the power supply circuit body 1 by the comparator 4 depends on the resistance values of the resistors R1 to R3. Now, when the resistors R1 and R3 are set to the same resistance value, if the resistance values of the resistors R2 and R3 are set to the same value, the FET1 is turned on / off when the output current Io becomes zero. If the resistance value of the resistor R2 is set larger than the resistance value of the resistor R4 (R2> R4), the FET1 is switched on and off before the output current Io becomes zero. In this case, the power loss of the diode D1 is reduced by setting the resistance values of the resistors R2 and R3 so that the FET1 is switched on and off when the output current Io is relatively small.

上記構成では複数台の電源回路本体1乃至1nによる並列運転時に、所定の電源回路本体1からの出力電流が所定のレベル以下になると、電流検出回路3が電源回路本体1の故障を検出し、FET1を強制的にオフにして、故障した電源回路本体1への逆電流の流入を阻止する旨の開示があるが、あくまでもFET1のオン/オフ制御に関するものである。   In the above configuration, when the output current from the predetermined power supply circuit body 1 becomes a predetermined level or less during parallel operation by the plurality of power supply circuit bodies 1 to 1n, the current detection circuit 3 detects the failure of the power supply circuit body 1, Although there is a disclosure that the FET 1 is forcibly turned off to prevent the reverse current from flowing into the power supply circuit body 1 that has failed, it is only related to the on / off control of the FET 1.

又、特許文献2には予備電源の切換時に負荷供給電圧の低下を小さくするために基準電圧と誤差電圧を比較する誤差アンプの基準電圧を変化させるようにした電源装置が開示されている。   Patent Document 2 discloses a power supply device in which the reference voltage of an error amplifier that compares the reference voltage and the error voltage is changed in order to reduce the drop in the load supply voltage when the standby power supply is switched.

図7は特許文献2に記載された電源装置の回路図を示すもので、1A、1Bは2台の電源回路本体、2は負荷、5A、5Bは+電圧検出ライン、6A、6Bは−電圧検出ライン、7A、7Bは+出力ライン、8A、8Bは−出力ライン、D1A、D1Bは逆流防止用のダイオードである。+電圧検出ラインの負荷2端のC点はダイオードD1A,D1Bの順方向電圧降下の変化に対し電圧変動するため、電源回路本体1A、1B内に誤差アンプ10A、10Bが設けられている。   FIG. 7 shows a circuit diagram of the power supply device described in Patent Document 2. 1A and 1B are two power supply circuit bodies, 2 is a load, 5A and 5B are + voltage detection lines, and 6A and 6B are −voltages. Detection lines, 7A and 7B are positive output lines, 8A and 8B are negative output lines, and D1A and D1B are backflow prevention diodes. Since the voltage at the point C at the load 2 end of the + voltage detection line fluctuates with respect to changes in the forward voltage drop of the diodes D1A and D1B, error amplifiers 10A and 10B are provided in the power supply circuit bodies 1A and 1B.

電源回路本体1A、1B内に示す9A、9Bは電力増幅器、10A、10Bは誤差アンプ、11A、11Bは基準電源、12A、12Bは出力検出電圧の入力点、13A,13Bは基準電圧の入力点、R1A、R2A、R3A、R4A、R1B、R2B、R3B、R4Bは分圧用抵抗であるが、今、負荷2に掛かる電圧をVとし、電源回路本体1A、1Bの出力設定電圧をVA、とすると電源回路本体1A、1Bのバラッキにより設定電圧VA、を等しく出来ないが出力設定電圧VA、が出力設定電圧Vに比べて大きい場合、電源回路本体1Bの誤差アンプ10Bの出力検出電圧の入力点12Bの電圧は基準電圧の入力点13Bの電圧より高いので誤差アンプ10Bはカットオフ状態で電力増幅器9Bは正常に動作せず、電源回路本体1Bの出力電圧は負荷2の電圧に比べ低くなっている。従って、一方の電源回路本体1Aが故障した場合、他方の電源回路本体1Bが正規の電圧に立ち上がるまで負荷2の電圧が低下するのを次の様に防止している。 9A and 9B shown in the power supply circuit bodies 1A and 1B are power amplifiers, 10A and 10B are error amplifiers, 11A and 11B are reference power supplies, 12A and 12B are input points for output detection voltages, and 13A and 13B are input points for reference voltages. , R1A, R2A, R3A, R4A , R1B, R2B, R3B, but R4B is dividing resistors, now, the voltage applied to the load 2 and V 0, the power supply circuit body 1A, the output setting voltage 1B V a, If V B is set, the set voltages V A and V B cannot be made equal due to variations in the power supply circuit bodies 1A and 1B, but if the output set voltage V A is larger than the output set voltage V B , the error amplifier of the power supply circuit body 1B Since the voltage at the input point 12B of the output detection voltage of 10B is higher than the voltage at the input point 13B of the reference voltage, the error amplifier 10B is cut off and the power amplifier 9B does not operate normally. The output voltage of the source circuit body 1B is lower than the voltage of the load 2. Therefore, when one power supply circuit body 1A fails, the voltage of the load 2 is prevented from decreasing until the other power supply circuit body 1B rises to a normal voltage as follows.

