JP2006310766A - Gallium nitride compound semiconductor laser element and manufacturing method therefor - Google Patents

Gallium nitride compound semiconductor laser element and manufacturing method therefor Download PDF

Info

Publication number
JP2006310766A
JP2006310766A JP2006017103A JP2006017103A JP2006310766A JP 2006310766 A JP2006310766 A JP 2006310766A JP 2006017103 A JP2006017103 A JP 2006017103A JP 2006017103 A JP2006017103 A JP 2006017103A JP 2006310766 A JP2006310766 A JP 2006310766A
Authority
JP
Japan
Prior art keywords
gallium nitride
semiconductor laser
compound semiconductor
laser device
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017103A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Shuichi Nakazawa
崇一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2006017103A priority Critical patent/JP2006310766A/en
Publication of JP2006310766A publication Critical patent/JP2006310766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing gallium nitride compound semiconductor laser elements that ensure large slope efficiency and lower drive voltage even when gallium nitride substrates with large off angles are used, maintain high yields, reduce variations, and emit high-power violaceous lights and compound semiconductor laser elements produced using this method. <P>SOLUTION: This method for manufacturing gallium nitride compound semiconductor laser elements is featured by using either an inclined plane with an absolute value of degree from 0.16 to 5.0 towards a <1-100> direction on a (0001) Ga surface or a surface where a square root of the value (A<SP>2</SP>+B<SP>2</SP>) is greater than or equal to 0.17 but less than or equal to 7.0, when assuming a (0001) Ga surface off angle towards <1-100> direction to be "A" and a (0001) Ga surface off angle towards <11-20> direction to be "B" as a crystal growth surface on a gallium nitride compound substrate, and growing an active layer at a rate faster than or equal to 0.5 Å/second but less than or equal to 5.0 Å/second. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、化合物半導体レーザ素子の製造方法及びこの製造方法で作製された化合物半導体レーザ素子に関し、特に青紫色の短波長の光を発することができるスロープ効率の大きい窒化ガリウム系の化合物半導体レーザ素子の製造方法及びこの製造方法で作製された窒化ガリウム系化合物半導体レーザ素子に関する。   The present invention relates to a method of manufacturing a compound semiconductor laser device and a compound semiconductor laser device manufactured by the manufacturing method, and in particular, a gallium nitride-based compound semiconductor laser device having high slope efficiency and capable of emitting blue-violet light having a short wavelength. And a gallium nitride-based compound semiconductor laser device manufactured by this manufacturing method.

近年、青色LEDや青紫色半導体レーザには、窒化物系半導体が主として用いられている。この窒化物系半導体は、通常、サファイア基板、SiC基板またはGaNなどの窒化物系半導体用基板上に、MOCVD(Metal Organic Chemical Vapor Deposition;有機金属気相成長)法、MBE(Molecular Beam Epitaxy;分子線エピタキシャル成長)法、または、HVPE(Hydride Vapor Phase Epitaxy)法などの結晶成長法を用いて成長させる。このうち、結晶成長法としては、MOCVD法が最もよく利用されている。   In recent years, nitride-based semiconductors are mainly used for blue LEDs and blue-violet semiconductor lasers. This nitride-based semiconductor is usually formed on a nitride semiconductor substrate such as a sapphire substrate, SiC substrate or GaN by MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Epitaxy) molecule. The epitaxial growth is performed using a crystal growth method such as a line epitaxial growth method or a HVPE (Hydride Vapor Phase Epitaxy) method. Of these, the MOCVD method is most often used as the crystal growth method.

従来の窒化物系半導体レーザ素子の一具体例を図4に示す。なお、図4は、従来の窒化物系半導体素子50の模式的な断面図である。この窒化物系半導体レーザ素子50は、サファイア基板51上にバッファ層52、アンドープGaN層53、n−GaNコンタクト層54、n−AlGaNクラッド層55、n−GaN光ガイド層56、活性層57、p−GaN光ガイド層58が順に形成されてなる。p−GaN光ガイド層58の所定幅の領域上にリッジ状にp−AlGaNクラッド層59が形成されており、このリッジ状のp−AlGaNクラッド層59の側面に電流狭窄層60が形成されている。さらに、p−AlGaNクラッド層59の上面および電流狭窄層60上にp−GaNコンタクト層61が形成されている。p−GaNコンタクト層61からn−GaNコンタクト層54までの一部領域が除去されてn−GaNコンタクト層54が露出し、メサ形状が形成されている。露出したn−GaNコンタクト層54の所定領域上にn電極62が形成され、p−GaNコンタクト層61の所定領域上にp電極63が形成されている。   A specific example of a conventional nitride-based semiconductor laser device is shown in FIG. FIG. 4 is a schematic cross-sectional view of a conventional nitride semiconductor device 50. The nitride-based semiconductor laser device 50 includes a buffer layer 52, an undoped GaN layer 53, an n-GaN contact layer 54, an n-AlGaN cladding layer 55, an n-GaN light guide layer 56, an active layer 57 on a sapphire substrate 51. A p-GaN light guide layer 58 is sequentially formed. A p-AlGaN cladding layer 59 is formed in a ridge shape on a region having a predetermined width of the p-GaN light guide layer 58, and a current confinement layer 60 is formed on the side surface of the ridge-shaped p-AlGaN cladding layer 59. Yes. Further, a p-GaN contact layer 61 is formed on the upper surface of the p-AlGaN cladding layer 59 and the current confinement layer 60. A partial region from the p-GaN contact layer 61 to the n-GaN contact layer 54 is removed, and the n-GaN contact layer 54 is exposed to form a mesa shape. An n electrode 62 is formed on a predetermined region of the exposed n-GaN contact layer 54, and a p electrode 63 is formed on the predetermined region of the p-GaN contact layer 61.

ところで、このようなサファイア基板上に窒化ガリウム系半導体層が形成されてなる窒化物系半導体素子においては、サファイア基板と窒化ガリウム系半導体層との間の格子定数の差が大きい。このため、サファイア基板上に形成された窒化ガリウム系半導体層は多くの転位を含んでおり結晶性が劣化している。したがって、サファイア基板を用いた窒化物系半導体素子においては、良好な素子特性を実現することが困難である。   By the way, in such a nitride semiconductor device in which a gallium nitride based semiconductor layer is formed on a sapphire substrate, the difference in lattice constant between the sapphire substrate and the gallium nitride based semiconductor layer is large. For this reason, the gallium nitride based semiconductor layer formed on the sapphire substrate contains many dislocations and has deteriorated crystallinity. Therefore, it is difficult to realize good device characteristics in a nitride semiconductor device using a sapphire substrate.

そこで、下記特許文献1には、基板としてSiC結晶の(0001)Si面に対して0.02度ないし0.6度の範囲内で傾斜した面(オフ面)を有するSiC基板を用いて窒化物系半導体層を形成すると、良好な結晶性が得られることが示されており、また、窒化ガリウム基板を用いても同様の結果が得られることが示唆されている。さらに、下記特許文献2には窒化ガリウム基板としてC面からの傾斜角度が0.03度以上、10度以下のものを使用した窒化物系半導体発光素子の発明が、また、下記特許文献3には窒化ガリウム基板として(0001)面から所定の方向に1度以上20度以下の傾斜面を有するものを使用すると結晶性の良好な窒化物系半導体層が得られることが、さらに、下記特許文献4には、窒化ガリウム基板として(0001)C面から15度以上60度以下の傾斜面を有するものを使用するとInGaN系においても結晶性の良好な窒化物半導体層が得られることが、それぞれ示されている。
特開平11−233391号公報 特開2000−223743号公報 特開2002−16000号公報 特開2002−344089号公報
Therefore, in Patent Document 1 below, nitriding is performed using a SiC substrate having a plane (off-plane) inclined within a range of 0.02 to 0.6 degrees with respect to the (0001) Si plane of the SiC crystal as the substrate. It has been shown that when a physical semiconductor layer is formed, good crystallinity can be obtained, and it is suggested that similar results can be obtained even when a gallium nitride substrate is used. Further, the following Patent Document 2 discloses an invention of a nitride-based semiconductor light-emitting element using a gallium nitride substrate having a tilt angle from the C plane of 0.03 degrees or more and 10 degrees or less. If a gallium nitride substrate having an inclined surface of 1 degree to 20 degrees in a predetermined direction from the (0001) plane is used, a nitride-based semiconductor layer with good crystallinity can be obtained. 4 shows that a nitride semiconductor layer having good crystallinity can be obtained even in an InGaN system when a gallium nitride substrate having an inclined surface of 15 degrees or more and 60 degrees or less from the (0001) C plane is used. Has been.
JP-A-11-233391 JP 2000-223743 A JP 2002-16000 A JP 2002-344089 A

