JP2006310706A - Cleaning method for optical component, immersion projection aligner and exposure method - Google Patents

Cleaning method for optical component, immersion projection aligner and exposure method Download PDF

Info

Publication number
JP2006310706A
JP2006310706A JP2005134366A JP2005134366A JP2006310706A JP 2006310706 A JP2006310706 A JP 2006310706A JP 2005134366 A JP2005134366 A JP 2005134366A JP 2005134366 A JP2005134366 A JP 2005134366A JP 2006310706 A JP2006310706 A JP 2006310706A
Authority
JP
Japan
Prior art keywords
substrate
optical component
pure water
cleaning
wetted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134366A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005134366A priority Critical patent/JP2006310706A/en
Publication of JP2006310706A publication Critical patent/JP2006310706A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning an optical component by which a contaminant sticking to the optical component constituting a projection optical system comprised in an immersion projection aligner is easily removed. <P>SOLUTION: This is the method for cleaning the optical component used for the immersion projection aligner in which a mask is irradiated with exposing light, and then the pattern of the mask is transferred to a substrate through the projection optical system, and purified water is interposed between the surface of the substrate and the projection optical system. The cleaning method comprises a substrate releasing process (S12) for making the substrate release from a substrate stage on which the substrate is placed, a purified water supplying process (S14) for supplying the purified water to the space between the substrate stage and the projection optical system, an irradiating process (S15) for, by supplying the purified water in the purified water supplying process, making into contact with the purified water and irradiating the optical component contact to liquid, which constitutes the projection optical system and is arranged on the side nearest to the substrate stage, with the exposing light, and a purified water discharging process (S16) for discharging the purified water supplied in the purified water supplying process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば、半導体素子、撮像素子(CCD等)、液晶表示素子、または薄膜磁気ヘッド等のデバイスを製造するためのリソグラフィ工程でマスクのパターンを感光性基板上に転写するために用いられる液浸法を用いた投影露光装置に使用される光学部品の洗浄方法、該洗浄方法により洗浄された光学部品を備える液浸投影露光装置及び該液浸投影露光装置を用いた露光方法に関するものである。   The present invention is used, for example, to transfer a mask pattern onto a photosensitive substrate in a lithography process for manufacturing a device such as a semiconductor element, an imaging element (CCD, etc.), a liquid crystal display element, or a thin film magnetic head. The present invention relates to a cleaning method for optical components used in a projection exposure apparatus using an immersion method, an immersion projection exposure apparatus including an optical component cleaned by the cleaning method, and an exposure method using the immersion projection exposure apparatus. is there.

半導体素子及び液晶表示素子等のデバイスを製造するためのリソグラフィ工程においては、マスクのパターンを投影光学系を介して基板上に転写する投影露光装置が用いられている。この投影露光装置において、露光光としてエキシマレーザ光を使用する場合、露光光が通過する光学部材の表面に薄膜状の汚染物質が付着し、この付着した汚染物質が透過率の低下及び照度ムラの要因となっていた。したがって、フッ化水素酸を含むエッチング液を用いて光学部材の表面に付着した汚染物質を拭き取ることにより除去し、水または洗浄有機溶剤を用いて光学部材の表面に残存するエッチング液を拭き取ることにより除去する汚染物質除去方法が用いられている(例えば、特許文献1参照)。   In lithography processes for manufacturing devices such as semiconductor elements and liquid crystal display elements, a projection exposure apparatus that transfers a mask pattern onto a substrate via a projection optical system is used. In this projection exposure apparatus, when excimer laser light is used as exposure light, a thin film-like contaminant adheres to the surface of the optical member through which the exposure light passes, and the adhered contaminant causes a decrease in transmittance and uneven illumination. It was a factor. Therefore, the contaminants attached to the surface of the optical member are removed by wiping with an etching solution containing hydrofluoric acid, and the etching solution remaining on the surface of the optical member is wiped with water or a cleaning organic solvent. A method for removing contaminants to be removed is used (see, for example, Patent Document 1).

国際公開第2004/050266号パンフレットInternational Publication No. 2004/050266 Pamphlet

近年、投影光学系と基板との間を所定の液体で満たした状態で露光を行う液浸投影露光装置が提案されている。投影露光装置の解像度は、使用する露光波長λが短くなるほど、また投影光学系の開口数NA(投影光学系の明るさ)が大きいほど高くなる。この解像度は通常、解像度=k(プロセス係数)×λ/NAで表され、投影光学系の開口数NAはNA=n(露光光が通過する媒質の屈折率)×sinθ(露光光の光線入射角度)である。液浸以外の投影露光装置における露光は大気中で行われるため、n=1であるのに対し、液浸投影露光装置においてはnが1より大きくなり、露光光の光線入射角度θを変化させることなく、投影光学系の開口数NAを大きくすることができる。即ち、投影露光装置の解像度を1/n倍(液体の屈折率は通常1.2〜1.6程度)に改善することができる。一方、液浸投影露光装置において、液浸以外の投影露光装置と同一の開口数NAに設定した場合、露光光の光線入射角度θを小さくすることができるため、焦点深度をn倍に拡大(改善)することができる。   In recent years, there has been proposed an immersion projection exposure apparatus that performs exposure in a state where a space between a projection optical system and a substrate is filled with a predetermined liquid. The resolution of the projection exposure apparatus increases as the exposure wavelength λ used decreases and as the numerical aperture NA (brightness of the projection optical system) of the projection optical system increases. This resolution is normally expressed as resolution = k (process coefficient) × λ / NA, and the numerical aperture NA of the projection optical system is NA = n (refractive index of the medium through which exposure light passes) × sin θ (incident light of exposure light) Angle). Since exposure in a projection exposure apparatus other than immersion is performed in the atmosphere, n = 1, whereas in an immersion projection exposure apparatus, n is larger than 1, and the light incident angle θ of exposure light is changed. The numerical aperture NA of the projection optical system can be increased without any problem. That is, the resolution of the projection exposure apparatus can be improved to 1 / n times (the refractive index of the liquid is usually about 1.2 to 1.6). On the other hand, in the immersion projection exposure apparatus, when the numerical aperture NA is set to be the same as that of the projection exposure apparatus other than immersion, the beam incident angle θ of the exposure light can be reduced, so that the depth of focus is increased n times ( Improvement).

上述の液浸投影露光装置においては、露光光としてArFエキシマレーザ光(波長193nm)を用い、投影光学系と基板との間に屈折率1.44の純水を介在させた場合、基板上に塗布されているレジストの溶出物である光酸発生剤(PAG)及びアミンが、純水に微量ではあるが溶出する。PAG及びアミンが純水に溶けている状態で露光光を照射すると、このPAG及びアミンが変成、析出して投影光学系を構成する最も基板側に配置される光学部材の表面に汚染物質として付着する。付着した汚染物質に露光光が吸収されるため、または付着した汚染物質により露光光が散乱するため、投影光学系の透過率が劣化する。また、付着した汚染物質に露光光が吸収されることにより光学部材及び純水の温度が上昇するため、投影光学系の収差が悪化する。   In the above-described immersion projection exposure apparatus, ArF excimer laser light (wavelength 193 nm) is used as exposure light, and pure water having a refractive index of 1.44 is interposed between the projection optical system and the substrate. The photoacid generator (PAG) and amine, which are the eluates of the applied resist, are eluted in pure water, albeit in trace amounts. When exposure light is irradiated while the PAG and amine are dissolved in pure water, the PAG and amine are transformed and deposited to adhere to the surface of the optical member arranged on the most substrate side constituting the projection optical system as a contaminant. To do. Since the exposure light is absorbed by the attached contaminant or the exposure light is scattered by the attached contaminant, the transmittance of the projection optical system is deteriorated. Further, since the temperature of the optical member and pure water rises due to the exposure light absorbed by the adhering contaminants, the aberration of the projection optical system deteriorates.

したがって、光学部材の表面に付着した汚染物質を除去する必要がある。PAG及びアミンの変成物である汚染物質はアルコール類やケトン類等の有機溶剤に可溶であるため、純水の代わりに有機溶剤を流すことにより汚染物質を除去することができる。しかしながら、純水の代わりに有機溶剤を流すことにより汚染物質を除去するためには、基板ステージ、レンズホルダ、配管等を有機溶剤に耐えうる材質にしなければならず、投影露光装置の生産コストの増大を招く。   Therefore, it is necessary to remove contaminants attached to the surface of the optical member. Since the pollutant which is a modified product of PAG and amine is soluble in organic solvents such as alcohols and ketones, the pollutant can be removed by flowing an organic solvent instead of pure water. However, in order to remove contaminants by flowing an organic solvent instead of pure water, the substrate stage, lens holder, piping, etc. must be made of a material that can withstand the organic solvent, and the production cost of the projection exposure apparatus is reduced. Incurs an increase.

この発明の課題は、液浸投影露光装置が備える投影光学系を構成する光学部品に付着した汚染物質を容易に除去することができる光学部品の洗浄方法、該洗浄方法により洗浄された光学部品を備える液浸投影露光装置及び該液浸投影露光装置を用いた露光方法を提供することである。   An object of the present invention is to provide a cleaning method for an optical component that can easily remove contaminants attached to an optical component constituting a projection optical system included in an immersion projection exposure apparatus, and an optical component cleaned by the cleaning method. An immersion projection exposure apparatus and an exposure method using the immersion projection exposure apparatus are provided.

請求項1記載の光学部品の洗浄方法は、露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置に使用される光学部品の洗浄方法であって、前記基板を載置する基板ステージ上から前記基板を退避させる基板退避工程と、前記基板ステージと前記投影光学系との間に前記純水を供給する純水供給工程と、前記純水供給工程により前記純水が供給されることにより、前記純水に接液し、前記投影光学系を構成する最も前記基板ステージ側に配置される接液光学部品に前記露光光を照射する照射工程と、前記純水供給工程により供給された前記純水を排出する純水排出工程とを含むことを特徴とする。   The optical component cleaning method according to claim 1, wherein the mask is irradiated with exposure light, the pattern of the mask is transferred onto the substrate via the projection optical system, and the surface of the substrate and the projection optical system are transferred. A cleaning method for an optical component used in an immersion projection exposure apparatus including pure water, the substrate retracting step for retracting the substrate from a substrate stage on which the substrate is placed, the substrate stage, and the projection A pure water supply step for supplying the pure water between the optical system and the pure water supplied by the pure water supply step, thereby contacting the pure water and constituting the projection optical system; It includes an irradiation step of irradiating the wetted optical component disposed on the substrate stage side with the exposure light, and a pure water discharge step of discharging the pure water supplied by the pure water supply step. .