即ち、図7で電源回路本体1A、1Bの出力回路に接続されたダイオードD1A、D1Bのアノード側を夫々のトランジスタTrA、TrBのベースに接続し、カソード側を抵抗R7A、R7Bを介して、夫々のトランジスタTrA、TrBのエミッタと接続し、夫々トランジスタTrA、TrBのコレクタを電源回路本体1A、1Bの誤差アンプ10A、10Bと接続させ、ダイオードD1A、D1Bの両端の電位差を用いて、トランジスタTrA、TrBを制御し、誤差アンプ10A、10Bの基準電圧の入力点13A,13Bの電圧を上昇させ電力増幅器9A、9Bの出力電圧を負荷2への供給電圧と略等しくなる様に上昇保持させる構成が開示されている。   That is, in FIG. 7, the anodes of the diodes D1A and D1B connected to the output circuits of the power supply circuit bodies 1A and 1B are connected to the bases of the respective transistors TrA and TrB, and the cathodes are connected via the resistors R7A and R7B, respectively. Are connected to the emitters of the transistors TrA and TrB, the collectors of the transistors TrA and TrB are connected to the error amplifiers 10A and 10B of the power supply circuit bodies 1A and 1B, respectively, and the potential difference between both ends of the diodes D1A and D1B is used. The configuration is such that TrB is controlled to increase the voltage at the input points 13A and 13B of the reference voltage of the error amplifiers 10A and 10B, and the output voltage of the power amplifiers 9A and 9B is increased and held so as to be substantially equal to the supply voltage to the load 2. It is disclosed.

上記の特許文献2に開示の技術は2電源の切換時に基準電圧を変化させ出力電圧の低下を減少させるものであるが、本発明は並列駆動される電源装置では逆流防止用のMOS型FET(FET1)のゲートを制御するゲート制御回路(駆動増幅回路)を設け、一方の電源回路本体がオフした時に出力電圧制御用比較回路内の誤差アンプの基準電圧を可変させ、負荷出力ラインのデップ電圧振幅を軽減させたものである。
特開平7−281766号公報 特開昭61−295830号公報
The technique disclosed in Patent Document 2 described above changes the reference voltage at the time of switching between the two power supplies to reduce the drop in the output voltage. However, the present invention relates to a MOS type FET for preventing backflow in a power supply device driven in parallel ( FET 1) is provided with a gate control circuit (drive amplifier circuit) that controls the gate voltage of the error amplifier in the output voltage control comparator circuit when one of the power supply circuit bodies is turned off, and the dep voltage of the load output line The amplitude is reduced.
JP-A-7-281766 JP-A 61-295830

上記した様に本発明の目的は電源装置の並列駆動の切換え制御時に出力電圧のデップ電圧を低減するようにしたものである。電源装置を2台並列運転動作している状態で、1台の電源をオフした瞬間に出力電圧にデップが発生する。この発生原因は例えば、第1の電源装置と第2の電源装置という2台が動作している状態で、出力電流としては、ほぼ50%ずつ流れている状態から、第2の電源装置をオフしたとすると、第1の電源装置の電流は今まで2台でまかなっていた総出力電流を第1の電源装置のみで出力されるように急激に変化する。この負荷電流の急変(急増)により第1の電源装置の出力電圧制御の応答が追いつかず、結果として出力電圧がデップしてしまう。通常、総負荷電流が多いほど、第1の電源装置の負荷の変動幅が多いので、デップ振幅も大きくなる。   As described above, the object of the present invention is to reduce the dip voltage of the output voltage during the switching control of the parallel drive of the power supply device. In the state where two power supply units are operating in parallel, a dip occurs in the output voltage at the moment when one power supply is turned off. The cause of this is, for example, when the first power supply device and the second power supply device are operating, and the output current is almost 50% at a time, and the second power supply device is turned off. As a result, the current of the first power supply device changes abruptly so that the total output current that has been provided by two units until now is output only by the first power supply device. Due to this sudden change (rapid increase) in the load current, the response of the output voltage control of the first power supply device cannot catch up, and as a result, the output voltage deps. Usually, the larger the total load current is, the larger the fluctuation range of the load of the first power supply device is, so the dip amplitude is also increased.

負荷急変時の出力電圧のデップ対策として最も簡単なのは、出力電圧ラインに接続した出力コンデンサの容量を大きくするという方法がある。然し、この出力コンデンサC1(図1参照)の容量を大きくするということは、部品レイアウトスペースの拡大、コストアップ等の不具合を生ずる。部品のレイアウトに問題がない場合はこの対策も検討できるが、高密度な電源装置の設計ではこの対策は考えにくい。又、電源回路の大型化やコストアップになる対策は、どの電源装置においても避けたいはずである。又、出力電圧の過渡応答スピードを早くすることにより、負荷電流急変時のデップ電圧振幅を軽減することが可能であるが、この、過渡応答スピードはあまり早くしすぎると異常発振等で出力制御が不安定になるという問題を生ずる。   The simplest countermeasure against the output voltage dipping during sudden load changes is to increase the capacitance of the output capacitor connected to the output voltage line. However, increasing the capacitance of the output capacitor C1 (see FIG. 1) causes problems such as expansion of the component layout space and cost increase. If there is no problem in the layout of parts, this measure can be considered, but this measure is difficult to consider in the design of a high-density power supply device. In addition, measures to increase the size and cost of the power supply circuit should be avoided in any power supply device. In addition, by increasing the output voltage transient response speed, it is possible to reduce the dip voltage amplitude when the load current suddenly changes. However, if the transient response speed is too high, output control can be performed due to abnormal oscillation. This causes the problem of becoming unstable.