しかしながら、上述のような窒化ガリウム基板の(0001)面から所定の傾斜面を有するものを使用して形成された窒化ガリウム系化合物半導体レーザ素子においては、結晶性の良好な窒化物系半導体層が得られるにしても、得られた窒化ガリウム系化合物半導体レーザ素子のスロープ効率が小さく、素子特性として問題があり、高光出力使用には適さないものが作製される場合があった。   However, in a gallium nitride-based compound semiconductor laser element formed using a gallium nitride substrate having a predetermined inclined surface from the (0001) plane as described above, a nitride-based semiconductor layer with good crystallinity is Even if it is obtained, the obtained gallium nitride compound semiconductor laser device has a low slope efficiency, has a problem in device characteristics, and may not be suitable for high light output use.

一方、本発明者等は、上記のスロープ効率が小さい窒化ガリウム系化合物半導体レーザ素子が作製される原因を検討すべく種々実験を重ねた結果、スロープ効率が小さい窒化ガリウム系化合物半導体レーザ素子は、窒化ガリウム基板の結晶成長面である(0001)Ga面の傾斜角度が、一方向に傾斜させる場合であっても2方向に傾斜させる場合であっても、所定の数値範囲から外れる場合に生じることを見出し、この傾斜角度を限定したスロープ効率が大きい窒化ガリウム系化合物半導体レーザ素子に関して既に特願2005−023322号(以下、「先願」という。)として特許出願している。   On the other hand, the present inventors have conducted various experiments in order to examine the cause for producing the gallium nitride compound semiconductor laser element having a low slope efficiency. As a result, the gallium nitride compound semiconductor laser element having a low slope efficiency is Occurs when the inclination angle of the (0001) Ga surface, which is the crystal growth surface of the gallium nitride substrate, is out of the predetermined numerical range, whether it is inclined in one direction or in two directions. As a result, a patent application has already been filed as Japanese Patent Application No. 2005-023322 (hereinafter referred to as “prior application”) regarding a gallium nitride-based compound semiconductor laser device having a large slope efficiency with a limited inclination angle.

すなわち、先願明細書及び図面には、スロープ効率が大きい窒化ガリウム系化合物半導体レーザ素子の製造に使用し得る窒化ガリウム基板表面のオフ角度が限定されており、その範囲外となるオフ角度の大きな基板上に窒化ガリウム系化合物半導体レーザ素子を作製する場合には、スロープ効率が低下することが指摘されている。   That is, in the specification and drawings of the prior application, the off angle of the gallium nitride substrate surface that can be used for the manufacture of the gallium nitride compound semiconductor laser device having a large slope efficiency is limited, and the off angle outside the range is large. It has been pointed out that slope efficiency decreases when a gallium nitride-based compound semiconductor laser device is fabricated on a substrate.

一方、オフ角度の大きい領域の窒化ガリウム基板表面に窒化ガリウム系化合物半導体レーザ素子を形成すると、素子抵抗が減少し、駆動電圧が低減できるという利点が別に存在することも判明している。しかし、このような利点もスロープ効率の満足できる素子が得られないため、オフ角度の大きな基板は従来から窒化ガリウム系化合物半導体レーザ素子作製用としては用いられてこなかった。   On the other hand, it has been found that when a gallium nitride compound semiconductor laser device is formed on the surface of a gallium nitride substrate in a region with a large off angle, there is another advantage that the device resistance is reduced and the driving voltage can be reduced. However, since an element satisfying such slope efficiency cannot be obtained, a substrate having a large off angle has not been used for manufacturing a gallium nitride-based compound semiconductor laser element.

本発明者等は、上述のようなオフ角度の大きい領域の窒化ガリウム基板を使用するとスロープ効率が小さい窒化ガリウム系化合物半導体レーザ素子が作製される原因を検討すべく種々実験を重ねた結果、このスロープ効率はオフ角度の大きい領域の窒化ガリウム基板上に形成される窒化ガリウム系化合物半導体レーザ素子の活性層の成長速度に律速されることを見出し、本発明を完成するに至ったのである。   The present inventors have conducted various experiments in order to investigate the cause of producing a gallium nitride compound semiconductor laser device having a low slope efficiency when using a gallium nitride substrate having a large off angle as described above. It has been found that the slope efficiency is limited by the growth rate of the active layer of the gallium nitride compound semiconductor laser device formed on the gallium nitride substrate in the region with a large off angle, and the present invention has been completed.

すなわち、本発明は、オフ角度の大きな窒化ガリウム基板上に窒化ガリウム系化合物半導体レーザ素子を作製するとスロープ効率が小さい窒化ガリウム系化合物半導体レーザ素子が得られるという従来技術の問題点を解決すべくなされたものであり、オフ角度の大きな窒化ガリウム基板を使用しても、スロープ効率が大きく、素子抵抗が小さく、駆動電圧を低減でき、しかも、製造歩留まりが高く、バラツキが少なく、高出力の青紫色の光を発することができる窒化ガリウム系化合物半導体レーザ素子の製造方法及びこの製造方法で作製された窒化ガリウム系化合物半導体レーザ素子を提供することを目的とする。   That is, the present invention is intended to solve the problem of the prior art that a gallium nitride compound semiconductor laser device having a low slope efficiency can be obtained when a gallium nitride compound semiconductor laser device is fabricated on a gallium nitride substrate having a large off angle. Even when a gallium nitride substrate with a large off angle is used, the slope efficiency is large, the device resistance is small, the drive voltage can be reduced, and the manufacturing yield is high, variation is small, and the output is blue-violet. An object of the present invention is to provide a method for manufacturing a gallium nitride-based compound semiconductor laser device capable of emitting the above light and a gallium nitride-based compound semiconductor laser device manufactured by this manufacturing method.

本発明の上記目的は以下の構成により達成し得る。すなわち、請求項1に係る窒化ガリウム系化合物半導体レーザ素子の製造方法の発明は、窒化ガリウム基板上に、窒化ガリウム系化合物半導体レーザ素子を作製する方法であって、前記窒化ガリウム基板の結晶成長面として(0001)Ga面の<1−100>方向に絶対値で0.16度以上5.0度以下傾斜した面を用い、かつ活性層を0.5Å/秒以上5.0Å/秒以下の成長速度で成長させることを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, the invention of the method for manufacturing a gallium nitride-based compound semiconductor laser device according to claim 1 is a method for producing a gallium nitride-based compound semiconductor laser device on a gallium nitride substrate, and the crystal growth surface of the gallium nitride substrate. As a surface inclined in the <1-100> direction of the (0001) Ga plane with an absolute value of 0.16 degrees or more and 5.0 degrees or less, and the active layer is 0.5 Å / second or more and 5.0 Å / second or less. It is characterized by growing at a growth rate.

