JP2006310120A - Manufacturing method of paste of electrode for lithium-ion secondary battery - Google Patents

Manufacturing method of paste of electrode for lithium-ion secondary battery Download PDF

Info

Publication number
JP2006310120A
JP2006310120A JP2005132003A JP2005132003A JP2006310120A JP 2006310120 A JP2006310120 A JP 2006310120A JP 2005132003 A JP2005132003 A JP 2005132003A JP 2005132003 A JP2005132003 A JP 2005132003A JP 2006310120 A JP2006310120 A JP 2006310120A
Authority
JP
Japan
Prior art keywords
paste
electrode plate
active material
solvent
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005132003A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takeuchi
靖彦 竹内
Yusuke Fukumoto
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005132003A priority Critical patent/JP2006310120A/en
Publication of JP2006310120A publication Critical patent/JP2006310120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, when electrode plate paste is defoamed under high vacuum, a solvent in the paste starts to be evaporated, coagulation takes place in the paste, and, therefore, an appearance defect ratio of electrode plates is high. <P>SOLUTION: The manufacturing method of paste for an electrode for a lithium-ion secondary battery of forming an active material layer by coating paste consisting of an active material, a binder, a conductive agent, and a solvent on a collector and drying it, comprises a process of kneading the active material, binder, conductive agent and solvent into paste, a process of putting the paste under a vacuum defoaming treatment, and further, a process of stirring the paste while adding ultrasonic waves to it. The process of the vacuum defoaming treatment is carried out at a vacuum degree of 100 torr or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の製造方法に関し、極板用のペーストの製造方法に関する。   The present invention relates to a method for manufacturing a lithium ion secondary battery, and to a method for manufacturing a paste for an electrode plate.

近年では、AV機器、ノート型パソコン、携帯型通信機器などの民生用電子機器のポータブル化、コードレス化が急速に促進されており、これら電子機器の駆動用電源として従来は、ニッケルカドミウム蓄電池やニッケル水素蓄電池が主に用いられていたが、電子機器のポータブル化やコードレス化が進展して定着するに伴って、駆動用電源となる二次電池の高エネルギ密度化や小型軽量化の要望が益々強くなっている。   In recent years, consumer electronic devices such as AV devices, notebook computers, and portable communication devices have been rapidly becoming portable and cordless. Conventionally, nickel cadmium storage batteries and nickel have been used as power sources for driving these electronic devices. Although hydrogen storage batteries were mainly used, demands for higher energy density and smaller and lighter secondary batteries that serve as driving power sources are increasing as electronic devices become more portable and more cordless. It is getting stronger.

このような状況から、リチウムイオンの吸蔵・放出が可能な炭素材料を負極活物質とし、高い充放電電圧を示すリチウム含有複合酸化物、例えばコバルト酸リチウム(LiCoO2)を正極活物質に用いてリチウムイオンの挿入、離脱を利用したリチウムイオン二次電池に代表されるリチウム二次電池が主流になりつつある。 Under such circumstances, a carbon material capable of occluding and releasing lithium ions is used as the negative electrode active material, and a lithium-containing composite oxide exhibiting a high charge / discharge voltage, for example, lithium cobaltate (LiCoO 2 ) is used as the positive electrode active material. Lithium secondary batteries represented by lithium ion secondary batteries using insertion and removal of lithium ions are becoming mainstream.

このリチウム二次電池は、小型および軽量でありながら急速充電が可能で、高エネルギー密度を有するという極めて顕著な特長を有しており、その要となる正極板と負極板は集電体に電池電極のペーストを塗布乾燥し、作製している。   This lithium secondary battery has extremely remarkable features such as being small and lightweight, capable of rapid charging, and having a high energy density. The essential positive electrode plate and negative electrode plate are used as a current collector. The electrode paste is applied and dried.

リチウムイオン二次電池用極板のペーストを製造する際、ペースト中に気泡が存在した状態のまま集電体上に塗布すると、乾燥した後、極板表面に気泡が集中する。   When producing a paste for an electrode plate for a lithium ion secondary battery, if the paste is applied on the current collector in a state where air bubbles are present in the paste, the air bubbles concentrate on the surface of the electrode plate after drying.

こうしたことにより、極板の表面に欠陥が発生することとなる。   As a result, defects are generated on the surface of the electrode plate.

そこで、極板のペーストから気泡を確実に除去するため、極板のペーストを製造する最終工程で10torr以下の高真空下で混錬することが提案されている(例えば、特許文献1参照のこと)。   Therefore, in order to reliably remove bubbles from the electrode plate paste, it has been proposed to knead under a high vacuum of 10 torr or less in the final process of manufacturing the electrode plate paste (see, for example, Patent Document 1). ).