本発明は上述の課題を解決するために成されたもので、本発明の目的は、出力電圧に発生するデップを軽減するため負荷の急激な変化量を減らす簡単な回路でデップ電圧の振幅を軽減する電源装置及び並列電源運転時のデップ低減方法を提案することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the amplitude of the dep voltage with a simple circuit that reduces the abrupt change in the load in order to reduce the dep generated in the output voltage. It aims at proposing the power supply device which reduces, and the dep reduction method at the time of parallel power supply operation.

第1の本発明の電源装置は、複数台を並列接続した電源回路本体に出力端子から所定の出力電圧を供給する出力電圧ラインに接続される逆流防止用のダイオードとスイッチング用トランジスタと、電源回路本体の出力電圧を検出する出力電圧制御用比較回路と、この出力電圧制御用比較回路の検出結果に基づき電源回路本体の異常時にスイッチング用ダイオードをオン/オフ制御させる駆動増幅回路とからなる電源装置において、駆動増幅回路からスイッチング用トランジスタに供給する制御信号が、出力電圧制御用比較回路に供給する基準電圧より降下した状態になった時に基準電圧を降下させて出力電圧のデップを軽減する様にしたものである。   According to a first aspect of the present invention, there is provided a power supply device comprising a plurality of power supply circuit bodies connected in parallel, a backflow prevention diode connected to an output voltage line for supplying a predetermined output voltage from an output terminal, a switching transistor, and a power supply circuit. A power supply device comprising: an output voltage control comparison circuit for detecting the output voltage of the main body; and a drive amplifier circuit for controlling on / off of the switching diode when the power supply circuit main body is abnormal based on the detection result of the output voltage control comparison circuit When the control signal supplied from the drive amplifier circuit to the switching transistor falls below the reference voltage supplied to the output voltage control comparison circuit, the reference voltage is lowered to reduce the output voltage dep. It is a thing.

第2の本発明の並列電源運転時のデップ低減方法は、複数台を並列接続した電源回路本体に出力端子から所定の出力電圧を供給する出力電圧ラインに接続される逆流防止用のダイオードとスイッチング用トランジスタと、電源回路本体の出力電圧を検出する出力電圧制御用比較回路と、この出力電圧制御用比較回路の検出結果に基づき該電源回路本体の異常時にスイッチング用ダイオードをオン/オフ制御させる駆動増幅回路とからなる並列電源運転時のデップ低減方法において、駆動増幅回路からスイッチング用トランジスタに供給する制御信号が、出力電圧制御用比較回路に供給する基準電圧より降下した状態になった時に基準電圧を降下させて出力電圧のデップを軽減する様にしたものである。   According to a second aspect of the present invention, there is provided a method for reducing a dip during parallel power supply operation. A diode and a switching circuit for preventing a backflow connected to an output voltage line for supplying a predetermined output voltage from an output terminal to a power supply circuit body in which a plurality of units are connected in parallel. Transistor, an output voltage control comparison circuit for detecting the output voltage of the power supply circuit body, and a drive for controlling on / off of the switching diode when the power supply circuit body is abnormal based on the detection result of the output voltage control comparison circuit In the method for reducing the dip during parallel power supply operation comprising the amplifier circuit, the reference voltage when the control signal supplied from the drive amplifier circuit to the switching transistor falls below the reference voltage supplied to the output voltage control comparison circuit. To reduce the output voltage dep.

本発明の電源装置及び並列電源運転時のデップ低減方法は、例えば、2台の電源装置でカレントシェアしている状態で、1台の電源装置がオフした時に発生する出力電圧のデップ振幅を軽減することが出来て、出力電圧ラインの出力コンデンサの容量を減らすことが出来るため部品レイアウトが楽になり小型化を図ることが出来る効果を生ずる。   The power supply apparatus and the method of reducing the dip during parallel power supply operation of the present invention reduce the dip amplitude of the output voltage generated when one power supply apparatus is turned off, for example, in a state where current sharing is performed by two power supply apparatuses. Since the capacitance of the output capacitor of the output voltage line can be reduced, the component layout becomes easier and the size can be reduced.

以下、本発明の1形態例を図1乃至図5によって説明する。図1は本発明の電源装置の1形態例を示す回路図、図2は本発明の電源装置の波形説明図、図3は本発明の電源装置の並列運転時の一方をオフした時の波形説明図、図4(A)(B)はMOS型FET(FET1)のオン/オフ制御のシーケンス説明用の回路及び波形図、図5(A)(B)は出力電圧に発生するデップの発生原因を説明するための回路図及び波形図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a circuit diagram showing an embodiment of the power supply device of the present invention, FIG. 2 is a waveform explanatory diagram of the power supply device of the present invention, and FIG. 3 is a waveform when one of the power supply devices of the present invention is turned off in parallel operation. 4A and 4B are circuits and waveform diagrams for explaining the sequence of on / off control of the MOS type FET (FET1), and FIGS. 5A and 5B are generations of deps generated in the output voltage. It is the circuit diagram and waveform diagram for demonstrating a cause.

図1乃至図3によって本発明の1形態例の電源装置を説明するに先立ち図4(A)(B)及び図5(A)(B)によって、スイッチング用トランジスタのMOS型FET(FET1)のシーケンス及び出力電圧に生ずるデップ振幅の発生原因について説明する。   Prior to explaining the power supply device according to one embodiment of the present invention with reference to FIG. 1 to FIG. 3, the switching type MOS FET (FET 1) of FIG. 4 (A) (B) and FIG. 5 (A) (B) is used. The cause of the occurrence of the dip amplitude occurring in the sequence and the output voltage will be described.