この場合、窒化ガリウム基板の結晶成長面の傾斜が(0001)Ga面の<1−100>方向に絶対値で0.16度以上の場合、活性層の成長速度が0.5Å/秒未満であるとアンコート窒化ガリウム系化合物半導体レーザ素子のスロープ効率が0.3W/Aにも達しない場合が生じるが、活性層の成長速度が0.5Å/秒以上ではスロープ効率が0.6W/A以上となる。ただ、活性層の成長速度が速すぎてもMQW活性層の結晶品質が悪くなるために素子の信頼性が低下するので、活性層の成長速度の上限は5.0Å/秒に止めるべきである。また、傾斜角度の上限が5度を超えるとMQW活性層内にIn原子が十分に入らなくなり、発振波長が395nm以下となってしまうので好ましくない。   In this case, when the inclination of the crystal growth surface of the gallium nitride substrate is 0.16 degrees or more in absolute value in the <1-100> direction of the (0001) Ga surface, the growth rate of the active layer is less than 0.5 Å / sec. In some cases, the slope efficiency of the uncoated gallium nitride compound semiconductor laser element does not reach 0.3 W / A. However, when the growth rate of the active layer is 0.5 Å / second or more, the slope efficiency is 0.6 W / A. That's it. However, even if the growth rate of the active layer is too high, the crystal quality of the MQW active layer is deteriorated and the reliability of the device is lowered. Therefore, the upper limit of the growth rate of the active layer should be limited to 5.0 kg / sec. . In addition, if the upper limit of the tilt angle exceeds 5 degrees, In atoms cannot sufficiently enter the MQW active layer, and the oscillation wavelength becomes 395 nm or less, which is not preferable.

このような窒化ガリウム基板の結晶成長面の傾斜角度範囲と活性層の成長速度の組合せにおいて安定的にスロープ効率が0.6W/A以上の窒化ガリウム系化合物半導体レーザ素子が得られるが、このような結果が得られることの理由は、現在のところまだ明確になっておらず、今後の研究を待つ必要があるが、以下の理由によるものと考えられる。   A gallium nitride-based compound semiconductor laser device having a slope efficiency of 0.6 W / A or more can be stably obtained by combining the tilt angle range of the crystal growth surface of the gallium nitride substrate and the growth rate of the active layer. The reason for this result is not clear at present, and it is necessary to wait for further research. The reason is as follows.

従来、オフ角度の大きい基板面を用いた場合、レーザ素子のスロープ効率が低下していた原因としては次のように推測される。一般に、スロープ効率は主に活性層の発光効率の大きさで決定されるが、InGaN活性層の場合、島状成長になるとIn組成の局在化現象が成長層内で発生し、その結果、発光効率の大きな活性層が得られることになる。しかしながら、従来のように活性層の成長速度を小さくして、オフ角度の大きな基板面上に成長させると、大きなオフ角度により結晶面のステップ密度が高くなっている影響を顕著に受け、結晶成長形態がステップ成長となり、オフ角度の小さな基板面上で見られるような島状成長とはならなくなる。したがって、これらの理由で、従来はオフ角度の大きな基板面上では、スロープ効率の小さな窒化物化合物半導体レーザ素子しか得られなかった。   Conventionally, when a substrate surface having a large off-angle is used, the reason why the slope efficiency of the laser element is lowered is estimated as follows. Generally, the slope efficiency is mainly determined by the magnitude of the luminous efficiency of the active layer, but in the case of an InGaN active layer, a localized phenomenon of In composition occurs in the growth layer when island-like growth occurs. An active layer with high luminous efficiency is obtained. However, if the growth rate of the active layer is reduced and grown on the substrate surface having a large off angle as in the conventional case, the step density of the crystal plane is significantly affected by the large off angle, and the crystal growth The morphology is step growth, and the island-like growth as seen on the substrate surface with a small off-angle is not obtained. Therefore, for these reasons, conventionally, only a nitride compound semiconductor laser element having a low slope efficiency has been obtained on a substrate surface having a large off angle.

一方、本発明では、活性層の成長速度を0.5Å/秒以上5.0Å/秒以下と大きくすることで、上記問題点を改善することができた。すなわち、オフ角度の絶対値が大きな基板面でも、成長速度を速くすることで、ステップ成長ではなく、島状成長の結晶成長形態が得られるようになり、その結果、In組成の局在化現象が成長層内で発生し、発光効率が大きな活性層を得ることが可能となったものと思われる。   On the other hand, in the present invention, the above-mentioned problems can be improved by increasing the growth rate of the active layer to 0.5 Å / second or more and 5.0 Å / second or less. In other words, even on a substrate surface with a large absolute value of the off-angle, by increasing the growth rate, it becomes possible to obtain a crystal growth form of island-like growth instead of step growth. It is considered that an active layer having high emission efficiency can be obtained in the growth layer.

また、請求項2に係る発明は、請求項1に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の発振波長が395〜405nmであることを特徴とする。   The invention according to claim 2 is the method for manufacturing a gallium nitride-based compound semiconductor laser device according to claim 1, wherein the oscillation wavelength of the semiconductor laser device is 395 to 405 nm.

また、請求項3に係る発明は、請求項1又は2に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の共振器面を結晶の自然へきかい面としたことを特徴とする。   According to a third aspect of the present invention, in the method of manufacturing a gallium nitride compound semiconductor laser device according to the first or second aspect, the resonator surface of the semiconductor laser device is a natural scratched surface of a crystal. To do.

また、請求項4に係る発明は、請求項1〜3のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の共振器面の出射面を反射率が10〜30%に調整し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする。   According to a fourth aspect of the present invention, in the method of manufacturing a gallium nitride-based compound semiconductor laser device according to any one of the first to third aspects, the reflectance of the emission surface of the resonator surface of the semiconductor laser device is It is adjusted to 10 to 30%, and an end face coat having a reflectance of 70% or more is formed on the rear surface of the resonator surface.

また、請求項5に係る発明は、請求項1〜3のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の共振器面の出射面に反射率10%以下の端面コートを形成し、前記共振器面の後面に反射70%以上の端面コートを形成したことを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a gallium nitride-based compound semiconductor laser device according to any one of the first to third aspects, a reflectance of 10 is applied to an emission surface of the resonator surface of the semiconductor laser device. % End face coat is formed, and 70% or more end face coat is formed on the rear face of the resonator surface.

さらに、請求項6に係る窒化ガリウム系化合物半導体レーザ素子の製造方法の発明は、窒化ガリウム基板上に、窒化ガリウム系化合物半導体レーザ素子を作製する方法であって、前記窒化ガリウム基板の結晶成長面として、(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合の(A+B)の平方根が0.17以上7.0以下である面を用い、かつ活性層を0.5Å/秒以上5.0Å/秒以下の成長速度で成長させることを特徴とする。 Further, the invention of a method for manufacturing a gallium nitride compound semiconductor laser device according to claim 6 is a method for producing a gallium nitride compound semiconductor laser device on a gallium nitride substrate, wherein the crystal growth surface of the gallium nitride substrate (A 2 + B 2 ) where A is the off angle of the (0001) Ga plane in the <1-100> direction and B is the off angle of the (0001) Ga plane in the <11-20> direction. The surface having a square root of 0.17 or more and 7.0 or less is used, and the active layer is grown at a growth rate of 0.5 Å / second or more and 5.0 Å / second or less.