また、ニッケル水素蓄電池に用いるペースト内のフッ素樹脂の均一分散を行うために超音波を利用した分散が提案されている(例えば、特許文献2参照のこと)。
特開平11−213990号公報 特開2001−291509号公報
In addition, in order to uniformly disperse the fluororesin in the paste used for the nickel metal hydride storage battery, dispersion using ultrasonic waves has been proposed (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 11-213990 JP 2001-291509 A

しかしながら、前述の特許文献1のように極板ペーストを高真空下で脱泡することにより、極板ペースト中に含まれている溶媒の揮発が発生する。脱泡を効果的に行うため、攪拌や振とう等を行いながら脱泡するようにしている。しかし、気泡の抱き込みを少なくするために、低せん断で攪拌したり、振とうしたりすることはできなかった。その理由は、極板用のペーストが凝集する恐れがあったためである。   However, when the electrode plate paste is degassed under high vacuum as in Patent Document 1 described above, the solvent contained in the electrode plate paste is volatilized. In order to perform defoaming effectively, defoaming is performed while stirring or shaking. However, in order to reduce the entrapment of bubbles, it was not possible to stir or shake with low shear. The reason is that the electrode plate paste may aggregate.

また、前述の特許文献2はニッケル水素蓄電池の分野において、結着剤に用いるフッ素樹脂を均一に分散するために超音波を用いたものである。この文献の中では、極板ペースト中に含まれる気泡の脱泡や活物質等の再凝集の課題を解決するものとして検討されていたものではなかった。   Further, Patent Document 2 described above uses ultrasonic waves in order to uniformly disperse a fluororesin used as a binder in the field of nickel metal hydride storage batteries. In this document, it has not been studied as a solution to the problem of degassing bubbles contained in the electrode plate paste and reaggregation of active materials.

本発明はこのような従来の課題を解決するものであり、極板ペースト中の溶媒を揮発させることなく気泡を脱泡することができ、極板ペーストを低せん断で撹拌しても活物質等を凝集させることのないリチウムイオン二次電池用の極板ペーストの製造方法を提供するものである。   The present invention solves such a conventional problem, and it is possible to defoam bubbles without volatilizing the solvent in the electrode plate paste, and even if the electrode plate paste is stirred with low shear, an active material, etc. The present invention provides a method for producing an electrode plate paste for a lithium ion secondary battery that does not cause agglomeration.

前記従来の課題を解決するために、本発明のリチウム二次電池用極板のペースト製造方法は、活物質、結着剤、導電剤、及び溶媒からなるペーストを集電体に塗布し乾燥して活物質層を形成するリチウムイオン二次電池用極板のペースト製造方法であって、前記活物質、前記結着剤、前記導電剤、及び前記溶媒を混錬しペーストにする工程と、前記ペーストを真空脱泡処理する工程と、さらに前記ペーストに超音波を付加しながら攪拌する工程とからなり、前記真空脱泡処理する工程は、真空度100torr以上である。   In order to solve the above-mentioned conventional problems, the method for producing a paste for an electrode plate for a lithium secondary battery according to the present invention comprises applying a paste comprising an active material, a binder, a conductive agent, and a solvent to a current collector and drying. A paste manufacturing method for an electrode plate for a lithium ion secondary battery that forms an active material layer, the step of kneading the active material, the binder, the conductive agent, and the solvent into a paste; The process includes a step of vacuum defoaming the paste and a step of stirring the paste while applying ultrasonic waves. The vacuum defoaming step has a degree of vacuum of 100 torr or more.

この本発明のリチウム二次電池用極板のペースト製造を用いることにより、極板ペースト中の溶媒を揮発させることなく気泡を脱泡することができ、極板ペーストに超音波を付加しながら低せん断で撹拌しても活物質等を凝集させることがないため、気泡による極板表面の欠陥や凝集による極板表面のスジや凸部を抑制することができる。こうすることにより、外観不良の少ないリチウムイオン二次電池用の極板を得ることができるものである。   By using the paste manufacturing of the electrode plate for a lithium secondary battery of the present invention, bubbles can be degassed without volatilizing the solvent in the electrode plate paste, and the ultrasonic wave is applied to the electrode plate paste while reducing the bubbles. Even if stirring is performed by shearing, the active material and the like are not aggregated, so that defects on the surface of the electrode plate due to bubbles and streaks and protrusions on the surface of the electrode plate due to aggregation can be suppressed. By doing so, an electrode plate for a lithium ion secondary battery with few appearance defects can be obtained.