図4(A)及び図5(A)において、図6及び図7との対応部分には同一符号を付して重複説明を省略する。図4(A)の電源回路本体1には商用交流電源ACから商用交流信号が供給され、フィルタ回路1a、力率改善回路(PFC)1b、共振回路1c等に供給され炉波、力率改善がなされ、共振変換回路1cの出力端には出力コンデンサC1が接続され、コンデンサC1の1端と負荷2の接続される出力端子T1間の出力ラインにはMOS型FETから成るスイッチング用トランジスタFET1が接続され、該FET1のソースSには逆流防止用のダイオードD1のアノードが接続され、FET1のドレインDにはダイオードD1のカソードが接続されてダイオードD1がFET1のソースS及びドレインD間に並列接続される。コンデンサC1の他端と負荷2の接続される出力端子T2間には抵抗R5が接続されている。尚、図1でC2はパス用のコンデンサ、R7はゲート用の抵抗である。   4A and 5A, the same reference numerals are given to the portions corresponding to those in FIG. 6 and FIG. 4A is supplied with a commercial AC signal from a commercial AC power supply AC, and is supplied to a filter circuit 1a, a power factor correction circuit (PFC) 1b, a resonance circuit 1c, etc., and a furnace wave and a power factor improvement. An output capacitor C1 is connected to the output terminal of the resonance conversion circuit 1c, and a switching transistor FET1 made of a MOS FET is connected to an output line between one terminal of the capacitor C1 and the output terminal T1 to which the load 2 is connected. The anode of the diode D1 for preventing backflow is connected to the source S of the FET1, the cathode of the diode D1 is connected to the drain D of the FET1, and the diode D1 is connected in parallel between the source S and the drain D of the FET1. Is done. A resistor R5 is connected between the other end of the capacitor C1 and the output terminal T2 to which the load 2 is connected. In FIG. 1, C2 is a pass capacitor, and R7 is a gate resistor.

共振回路1cと出力端子T2間に接続した抵抗R5の両端から取り出した電圧は制御回路10A、10B〔図5(A)参照〕に入力される。該制御回路10A、10Bからの制御電圧はフィルタ回路1a、PFC回路1bなどに供給されると共にFET1をオン/オフ制御するゲート制御信号として抵抗R7を介してFET1のゲートに供給されている。   The voltage extracted from both ends of the resistor R5 connected between the resonance circuit 1c and the output terminal T2 is input to the control circuits 10A and 10B [see FIG. 5A]. The control voltages from the control circuits 10A and 10B are supplied to the filter circuit 1a, the PFC circuit 1b, and the like, and are supplied to the gate of the FET 1 through the resistor R7 as a gate control signal for controlling the FET 1 on / off.

上述の構成では1台の電源装置のみを示しているが、通常並列運転をする電源装置の場合、オフしている側の電源装置の出力にオンしている側の電源装置から出力電流が逆流するのを防止する為に、上記した様に、逆流防止用のダイオードD1を電源回路本体1と出力端子T1、T2に挿入して使っているが、この出力電流が数十〜数百A程度と多い場合、このダイオードD1のロスを軽減する目的で、上記したFET1が使用される。   In the above configuration, only one power supply device is shown. However, in the case of a power supply device that is normally operated in parallel, the output current flows back from the power supply device that is turned on to the output of the power supply device that is turned off. In order to prevent this, as described above, the diode D1 for preventing backflow is inserted into the power supply circuit body 1 and the output terminals T1 and T2, and this output current is about several tens to several hundreds A. In many cases, the FET 1 described above is used for the purpose of reducing the loss of the diode D1.

当然この場合、このFET1は出力電流の逆流などを検出して図6で説明したようにオン/オフ制御されるが、それ以外の制御として、図4(B)の波形W2のように電源回路本体1がオフ状態の時には波形W2の様にスイッチング用トランジスタのFET1をオフ状態にしておく。又、電源回路本体1がオン状態になった時には、出力電圧の波形W1が完全に立ち上がってから逆流防止用のFET1を波形W2のようにオンにする。更に、電源回路本体1の波形W1に示すオン状態からオフ状態に変化するところでは、電源回路本体1の出力電圧がオンするより少し手前で波形W2の様にFET1をオフさせる。この様に電源回路本体1のオン/オフ制御に同期してFET1のオン/オフを制御し、出力電圧が、確実に立ち上がっている状態でのみ逆流防止用のFET1をオンとする方法が一般的用いられている。これにより、オフしている電源回路本体1への逆流防止を確実に行うことが出来る。   Naturally, in this case, the FET 1 detects the backflow of the output current and the like, and is controlled to be turned on / off as described with reference to FIG. 6. However, as other control, a power supply circuit as shown by a waveform W2 in FIG. When the main body 1 is in the off state, the switching transistor FET1 is kept in the off state as in the waveform W2. When the power supply circuit body 1 is turned on, the backflow prevention FET 1 is turned on as shown by the waveform W2 after the waveform W1 of the output voltage completely rises. Further, when the power circuit main body 1 changes from the on state to the off state shown in the waveform W1, the FET 1 is turned off as shown by the waveform W2 slightly before the output voltage of the power circuit main body 1 is turned on. In this way, the method of controlling the ON / OFF of the FET 1 in synchronism with the ON / OFF control of the power supply circuit body 1 and turning on the FET 1 for backflow prevention only when the output voltage is surely rising is generally used. It is used. Thereby, the backflow prevention to the power supply circuit main body 1 which is turned off can be reliably performed.