この場合、(A+B)の平方根が0.17以上7.0以下の場合、活性層の成長速度が0.5Å/秒未満であるとアンコート窒化ガリウム系化合物半導体レーザ素子のスロープ効率が0.3W/A以上にも達しない場合が生じるが、活性層の成長速度が0.5Å/秒以上ではスロープ効率が0.6W/A以上となる。ただ、活性層の成長速度が速すぎてもMQW活性層の結晶品質が悪くなるために素子の信頼性が低下するので、活性層の成長速度の上限は5.0Å/秒に止めるべきである。また、(A+B)の平方根が7.0を超えるとMQW活性層内にIn原子が十分に入らなくなり、発振波長が395nm以下となってしまうので好ましくない。 In this case, when the square root of (A 2 + B 2 ) is 0.17 or more and 7.0 or less, the slope efficiency of the uncoated gallium nitride-based compound semiconductor laser device when the growth rate of the active layer is less than 0.5 Å / sec. May not reach 0.3 W / A or more, but the slope efficiency becomes 0.6 W / A or more when the growth rate of the active layer is 0.5 Å / second or more. However, even if the growth rate of the active layer is too high, the crystal quality of the MQW active layer is deteriorated and the reliability of the device is lowered. Therefore, the upper limit of the growth rate of the active layer should be limited to 5.0 kg / sec. . Further, if the square root of (A 2 + B 2 ) exceeds 7.0, it is not preferable because In atoms cannot sufficiently enter the MQW active layer and the oscillation wavelength becomes 395 nm or less.

また、請求項7に係る発明は、請求項6に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の発振波長が395〜405nmであることを特徴とする。   The invention according to claim 7 is the method of manufacturing a gallium nitride-based compound semiconductor laser element according to claim 6, wherein the oscillation wavelength of the semiconductor laser element is 395 to 405 nm.

また、請求項8に係る発明は、請求項6又は7に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の共振器面を結晶の自然へきかい面としたことを特徴とする。   The invention according to claim 8 is the method of manufacturing a gallium nitride-based compound semiconductor laser device according to claim 6 or 7, characterized in that the resonator surface of the semiconductor laser device is a natural scratch face of a crystal. To do.

また、請求項9に係る発明は、請求項6〜8のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法において、前記半導体レーザ素子の共振器面の出射面を反射率が10〜30%に調整し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする。   The invention according to claim 9 is the method for manufacturing a gallium nitride-based compound semiconductor laser device according to any one of claims 6 to 8, wherein the reflectance of the exit surface of the resonator surface of the semiconductor laser device is It is adjusted to 10 to 30%, and an end face coat having a reflectance of 70% or more is formed on the rear surface of the resonator surface.

また、請求項10に係る発明は、請求項6〜8のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子において、前記半導体レーザ素子の共振器面の出射面に反射率10%以下の端面コートを形成し、前記共振器面の後面に反射率70%以上の端面コートを形成したとを特徴とする。   According to a tenth aspect of the present invention, in the gallium nitride-based compound semiconductor laser device according to any one of the sixth to eighth aspects, a reflectance of 10% or less is applied to an emission surface of the resonator surface of the semiconductor laser device. An end face coat is formed, and an end face coat having a reflectance of 70% or more is formed on the rear face of the resonator face.

さらに、請求項11に記載の窒化ガリウム系化合物半導体レーザ素子の発明は、窒化ガリウム基板上に形成された窒化ガリウム系化合物半導体レーザ素子であって、前記窒化ガリウム基板の結晶成長面が(0001)Ga面の<1−100>方向に絶対値で0.16度以上5.0度以下傾斜した面を有し、かつ活性層が0.5Å/秒以上5.0Å/秒以下の成長速度で成長させたものであることを特徴とする。   Furthermore, the invention of a gallium nitride compound semiconductor laser device according to claim 11 is a gallium nitride compound semiconductor laser device formed on a gallium nitride substrate, wherein the crystal growth surface of the gallium nitride substrate is (0001). It has a surface inclined in the <1-100> direction of the Ga surface with an absolute value of 0.16 degrees or more and 5.0 degrees or less, and the active layer has a growth rate of 0.5 Å / second to 5.0 Å / second. It is characterized by being grown.

また、請求項12に記載の窒化ガリウム系化合物半導体レーザ素子の発明は、窒化ガリウム基板上に形成された窒化ガリウム系化合物半導体レーザ素子であって、前記窒化ガリウム基板の結晶成長面が、(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合の(A+B)の平方根が0.17以上7.0以下である面を有し、かつ活性層が0.5Å/秒以上5.0Å/秒以下の成長速度で成長させたものであることを特徴とする。 The invention of a gallium nitride compound semiconductor laser device according to claim 12 is a gallium nitride compound semiconductor laser device formed on a gallium nitride substrate, wherein the crystal growth surface of the gallium nitride substrate is (0001). ) The square root of (A 2 + B 2 ) is 0 when the off angle of the Ga surface in the <1-100> direction is A and the off angle of the (0001) Ga surface in the <11-20> direction is B. It has a surface of .17 or more and 7.0 or less, and the active layer is grown at a growth rate of 0.5 Å / sec or more and 5.0 Å / sec or less.

本発明は、上記のような構成を備えることにより、以下に述べるような優れた効果を奏する。すなわち、請求項1及び請求項6に係る窒化ガリウム系化合物半導体レーザ素子製造方法の発明によれば、バラツキを考慮しても安定的にスロープ効率が0.6W/A以上の窒化ガリウム系化合物半導体レーザ素子を製造し得る。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the gallium nitride compound semiconductor laser device manufacturing method according to claim 1 and claim 6, a gallium nitride compound semiconductor having a slope efficiency of 0.6 W / A or more stably even if variation is taken into account. Laser elements can be manufactured.

また、請求項2及び請求項7に係る発明によれば、発振波長が395〜405nmの青紫色範囲である場合に本発明の効果がより顕著に現われる。   Moreover, according to the invention which concerns on Claim 2 and Claim 7, when the oscillation wavelength is the violet range of 395-405 nm, the effect of this invention appears more notably.

また、請求項3及び請求項8に係る発明によれば、共振器面を結晶の自然へきかい面にすることにより、窒化ガリウム系化合物レーザ素子の製造歩留りが大きく向上するため、工業的に本発明の効果をより顕著に利用できる。   In addition, according to the inventions according to claims 3 and 8, the manufacturing yield of the gallium nitride-based compound laser device is greatly improved by making the resonator surface a natural scratched surface of the crystal. The effect of can be utilized more remarkably.

また、請求項4及び請求項9に係る発明によれば、共振器面の出射面は反射率が10〜30%に調整されており、共振器面の後面は反射率70%以上の端面コートが形成されている半導体レーザ素子に対して本発明を適用することにより、光ピックアップへの応用時にノイズ特性を向上させることができるため、本発明の効果をより顕著に利用できる。   Further, according to the inventions according to claims 4 and 9, the exit surface of the resonator surface is adjusted to have a reflectance of 10 to 30%, and the rear surface of the resonator surface is an end surface coat having a reflectance of 70% or more. By applying the present invention to the semiconductor laser element on which the optical characteristics are formed, the noise characteristics can be improved when applied to an optical pickup, so that the effects of the present invention can be used more remarkably.

また、請求項5及び請求項10に係る発明によれば、共振器面の出射面は反射率10%以下の端面コートが形成されており、共振器面の後面は反射率70%以上の端面コートが形成されている半導体レーザ素子に対して本発明を適用することにより、より高い光出力を要求される用途の場合に適合できるため、本発明の効果をより顕著に利用できる。   According to the inventions according to claim 5 and claim 10, the exit surface of the resonator surface is formed with an end surface coat having a reflectance of 10% or less, and the rear surface of the resonator surface is an end surface having a reflectance of 70% or more. By applying the present invention to a semiconductor laser element on which a coat is formed, the present invention can be adapted to an application requiring a higher light output, and thus the effects of the present invention can be used more remarkably.

さらに、請求項11及び12に係る発明によれば、バラツキを考慮してもそれぞれ安定的にスロープ効率が6W/A以上の窒化ガリウム系化合物半導体レーザ素子が得られる。   Furthermore, according to the eleventh and twelfth aspects of the present invention, a gallium nitride-based compound semiconductor laser device having a slope efficiency of 6 W / A or more can be obtained stably even when variations are taken into account.