本発明によれば、極板ペースト中の溶媒を揮発させることなく気泡を脱泡することができ、極板ペーストを低せん断で撹拌しても活物質等を凝集させることがないため、気泡による極板表面の欠損や凝集による極板表面のスジや凸部を抑制することができる。この結果、外観不良の少ないリチウムイオン二次電池用の極板を得ることができる。   According to the present invention, bubbles can be degassed without volatilizing the solvent in the electrode plate paste, and even if the electrode plate paste is stirred with low shear, the active material and the like are not aggregated. It is possible to suppress streaks and protrusions on the surface of the electrode plate due to defects or aggregation on the surface of the electrode plate. As a result, an electrode plate for a lithium ion secondary battery with few appearance defects can be obtained.

本発明のリチウムイオン二次電池用極板のペースト製造方法は、活物質、結着剤、導電剤、及び溶媒からなるペーストを集電体に塗布し乾燥して活物質層を形成するリチウムイオン二次電池用極板のペースト製造方法であって、前記活物質、前記結着剤、前記導電剤、及び前記溶媒を混錬しペーストにする工程と、前記ペーストを真空脱泡処理する工程と、
さらに前記ペーストに超音波を付加しながら攪拌する工程とからなり、前記真空脱泡処理する工程は、真空度100torr以上である。
The method for producing a paste for an electrode plate for a lithium ion secondary battery according to the present invention comprises applying a paste comprising an active material, a binder, a conductive agent, and a solvent to a current collector and drying to form an active material layer. A method for producing a paste for an electrode plate for a secondary battery, the step of kneading the active material, the binder, the conductive agent, and the solvent into a paste, and the step of subjecting the paste to a vacuum defoaming process. ,
Furthermore, it comprises a step of stirring while applying ultrasonic waves to the paste, and the step of performing the vacuum defoaming treatment has a degree of vacuum of 100 torr or more.

脱泡工程は極板ペースト中に含まれる気泡を脱泡することのより、極板ペーストを集電体上に塗布し乾燥して活物質層を形成する場合、極板表面の欠損を抑制することができ、外観不良の少ない極板を得ることができるようになる。   In the defoaming process, air bubbles contained in the electrode plate paste are degassed, so that when the electrode plate paste is applied on the current collector and dried to form an active material layer, defects on the electrode plate surface are suppressed. Therefore, an electrode plate with few appearance defects can be obtained.

極板ペーストに超音波を付加することにより、低せん断で攪拌しても活物質等の凝集を抑制することができるようになる。極板ペーストを高せん断で撹拌すると活物質等の凝集は抑制できるが、撹拌中に極板ペースト中に気泡を抱き込むことになり、効率の良い脱泡を行えない。   By adding ultrasonic waves to the electrode plate paste, aggregation of the active material or the like can be suppressed even if stirring is performed with low shear. Agitation of the electrode plate paste with high shear can suppress aggregation of the active material and the like, but bubbles are embraced in the electrode plate paste during stirring, and efficient defoaming cannot be performed.

極板ペーストを真空度100torrより小さい真空度で脱泡すると、極板ペースト中に含まれている溶媒の揮発が発生し、極板ペーストの粘度、固形分率が変化することとなる。そのため真空度100torr以上にする必要がある。   When the electrode plate paste is degassed at a degree of vacuum less than 100 torr, the solvent contained in the electrode plate is volatilized, and the viscosity and solid content of the electrode plate paste change. Therefore, the degree of vacuum needs to be 100 torr or more.

本発明の好ましい実施の形態であるリチウムイオン二次電池用極板のペースト製造方法は、前記超音波は、周波数5〜40kHz、振幅10〜100μmが好ましい。   In the paste manufacturing method for an electrode plate for a lithium ion secondary battery according to a preferred embodiment of the present invention, the ultrasonic wave preferably has a frequency of 5 to 40 kHz and an amplitude of 10 to 100 μm.

周波数5kHzより小さく、または振幅10μmより小さい条件では極板ペーストを分散する能力が不十分であり、周波数40kHzより大きく、または振幅100μmより大きい条件では超音波設備が大きいものになってしまい実使用上困難である。このことから超音波は、周波数5〜40kHz、振幅10〜100μmが好ましい。   When the frequency is smaller than 5 kHz or the amplitude is smaller than 10 μm, the ability to disperse the electrode plate paste is insufficient, and when the frequency is larger than 40 kHz or larger than the amplitude of 100 μm, the ultrasonic equipment becomes large and is practically used. Have difficulty. Therefore, it is preferable that the ultrasonic wave has a frequency of 5 to 40 kHz and an amplitude of 10 to 100 μm.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に極板の概略断面図を示す。   FIG. 1 shows a schematic sectional view of the electrode plate.