図5(A)は図4(A)と同一構成の電源装置PS1、PS2を図7と同様に負荷2に対し並列接続したものであり、図5(A)の様に例えば、電源装置PS1、PS2を2台並列運転動作している状態で、1台の電源装置PS2をオフした瞬間に出力電圧にデップ振幅が生じる原因は、2台の電源装置PS1、PS2が並列冗長運転動作している状態の出力電流I、Iは図5(B)に示す様に略50%ずつ流れている状態から、1台の電源装置PS2をオフすると、電源装置PS1の出力電流Iは図5(B)のように、今まで2台でまかなっていた総出力電流Iを、1台の電源装置PS1の出力電流Iのみで出力する様に急激に変化する。この負荷電流となる総出力電流Iの急変(急増)により電源装置PS1の出力電圧の制御を行なう制御回路10Aの応答が追いつかず、結果として出力電圧波形W1にデップ振幅Dpが生じてしてしまう。通常、このデップ振幅Dpは総負荷電流Iが多いほど、電源装置PS1の負荷の変動幅が多いので、デップ振幅Dpも大きくなる。 FIG. 5A shows power supply devices PS1 and PS2 having the same configuration as FIG. 4A connected in parallel to the load 2 in the same manner as FIG. 7, and for example, as shown in FIG. When two PS2 units are operating in parallel, the cause of the dip amplitude in the output voltage at the moment when one power unit PS2 is turned off is that the two power units PS1 and PS2 operate in parallel redundant operation. from the output current I 1, I 2 in a state where there is flowing by approximately 50% as shown in FIG. 5 (B) state, turning off the one power supply PS2, the output current I 1 of the power supply PS1 Figure As shown in FIG. 5 (B), the total output current I 0 that has been covered by two units so far changes rapidly so as to be output only by the output current I 1 of one power source device PS1. The response of the control circuit 10A to the load current become abrupt change in total output current I 0 (surge) controls the output voltage of the power supply PS1 is not catch up, the output voltage waveform W1 as a result to occur is Depp amplitude Dp End up. Usually, this dip as the amplitude Dp is larger total load current I 0, since the fluctuation range of the load power supply PS1 is larger, the larger dip amplitude Dp.

負荷急変時の出力電圧のデップ振幅Dpを軽減する対策として、本発明では一般的に行っている電源装置のオン/オフの状態により、FET1のゲート電極を制御をしている駆動増幅回路を利用して、このゲート信号が、出力電圧制御用比較回路の基準電圧より下がった状態になった時に、この基準電圧を少しだけ下げることにより、デップDpを軽減しようとするものである。   As a measure to reduce the dip amplitude Dp of the output voltage at the time of sudden load change, the present invention uses a drive amplifier circuit that controls the gate electrode of the FET 1 according to the on / off state of the power supply device that is generally performed. Thus, when the gate signal becomes lower than the reference voltage of the output voltage control comparison circuit, the reference voltage is slightly reduced to reduce the depth Dp.

以下本発明の1形態例を図1乃至図3によって説明する。図1は本発明の具体的な回路構成を示すもので、図1において、図4との対応部分には、同一符号を付して説明する。電源回路本体1は商用交流電源ACから商用交流信号が供給され、フィルタ回路1a、力率改善回路(PFC)1b、共振回路(図示せず〕、DC-DC変換回路1d等に供給され炉波、力率改善、DC変換がなされ、DC−DC変換回路1dの出力端には出力コンデンサC1が接続され、該コンデンサC1の1端と負荷2の接続される出力端子T1間の出力ラインにはMOS型FETから成るスイッチング用のFET1が接続され、該FET1のソースSには逆流防止用のダイオードD1のアノードが接続され、FET1のドレインDにはダイオードD1のカソードが並列に成る様に接続され、コンデンサC1の他端と負荷2の接続される出力端子T2間の出力ラインには抵抗R5が接続されている。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a specific circuit configuration of the present invention. In FIG. 1, portions corresponding to those in FIG. The power supply circuit body 1 is supplied with a commercial AC signal from a commercial AC power supply AC, and is supplied to a filter circuit 1a, a power factor correction circuit (PFC) 1b, a resonance circuit (not shown), a DC-DC conversion circuit 1d, and the like. , Power factor improvement and DC conversion are performed, and an output capacitor C1 is connected to the output end of the DC-DC conversion circuit 1d, and an output line between one end of the capacitor C1 and the output terminal T1 to which the load 2 is connected A switching FET 1 made of a MOS type FET is connected, the anode S of the backflow prevention diode D1 is connected to the source S of the FET 1, and the cathode of the diode D1 is connected to the drain D of the FET 1 in parallel. The resistor R5 is connected to the output line between the other end of the capacitor C1 and the output terminal T2 to which the load 2 is connected.

制御回路10A(10B)内に設けられたオペアンプで構成された駆動増幅回路OP1からはスイッチング用のFET1のゲートに供給するゲート制御用の直流電圧が出力され、駆動増幅回路OP1を介してFET1のゲートGにオン/オフ制御用のゲート信号電圧が供給される。   A drive amplifier circuit OP1 configured by an operational amplifier provided in the control circuit 10A (10B) outputs a DC voltage for gate control supplied to the gate of the FET 1 for switching, and the FET 1 via the drive amplifier circuit OP1. A gate signal voltage for on / off control is supplied to the gate G.