以下、本発明を実施するための最良の形態を実施例及び図面を用いて詳細に説明するが、以下に述べた実施例は、本発明の技術思想を具体化するための窒化ガリウム系化合物半導体レーザ素子の製造方法及びこの製造方法で作製された窒化ガリウム系化合物半導体レーザ素子を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
[実験例1](実施例1〜3及び比較例1〜3)
GaN基板の結晶成長面として、(0001)Ga面の<1−100>方向へのオフ角度が0.30度のものを使用し、この基板上にそれぞれ以下のようにして各半導体層を積層することにより、活性層の成長速度が、0.20Å/秒(比較例1)、0.30Å/秒(比較例2)、0.40Å/秒(比較例3)、0.50Å/秒(実施例1)、0.70Å/秒(実施例2)、1.00Å/秒(実施例3)である6種類の窒化ガリウム系化合物半導体レーザ素子を作製することにより、活性層の成長速度とスロープ効率との関係を調べた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples and drawings. The examples described below are gallium nitride compound semiconductors for embodying the technical idea of the present invention. The method of manufacturing a laser device and a gallium nitride-based compound semiconductor laser device manufactured by this manufacturing method are exemplified, and the present invention is not intended to be limited to this embodiment. The present invention can be equally applied to various modifications without departing from the technical idea shown in the above-mentioned range.
[Experimental Example 1] (Examples 1 to 3 and Comparative Examples 1 to 3)
As the crystal growth surface of the GaN substrate, a (0001) Ga surface with an off angle in the <1-100> direction of 0.30 degrees is used, and each semiconductor layer is stacked on the substrate as follows. As a result, the growth rate of the active layer was 0.20 Å / second (Comparative Example 1), 0.30 Å / second (Comparative Example 2), 0.40 Å / second (Comparative Example 3), 0.50 Å / second ( By producing six types of gallium nitride-based compound semiconductor laser elements of Example 1), 0.70 Å / sec (Example 2), and 1.00 Å / sec (Example 3), the growth rate of the active layer The relationship with slope efficiency was investigated.

まず、図1に示したように、GaN基板(1)上に、MOCVD(有機金属気相成長法)法により成長温度1100℃、原料にNH、トリメチルガリウム、トリメチルアルミニウム、GeHを用い、n型AlGaNクラッド層(2)を成長速度3.0Å/secで1.0μm成長させた。 First, as shown in FIG. 1, a growth temperature of 1100 ° C. is used on a GaN substrate (1) by MOCVD (metal organic chemical vapor deposition), and NH 3 , trimethylgallium, trimethylaluminum, and GeH 4 are used as raw materials. The n-type AlGaN cladding layer (2) was grown at 1.0 μm at a growth rate of 3.0 Å / sec.

その後、温度を下降させ、3周期構造MQW活性層(3)のうちInGaN井戸層を、成長温度800℃、原料にNH、トリメチルガリウム、トリメチルインジウムを用い、0.003μm成長させ、次にMQW活性層(3)のうちGaN障壁層を、原料にNH、トリメチルガリウムを用い0.02μm成長させた。以上のMQW活性層の成長速度が、本発明にいう活性層の成長速度に相当し、ここでは比較例1〜3及び実施例1〜3にそれぞれ対応する成長速度となるように制御した。さらに、成長温度800℃、原料にNH、トリメチルガリウム、トリメチルインジウムを用い、InGaN光ガイド層(4)を0.1μm成長させた。 Thereafter, the temperature is lowered, and an InGaN well layer of the three-period structure MQW active layer (3) is grown at a growth temperature of 800 ° C. using NH 3 , trimethyl gallium, and trimethyl indium as raw materials, and then grown to 0.003 μm. Of the active layer (3), a GaN barrier layer was grown by 0.02 μm using NH 3 and trimethyl gallium as raw materials. The growth rate of the MQW active layer described above corresponds to the growth rate of the active layer referred to in the present invention, and here, the growth rate was controlled so as to correspond to Comparative Examples 1 to 3 and Examples 1 to 3, respectively. Further, NH 3 , trimethyl gallium, and trimethyl indium were used as raw materials at a growth temperature of 800 ° C., and an InGaN optical guide layer (4) was grown to 0.1 μm.

その後、成長温度800℃、原料にNH、トリメチルガリウム、トリメチルアルミニウムを用い、AlGaNキャップ層(5)を0.02μm成長させ、次に、温度を上昇させ、成長温度1100℃、原料にNH、トリメチルガリウム、トリメチルアルミニウム、シクロペンタジェニルマグネシウムを用い、p型AlGaNクラッド層(6)を成長速度3.0Å/secで0・5μm成長させた。そして、最後に、成長温度1100℃、原料にNH、トリメチルガリウム、シクロペンタジェニルマグネシウムを用い、p型GaNコンタクト層(7)を0.005μm成長を行った。 Thereafter, the growth temperature of 800 ° C., NH 3 as a raw material, using trimethyl gallium, trimethyl aluminum, AlGaN cap layer (5) is 0.02μm growing, then the temperature is increased, the growth temperature of 1100 ° C., NH 3 as a raw material , Trimethylgallium, trimethylaluminum, and cyclopentadenylmagnesium were used to grow a p-type AlGaN cladding layer (6) by 0.5 μm at a growth rate of 3.0 Å / sec. Finally, a p-type GaN contact layer (7) was grown to 0.005 μm using a growth temperature of 1100 ° C. and NH 3 , trimethyl gallium, and cyclopentadienyl magnesium as raw materials.

次に、電極プロセスを以下の手順で行った。まず、Pt/PdからなるP型電極(8)を形成し、その後、ドライエッチングにより、電流狭窄部分であるリッジ(7、8)を形成し、次に、CVD装置を用いてリッジ両側にSiO膜(10)を形成した。次に、Ti/Pd/Auからなるパッド電極(9)を形成し、基板の裏側を研磨してウエハを110μm程度の厚さにし、最後にAl/Pt/Auからなるn型電極(11)を形成して、ウエハを完成させた。引き続いて、スクライブ工程を用いて素子分離し、図1に示す窒化ガリウム系化合物半導体レーザ素子を完成させた。 Next, the electrode process was performed according to the following procedure. First, a P-type electrode (8) made of Pt / Pd is formed, and then ridges (7, 8) as current confinement portions are formed by dry etching, and then SiO is formed on both sides of the ridge using a CVD apparatus. Two films (10) were formed. Next, a pad electrode (9) made of Ti / Pd / Au is formed, the back side of the substrate is polished to a thickness of about 110 μm, and finally an n-type electrode (11) made of Al / Pt / Au. To complete the wafer. Subsequently, the device was separated using a scribing process, and the gallium nitride compound semiconductor laser device shown in FIG. 1 was completed.

完成した6種類の窒化ガリウム系化合物半導体レーザ素子について、室温下で、アンコート状態で、それぞれ10個ずつ特性評価を行い、その平均値を求めた。結果を活性層の成長速度とアンコートレーザ素子のスロープ効率(W/A)の関係を図2に、また、それぞれの発振波長を表1にまとめて示した。   About the completed six types of gallium nitride-based compound semiconductor laser elements, 10 pieces of each were evaluated in an uncoated state at room temperature, and the average value was obtained. The relationship between the growth rate of the active layer and the slope efficiency (W / A) of the uncoated laser element is shown in FIG. 2, and the oscillation wavelengths are shown in Table 1.