正極板は、正極終電体2に正極活物質と結着剤を含むペーストを塗布、乾燥、プレス加工することにより正極活物質層1を有する正極板を作製する。   For the positive electrode plate, a positive electrode plate having the positive electrode active material layer 1 is produced by applying a paste containing a positive electrode active material and a binder to the positive electrode current collector 2, drying, and pressing.

次に、負極板は、負極集電体4に負極活物質と結着剤を含むペーストを塗布、乾燥、プレス加工することにより負極活物質層3を有する負極板を作製する。   Next, the negative electrode plate is prepared by applying a paste containing a negative electrode active material and a binder to the negative electrode current collector 4, drying, and pressing to produce a negative electrode plate having the negative electrode active material layer 3.

正極集電体2としては、アルミニウム(以下、Alと略す)製の箔、ラス加工を施した箔、またはエッチング加工を施した箔を使用することできる。正極集電体の厚みは10〜60μmが好ましい。   As the positive electrode current collector 2, a foil made of aluminum (hereinafter abbreviated as Al), a foil subjected to lath processing, or a foil subjected to etching processing can be used. The thickness of the positive electrode current collector is preferably 10 to 60 μm.

正極活物質としては、リチウムイオンをゲストとして受け入れることができるリチウム含有遷移金属化合物を使用することができる。例えば、コバルト、マンガン、ニッケル、クロム、鉄及びバナジウムから選ばれる少なくとも1種類の金属とリチウムの複合金属酸化物、LiCoO2、LiMoO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)LiCrO2、αLiFeO2、LiVO2等が好ましい。 As the positive electrode active material, a lithium-containing transition metal compound that can accept lithium ions as a guest can be used. For example, at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and a composite metal oxide of lithium, LiCoO 2 , LiMoO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 (0 <X <1) LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、溶剤に混錬分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム(以下、SBRと略す)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン(以下、PVDFと略す)、フッ化ビニリデン(以下、VDFと略す)とヘキサフルオロプロピレン(以下、HFPと略す)の共重合体P(VDF−HFP)やポリテトラフルオロエチレン(以下、PTFEと略す)樹脂のディスパージョンが好ましい。   The binder is not particularly limited as long as it can be kneaded and dispersed in a solvent. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (hereinafter abbreviated as SBR). ), An acrylic polymer, a vinyl polymer or the like can be used alone or as a mixture or copolymer of two or more. Examples of the fluorine-based binder include a polyvinylidene fluoride (hereinafter abbreviated as PVDF), a copolymer P (VDF-) of vinylidene fluoride (hereinafter abbreviated as VDF) and hexafluoropropylene (hereinafter abbreviated as HFP). A dispersion of HFP) or polytetrafluoroethylene (hereinafter abbreviated as PTFE) resin is preferable.

導電剤としては、アセチレンブラック(以下、ABと略す)、グラファイト、炭素繊維等を単独、或いは二種類以上の混合物が好ましい。   As the conductive agent, acetylene black (hereinafter abbreviated as AB), graphite, carbon fiber or the like is used alone, or a mixture of two or more kinds is preferable.

増粘材としては、エチレン−ビニルアルコール共重合体、カルボキシルメチルセルロース、メチルセルロース等が好ましく、可塑剤としてはフタル酸ジイソブチル、フタル酸ジエチル、フタル酸ジ−n−ブチル、フタル酸ジプロピル、フタル酸ジヘキシル等のフタル酸エステルが好ましい。   As the thickener, ethylene-vinyl alcohol copolymer, carboxyl methyl cellulose, methyl cellulose and the like are preferable, and as the plasticizer, diisobutyl phthalate, diethyl phthalate, di-n-butyl phthalate, dipropyl phthalate, dihexyl phthalate and the like The phthalate ester is preferred.

溶剤としては、結着剤が溶解できる溶媒が適切である。
有機系の結着剤の場合は、N−メチル−2−ピロリドン(以下、NMPと略す)、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、およびメチルエチルケトン(以下、MEKと略す)等の有機溶媒を単独またはこれらを混合した混合溶剤が好ましい。
水系結着剤の場合は水や温水が好ましい。
As the solvent, a solvent that can dissolve the binder is suitable.
In the case of an organic binder, N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide, hexamethylsulfoxide, hexamethylsulfuramide, An organic solvent such as tetramethylurea, acetone, and methyl ethyl ketone (hereinafter abbreviated as MEK) alone or a mixed solvent obtained by mixing them is preferable.
In the case of an aqueous binder, water or warm water is preferred.