駆動増幅回路OP1のゲート信号電圧は抵抗R8とダイオードD2のカソードに直列に接続した直列回路に供給される。制御回路10A(10B)を構成するオペアンプから成る出力電圧制御用比較回路OP2の基準電圧源入力端子Trfに直列回路のダイオードD2のアノードを接続する。基準電圧源Vrefの1端はグランドに接地され、他端は抵抗R9を介して出力電圧制御用比較回路OP2の基準電圧源入力端子Trfに接続したダイオードD2のアノードに接続されている。又、出力電圧制御用比較回路OP2の他の入力端子Tcnには出力端子T1に供給する出力電圧が供給され、出力電圧制御用比較回路OP2の出力はDC−DC変換回路1dに供給されている。   The gate signal voltage of the drive amplifier circuit OP1 is supplied to a series circuit connected in series to the resistor R8 and the cathode of the diode D2. The anode of the series circuit diode D2 is connected to the reference voltage source input terminal Trf of the output voltage control comparison circuit OP2 composed of an operational amplifier constituting the control circuit 10A (10B). One end of the reference voltage source Vref is grounded, and the other end is connected to the anode of the diode D2 connected to the reference voltage source input terminal Trf of the output voltage control comparison circuit OP2 via the resistor R9. The other input terminal Tcn of the output voltage control comparison circuit OP2 is supplied with the output voltage supplied to the output terminal T1, and the output of the output voltage control comparison circuit OP2 is supplied to the DC-DC conversion circuit 1d. .

上述の逆流防止用のFET1を制御する駆動増幅回路OP1の出力を抵抗R8とダイオードD2の直列回路を介して出力電圧制御用比較回路OP2に使用している基準電圧源Vrefの出力に供給する構成での動作としてはFET1の駆動増幅回路OP1の出力は、上述の図4(B)で説明したようなシーケンスとなっているが、この駆動増幅回路OP1の出力に応じて、出力電圧制御用回路比較回路OP2の基準電圧源Vrefに接続した抵抗R9とダイオードD2の直列回路の接続点の基準電圧V2は図2の波形W3の様にFET1をオン/オフ制御する駆動増幅回路OP1の出力波形W2に同期して、ΔA3、ΔA4に示す様に微妙に変化する様に抵抗R8、R9を調整して接続点の基準電圧V2を変化させることで電源回路本体1の出力電圧も駆動増幅回路OP1の出力に同期して波形W1の様に微妙にΔA1、ΔA2で示す変化している。   A configuration in which the output of the drive amplifier circuit OP1 for controlling the FET 1 for preventing backflow described above is supplied to the output of the reference voltage source Vref used for the output voltage control comparison circuit OP2 through a series circuit of a resistor R8 and a diode D2. As for the operation in FIG. 4, the output of the drive amplifier circuit OP1 of the FET 1 has the sequence as described with reference to FIG. 4B, but the output voltage control circuit corresponds to the output of the drive amplifier circuit OP1. The reference voltage V2 at the connection point of the series circuit of the resistor R9 and the diode D2 connected to the reference voltage source Vref of the comparison circuit OP2 is the output waveform W2 of the drive amplifier circuit OP1 that controls the on / off of the FET1 as the waveform W3 of FIG. In synchronism with this, the resistors R8 and R9 are adjusted so as to change slightly as shown by ΔA3 and ΔA4, and the reference voltage V2 at the connection point is changed, thereby allowing the output of the power supply circuit body 1 to change. The force voltage also changes slightly as shown by ΔA1 and ΔA2 like the waveform W1 in synchronization with the output of the drive amplifier circuit OP1.

上記した対策を施した図1に示したと同様の電源装置PS1、SP2[図5(A)参照]を2台並列運転した動作時に1台の電源装置PS2をオフした場合の動作を図3で説明する。先ず、並列運転から1台の電源装置PS2がオフした時の動作としては、駆動増幅回路OP1がロー(Lo)となり、逆流電流防止用のスイッチング用のFET1がオフとなる。これと同期して、オフ側の電源装置PS2の出力電圧が、抵抗R8、R9で決まる電圧まで微妙に下がる。   FIG. 3 shows the operation when one power supply device PS2 is turned off when two power supply devices PS1 and SP2 [see FIG. 5A] similar to those shown in FIG. explain. First, as an operation when one power supply device PS2 is turned off from the parallel operation, the drive amplifier circuit OP1 becomes low (Lo), and the switching FET1 for backflow current prevention is turned off. In synchronization with this, the output voltage of the off-side power supply device PS2 slightly decreases to a voltage determined by the resistors R8 and R9.

この電圧が下がることにより、オフした電源装置PS2の出力電流I2は完全オンの状態の時50%であるのに対し、例えば、20%程度まで下がることとなる。そして、その次に完全に電源装置PS2がオフとなり、20%状態から0%となる。オンしている側の電源装置PS1から見れば、50%状態から80%状態、次に100%状態と負荷電流比率が変化することになる。よって、通常の50%から急激に100%に負荷電流比率が変化する時よりも、出力電圧のデップ振幅Dpは図3の波形W1に示す様に軽減することが可能となる。   As the voltage decreases, the output current I2 of the power supply device PS2 that has been turned off is 50% in the fully-on state, but is reduced to, for example, about 20%. Then, the power supply device PS2 is completely turned off next, and is changed from the 20% state to 0%. From the viewpoint of the power supply device PS1 on the ON side, the load current ratio changes from the 50% state to the 80% state and then to the 100% state. Therefore, the dip amplitude Dp of the output voltage can be reduced as shown by the waveform W1 in FIG. 3 than when the load current ratio is suddenly changed from 50% to 100%.