Figure 2006310766
図2に示した結果によると、(0001)Ga面の<1−100>方向に傾斜した角度の絶対値が0.30度の基板を用いた場合、活性層の成長速度が0.5Å/秒以上であればスロープ効率が0.75W/A以上となっていることが分かる。この活性層の成長速度が0.7Å/秒以上であるとスロープ効率が0.8W/A以上を期待できる。活性層の成長速度が速すぎてもMQW活性層の結晶品質が悪くなるために素子の信頼性が低下するので、活性層の成長速度の上限は5.0Å/秒に止めるべきである。また、傾斜角度の上限が5度を超えるとMQW活性層内にIn原子が十分に入らなくなり、発振波長が395nm以下となってしまうので好ましくない。
[実験例2](実施例4〜6及び比較例4〜6)
次に、GaN基板の結晶成長面として、(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合、(A+B)の平方根が0.30のものを使用し、この基板上にそれぞれ実験例1の場合と同様にして各半導体層を積層することにより、活性層の成長速度が、0.20Å/秒(比較例4)、0.30Å/秒(比較例5)、0.40Å/秒(比較例6)、0.50Å/秒(実施例4)、0.70Å/秒(実施例5)、1.00Å/秒(実施例6)である6種類の窒化ガリウム系化合物半導体レーザ素子を作製した。
Figure 2006310766
According to the results shown in FIG. 2, when a substrate having an absolute value of an angle inclined in the <1-100> direction of the (0001) Ga plane is 0.30 degrees, the growth rate of the active layer is 0.5 Å / It can be seen that the slope efficiency is 0.75 W / A or more if it is 2 seconds or more. When the growth rate of this active layer is 0.7 K / sec or more, a slope efficiency of 0.8 W / A or more can be expected. Even if the growth rate of the active layer is too high, the crystal quality of the MQW active layer is deteriorated and the reliability of the device is lowered. Therefore, the upper limit of the growth rate of the active layer should be limited to 5.0 kg / sec. In addition, if the upper limit of the tilt angle exceeds 5 degrees, In atoms cannot sufficiently enter the MQW active layer, and the oscillation wavelength becomes 395 nm or less, which is not preferable.
[Experimental Example 2] (Examples 4 to 6 and Comparative Examples 4 to 6)
Next, as the crystal growth surface of the GaN substrate, the off angle of the (0001) Ga plane in the <1-100> direction is A, and the off angle of the (0001) Ga plane in the <11-20> direction is B. In this case, when the square root of (A 2 + B 2 ) is 0.30 and each semiconductor layer is stacked on this substrate in the same manner as in Experimental Example 1, the growth rate of the active layer is increased. 0.20 K / sec (Comparative Example 4), 0.30 K / sec (Comparative Example 5), 0.40 K / sec (Comparative Example 6), 0.50 K / sec (Example 4), 0.70 K / sec (Example 5) Six types of gallium nitride-based compound semiconductor laser elements of 1.00 K / sec (Example 6) were fabricated.

完成した6種類の窒化ガリウム系化合物半導体レーザ素子について、室温下で、アンコート状態で、それぞれ10個ずつ特性評価を行い、その平均値を求めた。結果をGaN基板の結晶成長面が(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合、(A+B)の平方根とアンコートレーザ素子のスロープ効率(W/A)の関係を図3に、また、それぞれの発振波長を表2にまとめて示した。 About the completed six types of gallium nitride-based compound semiconductor laser elements, 10 pieces of each were evaluated in an uncoated state at room temperature, and the average value was obtained. When the crystal growth surface of the GaN substrate has an off angle in the <1-100> direction of the (0001) Ga plane as A, and an off angle in the <11-20> direction of the (0001) Ga plane as B. The relationship between the square root of (A 2 + B 2 ) and the slope efficiency (W / A) of the uncoated laser element is shown in FIG. 3, and the respective oscillation wavelengths are shown in Table 2.

Figure 2006310766
図3に示した結果によると、前記(A+B)の平方根が0.30の基板を用いた場合は、活性層の成長速度が0.5Å/秒以上であればスロープ効率が0.70W/A以上となっていることが分かる。この活性層の成長速度が0.5〜0.90Å/秒であるとスロープ効率が0.75W/A以上を期待できる。しかしながら、図3においてはバラツキの範囲内で5.0Å/秒まで同程度のスロープ効率が得られている。活性層の成長速度が速すぎてもMQW活性層の結晶品質が悪くなるために素子の信頼性が低下するので、活性層の成長速度の上限は5.0Å/秒に止めるべきである。
[実施例7及び比較例7]
実施例7及び比較例7として、GaN基板の結晶成長面が(0001)Ga面の<1−100>方向のへの傾斜角度が0.30度のものを用い、この基板上に活性層の成長速度を1.0Å(実施例7)及び0.4Å/秒(比較例7)となるように、それぞれ実験例1の場合と同様にして各半導体層を積層することにより2種類の窒化ガリウム系化合物半導体レーザ素子を作製した。それぞれのスロープ効率及び発振波長は、10素子の平均値として、実施例7の窒化ガリウム系化合物半導体レーザ素子の場合は0.8W/A及び407nmとなり、比較例7の場合は0.2W/A及び398nmとなった。なお、実施例7及び比較例7の窒化ガリウム系化合物半導体レーザ素子の発振波長については、他の例との比較のために、表1にまとめて示した。
[実施例8及び比較例8]
実施例8及び比較例8として、GaN基板の結晶成長面が(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合、A=0.25及びB=0.17であり、(A+B)の平方根が0.30である基板を用い、この基板上に活性層の成長速度を1.0Å/秒(実施例8)及び0.4Å/秒(比較例8)となるように、それぞれ実験例1の場合と同様にして各半導体層を積層することにより2種類の窒化ガリウム系化合物半導体レーザ素子を作製した。それぞれのスロープ効率及び発振波長は、10素子の平均値として、実施例8の窒化ガリウム系化合物半導体レーザ素子の場合は0.7W/A及び409nmとなり、比較例8の場合は0.3W/A及び399nmとなった。なお、実施例8及び比較例8の窒化ガリウム系化合物半導体レーザ素子の発振波長については、他の例との比較のために、表2にまとめて示した。
Figure 2006310766
According to the results shown in FIG. 3, when a substrate having a square root of (A 2 + B 2 ) of 0.30 is used, the slope efficiency is 0. It turns out that it is 70 W / A or more. A slope efficiency of 0.75 W / A or more can be expected when the growth rate of the active layer is 0.5 to 0.90 Å / sec. However, in FIG. 3, the same slope efficiency is obtained up to 5.0 Å / sec within the range of variation. Even if the growth rate of the active layer is too high, the crystal quality of the MQW active layer is deteriorated and the reliability of the device is lowered. Therefore, the upper limit of the growth rate of the active layer should be limited to 5.0 kg / sec.
[Example 7 and Comparative Example 7]
As Example 7 and Comparative Example 7, the crystal growth surface of the GaN substrate has an inclination angle of 0.30 degree to the <1-100> direction of the (0001) Ga surface, and the active layer is formed on this substrate. Two types of gallium nitride are formed by laminating each semiconductor layer in the same manner as in Experimental Example 1 so that the growth rate is 1.0 Å (Example 7) and 0.4 Å / sec (Comparative Example 7). A compound semiconductor laser device was produced. The slope efficiency and oscillation wavelength of the respective elements were 0.8 W / A and 407 nm in the case of the gallium nitride compound semiconductor laser element of Example 7, and 0.2 W / A in the case of Comparative Example 7, as an average value of 10 elements. And 398 nm. The oscillation wavelengths of the gallium nitride compound semiconductor laser elements of Example 7 and Comparative Example 7 are collectively shown in Table 1 for comparison with other examples.
[Example 8 and Comparative Example 8]
As Example 8 and Comparative Example 8, the crystal growth surface of the GaN substrate has an off angle in the <1-100> direction of the (0001) Ga surface as A, and the (0001) Ga surface in the <11-20> direction. When the off angle is B, a substrate in which A = 0.25 and B = 0.17 and the square root of (A 2 + B 2 ) is 0.30 is used. Two types of gallium nitride systems are obtained by laminating each semiconductor layer in the same manner as in Experimental Example 1 so as to be 1.0 Å / sec (Example 8) and 0.4 Å / sec (Comparative Example 8). A compound semiconductor laser device was fabricated. Each slope efficiency and oscillation wavelength are 0.7 W / A and 409 nm in the case of the gallium nitride-based compound semiconductor laser device of Example 8 as an average value of 10 devices, and 0.3 W / A in the case of Comparative Example 8. And 399 nm. The oscillation wavelengths of the gallium nitride compound semiconductor laser elements of Example 8 and Comparative Example 8 are collectively shown in Table 2 for comparison with other examples.

なお、本発明の窒化ガリウム系化合物半導体レーザ素子は、MQW活性層の井戸層のIn組成を変化させることにより発振波長を変えることができるが、その発振波長が395〜405nmである場合により効果が顕著となる。   The gallium nitride-based compound semiconductor laser device of the present invention can change the oscillation wavelength by changing the In composition of the well layer of the MQW active layer, but the effect is more effective when the oscillation wavelength is 395 to 405 nm. Become prominent.

また、共振器面を結晶の自然へきかい面にすることにより、鏡面性の良好な共振器面が得られるために素子歩留りが大きく向上するので、工業的には本発明の効果をより顕著に利用できる。   In addition, by making the resonator surface a natural rough surface of the crystal, a resonator surface with good specularity can be obtained, so that the element yield is greatly improved, so that the effect of the present invention can be used more remarkably industrially. it can.

また、共振器面の出射面は反射率を10〜30%に調整し、共振器面の後面に反射率70%以上の端面コートを形成した半導体レーザ素子に対して本発明を適用すると、外部から出射面を経て入ってくる戻り光ノイズを低減できるので、光ピックアップへの応用時にノイズ特性を向上させることができ、本発明の効果をより顕著に利用できる。   Further, when the present invention is applied to a semiconductor laser device in which the reflectance of the emission surface of the resonator surface is adjusted to 10 to 30% and an end surface coat having a reflectance of 70% or more is formed on the rear surface of the resonator surface, Since the return light noise that enters through the exit surface can be reduced, the noise characteristics can be improved when applied to an optical pickup, and the effects of the present invention can be utilized more remarkably.

また、共振器面の出射面は反射率10%以下の端面コートを形成し、共振器面の後面は反射率70%以上の端面コートを形成した半導体レーザ素子に対して本発明を適用すると、出射面の反射率が低いために外部に出射する光の割合が増え、より高出力が得られるから、本発明の効果をより顕著に利用できる。   Further, when the present invention is applied to a semiconductor laser device in which the exit surface of the resonator surface forms an end surface coat with a reflectance of 10% or less and the rear surface of the resonator surface has an end surface coat with a reflectance of 70% or more, Since the reflectance of the exit surface is low, the proportion of light exiting to the outside increases and a higher output can be obtained, so that the effects of the present invention can be used more remarkably.

本発明の窒化ガリウム系化合物半導体レーザ素子の拡大縦断面図である。1 is an enlarged longitudinal sectional view of a gallium nitride compound semiconductor laser device of the present invention. GaN基板の結晶成長面が(0001)Ga面の<1−100>方向のへの傾斜角度が0.30度の場合の、窒化ガリウム系化合物半導体レーザ素子における活性層成長速度とスロープ効率の関係を示す図である。Relationship between growth rate of active layer and slope efficiency in gallium nitride-based compound semiconductor laser device when crystal growth surface of GaN substrate is tilted to <1-100> direction of (0001) Ga surface at 0.30 degree FIG. GaN基板の結晶成長面が(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合、(A+B)の平方根が0.30の場合の、窒化ガリウム系化合物半導体レーザ素子における活性層成長速度とスロープ効率の関係を示す図である。When the crystal growth surface of the GaN substrate has an off-angle in the <1-100> direction of the (0001) Ga plane as A and an off-angle in the <11-20> direction of the (0001) Ga plane as B, if the square root of a 2 + B 2) is 0.30, which is a diagram showing the relationship of the active layer growth rate and the slope efficiency of the semiconductor laser element gallium nitride-based compound. 従来の窒化ガリウム系化合物半導体レーザ素子の拡大縦断面図である。It is an enlarged vertical sectional view of a conventional gallium nitride-based compound semiconductor laser device.

符号の説明Explanation of symbols

1 GaN基板
2 n型AlGaNクラッド層
3 MQV活性層
4 InGaN光ガイド層
5 AlGaNキャップ層
6 p型AlGaNクラッド層
7 p型GaNコンタクト層
8 p型電極
9 パッド電極
10 SiO
11 n型電極
DESCRIPTION OF SYMBOLS 1 GaN substrate 2 n-type AlGaN clad layer 3 MQV active layer 4 InGaN optical guide layer 5 AlGaN cap layer 6 p-type AlGaN clad layer 7 p-type GaN contact layer 8 p-type electrode 9 pad electrode 10 SiO 2 film 11 n-type electrode

Claims (12)

窒化ガリウム基板上に、窒化ガリウム系化合物半導体レーザ素子を作製する方法であって、前記窒化ガリウム基板の結晶成長面として(0001)Ga面の<1−100>方向に絶対値で0.16度以上5.0度以下傾斜した面を用い、かつ活性層を0.5Å/秒以上5.0Å/秒以下の成長速度で成長させることを特徴とする窒化ガリウム系化合物半導体レーザ素子の製造方法。   A method for fabricating a gallium nitride-based compound semiconductor laser device on a gallium nitride substrate, wherein the absolute value of the crystal growth surface of the gallium nitride substrate is 0.16 degrees in the <1-100> direction of the (0001) Ga plane. A method for producing a gallium nitride-based compound semiconductor laser device, characterized by using a surface inclined at 5.0 ° or less and growing an active layer at a growth rate of 0.5 Å / second to 5.0 Å / second. 前記半導体レーザ素子の発振波長が395〜405nmであることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   2. The method of manufacturing a gallium nitride-based compound semiconductor laser device according to claim 1, wherein an oscillation wavelength of the semiconductor laser device is 395 to 405 nm. 前記半導体レーザ素子の共振器面を結晶の自然へきかい面としたことを特徴とする請求項1又は2に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   3. The method of manufacturing a gallium nitride-based compound semiconductor laser device according to claim 1, wherein the resonator surface of the semiconductor laser device is a natural scratched surface of a crystal. 前記半導体レーザ素子の共振器面の出射面を反射率が10〜30%に調整し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする請求項1〜3のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   The exit surface of the resonator surface of the semiconductor laser element is adjusted to have a reflectivity of 10 to 30%, and an end face coat having a reflectivity of 70% or more is formed on the rear surface of the resonator surface. 4. The method for producing a gallium nitride-based compound semiconductor laser device according to claim 3. 前記半導体レーザ素子の共振器面の出射面に反射率10%以下の端面コートを形成し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする請求項1〜3のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   2. An end face coat having a reflectivity of 10% or less is formed on the exit surface of the resonator surface of the semiconductor laser element, and an end face coat having a reflectivity of 70% or more is formed on the rear face of the resonator face. The manufacturing method of the gallium nitride type compound semiconductor laser element of any one of -3. 窒化ガリウム基板上に、窒化ガリウム系化合物半導体レーザ素子を作製する方法であって、前記窒化ガリウム基板の結晶成長面として、(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合の(A+B)の平方根が0.17以上7.0以下である面を用い、かつ活性層を0.5Å/秒以上5.0Å/秒以下の成長速度で成長させることを特徴とする窒化ガリウム系化合物半導体レーザ素子の製造方法。 A method for fabricating a gallium nitride-based compound semiconductor laser device on a gallium nitride substrate, wherein the off-angle in the <1-100> direction of the (0001) Ga plane is defined as A as the crystal growth surface of the gallium nitride substrate. , A surface having a square root of (A 2 + B 2 ) of 0.17 or more and 7.0 or less when the off-angle in the <11-20> direction of the (0001) Ga surface is B, and the active layer is A method for producing a gallium nitride-based compound semiconductor laser device, comprising growing at a growth rate of 0.5 Å / second to 5.0 Å / second. 前記半導体レーザ素子の発振波長が395〜405nmであることを特徴とする請求項6に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   7. The method for manufacturing a gallium nitride-based compound semiconductor laser device according to claim 6, wherein an oscillation wavelength of the semiconductor laser device is 395 to 405 nm. 前記半導体レーザ素子の共振器面を結晶の自然へきかい面としたことを特徴とする請求項6又は7に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   8. The method of manufacturing a gallium nitride-based compound semiconductor laser device according to claim 6, wherein the resonator surface of the semiconductor laser device is a natural scratched surface of a crystal. 前記半導体レーザ素子の共振器面の出射面を反射率が10〜30%に調整し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする請求項6〜8のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   7. The emission surface of the resonator surface of the semiconductor laser element is adjusted to have a reflectance of 10 to 30%, and an end face coat having a reflectance of 70% or more is formed on the rear surface of the resonator surface. 9. A method for producing a gallium nitride compound semiconductor laser device according to any one of items 8 to 9. 前記半導体レーザ素子の共振器面の出射面に反射率10%以下の端面コートを形成し、前記共振器面の後面に反射率70%以上の端面コートを形成したことを特徴とする請求項6〜8のいずれか1項に記載の窒化ガリウム系化合物半導体レーザ素子の製造方法。   7. An end face coat having a reflectance of 10% or less is formed on the exit surface of the resonator surface of the semiconductor laser element, and an end face coat having a reflectivity of 70% or more is formed on the rear face of the resonator surface. The manufacturing method of the gallium nitride type compound semiconductor laser element of any one of -8. 窒化ガリウム基板上に形成された窒化ガリウム系化合物半導体レーザ素子であって、前記窒化ガリウム基板の結晶成長面が(0001)Ga面の<1−100>方向に絶対値で0.16度以上5.0度以下傾斜した面を有し、かつ活性層が5Å/秒以上5.0Å/秒以下の成長速度で成長させたものであることを特徴とする窒化ガリウム系化合物半導体レーザ素子。   A gallium nitride-based compound semiconductor laser device formed on a gallium nitride substrate, wherein a crystal growth surface of the gallium nitride substrate has an absolute value of 0.16 degrees or more in the <1-100> direction of the (0001) Ga plane. A gallium nitride-based compound semiconductor laser device having a surface inclined by less than or equal to 0 degrees and having an active layer grown at a growth rate of 5 to 5.0 K / s. 窒化ガリウム基板上に形成された窒化ガリウム系化合物半導体レーザ素子であって、前記窒化ガリウム基板の結晶成長面が、(0001)Ga面の<1−100>方向へのオフ角度をAとし、(0001)Ga面の<11−20>方向へのオフ角度をBとした場合の(A+B)の平方根が0.17以上7.0以下である面を有し、かつ活性層が0.5Å/秒以上5.0Å/秒以下の成長速度で成長させたものであることを特徴とする窒化ガリウム系化合物半導体レーザ素子 A gallium nitride-based compound semiconductor laser device formed on a gallium nitride substrate, wherein the crystal growth surface of the gallium nitride substrate has an off angle of the (0001) Ga surface in the <1-100> direction as A, 0001) Ga surface has a surface where the square root of (A 2 + B 2 ) is 0.17 or more and 7.0 or less when the off-angle in the <11-20> direction is B, and the active layer is 0 Gallium nitride-based compound semiconductor laser device grown at a growth rate of 5 Å / sec or more and 5.0 Å / sec or less
JP2006017103A 2005-03-31 2006-01-26 Gallium nitride compound semiconductor laser element and manufacturing method therefor Pending JP2006310766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017103A JP2006310766A (en) 2005-03-31 2006-01-26 Gallium nitride compound semiconductor laser element and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005101797 2005-03-31
JP2006017103A JP2006310766A (en) 2005-03-31 2006-01-26 Gallium nitride compound semiconductor laser element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006310766A true JP2006310766A (en) 2006-11-09

Family

ID=37477244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017103A Pending JP2006310766A (en) 2005-03-31 2006-01-26 Gallium nitride compound semiconductor laser element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006310766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218746A (en) * 2007-03-05 2008-09-18 Sumitomo Electric Ind Ltd Group iii nitride-system semiconductor light-emitting device
JP2014033205A (en) * 2007-11-21 2014-02-20 Mitsubishi Chemicals Corp Nitride semiconductor and crystal growth method for nitride semiconductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015809A (en) * 1999-06-30 2001-01-19 Toshiba Corp Manufacture of nitrogen compound semiconductor light emitting device, nitrogen compound semiconductor laser device and manufacture thereof
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2003060318A (en) * 2001-06-06 2003-02-28 Matsushita Electric Ind Co Ltd GaN COMPOUND SEMICONDUCTOR EPITAXIAL WAFER AND SEMICONDUCTOR DEVICE USING THE SAME
JP2005056979A (en) * 2003-08-01 2005-03-03 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride compound semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015809A (en) * 1999-06-30 2001-01-19 Toshiba Corp Manufacture of nitrogen compound semiconductor light emitting device, nitrogen compound semiconductor laser device and manufacture thereof
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2003060318A (en) * 2001-06-06 2003-02-28 Matsushita Electric Ind Co Ltd GaN COMPOUND SEMICONDUCTOR EPITAXIAL WAFER AND SEMICONDUCTOR DEVICE USING THE SAME
JP2005056979A (en) * 2003-08-01 2005-03-03 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride compound semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218746A (en) * 2007-03-05 2008-09-18 Sumitomo Electric Ind Ltd Group iii nitride-system semiconductor light-emitting device
JP2014033205A (en) * 2007-11-21 2014-02-20 Mitsubishi Chemicals Corp Nitride semiconductor and crystal growth method for nitride semiconductor
US9048100B2 (en) 2007-11-21 2015-06-02 Mitsubishi Chemical Corporation Nitride semiconductor and nitride semiconductor crystal growth method
JP2016154237A (en) * 2007-11-21 2016-08-25 三菱化学株式会社 Crystal growth method and manufacturing method of light-emitting device

Similar Documents

Publication Publication Date Title
US6455340B1 (en) Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US8541869B2 (en) Cleaved facet (Ga,Al,In)N edge-emitting laser diodes grown on semipolar bulk gallium nitride substrates
US6984841B2 (en) Nitride semiconductor light emitting element and production thereof
JP2001267242A (en) Group iii nitride-based compound semiconductor and method of manufacturing the same
JP4644942B2 (en) Crystal film, crystal substrate, and method of manufacturing semiconductor device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
CN111095483A (en) Method for removing substrate by cutting technology
JP2002016000A (en) Nitride semiconductor element and nitride semiconductor substrate
JP2001203385A (en) Nitride semiconductor light emitting diode
JP2900990B2 (en) Nitride semiconductor light emitting device
JP2024079871A (en) Methods for fabricating nonpolar and semipolar devices using epitaxial lateral overgrowth.
JP2005209925A (en) Lamination semiconductor substrate
JP2000349398A (en) Nitride semiconductor light emitting device and its manufacture
JP2891348B2 (en) Nitride semiconductor laser device
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP4423969B2 (en) Nitride semiconductor multilayer substrate and nitride semiconductor device and nitride semiconductor laser device using the same
EP1873880A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP2001196702A (en) Iii nitride compound semiconductor light-emitting element
JP3371830B2 (en) Nitride semiconductor light emitting device
JP2001345282A (en) Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element
JP2006310766A (en) Gallium nitride compound semiconductor laser element and manufacturing method therefor
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP2004214500A (en) Nitride semiconductor growth substrate and nitride semiconductor device using same
JP2000332293A (en) Iii-v nitride semiconductor light emitting element and its manufacture
JP2006135001A (en) Semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100125

A131 Notification of reasons for refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Effective date: 20111130

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Effective date: 20111213

Free format text: JAPANESE INTERMEDIATE CODE: A02