また、上記極板用のペーストを混錬したり、分散したりする時に、各種分散剤、界面活性剤、および安定剤等を必要に応じて添加することも可能である。   Further, when kneading or dispersing the paste for the electrode plate, various dispersants, surfactants, stabilizers and the like can be added as necessary.

負極集電体としては、銅製の箔、ラス加工を施した箔、またはエッチング加工を施した箔を使用することができる。負極集電体の厚みは10〜50μmが好ましい。   As the negative electrode current collector, a copper foil, a lathed foil, or an etched foil can be used. The thickness of the negative electrode current collector is preferably 10 to 50 μm.

負極活物質としては、黒鉛、活性炭、あるいはフェノール樹脂やピッチ等を焼成炭化したものが挙げられる。
特に、リチウムイオン二次電池の安全性やサイクル寿命特性等の観点から、格子面(002)の面間隔(d002)が3.350〜3.400Åである黒鉛型結晶構造を有する炭素材料が好ましい。
Examples of the negative electrode active material include graphite, activated carbon, or a baked carbonized phenol resin or pitch.
In particular, from the viewpoint of the safety and cycle life characteristics of a lithium ion secondary battery, a carbon material having a graphite-type crystal structure with a lattice plane (002) spacing (d 002 ) of 3.350 to 3.400 mm is used. preferable.

結着剤、必要に応じて添加することができる導電剤、増粘材、可塑材は正極と同じものを用いることができる。   As the binder, the conductive agent, the thickener, and the plasticizer that can be added as necessary, the same as the positive electrode can be used.

本発明を実施例と比較例を用いて詳細に説明するが、これらは、本発明を何ら限定するものではない。   The present invention will be described in detail using examples and comparative examples, but these do not limit the present invention.

(実施例1)
負極活物質として球状黒鉛、導電剤として気相成長炭素繊維、結着剤としてP(VDF−HFP)、可塑剤としてフタル酸−n−ジブチル(以下、DBPと略す)を溶媒であるアセトンに混錬分散させた負極ペーストを作製した。
(Example 1)
Spherical graphite as a negative electrode active material, vapor grown carbon fiber as a conductive agent, P (VDF-HFP) as a binder, and phthalate-n-dibutyl (hereinafter abbreviated as DBP) as a plasticizer mixed in acetone as a solvent. A smelted and dispersed negative electrode paste was prepared.

この混練分散の最終段階で脱泡のために500rpmで10分攪拌しながら100torrの真空にし、さらに振幅30μm、周波数20kHzの超音波を付加した。このペーストを集電体として厚さ10μmの銅箔の両面に塗着し、乾燥させた後、プレスすることにより、負極活物質層3を有する負極板を作製した。   In the final stage of the kneading and dispersion, a vacuum of 100 torr was applied while stirring at 500 rpm for 10 minutes for defoaming, and ultrasonic waves with an amplitude of 30 μm and a frequency of 20 kHz were added. This paste was applied as a current collector to both sides of a copper foil having a thickness of 10 μm, dried, and then pressed to prepare a negative electrode plate having the negative electrode active material layer 3.

(実施例2)
脱泡のために200rpmで10分攪拌しながら200torrの真空にし、さらに振幅30μm、周波数20kHzの超音波を付加した以外は、実施例1と同様の負極板を作製した。
(Example 2)
A negative electrode plate similar to that of Example 1 was produced except that a vacuum of 200 torr was applied while stirring at 200 rpm for 10 minutes for defoaming, and ultrasonic waves having an amplitude of 30 μm and a frequency of 20 kHz were added.

(比較例1)
脱泡のために1500rpmで10分攪拌しながら10torrの真空にしたが、超音波を付加しない以外は、実施例1と同様の負極板を作製した。
(Comparative Example 1)
For defoaming, a vacuum of 10 torr was applied while stirring at 1500 rpm for 10 minutes, but a negative electrode plate similar to that of Example 1 was prepared except that no ultrasonic wave was applied.

(比較例2)
脱泡のために200rpmで10分攪拌しながら100torrの真空にしたが、超音波を付加しない以外は、実施例1と同様の負極板を作製した。
(Comparative Example 2)
In order to remove bubbles, a vacuum of 100 torr was obtained while stirring at 200 rpm for 10 minutes, but a negative electrode plate similar to that of Example 1 was produced except that no ultrasonic wave was added.