本発明によれば、一般的に行っている電源装置のオン/オフの状態によりスイッチング用のFET1制御をしている駆動増幅回路のゲート信号電圧を利用して、該ゲート信号電圧が、出力電圧制御用比較回路の基準電圧値より下がった状態になった時に、この基準電圧値を少しだけ下げることでデップ振幅Dpを軽減する様にしたので、電源装置が2台でカレントシェアしている状態で、1台の電源装置がオフする時に発生する出力電圧のデップ振幅Dpを軽減することが出来る。又、出力ラインに接続する出力コンデンサC1の容量を減らすことが出来る為、部品レイアウトが楽になり電子機器の小型化を図ることが出来る効果を有する。本発明の電源装置及び並列電源運転時のデップ低減方法は携帯電話機、PAD、ディスク記録再生装置、デジタルカメラ、ハンデーカム等の小型携帯電子機器に適用可能である。   According to the present invention, using the gate signal voltage of the drive amplifier circuit that controls the FET 1 for switching according to the on / off state of a power supply device that is generally performed, the gate signal voltage is expressed as an output voltage. When the voltage drops below the reference voltage value of the control comparison circuit, the dip amplitude Dp is reduced by slightly reducing the reference voltage value, so that the two power supply units are currently sharing current Thus, the dip amplitude Dp of the output voltage generated when one power supply device is turned off can be reduced. In addition, since the capacity of the output capacitor C1 connected to the output line can be reduced, there is an effect that the component layout becomes easy and the electronic device can be miniaturized. The power supply apparatus and the method for reducing dip during parallel power supply operation of the present invention can be applied to small portable electronic devices such as a mobile phone, a PAD, a disk recording / reproducing apparatus, a digital camera, and a handy cam.

本発明の電源装置の1形態例を示す回路図である。It is a circuit diagram which shows one example of a power supply device of this invention. 本発明の電源装置の波形説明図である。It is waveform explanatory drawing of the power supply device of this invention. 本発明の電源装置の並列運転時の一方をオフした時の波形説明図である。It is waveform explanatory drawing when one side at the time of the parallel operation of the power supply device of this invention is turned off. MOS型FETのオン/オフ制御のシーケンス説明用の回路及び波形図である。It is a circuit and waveform diagram for explaining a sequence of on / off control of a MOS FET. 出力電圧に発生するデップの発生原因を説明するための回路図及び波形図である。It is the circuit diagram and waveform diagram for demonstrating the cause of generation | occurrence | production of the dip which generate | occur | produces in an output voltage. 従来の電源装置の1形態例の回路図である。It is a circuit diagram of one example of a conventional power supply device. 従来の電源装置の他の形態例を示す回路図であるIt is a circuit diagram which shows the other example of a conventional power supply device.

符号の説明Explanation of symbols

1・・・電源回路本体、 1a・・・フィルタ回路、1b・・・力率改善回路(PFC)、1d・・・DC−DC変換回路、2・・・負荷、10A、10B・・・制御回路、6・・・、D1、D2・・・ダイオード、FET1・・・スイッチング用MOS型電界効果トランジスタ、OP1・・・駆動増幅回路、OP2・・・出力電圧制御用比較回路、R1乃至R9・・・抵抗、Vref・・・基準電圧源、C1・・・出力コンデンサ DESCRIPTION OF SYMBOLS 1 ... Power supply circuit main body, 1a ... Filter circuit, 1b ... Power factor improvement circuit (PFC), 1d ... DC-DC conversion circuit, 2 ... Load, 10A, 10B ... Control Circuits 6 ... D1, D2 ... Diodes, FET1 ... Switching MOS field effect transistors, OP1 ... Drive amplifier circuits, OP2 ... Output voltage control comparison circuits, R1 to R9. ..Resistance, Vref ... reference voltage source, C1 ... output capacitor

Claims (4)