この請求項1記載の光学部品の洗浄方法によれば、接液光学部品に接液する純水を循環させ、露光光を照射して、接液光学部品の表面を洗浄することにより、基板に塗布されているレジストが溶出することにより接液光学部品に付着した汚染物質を容易に除去することができる。したがって、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができる。   According to the cleaning method for an optical component according to claim 1, pure water that is in contact with the wetted optical component is circulated, and the surface of the wetted optical component is cleaned by irradiating with exposure light. By elution of the applied resist, contaminants adhering to the wetted optical component can be easily removed. Accordingly, it is possible to prevent a decrease in the transmittance of the projection optical system and a deterioration in the aberration of the projection optical system due to contaminants adhering to the surface of the wetted optical component.

また、請求項2記載の光学部品の洗浄方法は、前記基板退避工程により前記基板を退避させた後に、前記基板ステージ上にレジストが塗布されていない洗浄用基板を設置する洗浄用基板設置工程を更に含み、前記純水供給工程は、前記洗浄用基板の表面と前記投影光学系との間に前記純水を供給することを特徴とする。   According to a second aspect of the present invention, there is provided a cleaning method for cleaning an optical component comprising: a cleaning substrate installation step of installing a cleaning substrate on which the resist is not applied on the substrate stage after the substrate is retracted by the substrate retracting step. Further, the pure water supply step is characterized in that the pure water is supplied between the surface of the cleaning substrate and the projection optical system.

この請求項2記載の光学部品の洗浄方法によれば、基板ステージ上に洗浄用基板を設置した状態で接液光学部品の洗浄を行うため、接液光学部品を洗浄するために照射される露光光が基板ステージ上に到達することなく、露光光照射による基板ステージの損傷を防止することができる。   According to the optical component cleaning method of the second aspect, since the wetted optical component is cleaned in a state where the cleaning substrate is installed on the substrate stage, exposure is performed for cleaning the wetted optical component. It is possible to prevent the substrate stage from being damaged by the exposure light irradiation without the light reaching the substrate stage.

また、請求項3記載の光学部品の洗浄方法は、前記接液光学部品の透過率を計測する透過率計測工程を更に含み、前記透過率計測工程により計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の洗浄が行われることを特徴とする。   The optical component cleaning method according to claim 3 further includes a transmittance measuring step of measuring the transmittance of the wetted optical component, and the transmittance of the wetted optical component measured by the transmittance measuring step. The liquid-contact optical component is washed when the value is lower than a predetermined allowable value.

この請求項3記載の光学部品の洗浄方法によれば、透過率計測工程による接液光学部品の透過率の計測結果に基づいて接液光学部品の洗浄が必要な場合にのみ接液光学部品の洗浄を行うことができる。   According to the method for cleaning an optical component described in claim 3, only when the wetted optical component needs to be cleaned based on the measurement result of the transmittance of the wetted optical component in the transmittance measuring step. Cleaning can be performed.

また、請求項4記載の光学部品の洗浄方法は、前記接液光学部品の洗浄が行われた後に、前記接液光学部品の透過率を再計測する透過率再計測工程と、前記透過率再計測工程により再計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の表面に残存する汚染物質を有機溶剤により拭き取る汚染物質拭取り工程とを更に含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for cleaning an optical component comprising: a transmittance re-measurement step of re-measuring the transmittance of the wetted optical component after the wetted optical component is cleaned; A contaminant wiping step of wiping the contaminant remaining on the surface of the wetted optical component with an organic solvent when the transmittance of the wetted optical component remeasured by the measuring step is lower than a predetermined allowable value; It is characterized by including.

この請求項4記載の光学部品の洗浄方法によれば、接液光学部品の洗浄が行われた後に接液光学部品の透過率を再計測し、この再計測結果に基づいて接液光学部品の表面に残存する汚染物質を拭き取るため、接液光学部品の表面に付着する汚染物質を確実に除去することができる。   According to the cleaning method for an optical component according to the fourth aspect, after the wetted optical component is cleaned, the transmittance of the wetted optical component is remeasured, and based on the remeasurement result, the wetted optical component is cleaned. Since the contaminant remaining on the surface is wiped off, the contaminant adhering to the surface of the wetted optical component can be reliably removed.

また、請求項5記載の光学部品の洗浄方法は、前記有機溶剤がアルコール類またはケトン類の溶剤であることを特徴とする。   The optical component cleaning method according to claim 5 is characterized in that the organic solvent is a solvent of alcohols or ketones.

また、請求項6記載の光学部品の洗浄方法は、前記接液光学部品の表面に付着する汚染物質が前記マスクのパターンを前記基板上に露光する際に、前記基板上に塗布されているレジストからの溶出物が変成、析出、堆積した物質であることを特徴とする。   The optical component cleaning method according to claim 6, wherein a contaminant that adheres to a surface of the wetted optical component exposes the mask pattern on the substrate when the resist is applied on the substrate. The eluate from is a substance that has been transformed, precipitated, or deposited.

また、請求項7記載の光学部品の洗浄方法は、前記純水が抵抗率1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満であることを特徴とする。   The optical component cleaning method according to claim 7 is characterized in that the pure water has a resistivity of 1 MΩcm or more and a TOC (Total Organic Carbon) value of less than 1 ppm.

また、請求項8記載の光学部品の洗浄方法は、前記露光光がArFエキシマレーザ光であることを特徴とする。この請求項5〜請求項8記載の光学部品の洗浄方法によれば、接液光学部品の表面に付着した汚染物質を良好に除去することができる。   The optical component cleaning method according to claim 8 is characterized in that the exposure light is ArF excimer laser light. According to the cleaning method for optical parts according to claims 5 to 8, contaminants adhering to the surface of the wetted optical part can be satisfactorily removed.

また、請求項9記載の露光装置は、露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置であって、請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を備えることを特徴とする。   The exposure apparatus according to claim 9 irradiates the mask with exposure light, transfers the pattern of the mask onto the substrate via the projection optical system, and purely between the surface of the substrate and the projection optical system. An immersion projection exposure apparatus with water interposed therein, comprising a wetted optical component cleaned by the optical component cleaning method according to any one of claims 1 to 8.

この請求項9記載の露光装置によれば、請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を備えているため、接液光学部品の表面に付着した汚染物質による投影光学系の透過率の劣化及び投影光学系の収差の悪化を防止することができ、良好に露光を行うことができる。   According to the exposure apparatus of the ninth aspect, since the wetted optical component cleaned by the optical component cleaning method according to any one of the first to eighth aspects is provided, the wetted optical component is provided. Therefore, it is possible to prevent the deterioration of the transmittance of the projection optical system and the deterioration of the aberration of the projection optical system due to the contaminants adhering to the surface of the projection, and it is possible to perform the exposure well.

また、請求項10記載の露光方法は、露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置を用いた露光方法であって、請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を備えた前記投影光学系を用いて、前記マスクのパターンを前記基板上に投影露光する露光工程を含むことを特徴とする。   The exposure method according to claim 10 irradiates the mask with exposure light, transfers the pattern of the mask onto the substrate via the projection optical system, and purely between the surface of the substrate and the projection optical system. An exposure method using an immersion projection exposure apparatus with water interposed, comprising a wetted optical component cleaned by the optical component cleaning method according to any one of claims 1 to 8. And an exposure step of projecting and exposing the pattern of the mask onto the substrate using the projection optical system.

この請求項10記載の露光方法によれば、請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を用いて露光を行うため、接液光学部品の表面に付着した汚染物質による投影光学系の透過率の劣化及び投影光学系の収差の悪化を防止することができ、良好に露光を行うことができる。   According to the exposure method of the tenth aspect, since the exposure is performed using the wetted optical component washed by the optical component cleaning method according to any one of the first to eighth aspects, It is possible to prevent deterioration of the transmittance of the projection optical system and deterioration of the aberration of the projection optical system due to contaminants adhering to the surface of the optical component, and it is possible to perform exposure satisfactorily.

また、請求項11記載の露光方法は、露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置を用いた露光方法であって、前記基板を載置する基板ステージ上から前記基板を退避させる基板退避工程と、前記基板ステージと前記投影光学系との間に前記純水を供給する純水供給工程と、前記純水供給工程により前記純水が供給されることにより、前記純水に接液し、前記投影光学系を構成する最も前記基板ステージ側に配置される接液光学部品に前記露光光を照射する洗浄工程と、前記純水供給工程により供給された前記純水を排出する純水排出工程と、前記基板ステージ上に前記基板を設置する基板設置工程と、前記基板の表面と前記投影光学系との間に前記純水を供給する液体供給工程と、前記マスクのパターンを前記基板上に露光する露光工程とを含むことを特徴とする。   The exposure method according to claim 11 irradiates the mask with exposure light, transfers the pattern of the mask onto the substrate via the projection optical system, and purely between the surface of the substrate and the projection optical system. An exposure method using an immersion projection exposure apparatus with water interposed between the substrate stage and the projection optical system, wherein the substrate is retracted from a substrate stage on which the substrate is placed. A pure water supply step for supplying the pure water to the substrate, and the pure water is supplied by the pure water supply step so that the pure water is brought into contact with the pure water, and the projection optical system is arranged closest to the substrate stage side. A cleaning step of irradiating the wetted optical component with the exposure light; a pure water discharge step of discharging the pure water supplied by the pure water supply step; and a substrate on which the substrate is placed on the substrate stage. Installation process and surface of the substrate A liquid supply step of supplying the pure water between the projection optical system, characterized in that it comprises an exposure step of exposing a pattern of the mask on the substrate.

この請求項11記載の露光方法によれば、接液光学部品に接液する純水を循環させ、露光光を照射して、接液光学部品の表面を洗浄することにより、基板に塗布されているレジストが溶出することにより接液光学部品に付着した汚染物質を容易に除去することができる。したがって、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができ、良好に露光を行うことができる。   According to the exposure method of claim 11, pure water that comes into contact with the wetted optical component is circulated, irradiated with exposure light, and the surface of the wetted optical component is washed to be applied to the substrate. As a result of the dissolution of the resist, contaminants adhering to the wetted optical component can be easily removed. Therefore, it is possible to prevent a decrease in the transmittance of the projection optical system and a deterioration in the aberration of the projection optical system due to contaminants adhering to the surface of the wetted optical component, and it is possible to perform exposure satisfactorily.

また、請求項12記載の露光方法は、前記基板退避工程により前記基板を退避させた後に、前記基板ステージ上にレジストが塗布されていない洗浄用基板を設置する洗浄用基板設置工程と、前記純水排出工程により前記純水が排出された後に、前記基板ステージ上から前記洗浄用基板を退避させる洗浄用基板退避工程とを更に含むことを特徴とする。   The exposure method according to claim 12 includes a cleaning substrate installation step of installing a cleaning substrate on which the resist is not applied on the substrate stage after the substrate is retracted by the substrate retracting step; The method further includes a cleaning substrate retracting step of retracting the cleaning substrate from the substrate stage after the pure water is discharged by the water discharging step.

この請求項12記載の露光方法によれば、基板ステージ上に洗浄用基板を設置した状態で接液光学部品の洗浄を行うため、接液光学部品を洗浄するために照射される露光光が基板ステージ上に直接到達することなく、露光光照射による基板ステージの損傷を防止することができる。   According to the exposure method of claim 12, since the wetted optical component is cleaned in a state where the cleaning substrate is installed on the substrate stage, the exposure light irradiated for cleaning the wetted optical component is the substrate. The substrate stage can be prevented from being damaged by exposure light irradiation without directly reaching the stage.

また、請求項13記載の露光方法は、前記接液光学部品の透過率を計測する透過率計測工程を更に含み、前記透過率計測工程により計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の洗浄が行われることを特徴とする。   The exposure method according to claim 13 further includes a transmittance measuring step of measuring a transmittance of the wetted optical component, wherein the transmittance of the wetted optical component measured by the transmittance measuring step is a predetermined value. The liquid-contact optical component is washed when it is lower than an allowable value.

この請求項13記載の露光方法によれば、透過率計測工程による接液光学部品の透過率の計測結果に基づいて接液光学部品の洗浄が必要な場合にのみ接液光学部品の洗浄を行うことができる。   According to the exposure method of the thirteenth aspect, the wetted optical component is cleaned only when it is necessary to clean the wetted optical component based on the measurement result of the wetted optical component in the transmittance measuring step. be able to.

また、請求項14記載の露光方法は、前記接液光学部品の表面に付着する汚染物質が前記マスクのパターンを前記基板上に露光する際に、前記基板上に塗布されているレジストからの溶出物が変成、析出、堆積した物質であることを特徴とする。   The exposure method according to claim 14, wherein a contaminant adhering to the surface of the wetted optical component is eluted from a resist applied on the substrate when the mask pattern is exposed on the substrate. It is characterized in that the substance is a modified, precipitated or deposited substance.

また、請求項15記載の露光方法は、前記純水が抵抗率1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満であることを特徴とする。   The exposure method according to claim 15 is characterized in that the pure water has a resistivity of 1 MΩcm or more and a TOC (Total Organic Carbon) value of less than 1 ppm.

この請求項14及び請求項15記載の露光方法によれば、接液光学部品の表面に付着した汚染物質を良好に除去することができる。   According to the exposure methods of the fourteenth and fifteenth aspects, contaminants adhering to the surface of the wetted optical component can be satisfactorily removed.

この発明の光学部品の洗浄方法によれば、接液光学部品に接液する純水を循環させ、露光光を照射して、接液光学部品の表面を洗浄することにより、基板に塗布されているレジストが溶出することにより接液光学部品に付着した汚染物質を除去することができる。したがって、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができる。   According to the optical component cleaning method of the present invention, pure water that comes in contact with the wetted optical component is circulated, exposed to exposure light, and cleaned on the surface of the wetted optical component. As a result of the dissolution of the resist, contaminants adhering to the wetted optical component can be removed. Accordingly, it is possible to prevent a decrease in the transmittance of the projection optical system and a deterioration in the aberration of the projection optical system due to contaminants adhering to the surface of the wetted optical component.

また、この発明の露光装置によれば、この発明の光学部品の洗浄方法により洗浄された接液光学部品を備えているため、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができ、良好に露光を行うことができる。   In addition, according to the exposure apparatus of the present invention, since the wetted optical component cleaned by the optical component cleaning method of the present invention is provided, the projection optical system transmits through the contaminants adhering to the surface of the wetted optical component. It is possible to prevent the reduction of the rate and the deterioration of the aberration of the projection optical system, and the exposure can be performed satisfactorily.

また、この発明の露光方法によれば、接液光学部品に接液する純水を循環させ、露光光を照射して、接液光学部品の表面を洗浄することにより、基板に塗布されているレジストが溶出することにより接液光学部品に付着した汚染物質を除去することができる。したがって、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができ、良好に露光を行うことができる。   In addition, according to the exposure method of the present invention, pure water that comes into contact with the wetted optical component is circulated, and the surface of the wetted optical component is washed by irradiating exposure light and being applied to the substrate. By elution of the resist, contaminants attached to the wetted optical component can be removed. Therefore, it is possible to prevent a decrease in the transmittance of the projection optical system and a deterioration in the aberration of the projection optical system due to contaminants adhering to the surface of the wetted optical component, and it is possible to perform exposure satisfactorily.

以下、図面を参照して、この発明の実施の形態にかかる投影露光装置(液浸投影露光装置)について説明する。図1は、この実施の形態にかかるステップアンドリピート方式の投影露光装置の概略構成を示す図である。以下の説明においては、図1中に示すXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸がウエハWに対して平行となるように設定され、Z軸がウエハWに対して直交する方向に設定されている。図中のXYZ座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。   A projection exposure apparatus (immersion projection exposure apparatus) according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a step-and-repeat projection exposure apparatus according to this embodiment. In the following description, the XYZ orthogonal coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. The XYZ orthogonal coordinate system is set so that the X axis and the Y axis are parallel to the wafer W, and the Z axis is set in a direction orthogonal to the wafer W. In the XYZ coordinate system in the figure, the XY plane is actually set to a plane parallel to the horizontal plane, and the Z-axis is set vertically upward.

この投影露光装置は、図1に示すように、露光光源であるArFエキシマレーザ光源を含み、オプティカルインテグレータ(ホモジナイザ)、視野絞り、コンデンサレンズ等から構成される照明光学系1を備えている。光源から射出された波長193nmの紫外パルス光からなる露光光ILは、照明光学系1を通過し、レチクル(マスク)Rに設けられたパターンを照明する。レチクルRを通過した光は、両側(またはウエハW側の片側)テレセントリックな投影光学系PLを介して、フォトレジスト(レジスト)が塗布されたウエハ(基板)W上の露光領域を所定の投影倍率β(例えば、βは1/4、1/5等)で縮小投影露光する。なお、露光光ILとしては、KrFエキシマレーザ光(波長248nm)、Fレーザ光(波長157nm)等を使用してもよい。 As shown in FIG. 1, the projection exposure apparatus includes an ArF excimer laser light source as an exposure light source, and includes an illumination optical system 1 including an optical integrator (homogenizer), a field stop, a condenser lens, and the like. The exposure light IL made up of ultraviolet pulsed light having a wavelength of 193 nm emitted from the light source passes through the illumination optical system 1 and illuminates the pattern provided on the reticle (mask) R. The light that has passed through the reticle R passes through a telecentric projection optical system PL on both sides (or one side on the wafer W side) and passes through an exposure area on the wafer (substrate) W coated with a photoresist (resist) at a predetermined projection magnification. Reduced projection exposure is performed at β (for example, β is 1/4, 1/5, etc.). As the exposure light IL, KrF excimer laser light (wavelength 248 nm), F 2 laser light (wavelength 157 nm), or the like may be used.

また、レチクルRはレチクルステージRST上に保持され、レチクルステージRSTにはX方向、Y方向及び回転方向にレチクルRを微動させる機構が設けられている。レチクルステージRSTのX方向、Y方向及び回転方向の位置は、レチクルレーザ干渉計(図示せず)によってリアルタイムに計測、かつ制御されている。   The reticle R is held on the reticle stage RST, and the reticle stage RST is provided with a mechanism for finely moving the reticle R in the X direction, the Y direction, and the rotation direction. The positions of the reticle stage RST in the X direction, the Y direction, and the rotational direction are measured and controlled in real time by a reticle laser interferometer (not shown).

また、ウエハWはウエハホルダ(図示せず)を介してZステージ(基板ステージ)9上に固定されている。Zステージ9は、投影光学系PLの像面と実質的に平行なXY平面に沿って移動するXYステージ(基板ステージ)10上に固定されており、ウエハWのフォーカス位置(Z方向の位置)及び傾斜角度を制御する。Zステージ9のX方向、Y方向及び回転方向の位置は、Zステージ9上に位置する移動鏡12を用いたウエハレーザ干渉計13によってリアルタイムに計測、かつ制御されている。また、XYステージ10は、ベース11上に載置されており、ウエハWのX方向、Y方向及び回転方向を制御する。   The wafer W is fixed on a Z stage (substrate stage) 9 through a wafer holder (not shown). The Z stage 9 is fixed on an XY stage (substrate stage) 10 that moves along an XY plane substantially parallel to the image plane of the projection optical system PL, and the focus position (position in the Z direction) of the wafer W. And control the tilt angle. The positions of the Z stage 9 in the X direction, the Y direction, and the rotation direction are measured and controlled in real time by a wafer laser interferometer 13 using a moving mirror 12 positioned on the Z stage 9. The XY stage 10 is placed on the base 11 and controls the X direction, Y direction, and rotation direction of the wafer W.

また、Zステージ9上には、Zステージ9(ウエハW)上を照射する露光光の照射量及び照度分布を計測する照度センサ40が設けられている。照度センサ40は、投影光学系PLを介した露光光の一部を受光し、受光した光に関する情報を後述する主制御系14に対して出力する。主制御系14は、照射量センサ40により出力された投影光学系PLを介した露光光の照射量及び照度分布に基づいて、接液光学部品4の透過率を計測する。   An illuminance sensor 40 is provided on the Z stage 9 to measure the exposure dose and the illuminance distribution for irradiating the Z stage 9 (wafer W). The illuminance sensor 40 receives part of the exposure light via the projection optical system PL and outputs information related to the received light to the main control system 14 described later. The main control system 14 measures the transmittance of the wetted optical component 4 based on the exposure light dose and illuminance distribution via the projection optical system PL output from the dose sensor 40.

この投影露光装置に備えられている主制御系14は、レチクルレーザ干渉計により計測された計測値に基づいてレチクルRのX方向、Y方向及び回転方向の位置調整を行う。即ち、主制御系14は、レチクルステージRSTに組み込まれている機構に対して制御信号を出力し、レチクルステージRSTを微動させることによりレチクルRの位置調整を行う。   The main control system 14 provided in the projection exposure apparatus adjusts the position of the reticle R in the X direction, the Y direction, and the rotational direction based on the measurement values measured by the reticle laser interferometer. That is, the main control system 14 adjusts the position of the reticle R by outputting a control signal to a mechanism incorporated in the reticle stage RST and finely moving the reticle stage RST.

また、主制御系14は、オートフォーカス方式及びオートレベリング方式によりウエハW上の表面を投影光学系PLの像面に合わせ込むため、ウエハWのフォーカス位置(Z方向の位置)及び傾斜角の調整を行う。即ち、主制御系14は、ウエハステージ駆動系15に対して制御信号を出力し、ウエハステージ駆動系15によりZステージ9を駆動させることによりウエハWのフォーカス位置及び傾斜角の調整を行う。更に、主制御系14は、ウエハレーザ干渉計13により計測された計測値に基づいてウエハWのX方向、Y方向及び回転方向の位置の調整を行う。即ち、主制御系14は、ウエハステージ駆動系15に対して制御信号を出力し、ウエハステージ駆動系15によりXYステージ10を駆動させることによりウエハWのX方向、Y方向及び回転方向の位置の調整を行う。   Also, the main control system 14 adjusts the focus position (position in the Z direction) and the tilt angle of the wafer W in order to adjust the surface on the wafer W to the image plane of the projection optical system PL by the auto focus method and the auto leveling method. I do. That is, the main control system 14 outputs a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and the tilt angle of the wafer W. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 outputs a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to thereby change the position of the wafer W in the X direction, the Y direction, and the rotational direction. Make adjustments.

露光時には、主制御系14は、ウエハステージ駆動系15に対して制御信号を出力し、ウエハステージ駆動系15によりXYステージ10を駆動させることによりウエハW上の各ショット領域を順次露光位置にステップ移動させる。即ち、ステップアンドリピート方式によりレチクルRのパターン像をウエハW上に露光する動作を繰り返す。   At the time of exposure, the main control system 14 outputs a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to sequentially step each shot area on the wafer W to the exposure position. Move. That is, the operation of exposing the pattern image of the reticle R onto the wafer W by the step and repeat method is repeated.

この投影露光装置においては、液浸法が適用されており、レチクルRのパターン像をウエハW上に転写している間は、ウエハW上と接液光学部品4との間に、抵抗率が1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満である純水7が満たされている。投影光学系PLは、投影光学系PLを構成する複数の光学素子を収納する鏡筒3を備えており、金属からなる鏡筒3の腐食等を防止するために接液光学部品4の表面のみが純水7と接触するように構成されている。   In this projection exposure apparatus, the immersion method is applied, and while the pattern image of the reticle R is transferred onto the wafer W, there is a resistivity between the wafer W and the wetted optical component 4. The pure water 7 is 1 MΩcm or more and the TOC (Total Organic Carbon) value is less than 1 ppm. The projection optical system PL includes a lens barrel 3 that houses a plurality of optical elements constituting the projection optical system PL, and only the surface of the wetted optical component 4 is used to prevent corrosion of the lens barrel 3 made of metal. Is configured to come into contact with the pure water 7.

図2は、接液光学部品4及びウエハWと、そのウエハW側の接液光学部品4をX方向に挟む2対の排出ノズル及び流入ノズルとの位置関係を示す図である。また、図3は、ウエハW側の接液光学部品4と、ウエハW側の接液光学部品4をY方向に挟む2対の排出ノズル及び流入ノズルとの位置関係を示す図である。この実施の形態にかかる投影露光装置は、純水7の供給を制御する液体供給装置5及び純水7の排出を制御する液体回収装置6を備えている。   FIG. 2 is a diagram showing the positional relationship between the wetted optical component 4 and the wafer W and the two pairs of discharge nozzles and inflow nozzles that sandwich the wetted optical component 4 on the wafer W side in the X direction. FIG. 3 is a diagram showing a positional relationship between the wetted optical component 4 on the wafer W side and two pairs of discharge nozzles and inflow nozzles that sandwich the wetted optical component 4 on the wafer W side in the Y direction. The projection exposure apparatus according to this embodiment includes a liquid supply device 5 that controls the supply of pure water 7 and a liquid recovery device 6 that controls the discharge of pure water 7.

液体供給装置5には、図2に示すように、供給管21を介して接液光学部品4の+X方向側に排出ノズル21aが、供給管22を介して接液光学部品4の−X方向側に排出ノズル22aが接続されている。また、液体供給装置5には、図3に示すように、供給管27を介して接液光学部品4の+Y方向側に排出ノズル27aが、供給管28を介して接液光学部品4の−Y方向側に排出ノズル28aが接続されている。液体供給装置5は、排出ノズル21a,22a,27a,28aの中の少なくとも1つの排出ノズルより、供給管21,22,27,28の中の少なくとも1つの供給管を介して純水7をウエハW上に供給する。   As shown in FIG. 2, the liquid supply device 5 includes a discharge nozzle 21 a on the + X direction side of the wetted optical component 4 via the supply tube 21, and a −X direction of the wetted optical component 4 via the supply tube 22. A discharge nozzle 22a is connected to the side. Further, in the liquid supply device 5, as shown in FIG. 3, a discharge nozzle 27 a is provided on the + Y direction side of the wetted optical component 4 via the supply tube 27, and − of the wetted optical component 4 via the supply tube 28. A discharge nozzle 28a is connected to the Y direction side. The liquid supply device 5 receives pure water 7 from the discharge nozzles 21a, 22a, 27a, and 28a through the at least one supply pipe in the supply pipes 21, 22, 27, and 28 from the wafer. Supply on W.

液体回収装置6には、図2に示すように、回収管23を介して接液光学部品4の−X方向側に流入ノズル23a,23bが、回収管24を介して接液光学部品4の+X方向側に流入ノズル24a,24bが接続されている。また、液体回収装置6には、図3に示すように、回収管29を介して接液光学部品4の−Y方向側に流入ノズル29a,29bが、回収管30を介して接液光学部品4の+Y方向側に流入ノズル30a,30bが接続されている。液体回収装置6は、流入ノズル23a及び23b、24a及び24b、29a及び29b、30a及び30bの中の少なくとも1つの流入ノズルより、回収管23,24,29,30の中の少なくとも1つの回収管を介して純水7をウエハW上から回収する。   As shown in FIG. 2, in the liquid recovery device 6, inflow nozzles 23 a and 23 b are provided on the −X direction side of the liquid contact optical component 4 via the recovery tube 23, and the liquid contact optical component 4 is connected via the recovery tube 24. Inflow nozzles 24a and 24b are connected to the + X direction side. Further, in the liquid recovery apparatus 6, as shown in FIG. 3, inflow nozzles 29 a and 29 b are provided on the −Y direction side of the liquid contact optical component 4 via the recovery tube 29, and the liquid contact optical component is connected via the recovery tube 30. 4, inflow nozzles 30a and 30b are connected to the + Y direction side. The liquid recovery device 6 includes at least one recovery pipe in the recovery pipes 23, 24, 29, 30 from at least one inflow nozzle in the inflow nozzles 23a and 23b, 24a and 24b, 29a and 29b, 30a and 30b. The pure water 7 is recovered from the wafer W via

次に、純水7の供給及び回収方法について説明する。図2において、実線で示す矢印25Aの方向(−X方向)にウエハWをステップ移動させる際には、液体供給装置5は供給管21及び排出ノズル21aを介して純水7を供給し、液体回収装置6は回収管23及び流入ノズル23a,23bを介して液体供給装置5により供給された純水7を回収する。一方、図2において、鎖線で示す矢印26Aの方向(+X方向)にウエハWをステップ移動させる際には、液体供給装置5は供給管22及び排出ノズル22aを介して純水7を供給し、液体回収装置6は回収管24及び流入ノズル24a,24bを介して、液体供給装置5により供給された純水7を回収する。また、図3において、実線で示す矢印31Aの方向(−Y方向)にウエハWをステップ移動させる際には、液体供給装置5は供給管27及び排出ノズル27aを介して純水7を供給し、液体回収装置6は回収管29及び流入ノズル29a,29bを介して液体供給装置5により供給された純水7を回収する。また、ウエハWを+Y方向にステップ移動させる際には、液体供給装置5は供給管28及び排出ノズル28aを介して純水7を供給し、液体回収装置6は回収管30及び流入ノズル30a,30bを介して液体供給装置5により供給された純水7を回収する。   Next, a method for supplying and collecting pure water 7 will be described. In FIG. 2, when stepping the wafer W in the direction of the arrow 25A indicated by the solid line (−X direction), the liquid supply device 5 supplies the pure water 7 via the supply pipe 21 and the discharge nozzle 21a, and the liquid The recovery device 6 recovers the pure water 7 supplied by the liquid supply device 5 through the recovery pipe 23 and the inflow nozzles 23a and 23b. On the other hand, in FIG. 2, when the wafer W is stepped in the direction of the arrow 26A indicated by the chain line (+ X direction), the liquid supply device 5 supplies the pure water 7 via the supply pipe 22 and the discharge nozzle 22a. The liquid recovery device 6 recovers the pure water 7 supplied by the liquid supply device 5 through the recovery pipe 24 and the inflow nozzles 24a and 24b. In FIG. 3, when the wafer W is step-moved in the direction of the arrow 31A indicated by the solid line (−Y direction), the liquid supply device 5 supplies the pure water 7 via the supply pipe 27 and the discharge nozzle 27a. The liquid recovery device 6 recovers the pure water 7 supplied by the liquid supply device 5 through the recovery pipe 29 and the inflow nozzles 29a and 29b. When the wafer W is moved stepwise in the + Y direction, the liquid supply device 5 supplies the pure water 7 via the supply pipe 28 and the discharge nozzle 28a, and the liquid recovery device 6 sets the recovery pipe 30 and the inflow nozzle 30a, The pure water 7 supplied by the liquid supply device 5 through 30b is recovered.

次に、純水7の供給量及び回収量の制御方法について説明する。図4は、純水7を供給及び回収している状態を示す図である。図4に示すように、ウエハWが矢印25Aの方向(−X方向)に移動している場合において、排出ノズル21aより供給された純水7は、矢印25Bの方向(−X方向)に流れ、流入ノズル23a,23bにより回収される。XYステージ10(ウエハW)の移動速度に基づいて純水7の供給量及び回収量を調整することにより、純水7は接液光学部品4とウエハWとの間に常時満たされる。   Next, a method for controlling the supply amount and recovery amount of pure water 7 will be described. FIG. 4 is a diagram showing a state in which pure water 7 is being supplied and recovered. As shown in FIG. 4, when the wafer W is moving in the direction of the arrow 25A (−X direction), the pure water 7 supplied from the discharge nozzle 21a flows in the direction of the arrow 25B (−X direction). These are recovered by the inflow nozzles 23a and 23b. The pure water 7 is always filled between the wetted optical component 4 and the wafer W by adjusting the supply amount and the recovery amount of the pure water 7 based on the moving speed of the XY stage 10 (wafer W).

次に、この実施の形態にかかる投影露光装置が備える投影光学系PLを構成する接液光学素子4の洗浄方法について、図5に示すフローチャートを参照して説明する。この実施の形態にかかる投影露光装置にように露光光ILとしてArFエキシマレーザ光を用い、接液光学部品4とウエハWとの間に屈折率1.44の純水7を介在させた場合、ウエハW上に塗布されているレジストの溶出物である光酸発生剤(PAG)及びアミン等が純水7に微量ながら溶出する。PAG及びアミン等が純水7に溶けている状態で、露光光ILを照射すると、変成、析出して接液光学部品4の表面に汚染物質として付着し、堆積していく。   Next, a cleaning method for the liquid contact optical element 4 constituting the projection optical system PL included in the projection exposure apparatus according to this embodiment will be described with reference to the flowchart shown in FIG. When ArF excimer laser light is used as the exposure light IL as in the projection exposure apparatus according to this embodiment, and pure water 7 having a refractive index of 1.44 is interposed between the wetted optical component 4 and the wafer W, A photoacid generator (PAG), amine, and the like, which are eluates of the resist applied on the wafer W, are eluted in a small amount in the pure water 7. When the exposure light IL is irradiated in a state where PAG, amine and the like are dissolved in pure water 7, they are transformed and deposited, and adhere to and deposit on the surface of the wetted optical component 4 as a contaminant.

即ち、赤外吸収スペクトルによる化学分析を行ったところ、汚染物質がPAGやアミンとほぼ同じ吸収スペクトルを示したことから、同様の物質である。溶出したPAGやアミンがArFエキシマレーザ光照射により凝集し、接液光学部品4に吸着し、安定化していると考えられる。   That is, as a result of chemical analysis using an infrared absorption spectrum, the pollutant shows almost the same absorption spectrum as that of PAG and amine. It is considered that the eluted PAG and amine are aggregated by ArF excimer laser light irradiation, adsorbed on the wetted optical component 4 and stabilized.

接液光学部品4の表面に堆積した汚染物質(PAG及びアミン等)に露光光ILが吸収されるため、または堆積した汚染物質により露光光ILが散乱するため、接液光学部品4、ひいては投影光学系PLの透過率が劣化する。また、堆積した汚染物質に露光光ILが吸収されることにより接液光学部品4及び純水7の温度が上昇するため、投影光学系PLの収差が悪化する。したがって、接液光学部品4の表面に付着した汚染物質を除去するために、接液光学部品4を洗浄する必要がある。   Since the exposure light IL is absorbed by contaminants (PAG, amine, etc.) deposited on the surface of the wetted optical component 4 or the exposure light IL is scattered by the deposited contaminants, the wetted optical component 4 and thus the projection. The transmittance of the optical system PL is deteriorated. Further, since the exposure light IL is absorbed by the accumulated contaminants, the temperatures of the liquid-contact optical component 4 and the pure water 7 are increased, so that the aberration of the projection optical system PL is deteriorated. Therefore, it is necessary to clean the wetted optical component 4 in order to remove contaminants attached to the surface of the wetted optical component 4.

そこでまず、主制御系14は、照度センサ40により計測され出力された投影光学系PLを介した露光光の照射量及び照度分布に基づいて、接液光学部品4の透過率を計測する(ステップS10、透過率計測工程)。   First, the main control system 14 measures the transmittance of the wetted optical component 4 based on the exposure light dose and the illuminance distribution through the projection optical system PL measured and output by the illuminance sensor 40 (step). S10, transmittance measurement step).

次に、ステップS10において計測された接液光学部品4の透過率が所定の許容値より小さいか否かを判別する(ステップS11)。ステップS11において接液光学部品4の透過率が所定の許容値より小さいと判別された場合には、主制御系14は、Zステージ9上からウエハWを退避させる(ステップS12、基板退避工程)。具体的には、主制御系14は、ウエハステージ駆動系15に対して制御信号を出力し、ウエハステージ駆動系15によりXYステージ10を駆動させることによりウエハW及びZステージ9を図示しない退避場所まで移動させ、ウエハWを退避させる。   Next, it is determined whether or not the transmittance of the wetted optical component 4 measured in step S10 is smaller than a predetermined allowable value (step S11). When it is determined in step S11 that the transmittance of the wetted optical component 4 is smaller than a predetermined allowable value, the main control system 14 retracts the wafer W from the Z stage 9 (step S12, substrate retracting process). . Specifically, the main control system 14 outputs a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15, thereby retracting the wafer W and the Z stage 9 (not shown). Until the wafer W is retracted.

次に、主制御系14は、ステップS12においてウエハWが退避されたZステージ9上に、レジストが塗布されていない洗浄用基板を設置する(ステップS13、洗浄用基板設置工程)。具体的には、主制御系14は、ウエハステージ駆動系15に対して制御信号を出力し、ウエハステージ駆動系15によりXYステージ10を駆動させることにより洗浄用基板の受け取り場所まで移動させ、洗浄用基板をZステージ9上に設置する。そして、ウエハステージ駆動系15によりXYステージ10を駆動させることにより洗浄用基板を投影光学系PL、即ち接液光学部品4の下に配置する。   Next, the main control system 14 installs a cleaning substrate on which the resist is not applied on the Z stage 9 from which the wafer W has been retracted in Step S12 (Step S13, cleaning substrate installation step). Specifically, the main control system 14 outputs a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to move it to the place where the cleaning substrate is received. A substrate for use is placed on the Z stage 9. Then, the cleaning substrate is disposed under the projection optical system PL, that is, the wetted optical component 4 by driving the XY stage 10 by the wafer stage driving system 15.

次に、主制御系14は、接液光学部品4と洗浄用基板との間に純水を供給する(ステップS14、純水供給工程)。具体的には、主制御系14は液体供給装置5に対して制御信号を出力し、液体供給装置5は、供給管21及び排出ノズル21a、供給管22及び排出ノズル22a、供給管27及び排出ノズル27a、並びに供給管28及び排出ノズル28aの少なくとも1つを介して接液光学部品4と洗浄用基板との間に洗浄用の純水を供給する。なお、この洗浄用の純水は、露光用の純水7と同様に、抵抗率が1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満である。また、液体供給装置5により供給された洗浄用の純水は、液体回収装置6により回収管23及び流入ノズル23a,23b、回収管24及び流入ノズル24a,24b、回収管29及び流入ノズル29a,29b、並びに回収管30及び流入ノズル30a,30bの少なくとも1つを介して回収される。即ち、洗浄用の純水の供給及び回収を繰り返すことにより、接液光学部品4と洗浄用基板との間の純水は循環している。   Next, the main control system 14 supplies pure water between the wetted optical component 4 and the cleaning substrate (step S14, pure water supply process). Specifically, the main control system 14 outputs a control signal to the liquid supply device 5, and the liquid supply device 5 supplies the supply pipe 21, the discharge nozzle 21a, the supply pipe 22, the discharge nozzle 22a, the supply pipe 27, and the discharge. Cleaning pure water is supplied between the wetted optical component 4 and the cleaning substrate through the nozzle 27a and at least one of the supply pipe 28 and the discharge nozzle 28a. The pure water for cleaning has a resistivity of 1 MΩcm or more and a TOC (Total Organic Carbon) value of less than 1 ppm, like the pure water 7 for exposure. The pure water for cleaning supplied by the liquid supply device 5 is recovered by the liquid recovery device 6 from the recovery pipe 23 and the inflow nozzles 23a and 23b, the recovery pipe 24 and the inflow nozzles 24a and 24b, the recovery pipe 29 and the inflow nozzle 29a, 29b, and at least one of the recovery pipe 30 and the inflow nozzles 30a and 30b. That is, by repeatedly supplying and collecting pure water for cleaning, the pure water between the wetted optical component 4 and the cleaning substrate circulates.

次に、主制御系14は、ステップS14において接液光学部品4と洗浄用基板との間に洗浄用の純水が供給され、接液光学部品4と洗浄用基板との間に洗浄用の純水が循環している状態で、露光光ILを接液光学部品4を介して洗浄用基板上に照射する(ステップS15、照射工程)。接液光学部品4に露光光ILが照射されることにより、接液光学部品4の表面に堆積しているPAG及びアミン等がArFエキシマレーザ光である露光光により分解され、接液光学部品4の表面から剥離する。そして、循環している純水とともに流れて、接液光学部品4と洗浄用基板との間から排出される。   Next, in step S14, the main control system 14 is supplied with pure water for cleaning between the wetted optical component 4 and the cleaning substrate, and the cleaning is performed between the wetted optical component 4 and the cleaning substrate. With pure water circulating, the exposure light IL is irradiated onto the cleaning substrate through the wetted optical component 4 (step S15, irradiation step). By irradiating the wetted optical component 4 with the exposure light IL, PAG, amine, and the like deposited on the surface of the wetted optical component 4 are decomposed by the exposure light that is ArF excimer laser light, and the wetted optical component 4. Peel from the surface. Then, it flows with the circulating pure water and is discharged from between the wetted optical component 4 and the cleaning substrate.

次に、主制御系14は、接液光学部品4と洗浄用基板との間に供給されている純水を排出する(ステップS16、純水排出工程)。具体的には、主制御系14は、液体回収装置6に対して制御信号を出力し、液体回収装置6は回収管23及び流入ノズル23a,23b、回収管24及び流入ノズル24a,24b、回収管29及び流入ノズル29a,29b、並びに回収管30及び流入ノズル30a,30bの少なくとも1つを介して、液体供給装置5により接液光学部品4と洗浄用基板との間に共有された洗浄用の純水を回収する。   Next, the main control system 14 discharges pure water supplied between the wetted optical component 4 and the cleaning substrate (step S16, pure water discharge step). Specifically, the main control system 14 outputs a control signal to the liquid recovery device 6, and the liquid recovery device 6 collects the recovery pipe 23 and the inflow nozzles 23a and 23b, the recovery pipe 24 and the inflow nozzles 24a and 24b, and the recovery. For cleaning shared between the wetted optical component 4 and the cleaning substrate by the liquid supply device 5 through at least one of the pipe 29 and the inflow nozzles 29a and 29b, and the recovery pipe 30 and the inflow nozzles 30a and 30b. Collect pure water.

次に、主制御系14は、照度センサ40により計測される露光光の照射量及び照度分布に基づいて、接液光学部品4の透過率を再計測する(ステップS17、透過率再計測工程)。次に、ステップS17において再計測された接液光学部品4の透過率が所定の許容値より小さいか否かを判別する(ステップS18)。ステップS18において接液光学部品4の透過率が所定の許容値より小さいと判別された場合、即ち、接液光学部品4の表面に汚染物質が残存している場合には、接液光学部品4の表面を有機溶剤により拭き取る(ステップS19、拭取り工程)。拭取りに用いられる有機溶剤はアルコール類またはケトン類の溶剤であり、アルコール類としては例えばメタノール、エタノール、プロパノール、ブタノール等、ケトン類としては例えばアセトン、メチルエチルケトン、シクロペンタノン等を用いる。   Next, the main control system 14 remeasures the transmittance of the wetted optical component 4 based on the exposure light irradiation amount and the illuminance distribution measured by the illuminance sensor 40 (step S17, transmittance remeasurement step). . Next, it is determined whether or not the transmittance of the wetted optical component 4 remeasured in step S17 is smaller than a predetermined allowable value (step S18). If it is determined in step S18 that the transmittance of the wetted optical component 4 is smaller than a predetermined allowable value, that is, if contaminants remain on the surface of the wetted optical component 4, the wetted optical component 4 Is wiped off with an organic solvent (step S19, wiping step). The organic solvent used for wiping is a solvent of alcohols or ketones. Examples of alcohols include methanol, ethanol, propanol, and butanol. Examples of ketones include acetone, methyl ethyl ketone, and cyclopentanone.

次に、主制御系14は、照度センサ40により計測される露光光の照射量及び照度分布に基づいて、接液光学部品4の透過率を再度計測し、接液光学部品4の透過率が所定の許容値以上であることを確認する(ステップS20)。   Next, the main control system 14 measures the transmittance of the liquid contact optical component 4 again based on the exposure light irradiation amount and the illuminance distribution measured by the illuminance sensor 40, and the transmittance of the liquid contact optical component 4 is determined. It is confirmed that the value is equal to or greater than a predetermined allowable value (step S20).

なお、ステップS11において接液光学部品4の透過率が所定の許容値以上であると判別された場合には、主制御系14は、接液光学部品4の洗浄を行う必要がないため、露光を再開する。また、ステップS18において接液光学部品4の透過率が所定の許容値以上であると判別された場合には、主制御系14は、接液光学部品4の表面を拭取る必要がないため、洗浄用基板をZステージ9上から退避させ、ウエハをZステージ9上に設置し、露光を再開する。   If it is determined in step S11 that the transmittance of the wetted optical component 4 is equal to or greater than a predetermined allowable value, the main control system 14 does not need to clean the wetted optical component 4, and therefore exposure. To resume. Further, when it is determined in step S18 that the transmittance of the wetted optical component 4 is equal to or greater than a predetermined allowable value, the main control system 14 does not need to wipe the surface of the wetted optical component 4; The cleaning substrate is retracted from the Z stage 9, the wafer is placed on the Z stage 9, and exposure is resumed.

この実施の形態にかかる投影露光装置によれば、接液光学部品に接液する純水を循環させ、露光光を照射して、接液光学部品の表面を洗浄することにより、基板に塗布されているレジストが溶出することにより接液光学部品に付着した汚染物質を容易に除去することができる。したがって、接液光学部品の表面に付着する汚染物質による投影光学系の透過率の低下及び投影光学系の収差の悪化を防止することができる。   According to the projection exposure apparatus according to this embodiment, pure water that comes into contact with the wetted optical component is circulated, and the surface of the wetted optical component is washed by irradiating with exposure light and applied to the substrate. As a result, the contaminant attached to the wetted optical component can be easily removed. Accordingly, it is possible to prevent a decrease in the transmittance of the projection optical system and a deterioration in the aberration of the projection optical system due to contaminants adhering to the surface of the wetted optical component.

なお、この実施の形態においては、接液光学部品を洗浄する際に、露光光を照射する前にZステージ上からウエハを退避させ、Zステージ上に洗浄用基板を設置しているが、Zステージ上からウエハを退避させ、洗浄用基板を設置せずに露光光を照射するようにしても良い。   In this embodiment, when cleaning the wetted optical component, the wafer is retracted from the Z stage before irradiating the exposure light, and the cleaning substrate is set on the Z stage. The wafer may be retracted from the stage, and the exposure light may be irradiated without installing the cleaning substrate.

また、この実施の形態においては、照度センサの計測値に基づいて接液光学部品の洗浄を行うか否かを判断しているが、所定の間隔で接液光学部品の洗浄を行うようにしてもよい。   Further, in this embodiment, it is determined whether or not the wetted optical component is cleaned based on the measurement value of the illuminance sensor, but the wetted optical component is cleaned at a predetermined interval. Also good.

また、この実施の形態においては、接液光学部品の洗浄を行った後に、更に有機溶剤により拭取りを行っているが、洗浄のみを行うようにしてもよい。
(実験1)
実験1にかかるPAG(汚染物質)が付着した石英ガラス製基板の作成及び洗浄実験を行った。図6は、実験1にかかるPAGが付着した石英ガラス製基板の作成及び洗浄を行うための試験器50の構成を示す図である。図6に示すように、試験器50は、液体供給装置52、サンプルホルダ54、ポンプ56、液体回収装置58により構成されており、サンプルホルダ54の一面には、光学研磨された平行平板の石英ガラス製基板54aが設置されている。
Further, in this embodiment, after the wetted optical component is cleaned, further wiping is performed with an organic solvent. However, only cleaning may be performed.
(Experiment 1)
A quartz glass substrate to which PAG (contaminant) according to Experiment 1 was attached was prepared and cleaned. FIG. 6 is a diagram showing a configuration of a tester 50 for producing and cleaning a quartz glass substrate to which the PAG according to Experiment 1 is attached. As shown in FIG. 6, the tester 50 includes a liquid supply device 52, a sample holder 54, a pump 56, and a liquid recovery device 58. One surface of the sample holder 54 is optically polished parallel plate quartz. A glass substrate 54a is installed.

まず、PAGを純水に3ppmの濃度まで溶解した水溶液を作成し、液体供給装置52により供給する。液体供給装置52により供給された水溶液は、図中矢印Aの方向に進行し、サンプルホルダ54の内部を満たす。サンプルホルダ54の内部を通過した水溶液は、図中矢印B方向に進行し、ポンプ56を介して、液体回収装置58により回収される。ここで、サンプルホルダ54内の水溶液に一面が接液された石英ガラス製基板54aに、図中矢印Cの方向からArFエキシマレーザ光(193nm)を1.5mJ/cmshotのフルーエンスで4.3×10shot照射した結果、石英ガラス製基板54aの表面にPAGが付着した。 First, an aqueous solution in which PAG is dissolved in pure water to a concentration of 3 ppm is prepared and supplied by the liquid supply device 52. The aqueous solution supplied by the liquid supply device 52 travels in the direction of the arrow A in the figure and fills the inside of the sample holder 54. The aqueous solution that has passed through the inside of the sample holder 54 travels in the direction of arrow B in the figure, and is recovered by the liquid recovery device 58 via the pump 56. Here, an ArF excimer laser beam (193 nm) is applied to a quartz glass substrate 54a whose one surface is in contact with the aqueous solution in the sample holder 54 from the direction of arrow C in the drawing with a fluence of 1.5 mJ / cm 2 shot. As a result of 3 × 10 6 shot irradiation, PAG adhered to the surface of the quartz glass substrate 54a.

図7は、PAGが付着した石英ガラス製基板54aの透過特性を示すグラフである。図7の破線で示すように、波長193nmの光(ArFエキシマレーザ光)においては、石英ガラス製基板54aの空気に対する表面反射が各面(入射面及び射出面)4.5%程度であるため、清浄な石英ガラス製基板54aの空気に対する透過率は約91%である。これに対し、図7の実線で示すように、PAGが付着した石英ガラス製基板54aの純水に対する透過率は波長193nmの光においては80%以下であり、PAG付着により透過率の損失が10%以上あった。   FIG. 7 is a graph showing the transmission characteristics of the quartz glass substrate 54a to which the PAG is attached. As shown by the broken line in FIG. 7, in the light with a wavelength of 193 nm (ArF excimer laser light), the surface reflection of the quartz glass substrate 54a with respect to the air is about 4.5% on each surface (incident surface and exit surface). The air permeability of the clean quartz glass substrate 54a is about 91%. On the other hand, as shown by the solid line in FIG. 7, the transmittance of the quartz glass substrate 54a with the PAG attached to pure water is 80% or less for light with a wavelength of 193 nm. % Or more.

次に、PAGが付着した石英ガラス製基板54aを用いて洗浄実験を行った。まず、図6に示す試験器50の液体供給装置52は、抵抗率18MΩcm、TOC値4ppbの純水を供給する。液体供給装置52により供給された純水は、図6の矢印Aの方向に進行し、サンプルホルダ54の内部を満たす。サンプルホルダ54の内部を通過した純水は、図6の矢印B方向に進行し、ポンプ56を介して、液体回収装置58により回収される。純水は、ポンプ56により液体供給装置52から液体回収装置58を循環する。   Next, a cleaning experiment was performed using the quartz glass substrate 54a to which the PAG was attached. First, the liquid supply device 52 of the tester 50 shown in FIG. 6 supplies pure water having a resistivity of 18 MΩcm and a TOC value of 4 ppb. The pure water supplied by the liquid supply device 52 travels in the direction of arrow A in FIG. The pure water that has passed through the sample holder 54 travels in the direction of arrow B in FIG. 6 and is collected by the liquid recovery device 58 via the pump 56. Pure water is circulated from the liquid supply device 52 to the liquid recovery device 58 by the pump 56.

ここで、サンプルホルダ54内の純水にPAGが付着した面が接液された石英ガラス製基板54aに、図中矢印Cの方向からArFエキシマレーザ光(193nm)を1.5mJ/cmshotのフルーエンスで2.9×10shot照射した。PAGはレーザ光により分解され、分解物は純水に少しずつ溶解するため徐々に除去されていった。図7の一点鎖線は、PAG除去後の石英ガラス製基板54aの透過特性を示す。清浄な石英ガラス製基板54aの透過率(図中破線)と同じレベルまで回復した。 Here, an ArF excimer laser beam (193 nm) is applied to the quartz glass substrate 54a, which is in contact with the surface of the sample holder 54 on which PAG adheres to pure water, in the direction of arrow C in the figure, at 1.5 mJ / cm 2 shot. 2.9 × 10 6 shots were irradiated at a fluence of. PAG was decomposed by laser light, and the decomposed product was gradually removed because it was dissolved little by little in pure water. The dashed-dotted line in FIG. 7 shows the transmission characteristics of the quartz glass substrate 54a after the PAG removal. It recovered to the same level as the transmittance of the clean quartz glass substrate 54a (broken line in the figure).

この実験1によれば、石英ガラス製基板の表面に付着した汚染物質であるPAGを、純粋を循環させ、ArFエキシマレーザ光を照射することにより、除去することができた。
(実験2)
実験2にかかるアミン(汚染物質)が付着した石英ガラス製基板の作成及び洗浄実験を行った。実験1と同様に、図6に示す試験器50を用いて、光学研磨された平行平板の石英ガラス製基板にアミンを付着させた。具体的には、トリオクチルアミンを純水に1ppmの濃度まで溶解した水溶液を作成し、液体供給装置52により供給する。液体供給装置52により供給された水溶液は、図中矢印Aの方向に進行し、サンプルホルダ54の内部を満たす。サンプルホルダ54の内部を通過した水溶液は、図中矢印B方向に進行し、ポンプ56を介して、液体回収装置58により回収される。ここで、サンプルホルダ54内の水溶液に一面が接液された石英ガラス製基板に、図中矢印Cの方向からArFエキシマレーザ光(193nm)を1.5mJ/cmshotのフルーエンスで4.3×10shot照射した結果、石英ガラス製基板にアミンが付着した。
According to Experiment 1, the PAG that is a contaminant attached to the surface of the quartz glass substrate could be removed by circulating pure and irradiating with ArF excimer laser light.
(Experiment 2)
A quartz glass substrate to which the amine (contaminant) according to Experiment 2 was adhered was prepared and cleaned. In the same manner as in Experiment 1, an amine was adhered to a parallel flat quartz glass substrate that had been optically polished using a tester 50 shown in FIG. Specifically, an aqueous solution in which trioctylamine is dissolved in pure water to a concentration of 1 ppm is prepared and supplied by the liquid supply device 52. The aqueous solution supplied by the liquid supply device 52 travels in the direction of the arrow A in the figure and fills the inside of the sample holder 54. The aqueous solution that has passed through the inside of the sample holder 54 travels in the direction of arrow B in the figure, and is recovered by the liquid recovery device 58 via the pump 56. Here, ArF excimer laser light (193 nm) is applied to a quartz glass substrate whose one surface is in contact with the aqueous solution in the sample holder 54 with a fluence of 1.5 mJ / cm 2 shot from the direction of arrow C in the figure. As a result of irradiation with x10 6 shots, amine adhered to the quartz glass substrate.

図8は、アミンが付着した石英ガラス製基板の透過特性を示すグラフである。図8に示すように、波長193nmの光(ArFエキシマレーザ光)においては、清浄な石英ガラス製基板の透過率(図中破線で示す)に比べて、アミンが付着した石英ガラス製基板の透過率(図中実線で示す)は0.5%劣化した。   FIG. 8 is a graph showing the transmission characteristics of a quartz glass substrate to which an amine is attached. As shown in FIG. 8, in the case of light having a wavelength of 193 nm (ArF excimer laser light), the transmittance of a quartz glass substrate to which amine is attached is larger than the transmittance of a clean quartz glass substrate (indicated by a broken line in the figure). The rate (indicated by the solid line in the figure) deteriorated by 0.5%.

次に、アミンが付着した石英ガラス製基板を用いて洗浄実験を行った。まず、図6に示す試験器50の液体供給装置52は、抵抗率18MΩcm、TOC値4ppbの純水を供給する。液体供給装置52により供給された純水は、図6の矢印Aの方向に進行し、サンプルホルダ54の内部を満たす。サンプルホルダ54の内部を通過した純水は、図6の矢印B方向に進行し、ポンプ56を介して、液体回収装置58により回収される。純水は、ポンプ56により液体供給装置52から液体回収装置58を循環する。   Next, a cleaning experiment was performed using a quartz glass substrate to which amine was attached. First, the liquid supply device 52 of the tester 50 shown in FIG. 6 supplies pure water having a resistivity of 18 MΩcm and a TOC value of 4 ppb. The pure water supplied by the liquid supply device 52 travels in the direction of arrow A in FIG. The pure water that has passed through the sample holder 54 travels in the direction of arrow B in FIG. 6 and is collected by the liquid recovery device 58 via the pump 56. Pure water is circulated from the liquid supply device 52 to the liquid recovery device 58 by the pump 56.

ここで、サンプルホルダ54内の純水にアミンが付着した面が接液された石英ガラス製基板に、図中矢印Cの方向からArFエキシマレーザ光(193nm)を1.5mJ/cmshotのフルーエンスで2.9×10shot照射した。アミンはレーザ光により分解され、分解物は純水に少しずつ溶解するため徐々に除去されていった。図8の一点鎖線に示すように、アミン除去後の石英ガラス製基板の透過率は、清浄な石英ガラス製基板の透過率(図中破線)と同じレベルまで回復した。 Here, ArF excimer laser light (193 nm) was applied at 1.5 mJ / cm 2 shot from the direction of arrow C in the figure to the quartz glass substrate in which the surface of the sample holder 54 in which amine was attached was contacted with pure water. Irradiated with 2.9 × 10 6 shots at fluence. The amine was decomposed by the laser beam, and the decomposition product was gradually removed because it was gradually dissolved in pure water. As indicated by the one-dot chain line in FIG. 8, the transmittance of the quartz glass substrate after amine removal was restored to the same level as the transmittance of the clean quartz glass substrate (broken line in the figure).

この実験2によれば、石英ガラス製基板の表面に付着した汚染物質であるアミンを、純粋を循環させ、ArFエキシマレーザ光を照射することにより、除去することができた。   According to Experiment 2, the amine, which is a contaminant attached to the surface of the quartz glass substrate, could be removed by circulating pure and irradiating with ArF excimer laser light.

実施の形態にかかる投影露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the projection exposure apparatus concerning Embodiment. 実施の形態にかかる投影光学系を構成する接液光学部品とX方向用の排出ノズル及び流入ノズルとの位置関係を示す図である。It is a figure which shows the positional relationship of the liquid-contact optical component which comprises the projection optical system concerning Embodiment, and the discharge nozzle and inflow nozzle for X directions. 実施の形態にかかる投影光学系を構成する接液光学部品とY方向用の排出ノズル及び流入ノズルとの位置関係を示す図である。It is a figure which shows the positional relationship of the liquid-contact optical component which comprises the projection optical system concerning Embodiment, and the discharge nozzle and inflow nozzle for Y directions. 実施の形態にかかる接液光学部品とウエハとの間へ純水の供給及び回収が行われている状態を説明するための図である。It is a figure for demonstrating the state by which supply and collection | recovery of pure water are performed between the liquid-contacting optical components concerning embodiment and a wafer. 実施の形態にかかる接液光学部品の洗浄方法について説明するためのフローチャートである。It is a flowchart for demonstrating the washing | cleaning method of the liquid-contact optical component concerning embodiment. 実験1にかかる試験器の構成を示す図である。It is a figure which shows the structure of the test device concerning the experiment 1. FIG. 実験1にかかる石英ガラス製基板の透過特性を示すグラフである。4 is a graph showing transmission characteristics of a quartz glass substrate according to Experiment 1. 実験2にかかる石英ガラス製基板の透過特性を示すグラフである。6 is a graph showing transmission characteristics of a quartz glass substrate according to Experiment 2.

符号の説明Explanation of symbols

R…レチクル、RST…レチクルステージ、PL…投影光学系、W…ウエハ、1…照明光学系、4…接液光学部品、5…液体供給装置、6…液体回収装置、7…純水、9…Zステージ、10…XYステージ、14…主制御系、21,22…供給管、23,24…回収管、40…照度センサ。   R ... reticle, RST ... reticle stage, PL ... projection optical system, W ... wafer, 1 ... illumination optical system, 4 ... wetted optical component, 5 ... liquid supply device, 6 ... liquid recovery device, 7 ... pure water, 9 ... Z stage, 10 ... XY stage, 14 ... Main control system, 21,22 ... Supply pipe, 23,24 ... Collection pipe, 40 ... Illuminance sensor.

Claims (15)

露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置に使用される光学部品の洗浄方法であって、
前記基板を載置する基板ステージ上から前記基板を退避させる基板退避工程と、
前記基板ステージと前記投影光学系との間に前記純水を供給する純水供給工程と、
前記純水供給工程により前記純水が供給されることにより、前記純水に接液し、前記投影光学系を構成する最も前記基板ステージ側に配置される接液光学部品に前記露光光を照射する照射工程と、
前記純水供給工程により供給された前記純水を排出する純水排出工程と、
を含むことを特徴とする光学部品の洗浄方法。
An immersion projection exposure apparatus in which a mask is irradiated with exposure light, the pattern of the mask is transferred onto a substrate via a projection optical system, and pure water is interposed between the surface of the substrate and the projection optical system. A method for cleaning optical components used,
A substrate retracting step for retracting the substrate from a substrate stage on which the substrate is placed;
A pure water supply step of supplying the pure water between the substrate stage and the projection optical system;
When the pure water is supplied by the pure water supply step, the exposure light is irradiated onto the wetted optical component that is in contact with the pure water and that is disposed closest to the substrate stage constituting the projection optical system. An irradiation process to perform,
A pure water discharge step of discharging the pure water supplied by the pure water supply step;
An optical component cleaning method comprising:
前記基板退避工程により前記基板を退避させた後に、前記基板ステージ上にレジストが塗布されていない洗浄用基板を設置する洗浄用基板設置工程を更に含み、
前記純水供給工程は、前記洗浄用基板の表面と前記投影光学系との間に前記純水を供給することを特徴とする請求項1記載の光学部品の洗浄方法。
And further comprising a cleaning substrate installation step of installing a cleaning substrate on which the resist is not applied on the substrate stage after the substrate is retracted by the substrate retracting step,
2. The optical component cleaning method according to claim 1, wherein the pure water supply step supplies the pure water between a surface of the cleaning substrate and the projection optical system.
前記接液光学部品の透過率を計測する透過率計測工程を更に含み、
前記透過率計測工程により計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の洗浄が行われることを特徴とする請求項1または請求項2記載の光学部品の洗浄方法。
Further comprising a transmittance measuring step of measuring the transmittance of the wetted optical component;
3. The wetted optical component is cleaned when the transmittance of the wetted optical component measured in the transmittance measuring step is lower than a predetermined allowable value. Cleaning method for optical parts.
前記接液光学部品の洗浄が行われた後に、前記接液光学部品の透過率を再計測する透過率再計測工程と、
前記透過率再計測工程により再計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の表面に残存する汚染物質を有機溶剤により拭き取る汚染物質拭取り工程と、
を更に含むことを特徴とする請求項1乃至請求項3の何れか一項に記載の光学部品の洗浄方法。
A transmittance re-measurement step of re-measuring the transmittance of the wet-contact optical component after the wet-contact optical component is cleaned,
Contaminant wiping to wipe off contaminants remaining on the surface of the wetted optical component with an organic solvent when the transmittance of the wetted optical component remeasured by the transmittance remeasurement step is lower than a predetermined allowable value. Process,
The method for cleaning an optical component according to any one of claims 1 to 3, further comprising:
前記有機溶剤は、アルコール類またはケトン類の溶剤であることを特徴とする請求項4記載の光学部品の洗浄方法。   5. The optical component cleaning method according to claim 4, wherein the organic solvent is a solvent of alcohols or ketones. 前記接液光学部品の表面に付着する汚染物質は、前記マスクのパターンを前記基板上に露光する際に、前記基板上に塗布されているレジストからの溶出物が変成、析出、堆積した物質であることを特徴とする請求項1乃至請求項5の何れか一項に記載の光学部品の洗浄方法。   The contaminant adhering to the surface of the wetted optical component is a substance in which the eluate from the resist applied on the substrate is modified, deposited and deposited when the mask pattern is exposed on the substrate. The optical component cleaning method according to claim 1, wherein the optical component is cleaned. 前記純水は、抵抗率1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満であることを特徴とする請求項1乃至請求項6の何れか一項に記載の光学部品の洗浄方法。   The optical component cleaning method according to any one of claims 1 to 6, wherein the pure water has a resistivity of 1 MΩcm or more and a TOC (Total Organic Carbon) value of less than 1 ppm. 前記露光光は、ArFエキシマレーザ光であることを特徴とする請求項1乃至請求項7の何れか一項に記載の光学部品の洗浄方法。   The optical component cleaning method according to claim 1, wherein the exposure light is ArF excimer laser light. 露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置であって、
請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を備えることを特徴とする液浸投影露光装置。
An immersion projection exposure apparatus in which a mask is irradiated with exposure light, the pattern of the mask is transferred onto a substrate via a projection optical system, and pure water is interposed between the surface of the substrate and the projection optical system. There,
An immersion projection exposure apparatus comprising a wetted optical component cleaned by the optical component cleaning method according to any one of claims 1 to 8.
露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置を用いた露光方法であって、
請求項1乃至請求項8の何れか一項に記載の光学部品の洗浄方法により洗浄された接液光学部品を備えた前記投影光学系を用いて、前記マスクのパターンを前記基板上に投影露光する露光工程を含むことを特徴とする露光方法。
An immersion projection exposure apparatus that irradiates a mask with exposure light, transfers the mask pattern onto a substrate via a projection optical system, and interposes pure water between the surface of the substrate and the projection optical system. The exposure method used,
A projection exposure of the pattern of the mask onto the substrate using the projection optical system including the wetted optical component cleaned by the optical component cleaning method according to claim 1. The exposure method characterized by including the exposure process to perform.
露光光でマスクを照射し、投影光学系を介して前記マスクのパターンを基板上に転写し、前記基板の表面と前記投影光学系との間に純水を介在させた液浸投影露光装置を用いた露光方法であって、
前記基板を載置する基板ステージ上から前記基板を退避させる基板退避工程と、
前記基板ステージと前記投影光学系との間に前記純水を供給する純水供給工程と、
前記純水供給工程により前記純水が供給されることにより、前記純水に接液し、前記投影光学系を構成する最も前記基板ステージ側に配置される接液光学部品に前記露光光を照射する洗浄工程と、
前記純水供給工程により供給された前記純水を排出する純水排出工程と、
前記基板ステージ上に前記基板を設置する基板設置工程と、
前記基板の表面と前記投影光学系との間に前記純水を供給する液体供給工程と、
前記マスクのパターンを前記基板上に露光する露光工程と、
を含むことを特徴とする露光方法。
An immersion projection exposure apparatus that irradiates a mask with exposure light, transfers the mask pattern onto a substrate via a projection optical system, and interposes pure water between the surface of the substrate and the projection optical system. The exposure method used,
A substrate retracting step for retracting the substrate from a substrate stage on which the substrate is placed;
A pure water supply step of supplying the pure water between the substrate stage and the projection optical system;
When the pure water is supplied by the pure water supply step, the exposure light is irradiated onto the wetted optical component that is in contact with the pure water and that is disposed closest to the substrate stage constituting the projection optical system. Cleaning process to
A pure water discharge step of discharging the pure water supplied by the pure water supply step;
A substrate installation step of installing the substrate on the substrate stage;
A liquid supply step for supplying the pure water between the surface of the substrate and the projection optical system;
An exposure step of exposing the pattern of the mask onto the substrate;
An exposure method comprising:
前記基板退避工程により前記基板を退避させた後に、前記基板ステージ上にレジストが塗布されていない洗浄用基板を設置する洗浄用基板設置工程と、
前記純水排出工程により前記純水が排出された後に、前記基板ステージ上から前記洗浄用基板を退避させる洗浄用基板退避工程と、
を更に含むことを特徴とする請求項11記載の露光方法。
A cleaning substrate installation step of installing a cleaning substrate on which the resist is not applied on the substrate stage after the substrate is retracted by the substrate withdrawal step;
A cleaning substrate retracting step of retracting the cleaning substrate from the substrate stage after the pure water is discharged by the pure water discharging step;
The exposure method according to claim 11, further comprising:
前記接液光学部品の透過率を計測する透過率計測工程を更に含み、
前記透過率計測工程により計測された前記接液光学部品の透過率が所定の許容値より低い場合に、前記接液光学部品の洗浄が行われることを特徴とする請求項11または請求項12記載の露光方法。
Further comprising a transmittance measuring step of measuring the transmittance of the wetted optical component;
13. The liquid-contact optical component is cleaned when the transmittance of the liquid-contact optical component measured in the transmittance measurement step is lower than a predetermined allowable value. Exposure method.
前記接液光学部品の表面に付着する汚染物質は、前記マスクのパターンを前記基板上に露光する際に、前記基板上に塗布されているレジストからの溶出物が変成、析出、堆積した物質であることを特徴とする請求項10乃至請求項13の何れか一項に記載の露光方法。   The contaminant adhering to the surface of the wetted optical component is a substance in which the eluate from the resist applied on the substrate is modified, deposited and deposited when the mask pattern is exposed on the substrate. The exposure method according to any one of claims 10 to 13, wherein the exposure method is provided. 前記純水は、抵抗率1MΩcm以上、TOC(Total Organic Carbon)値が1ppm未満であることを特徴とする請求項10乃至請求項14の何れか一項に記載の露光方法。   The exposure method according to claim 10, wherein the pure water has a resistivity of 1 MΩcm or more and a TOC (Total Organic Carbon) value of less than 1 ppm.
JP2005134366A 2005-05-02 2005-05-02 Cleaning method for optical component, immersion projection aligner and exposure method Pending JP2006310706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134366A JP2006310706A (en) 2005-05-02 2005-05-02 Cleaning method for optical component, immersion projection aligner and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134366A JP2006310706A (en) 2005-05-02 2005-05-02 Cleaning method for optical component, immersion projection aligner and exposure method

Publications (1)

Publication Number Publication Date
JP2006310706A true JP2006310706A (en) 2006-11-09

Family

ID=37477223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134366A Pending JP2006310706A (en) 2005-05-02 2005-05-02 Cleaning method for optical component, immersion projection aligner and exposure method

Country Status (1)

Country Link
JP (1) JP2006310706A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8902399B2 (en) 2004-10-05 2014-12-02 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US20210405520A1 (en) * 2020-06-30 2021-12-30 Shin-Etsu Chemical Co., Ltd. Photomask blank, and manufacturing method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902399B2 (en) 2004-10-05 2014-12-02 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
JP2011199304A (en) * 2007-07-24 2011-10-06 Asml Netherlands Bv Immersion lithographic apparatus, method of preventing or reducing contamination of the apparatus, and method of manufacturing device
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20210405520A1 (en) * 2020-06-30 2021-12-30 Shin-Etsu Chemical Co., Ltd. Photomask blank, and manufacturing method thereof
US11774845B2 (en) * 2020-06-30 2023-10-03 Shin-Etsu Chemical Co., Ltd. Photomask blank, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2006310706A (en) Cleaning method for optical component, immersion projection aligner and exposure method
TWI436403B (en) A cleaning method, a substrate processing method, an exposure apparatus, and an element manufacturing method
CN101765811B (en) Lithographic apparatus and device manufacturing method
US6411368B1 (en) Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus
KR101213283B1 (en) Immersion photolithography system
JP4565270B2 (en) Exposure method, device manufacturing method
US7602471B2 (en) Apparatus and method for particle monitoring in immersion lithography
US20070009841A1 (en) Semiconductor fabrication apparatus and pattern formation method using the same
US20080239260A1 (en) Exposure apparatus and device manufacturing method
WO1999049504A1 (en) Projection exposure method and system
US20060164617A1 (en) Projection exposure apparatus, projection exposure method, and method for producing device
TWI386252B (en) Cleaning method, apparatus and cleaning system
JP2006190997A (en) Exposure device, exposure method and device manufacturing method
JP2007517397A (en) Lithographic apparatus and device manufacturing method
JP4904327B2 (en) Sample holder, immersion lithographic apparatus, and method for obtaining a particle sample in an immersion lithographic apparatus
JP2011243869A (en) Management method of euv exposure mask and exposure method
JP2005353763A (en) Exposure device and pattern forming method
US8409360B2 (en) Cleaning method for a process of liquid immersion lithography
JPH11288870A (en) Aligner
JP2009177177A (en) Immersion lithographic apparatus with immersion fluid recirculating system
JP2007221015A (en) Liquid-immersing exposure apparatus
JP2008060156A (en) Immersion exposure apparatus and device manufacturing method
KR20200079532A (en) Lithographic apparatus and methods
JP2006173377A (en) Optical part and projection aligner
Chibana et al. Development status of a 193-nm immersion exposure tool