(実施例3〜7)
脱泡のために200rpmで10分攪拌しながら100torrの真空にし、さらに表2に示した周波数と振幅50μmの超音波を付加した以外は、実施例1と同様の負極板を作製した。
(Examples 3 to 7)
A negative electrode plate similar to that of Example 1 was prepared except that a vacuum of 100 torr was applied while stirring at 200 rpm for 10 minutes for defoaming, and ultrasonic waves having a frequency and an amplitude of 50 μm shown in Table 2 were added.

(実施例8〜12)
脱泡のために200rpmで10分攪拌しながら100torrの真空にし、さらに表
3に示した振幅と周波数30kHzの超音波を付加した以外は、実施例1と同様の負極板を作製した。
(Examples 8 to 12)
A negative electrode plate similar to that of Example 1 was prepared except that a vacuum of 100 torr was applied while stirring at 200 rpm for 10 minutes for defoaming, and ultrasonic waves having an amplitude and a frequency of 30 kHz shown in Table 3 were added.

実施例1〜12と比較例1、2で作製した負極板について、溶剤の揮発、極板の外観、および極板ペーストの造粒の有無について確認した。   About the negative electrode plate produced in Examples 1-12 and Comparative Examples 1 and 2, it confirmed about the volatilization of a solvent, the external appearance of an electrode plate, and the presence or absence of granulation of an electrode plate paste.

以下にそれぞれの評価方法を示す。   Each evaluation method is shown below.

溶剤の揮発の評価方法は、目視で確認し、極板ペーストを混練する装置において、混練釜の上端部の釜上部に溶剤が付着しているか、していないのかを確認した。   The method for evaluating the volatilization of the solvent was confirmed visually, and in an apparatus for kneading the electrode plate paste, it was confirmed whether or not the solvent was attached to the upper part of the upper end of the kneading pot.

極板の外観の評価方法は、目視で確認した。   The evaluation method of the appearance of the electrode plate was confirmed visually.

極板の外観不良数を総生産数で除し、不良率を算出した。   The defect rate was calculated by dividing the number of appearance defects of the electrode plate by the total production number.

極板ペーストの造粒の評価方法は以下の通りである。   The evaluation method of granulation of the electrode plate paste is as follows.

極板ペースト中の粒の大きさを測定する装置である粒ゲージ装置を用い、極板ペーストを粒ゲージ装置の所定の場所に滴下し、その滴下した極板ペーストを平らな金属へらで引いた。その時、スジが観察された部分の粒ゲージ装置の目盛りを読み取り、それにより粒の大きさを測定した。この粒ゲージ装置を用いて30μm以上の粒が確認された場合を不良と見なした。   Using a particle gauge device, which is a device for measuring the size of grains in the electrode plate paste, the electrode plate paste was dropped onto a predetermined place of the particle gauge device, and the dropped electrode plate paste was drawn with a flat metal spatula. . At that time, the scale of the grain gauge device where the streak was observed was read, and the grain size was measured. A case where grains of 30 μm or more were confirmed using this grain gauge device was regarded as defective.

前述したような方法により、溶剤の揮発の有無、極板の外観不良率、および極板ペーストの造粒の有無について評価結果を表1〜3に示す。
Tables 1 to 3 show the evaluation results for the presence or absence of volatilization of the solvent, the appearance defect rate of the electrode plate, and the presence or absence of granulation of the electrode plate paste by the method as described above.

表1の結果から、超音波を付加した実施例1と2は、超音波を付加していない比較例2に比べ、極板の外観不良率が低かった。 From the results in Table 1, Examples 1 and 2 to which ultrasonic waves were added had a lower appearance defect rate of the electrode plate than Comparative Example 2 to which no ultrasonic waves were added.

超音波を付加せず、脱泡時の真空度を10torrとし、高せん断で攪拌した比較例1は、極板ペースト中の溶剤の揮発が発生した。   In Comparative Example 1 in which ultrasonic waves were not added, the degree of vacuum at the time of defoaming was 10 torr, and stirring was performed with high shear, the solvent in the electrode paste was volatilized.

また、高せん断(脱泡時の回転数が1500rpm)で攪拌したため、攪拌時間10分では十分に脱泡できず極板の外観不良率が高い結果となった。   Moreover, since stirring was performed with high shear (the number of revolutions during defoaming was 1500 rpm), the defoaming could not be sufficiently achieved with a stirring time of 10 minutes, resulting in a high appearance defect rate of the electrode plate.

このことから超音波を付加することにより脱泡時の真空度は100torrでも溶剤の揮発を抑え、また短時間に効率よく脱泡ができると言える。   From this, it can be said that by adding ultrasonic waves, even when the degree of vacuum at the time of defoaming is 100 torr, the volatilization of the solvent is suppressed, and defoaming can be efficiently performed in a short time.

表2の結果から、超音波の周波数3kHzの実施例3は、極板ペーストの造粒を抑制できず、極板の外観不良率が高くなった。   From the results shown in Table 2, Example 3 with an ultrasonic frequency of 3 kHz could not suppress granulation of the electrode plate paste, and the appearance defect rate of the electrode plate increased.

超音波の周波数50kHzの実施例7は、極板ペーストの造粒も抑制でき、極板の外観不良率も0.01%と低かった。   In Example 7 with an ultrasonic frequency of 50 kHz, granulation of the electrode plate paste could be suppressed, and the appearance defect rate of the electrode plate was as low as 0.01%.

しかし、超音波の周波数が40kHzを超える場合は、超音波の設備が大きくなり過ぎるため生産性の視点から不向きである。   However, if the ultrasonic frequency exceeds 40 kHz, the ultrasonic equipment becomes too large, which is not suitable from the viewpoint of productivity.

このことから、超音波の周波数は5〜40kHzが好ましいと言える。   From this, it can be said that the frequency of the ultrasonic wave is preferably 5 to 40 kHz.

表3の結果から、超音波の振幅5μmの実施例8は、極板ペーストの造粒を抑制できず、極板の外観不良率が高くなった。   From the results in Table 3, Example 8 having an ultrasonic amplitude of 5 μm could not suppress granulation of the electrode plate paste, and the appearance defect rate of the electrode plate was high.

超音波の振幅200μmの実施例12は、極板ペーストの造粒も抑制でき、極板の外観不良率も0.01%と低かった。   In Example 12 having an ultrasonic amplitude of 200 μm, granulation of the electrode plate paste could be suppressed, and the appearance defect rate of the electrode plate was as low as 0.01%.

しかし、周波数が40kHzを超える場合は、超音波の設備が大きくなり過ぎるため生産性の視点から不向きである。   However, when the frequency exceeds 40 kHz, the ultrasonic equipment becomes too large, which is unsuitable from the viewpoint of productivity.

このことから、超音波の振幅は10〜100μmが好ましいと言える。   From this, it can be said that the ultrasonic amplitude is preferably 10 to 100 μm.

よって、表2と表3の結果から、超音波は、周波数は5〜40kHz、振幅は10〜100μmが好ましいと言える。   Therefore, from the results in Tables 2 and 3, it can be said that the ultrasonic wave preferably has a frequency of 5 to 40 kHz and an amplitude of 10 to 100 μm.

以上のように、本発明のペーストの製造方法によれば、真空度、及び回転数を上げずに
十分な脱泡ができ、極板の外観不良の少ない極板の製造方法を提供することができる。
As described above, according to the method for producing a paste of the present invention, it is possible to provide a method for producing an electrode plate that can perform sufficient defoaming without increasing the degree of vacuum and the number of rotations, and has less appearance defect of the electrode plate. it can.

本発明であるペーストの製造方法は、効率的な脱泡が可能となるのでリチウムイオン二次電池極板の製造分野等として有用である。   The paste production method according to the present invention enables efficient defoaming and is useful in the field of producing lithium ion secondary battery plates.

本発明による極板の概略断面図Schematic sectional view of an electrode plate according to the present invention

符号の説明Explanation of symbols

1 正極集電体
2 正極活物質
3 負極集電体
4 負極活物質層
5 セパレータ







DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material 3 Negative electrode collector 4 Negative electrode active material layer 5 Separator







Claims (2)

活物質、結着剤、導電剤、及び溶媒からなるペーストを集電体に塗布し乾燥して活物質層を形成するリチウムイオン二次電池用極板のペースト製造方法であって、
前記活物質、前記結着剤、前記導電剤、及び前記溶媒を混錬しペーストにする工程と、
前記ペーストを真空脱泡処理する工程と、
さらに前記ペーストに超音波を付加しながら攪拌する工程とからなり、
前記真空脱泡処理する工程は、
真空度100torr以上であるリチウムイオン二次電池用極板のペースト製造方法。
A paste manufacturing method for an electrode plate for a lithium ion secondary battery, wherein a paste comprising an active material, a binder, a conductive agent, and a solvent is applied to a current collector and dried to form an active material layer,
Kneading the active material, the binder, the conductive agent, and the solvent into a paste;
Vacuum defoaming the paste; and
Furthermore, it comprises a step of stirring while adding ultrasonic waves to the paste,
The vacuum defoaming process includes:
A method for producing a paste for an electrode plate for a lithium ion secondary battery having a degree of vacuum of 100 torr or more.
前記超音波は、周波数5〜40kHz、振幅10〜100μmである請求項1に記載のリチウムイオン二次電池用極板のペースト製造方法。


The method for producing a paste for an electrode plate for a lithium ion secondary battery according to claim 1, wherein the ultrasonic wave has a frequency of 5 to 40 kHz and an amplitude of 10 to 100 μm.


JP2005132003A 2005-04-28 2005-04-28 Manufacturing method of paste of electrode for lithium-ion secondary battery Pending JP2006310120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132003A JP2006310120A (en) 2005-04-28 2005-04-28 Manufacturing method of paste of electrode for lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132003A JP2006310120A (en) 2005-04-28 2005-04-28 Manufacturing method of paste of electrode for lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006310120A true JP2006310120A (en) 2006-11-09

Family

ID=37476779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132003A Pending JP2006310120A (en) 2005-04-28 2005-04-28 Manufacturing method of paste of electrode for lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006310120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093288A (en) * 2011-10-27 2013-05-16 Showa Denko Kk Production method of composite material for lithium secondary battery positive electrode
EP2765633A1 (en) 2013-02-12 2014-08-13 Jtekt Corporation Production apparatus and production method for electric storage material
EP3059787A1 (en) * 2015-02-19 2016-08-24 Toyota Jidosha Kabushiki Kaisha Degassing method for electrode paste
US9662806B2 (en) 2014-02-26 2017-05-30 Jtekt Corporation Kneading device
US10374217B2 (en) 2014-02-26 2019-08-06 Jtekt Corporation Apparatus and process for producing electricity storage material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093288A (en) * 2011-10-27 2013-05-16 Showa Denko Kk Production method of composite material for lithium secondary battery positive electrode
EP2765633A1 (en) 2013-02-12 2014-08-13 Jtekt Corporation Production apparatus and production method for electric storage material
US9531007B2 (en) 2013-02-12 2016-12-27 Jtekt Corporation Production apparatus and production method for electric storage material
US9662806B2 (en) 2014-02-26 2017-05-30 Jtekt Corporation Kneading device
US10374217B2 (en) 2014-02-26 2019-08-06 Jtekt Corporation Apparatus and process for producing electricity storage material
EP3059787A1 (en) * 2015-02-19 2016-08-24 Toyota Jidosha Kabushiki Kaisha Degassing method for electrode paste
US9570735B2 (en) 2015-02-19 2017-02-14 Toyota Jidosha Kabushiki Kaisha Degassing method for electrode paste

Similar Documents

Publication Publication Date Title
US9966606B2 (en) Binder composition for power storage devices
TWI542068B (en) A protective film and a composition for producing the same, a slurry, and a power storage device
US8940192B2 (en) Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
CN110993933A (en) Positive electrode material of lithium ion battery, preparation method and lithium ion battery
JP5652633B1 (en) Lithium ion secondary battery composition, lithium ion secondary battery slurry, lithium ion secondary battery electrode, lithium ion secondary battery separator, and lithium ion secondary battery
TWI431842B (en) Electrode binder composition, electrode slurry, electrode, and electrical storage device
JP5499951B2 (en) Secondary battery binder, production method, secondary battery negative electrode composition, and secondary battery
WO2018021073A1 (en) Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
US8563171B2 (en) Electrode slurry improving rate performance of lithium battery and electrode of lithium battery
JP2012028006A (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011258333A (en) Method of manufacturing electrode composite for secondary battery, electrode for secondary battery and secondary battery
JP2006310120A (en) Manufacturing method of paste of electrode for lithium-ion secondary battery
CN113903981A (en) Lithium ion battery and preparation method and application thereof
JP2012138217A (en) Battery manufacturing method
JP5483092B2 (en) Battery, battery electrode and method for producing the same
CN115020696A (en) Positive electrode active material, electrochemical device, and electronic device
JP2014212030A (en) Electrode for electricity storage device and method for producing the same, and electricity storage device
TWI666816B (en) Adhesive composition for power storage device
JP2009252398A (en) Inspection method of composition for forming negative electrode active material layer of lithium secondary battery, and manufacturing method of the battery
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
CN112599878B (en) Treatment method and application of electrode waste
JP2002042787A (en) Lithium secondary battery and manufacturing method for it
JP5924501B2 (en) Slurry for power storage device electrode, power storage device electrode, and method for manufacturing power storage device