複数台を並列接続した電源回路本体に出力端子から所定の出力電圧を供給する出力電圧ラインに接続される逆流防止用のダイオードとスイッチング用トランジスタと、該電源回路本体の出力電圧を検出する出力電圧制御用比較回路と、該出力電圧制御用比較回路の検出結果に基づき該電源回路本体の異常時に該スイッチング用ダイオードをオン/オフ制御させる駆動増幅回路とからなる電源装置において、
前記駆動増幅回路から前記スイッチング用トランジスタに供給する制御信号が、前記出力電圧制御用比較回路に供給する基準電圧より降下した状態になった時に該基準電圧を降下させて出力電圧のデップを軽減することを特徴とする電源装置。
A backflow prevention diode and a switching transistor connected to an output voltage line for supplying a predetermined output voltage from an output terminal to a power supply circuit body in which a plurality of units are connected in parallel, and an output voltage for detecting the output voltage of the power supply circuit body In a power supply device comprising a control comparison circuit and a drive amplification circuit that controls on / off of the switching diode when the power supply circuit body is abnormal based on a detection result of the output voltage control comparison circuit,
When the control signal supplied from the drive amplifier circuit to the switching transistor falls below the reference voltage supplied to the output voltage control comparison circuit, the reference voltage is lowered to reduce the output voltage dip. A power supply device characterized by that.
前記スイッチング用トランジスタに前記駆動増幅回路から供給する前記制御信号を前記出力電圧制御用比較回路に接続された基準電圧源に直列接続した抵抗とダイオードを介して供給したことを特徴とする請求項1記載の電源装置。   2. The control signal supplied from the drive amplifier circuit to the switching transistor is supplied through a resistor and a diode connected in series to a reference voltage source connected to the output voltage control comparison circuit. The power supply described. 複数台を並列接続した電源回路本体に出力端子から所定の出力電圧を供給する出力電圧ラインに接続される逆流防止用のダイオードとスイッチング用トランジスタと、該電源回路本体の出力電圧を検出する出力電圧制御用比較回路と、該出力電圧制御用比較回路の検出結果に基づき該電源回路本体の異常時に該スイッチング用ダイオードをオン/オフ制御させる駆動増幅回路とからなる並列電源運転時のデップ低減方法において、
前記駆動増幅回路から前記スイッチング用トランジスタに供給する制御信号が、前記出力電圧制御用比較回路に供給する基準電圧より降下した状態になった時に該基準電圧を降下させて出力電圧のデップを軽減することを特徴とする並列電源運転時のデップ低減方法。
A backflow prevention diode and a switching transistor connected to an output voltage line for supplying a predetermined output voltage from an output terminal to a power supply circuit body in which a plurality of units are connected in parallel, and an output voltage for detecting the output voltage of the power supply circuit body In a method for reducing dip during parallel power supply operation, comprising: a control comparison circuit; and a drive amplifier circuit that controls on / off of the switching diode when the power supply circuit body is abnormal based on a detection result of the output voltage control comparison circuit ,
When the control signal supplied from the drive amplifier circuit to the switching transistor falls below the reference voltage supplied to the output voltage control comparison circuit, the reference voltage is lowered to reduce the output voltage dip. A method for reducing dip during parallel power supply operation.
前記スイッチング用トランジスタに前記駆動増幅回路から供給する前記制御信号を前記出力電圧制御用比較回路に接続された基準電圧源に直列接続した抵抗とダイオードを接続したことを特徴とする請求項3記載の並列電源運転時のデップ低減方法。   4. A resistor and a diode connected in series to a reference voltage source connected to the output voltage control comparison circuit for the control signal supplied from the drive amplifier circuit to the switching transistor. Depth reduction method during parallel power supply operation.
JP2005132832A 2005-04-28 2005-04-28 Power supply device and method for reducing dip during parallel power supply operation Expired - Fee Related JP4720280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132832A JP4720280B2 (en) 2005-04-28 2005-04-28 Power supply device and method for reducing dip during parallel power supply operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132832A JP4720280B2 (en) 2005-04-28 2005-04-28 Power supply device and method for reducing dip during parallel power supply operation

Publications (2)

Publication Number Publication Date
JP2006311740A true JP2006311740A (en) 2006-11-09
JP4720280B2 JP4720280B2 (en) 2011-07-13

Family

ID=37477920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132832A Expired - Fee Related JP4720280B2 (en) 2005-04-28 2005-04-28 Power supply device and method for reducing dip during parallel power supply operation

Country Status (1)

Country Link
JP (1) JP4720280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053581A1 (en) * 2021-09-30 2023-04-06 株式会社日立製作所 Electric power conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670544A (en) * 1992-08-11 1994-03-11 Fujitsu Ltd Reverse current preventive circuit for parallel power source
JP2002027754A (en) * 2000-06-30 2002-01-25 Toshiba Corp Redundant power supply and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670544A (en) * 1992-08-11 1994-03-11 Fujitsu Ltd Reverse current preventive circuit for parallel power source
JP2002027754A (en) * 2000-06-30 2002-01-25 Toshiba Corp Redundant power supply and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053581A1 (en) * 2021-09-30 2023-04-06 株式会社日立製作所 Electric power conversion device

Also Published As

Publication number Publication date
JP4720280B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5331508B2 (en) Voltage regulator
US5821808A (en) Voltage circuit for preventing voltage fluctuation
US11314267B2 (en) Adjuster and chip
US8648578B2 (en) Capless low drop-out voltage regulator having discharge circuit compensating for on-chip output capacitance and response time
CN100573399C (en) Adjuster circuit
CN101872207B (en) Voltage regulator circuit
US7705573B2 (en) Constant voltage circuit
US8212540B2 (en) Voltage generating circuit
JP2006309569A (en) Constant voltage power supply circuit
JP2007328680A (en) Power supply circuit
JP2015018443A (en) Power supply circuit
JP2007249384A (en) Semiconductor device
US9397564B2 (en) DC-DC switching regulator with transconductance boosting
CN110794907A (en) Transient enhanced LDO (low dropout regulator) circuit, CMOS (complementary metal oxide semiconductor) driver power supply circuit and laser system
CN112787509B (en) Auxiliary device for controlling current mode of DC-DC converter
US9531259B2 (en) Power supply circuit
JP2006018774A (en) Voltage regulator
JP6457887B2 (en) Voltage regulator
US20080211470A1 (en) Auto discharge linear regulator and method for the same
JP2009266121A (en) Regulator
JP2010130136A (en) Audio signal processing circuit, and method of controlling charge pump circuit
JP4720280B2 (en) Power supply device and method for reducing dip during parallel power supply operation
JP4908019B2 (en) Switching regulator
JP5068631B2 (en) Constant voltage circuit
JP6850199B2 (en) Power circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees