JP2002042787A - Lithium secondary battery and manufacturing method for it - Google Patents

Lithium secondary battery and manufacturing method for it

Info

Publication number
JP2002042787A
JP2002042787A JP2000228606A JP2000228606A JP2002042787A JP 2002042787 A JP2002042787 A JP 2002042787A JP 2000228606 A JP2000228606 A JP 2000228606A JP 2000228606 A JP2000228606 A JP 2000228606A JP 2002042787 A JP2002042787 A JP 2002042787A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
secondary battery
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000228606A
Other languages
Japanese (ja)
Inventor
Hiroshi Maruyama
浩 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000228606A priority Critical patent/JP2002042787A/en
Publication of JP2002042787A publication Critical patent/JP2002042787A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery and a manufacturing method for it with excellent binding strength of a negative electrode active material layer and a collector, binding strength of negative electrode active materials, and binding strength to a separator and having excellent discharging characteristics and cycle characteristics. SOLUTION: A carbon material of a negative electrode active material and a binder powder particle are mixed while being applied with pressure and a shearing action, and a part or the whole of the front surface of the carbon material is coated with binder powder particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
及びその製造方法に関し、負極の活物質である炭素材料
の表面改質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery and a method for manufacturing the same, and more particularly to a surface modification of a carbon material as an active material of a negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器の発展はめざましく、各
種の機器が小型軽量化されてきている。それに伴い電源
となる電池に対しても小型軽量化の要望が非常に大き
い。そこで、小型軽量で、かつ高容量で充放電可能な電
池としてリチウムイオンの吸蔵・放出が可能な炭素材料
を負極活物質とし、リチウム含有複合酸化物を正極活物
質として用いたリチウム二次電池が実用化されている。
2. Description of the Related Art In recent years, the development of electronic devices has been remarkable, and various devices have been reduced in size and weight. Accordingly, there is a great demand for a battery as a power source to be smaller and lighter. Therefore, a lithium secondary battery using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material and a lithium-containing composite oxide as a positive electrode active material as a small and lightweight battery capable of charging and discharging with high capacity has been developed. Has been put to practical use.

【0003】さらにリチウム二次電池を薄型化する方法
として、電解液を保持するセパレータ材料にポリマーを
用いたリチウムポリマー電池が、米国特許第52963
18号公報に開示されている。
As a method of further reducing the thickness of a lithium secondary battery, a lithium polymer battery using a polymer as a separator material for holding an electrolyte is disclosed in US Pat. No. 5,296,963.
No. 18 discloses this.

【0004】このような、リチウム二次電池の正極及び
負極の電極板は、電極活物質に必要に応じて、導電剤を
加えた粉末状電極形成材料に、結着剤(バインダー)を
混合し、適切な有機溶媒に混練・分散させて得られる電
極活物質合剤ペーストを、集電体上に塗布して電極活物
質層を形成させることにより得られる。
[0004] Such a positive electrode plate and a negative electrode plate of a lithium secondary battery are prepared by mixing a binder (binder) with a powdery electrode forming material to which a conductive agent is added as required for an electrode active material. An electrode active material mixture paste obtained by kneading and dispersing in an appropriate organic solvent is applied on a current collector to form an electrode active material layer.

【0005】結着剤は、エチレンカーボネート、プロピ
レンカーボネート等を非水溶媒とする非水電解液に対す
る耐久性を必要とし、従来、ポリテトラフルオロエチレ
ンなどのフッ素系樹脂やスチレン−ブタジエン共重合体
などが用いられていたが、近年、より固有抵抗が小さく
薄膜形成性も良好なフッ化ビニリデン系重合体(PVD
F)を結着剤としたリチウム二次電池が実用化されてい
る。しかしながら、これら結着剤と電極活物質との結着
性は十分ではなく、特に負極活物質に炭素材料を用いた
場合には、結着性が悪いために、負極活物質層が集電体
から剥離しやすいばかりでなく、負極活物質同士の結着
強度が弱い為に、負極活物質粒子が負極活物質層から脱
落して遊離し、電池のサイクル寿命特性が悪くなるとい
った問題があった。微視的に見れば、ある部分は黒鉛だ
けが存在し、ある部分は結着剤だけが存在し、必ずしも
均一に混合された状態ではない為である。
[0005] The binder must have durability against a non-aqueous electrolyte using ethylene carbonate, propylene carbonate or the like as a non-aqueous solvent. Conventionally, a binder such as a fluororesin such as polytetrafluoroethylene or a styrene-butadiene copolymer has been used. In recent years, a vinylidene fluoride polymer (PVD) having a lower specific resistance and a better thin film forming property has been used.
A lithium secondary battery using F) as a binder has been put to practical use. However, the binding property between these binders and the electrode active material is not sufficient, and particularly when a carbon material is used as the negative electrode active material, the binding property is poor. In addition to being easily peeled off from the anode, there was a problem that the negative electrode active material particles fell off from the negative electrode active material layer and were released because the binding strength between the negative electrode active materials was weak, thereby deteriorating the cycle life characteristics of the battery. . From a microscopic point of view, a certain portion contains only graphite and a certain portion contains only a binder, and is not necessarily in a uniformly mixed state.

【0006】上述の問題を解決するために、シラン変性
したフッ化ビニリデン系重合体(特開平6−93025
号公報)、カルボキシル基またはカーボネート基を含有
するフッ化ビニリデン系重合体(特開平6−17245
2号公報)、スルホン化したフッ化ビニリデン系重合体
(特開平10−298386号公報)などが開示されて
いる。
In order to solve the above-mentioned problem, a silane-modified vinylidene fluoride-based polymer (JP-A-6-93025) has been proposed.
JP-A-6-17245, a vinylidene fluoride-based polymer containing a carboxyl group or a carbonate group.
No. 2) and a sulfonated vinylidene fluoride polymer (JP-A-10-298386).

【0007】[0007]

【発明が解決しようとする課題】このように共重合等に
より極性基を導入して得られたフッ化ビニリデン重合体
は、結着性が向上するが、電極合剤層は前に述べたよう
に、必要に応じて、電極活物質に、結着剤、導電剤を混
合し、適切な有機溶媒に、混練分散して電極活物質合剤
ペーストにするために、必ずしも均一に混合された状態
であるとはいえず、均一な結着剤分布ができないままで
電極活物質が存在していた。
The vinylidene fluoride polymer obtained by introducing a polar group by copolymerization or the like has an improved binding property, but the electrode mixture layer is formed as described above. In addition, if necessary, a binder and a conductive agent are mixed with the electrode active material, and the mixture is kneaded and dispersed in an appropriate organic solvent to form an electrode active material mixture paste. However, the electrode active material was present without a uniform binder distribution.

【0008】本発明は、少ない結着剤の量でも、負極活
物質層と集電体との結着強度や負極活物質同士の結着強
度及びセパレータとの結着強度に優れ、放電特性やサイ
クル寿命特性に優れたリチウム二次電池及びその製造方
法を提供することを主たる目的とする。
The present invention is excellent in the bonding strength between the negative electrode active material layer and the current collector, the bonding strength between the negative electrode active materials, and the bonding strength with the separator even with a small amount of the binder, and has excellent discharge characteristics. A main object of the present invention is to provide a lithium secondary battery having excellent cycle life characteristics and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明のリチウム二次電池は、リチウム含有複合酸
化物を活物質とする正極と、リチウムイオンの吸蔵・放
出が可能な炭素材料を活物質とする負極と、セパレータ
と、これらに含浸させた非水電解液からなるリチウム二
次電池において、前記炭素材料の表面の一部もしくは全
部を結着剤で被覆したことを特徴とするものである。
In order to achieve the above object, a lithium secondary battery of the present invention comprises a positive electrode using a lithium-containing composite oxide as an active material, and a carbon material capable of inserting and extracting lithium ions. In a lithium secondary battery comprising a negative electrode having an active material of, a separator, and a non-aqueous electrolytic solution impregnated therein, a part or all of the surface of the carbon material is coated with a binder. Things.

【0010】また、本発明のリチウム二次電池の製造方
法は、リチウム含有複合酸化物を活物質とする正極と、
リチウムイオンの吸蔵・放出が可能な炭素材料からなる
活物質と結着剤からなる負極と、セパレータと、これら
に含浸させた非水電解液からなるリチウム二次電池の製
造方法において、前記炭素材料と結着剤粉末粒子を圧
力、せん断作用を与えながら混合することによって、前
記炭素材料の表面の一部もしくは全部を樹脂粉末粒子で
被覆したことを特徴とする製造方法である。
[0010] The method for producing a lithium secondary battery according to the present invention further comprises a positive electrode using a lithium-containing composite oxide as an active material;
In the method for producing a lithium secondary battery comprising a negative electrode comprising an active material comprising a carbon material capable of inserting and extracting lithium ions and a binder, a separator, and a non-aqueous electrolyte impregnated therein, the method comprises the steps of: And the binder powder particles are mixed while giving pressure and shearing action to coat a part or all of the surface of the carbon material with resin powder particles.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。図1は本発明によるリチ
ウムポリマー電池の構成断面図である。正極板1は、正
極活物質層4と正極活物質層に埋没した正極集電体5か
ら構成される。負極板2も同様に負極活物質層6と負極
活物質層に埋没した負極集電体7から構成される。非水
電解液を吸収、保持するポリマーからなるセパレータ3
は、正極板と負極板との間にあり正極板、負極板と熱溶
着により積層一体化されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure of a lithium polymer battery according to the present invention. The positive electrode plate 1 includes a positive electrode active material layer 4 and a positive electrode current collector 5 buried in the positive electrode active material layer. Similarly, the negative electrode plate 2 includes a negative electrode active material layer 6 and a negative electrode current collector 7 buried in the negative electrode active material layer. Separator 3 made of polymer that absorbs and retains non-aqueous electrolyte
Is located between the positive electrode plate and the negative electrode plate, and is laminated and integrated with the positive electrode plate and the negative electrode plate by thermal welding.

【0012】正極集電体5は、アルミニウム製の箔、パ
ンチングメタル、及びエキスパンドメタルからなり、負
極集電体7は、銅製あるいはニッケル製の箔、パンチン
グメタル、及びエキスパンドメタルからなる。
The positive electrode current collector 5 is made of aluminum foil, punched metal, and expanded metal, and the negative electrode current collector 7 is made of copper or nickel foil, punched metal, and expanded metal.

【0013】前記正極活物質層は、正極活物質、導電
剤、結着剤、可塑剤を有機溶媒で混合してなるペースト
を、前記集電体に塗布した後に有機溶媒を乾燥除去して
作製する。また、前記負極活物質層は、負極活物質、結
着剤、必要に応じて導電剤、可塑剤を有機溶媒で混練分
散させたペーストを、前記集電体に塗布した後に有機溶
媒を乾燥除去して作製する。
The positive electrode active material layer is formed by applying a paste obtained by mixing a positive electrode active material, a conductive agent, a binder, and a plasticizer with an organic solvent to the current collector and then drying and removing the organic solvent. I do. The negative electrode active material layer is formed by applying a paste obtained by kneading and dispersing a negative electrode active material, a binder, and a conductive agent and a plasticizer, if necessary, with an organic solvent to the current collector, and then drying and removing the organic solvent. To make.

【0014】正極活物質としては、リチウムイオンをゲ
ストとして受け入れ得るリチウム含有複合酸化物が使用
される。例えば、コバルト、マンガン、ニッケル、クロ
ム、鉄およびバナジウムから選ばれる少なくとも一種類
の金属とリチウムとの複合金属酸化物、LiCoO2
LiMnO2、LiNiO2、LiCoxNi(1-x)
2(0<x<1)、LiCrO2、αLiFeO2、Li
VO2等が好ましい。
As the positive electrode active material, a lithium-containing composite oxide capable of accepting lithium ions as a guest is used. For example, a composite metal oxide of lithium and at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium, LiCoO 2 ,
LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O
2 (0 <x <1), LiCrO 2 , αLiFeO 2 , Li
VO 2 and the like are preferred.

【0015】導電剤としてはアセチレンブラック、グラ
ファイト、炭素繊維等の炭素系導電剤が好ましい。
As the conductive agent, a carbon-based conductive agent such as acetylene black, graphite, or carbon fiber is preferable.

【0016】負極活物質としての炭素材料としては、黒
鉛、活性炭、あるいはフェノール樹脂やピッチ等を焼成
炭化したものがあげられるが、特にこれらに限定される
ものではない。
Examples of the carbon material as the negative electrode active material include graphite, activated carbon, and calcination and carbonized phenol resin or pitch, but are not particularly limited thereto.

【0017】結着剤としては、ポリテトラフルオロエチ
レン、スチレン−ブタジエン共重合体、フッ化ビニリデ
ン重合体(PVDF)、フッ化ビニリデンとヘキサフル
オロプロピレンの共重合体P(VDF+HFP)等があ
げられるが、電解液を吸収・保持するセパレータと同じ
ポリマーを用いることが好ましく、そのポリマーとして
はフッ化ビニリデンとヘキサフルオロプロピレンの共重
合体P(VDF+HFP)が好ましい。
Examples of the binder include polytetrafluoroethylene, styrene-butadiene copolymer, vinylidene fluoride polymer (PVDF), and copolymer P of vinylidene fluoride and hexafluoropropylene (VDF + HFP). It is preferable to use the same polymer as the separator that absorbs and retains the electrolytic solution, and the polymer is preferably a copolymer P (VDF + HFP) of vinylidene fluoride and hexafluoropropylene.

【0018】有機溶媒は、N−メチル−2−ピロリド
ン、N,N−ジメチルホルムアミド、テトラヒドロフラ
ン、ジメチルアセトアミド、ジメチルスルホキシド、ヘ
キサメチルスルホルアミド、テトラメチル尿素、アセト
ン、メチルエチルケトン等の有機系有機溶媒や水であれ
ばよく、これら単独で用いても、混合して用いてもよ
い。
Organic solvents include organic organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide, hexamethylsulfformamide, tetramethylurea, acetone, methylethylketone and the like. Any water may be used, and these may be used alone or as a mixture.

【0019】セパレータは、ポリマーと可塑剤を有機溶
媒で混合してなるペーストを、例えばポリエチレンテレ
フタレート樹脂製のフィルム上に塗布した後に有機溶媒
を乾燥除去して作製する。ポリマーとしてはPVDFあ
るいはP(VDF−HFP)が好ましく、P(VDF−
HFP)が最適である。
The separator is prepared by applying a paste obtained by mixing a polymer and a plasticizer with an organic solvent on, for example, a film made of a polyethylene terephthalate resin and then removing the organic solvent by drying. As the polymer, PVDF or P (VDF-HFP) is preferable.
HFP) is optimal.

【0020】上述した、正極、負極、セパレータを積層
一体化した構成電池をキシレン中に浸漬して可塑剤を抽
出除去し、キシレンを乾燥させる。これをケースに挿入
し非水電解液を注入してリチウム二次電池を作製する。
The above-described battery in which the positive electrode, the negative electrode, and the separator are laminated and integrated is immersed in xylene to extract and remove the plasticizer, and the xylene is dried. This is inserted into a case and a non-aqueous electrolyte is injected to produce a lithium secondary battery.

【0021】ここで、本発明のリチウム二次電池に用い
られる非水電解液は、電解質を非水溶媒中に溶解したも
のである。電解質としては、例えば、LiClO4、L
iBF4、LiPF6等のリチウム塩が用いられる。一
方、非水溶媒としては、例えばプロピレンカーボネー
ト、エチレンカーボネート、エチルメチルカーボネー
ト、ジエチルカーボネート、ジメチルカーボネート、ビ
ニレンカーボネート等の非水溶媒を単独および複数類混
合したものが用いられる。
Here, the non-aqueous electrolyte used in the lithium secondary battery of the present invention is a solution in which an electrolyte is dissolved in a non-aqueous solvent. Examples of the electrolyte include LiClO 4 , L
Lithium salts such as iBF 4 and LiPF 6 are used. On the other hand, as the non-aqueous solvent, for example, one obtained by mixing non-aqueous solvents such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, and vinylene carbonate, and a mixture of a plurality of non-aqueous solvents are used.

【0022】なお、本発明のリチウム二次電池は、上述
の正極、負極、セパレータ、非水電解液を適宣組み合わ
せて構成されるもので、電池自体の形状は、シート状、
円筒型、角型、コイン型、ボタン型等任意の形状に適用
できる。
The lithium secondary battery of the present invention is constructed by appropriately combining the above-described positive electrode, negative electrode, separator and non-aqueous electrolyte. The battery itself has a sheet shape,
It can be applied to any shape such as a cylinder, a square, a coin, and a button.

【0023】図2は、メカノフュージョン装置の概略図
で、処理ケース8内に、炭素材料と結着剤粉末粒子を入
れ、駆動モーター10にて、撹拌せん断羽根9を回転さ
せることにより、圧力、せん断作用を与えながら混合す
る装置である。
FIG. 2 is a schematic view of a mechanofusion apparatus, in which a carbon material and binder powder particles are put into a processing case 8, and a drive motor 10 rotates a stirring / shearing blade 9 so that a pressure and a pressure are reduced. This is a device that mixes while giving a shearing action.

【0024】[0024]

【実施例】以下、実施例、比較例を用いて詳細に説明す
る。
The present invention will be described in detail below with reference to examples and comparative examples.

【0025】(実施例1)負極の活物質材料として黒鉛
を用い、この粉体表面に結着剤としてP(VDF−HF
P)粉末を圧力やせん断作用がかけられるメカノフュー
ジョン装置にて混合し、黒鉛粒子表面にP(VDF−H
FP)粉末粒子を被覆した。この被覆条件は以下の通り
に行なった。
Example 1 Graphite was used as the active material of the negative electrode, and P (VDF-HF) was used as a binder on the surface of the powder.
P) Powder is mixed with a mechanofusion device to which pressure and shearing action is applied, and P (VDF-H
FP) Powder particles were coated. The coating conditions were as follows.

【0026】黒鉛100重量部に対し、P(VDF−H
FP)10重量部混合し、図2に示すようなメカノフュ
ージョン装置にて、高速撹拌せん断羽根を1000rp
mで回転させながら10分間処理を行ない負極活物質合
剤を作製した。得られた黒鉛の表面には、0.6μmの
P(VDF−HFP)の被覆層が形成されていた。
For 100 parts by weight of graphite, P (VDF-H
FP) 10 parts by weight were mixed, and the high-speed stirring shear blade was rotated at 1000 rpm with a mechanofusion device as shown in FIG.
The mixture was treated for 10 minutes while rotating at m to prepare a negative electrode active material mixture. A 0.6 μm P (VDF-HFP) coating layer was formed on the surface of the obtained graphite.

【0027】このようにして作製した負極活物質合剤1
00重量部に有機溶媒であるN−メチル−2―ピロリド
ン45重量部と可塑剤のフタル酸n−ブチル(DBP)
15重量部を混合しペースト化した。ここではこのペー
ストをドクターブレード法にて、厚さ15μmの銅箔の
両面に均一に塗布して乾燥させた後に圧延機で圧延し厚
さ230μmの負極板を作製した。このようにして作製
した負極板を負極板aとする。正極板は、正極活物質と
してLiCoO2100重量部に、結着剤であるP(V
DF−HFP)8重量部及び導電剤であるアセチレンブ
ラック5重量部を、N−メチルピロリドン50重量部と
可塑剤のDBP15重量部を混合しペースト化した。こ
のペーストをドクターブレード法にて、厚さ20μmの
アルミニウム箔の両面に均一に塗布して乾燥させた後に
圧延機で圧延し、厚さ250μmの正極板を作製した。
The thus prepared negative electrode active material mixture 1
The organic solvent N-methyl-2-pyrrolidone 45 parts by weight and the plasticizer n-butyl phthalate (DBP) in 00 parts by weight
15 parts by weight were mixed to form a paste. Here, this paste was uniformly applied to both surfaces of a copper foil having a thickness of 15 μm by a doctor blade method and dried, and then rolled by a rolling mill to produce a negative electrode plate having a thickness of 230 μm. The negative electrode plate manufactured in this manner is referred to as a negative electrode plate a. The positive electrode plate was prepared by adding 100 parts by weight of LiCoO 2 as a positive electrode active material to P (V
8 parts by weight of DF-HFP) and 5 parts by weight of acetylene black as a conductive agent were mixed with 50 parts by weight of N-methylpyrrolidone and 15 parts by weight of DBP as a plasticizer to form a paste. This paste was uniformly applied to both sides of a 20-μm-thick aluminum foil by a doctor blade method and dried, and then rolled by a rolling mill to produce a 250-μm-thick positive electrode plate.

【0028】また、P(VDF−HFP)10重量部を
有機溶媒であるアセトン50重量部で溶解し、可塑剤の
DBP10重量部を添加した混合溶液を調整し、これを
ポリエチレンテレフタレートフィルム上にドクターブレ
ード法にて塗布し、ポリマー電解質のセパレータシート
を作製する。これら、負極、正極、セパレータを積層
し、加熱ローラーに通して一体化し構成電池を作製す
る。前記の積層一体化した構成電池をキシレン中に浸漬
し、DBPを抽出除去し、真空乾燥の後、アルミニウム
箔を中間の一層に用いたラミネートフィルム袋に挿入
し、電解液を注入し、封口し、電池容量が500mAh
の電池Aを得た。
Also, 10 parts by weight of P (VDF-HFP) were dissolved in 50 parts by weight of acetone as an organic solvent to prepare a mixed solution to which 10 parts by weight of a plasticizer DBP was added, and this was placed on a polyethylene terephthalate film by a doctor. It is applied by a blade method to produce a polymer electrolyte separator sheet. The negative electrode, the positive electrode, and the separator are laminated and passed through a heating roller to be integrated to produce a constituent battery. The above-mentioned laminated integrated battery is immersed in xylene, DBP is extracted and removed, and after vacuum drying, an aluminum foil is inserted into a laminated film bag used as an intermediate layer, an electrolytic solution is injected, and sealing is performed. , Battery capacity is 500mAh
Of battery A was obtained.

【0029】(実施例2)P(VDF−HFP)の量を
20重量部にして負極活物質合剤を作製した以外は、実
施例1と同様に作製し、負極板b及び電池Bを得た。得
られた黒鉛の表面には、1.0μmのP(VDF−HF
P)の被覆層が形成されていた。
Example 2 A negative electrode plate b and a battery B were obtained in the same manner as in Example 1 except that the amount of P (VDF-HFP) was changed to 20 parts by weight to prepare a negative electrode active material mixture. Was. On the surface of the obtained graphite, 1.0 μm of P (VDF-HF
The coating layer of P) was formed.

【0030】(比較例1)負極活物質材料の黒鉛表面に
結着剤であるP(VDF−HFP)粉末粒子をメカノフ
ュージョン装置にて混合しなかった。すなわち、黒鉛と
P(VDF−HFP)粉末を撹拌しただけの負極活物質
合剤を用いた以外は、実施例1と同様にて作製し、負極
板c及び電池Cを得た。
Comparative Example 1 P (VDF-HFP) powder particles as a binder were not mixed with a graphite surface of a negative electrode active material by a mechanofusion apparatus. That is, a negative electrode plate c and a battery C were obtained in the same manner as in Example 1, except that a negative electrode active material mixture was used in which only graphite and P (VDF-HFP) powder were stirred.

【0031】(比較例2)P(VDF−HFP)の量を
20重量部とした以外は、比較例1と同様に作製し、負
極板d及び電池Dを得た。
Comparative Example 2 A negative electrode plate d and a battery D were obtained in the same manner as in Comparative Example 1, except that the amount of P (VDF-HFP) was changed to 20 parts by weight.

【0032】(結着強度の測定)実施例1〜2、比較例
1〜2で得られた電極a、電極b、電極c及び電極dを
用いて、負極活物質層表面に粘着テープを接着し、引っ
張り試験機を用いた90度剥離試験により、集電体と負
極活物質層との結着強度を測定した結果を表1に示す。
(Measurement of binding strength) Using the electrodes a, b, c and d obtained in Examples 1 and 2 and Comparative Examples 1 and 2, an adhesive tape was adhered to the surface of the negative electrode active material layer. Table 1 shows the results of measuring the binding strength between the current collector and the negative electrode active material layer by a 90-degree peel test using a tensile tester.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より明らかなように、実施例1〜2で
得られた電極a及び電極bは、比較例1〜2で得られた
電極c及び電極dに比べて結着強度が強いことがわか
る。このように、電極c及び電極dの結着強度が低いの
は、負極活物質である黒鉛と結着剤であるP(VDF−
HFP)が個々に存在し、微視的に見ると不均一であ
り、負極活物質粒子間の結着強度が劣っていることによ
るものと考えられる。一方、電極a及び電極bは、メカ
ノフュージョン装置を用いて、圧力やせん断作用を与え
ながら混合されているので負極活物質表面に結着剤粉末
粒子が均一に被覆されているために負極活物質粒子間の
結着強度及び集電体との結着強度が向上したものと考え
られる。
As is clear from Table 1, the electrodes a and b obtained in Examples 1 and 2 have a higher binding strength than the electrodes c and d obtained in Comparative Examples 1 and 2. I understand. As described above, the binding strength between the electrode c and the electrode d is low because graphite as the negative electrode active material and P (VDF-
HFP) is present individually, is non-uniform when viewed microscopically, and is considered to be due to poor binding strength between the negative electrode active material particles. On the other hand, the electrode a and the electrode b are mixed using a mechanofusion device while applying pressure and shearing action, so that the surface of the negative electrode active material is uniformly coated with the binder powder particles, so that the negative electrode active material is It is considered that the binding strength between the particles and the binding strength with the current collector were improved.

【0035】(放電特性及びサイクル寿命特性)次に、
実施例1〜2、比較例1〜2で得られた電池A、電池
B、電池C及び電池Dを用いて、放電特性及びサイクル
寿命特性を評価し、その結果を表2及び図3に示す。放
電特性は、温度20℃の環境で、300mA(0.6
C)で4.2V定電流定電圧充電を行なって電流値が5
0mA(0.1C)になった時点で充電を終了させた。
その後温度20℃の環境で3.0Vまで定電流放電を行
なった。この時、放電電流の電流値を100mA(0.
2C)、500mA(1.0C)、1000mA(2.
0C)の3通りで行なった。また、サイクル寿命特性
は、温度20℃の環境で、300mA(0.6C)で
4.2V定電流定電圧充電を行なって電流値が50mA
(0.1C)になった時点で充電を終了させ、温度20
℃の環境で300mA(0.6C)の定電流で3.0V
まで放電を行うというサイクルを400サイクル繰り返
した。
(Discharge Characteristics and Cycle Life Characteristics)
Using the batteries A, B, C, and D obtained in Examples 1 and 2 and Comparative Examples 1 and 2, discharge characteristics and cycle life characteristics were evaluated. The results are shown in Table 2 and FIG. . The discharge characteristics were 300 mA (0.6
C), a 4.2V constant current constant voltage charge is performed, and the current value becomes 5
When the current reached 0 mA (0.1 C), charging was terminated.
Thereafter, constant current discharge was performed to 3.0 V in an environment at a temperature of 20 ° C. At this time, the current value of the discharge current is set to 100 mA (0.
2C), 500 mA (1.0 C), 1000 mA (2.
0C). The cycle life characteristics were as follows. In an environment of a temperature of 20 ° C., a current value of 50 mA was obtained by performing 4.2 V constant current constant voltage charging at 300 mA (0.6 C).
(0.1C), the charging is terminated, and the temperature becomes 20
3.0V at 300mA (0.6C) constant current in an environment of ° C
The cycle of discharging until 400 cycles was repeated.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より、実施例1〜2で得られた電池A
及び電池Bは、比較例1〜2で得られた電池C及び電池
Dと比較して、放電特性、特に1000mA(2.0
C)の放電特性が優れていることがわかる。また、図3
から明らかなように、電池A、電池Bは、電池C及び電
池Dと比較して、サイクル寿命特性が優れていることが
わかる。このように電池A及び電池Bの放電特性が優れ
ている理由は、結着強度の測定において述べたように負
極活物質表面が結着剤粉末粒子で被覆され、均一に分布
しているため負極活物質粒子間の結着強度及び集電体と
の結着強度が向上したと考えられ、サイクル寿命特性に
優れているのは、上記理由と結着剤とセパレータに用い
たポリマーが同材質なので充放電サイクルを繰り返して
も剥がれない為と考えられる。
As shown in Table 2, the batteries A obtained in Examples 1 and 2
And the battery B, compared with the batteries C and D obtained in Comparative Examples 1 and 2, had a discharge characteristic, particularly 1000 mA (2.0 mA).
It can be seen that the discharge characteristics of C) are excellent. FIG.
As is clear from the graphs, the batteries A and B have better cycle life characteristics than the batteries C and D. The reason why the discharge characteristics of the batteries A and B are excellent is that the negative electrode active material surface is covered with the binder powder particles and uniformly distributed as described in the measurement of the binding strength. It is considered that the binding strength between the active material particles and the binding strength with the current collector have been improved, and the cycle life characteristics are excellent because the above-mentioned reasons and the binder and the polymer used for the separator are the same material. This is probably because even if the charge / discharge cycle is repeated, it does not peel off.

【0038】[0038]

【発明の効果】以上のことから明らかなように、本発明
のリチウム二次電池及びその製造方法によれば、負極活
物質が結着剤粉末粒子で被覆されているため、放電特性
及びサイクル寿命特性に優れた高性能なリチウム二次電
池を提供することができる。
As is apparent from the above, according to the lithium secondary battery and the method of manufacturing the same of the present invention, since the negative electrode active material is covered with the binder powder particles, the discharge characteristics and the cycle life are reduced. A high-performance lithium secondary battery having excellent characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池の構成断面図FIG. 1 is a sectional view of the configuration of a battery.

【図2】メカノフュージョン装置の概略図FIG. 2 is a schematic diagram of a mechanofusion device.

【図3】サイクル寿命特性図FIG. 3 is a cycle life characteristic diagram.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極活物質層 5 正極集電体 6 負極活物質層 7 負極集電体 8 処理ケース 9 撹拌せん断羽根 10 駆動モーター DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode active material layer 5 Positive electrode current collector 6 Negative electrode active material layer 7 Negative current collector 8 Processing case 9 Stirring shearing blade 10 Drive motor

フロントページの続き Fターム(参考) 5H021 EE10 EE15 5H029 AJ02 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ04 BJ13 CJ03 CJ08 DJ08 DJ12 DJ16 EJ12 EJ14 5H050 AA02 AA07 BA17 CA07 CA08 CA09 CB08 DA03 DA09 DA11 DA19 EA10 EA24 EA28 FA12 FA17 FA18 GA03 GA05 GA10 GA22 GA27 Continued on front page F-term (reference) 5H021 EE10 EE15 5H029 AJ02 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ04 BJ13 CJ03 CJ08 DJ08 DJ12 DJ16 EJ12 EJ14 5H050 AA02 AA07 BA17 CA07 CA08 CA09 CB08 DA03 DA10 FA11 FA18 EA18 FA18 GA10 GA22 GA27

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を活物質とする
正極と、リチウムイオンの吸蔵・放出が可能な炭素材料
からなる活物質と結着剤からなる負極と、セパレータ
と、これらに含浸させた非水電解液からなるリチウム二
次電池において、前記炭素材料の表面の一部もしくは全
部が結着剤で被覆されていることを特徴とするリチウム
二次電池。
1. A positive electrode comprising a lithium-containing composite oxide as an active material, a negative electrode comprising an active material comprising a carbon material capable of inserting and extracting lithium ions and a binder, a separator, and a separator impregnated therein. A lithium secondary battery comprising a non-aqueous electrolyte, wherein part or all of the surface of the carbon material is coated with a binder.
【請求項2】 リチウム含有複合酸化物を活物質とする
正極と、リチウムイオンの吸蔵・放出が可能な炭素材料
からなる活物質と結着剤からなる負極と、セパレータ
と、これらに含浸させた非水電解液からなるリチウム二
次電池の製造方法において、前記炭素材料と結着剤粉末
粒子を圧力、せん断作用を与えながら混合することによ
って、前記炭素材料の表面の一部もしくは全部を結着剤
粉末粒子で被覆したことを特徴とするリチウム二次電池
の製造方法。
2. A positive electrode comprising a lithium-containing composite oxide as an active material, a negative electrode comprising an active material comprising a carbon material capable of inserting and extracting lithium ions and a binder, a separator, and a separator impregnated therein. In the method for producing a lithium secondary battery comprising a non-aqueous electrolyte, the carbon material and the binder powder particles are mixed while applying a pressure and a shearing action to bind a part or all of the surface of the carbon material. A method for producing a lithium secondary battery, wherein the lithium secondary battery is coated with an agent powder particle.
【請求項3】 前記セパレータおよび結着剤が、同材質
のポリマーであることを特徴とする請求項1乃至請求項
2のいずれかに記載のリチウム二次電池およびその製造
方法。
3. The lithium secondary battery according to claim 1, wherein the separator and the binder are polymers of the same material.
【請求項4】 前記ポリマーがフッ化ビニリデンとヘキ
サフルオロプロピレンの共重合体であることを特徴とす
る請求項3に記載のリチウム二次電池およびその製造方
法。
4. The lithium secondary battery according to claim 3, wherein the polymer is a copolymer of vinylidene fluoride and hexafluoropropylene.
JP2000228606A 2000-07-28 2000-07-28 Lithium secondary battery and manufacturing method for it Pending JP2002042787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228606A JP2002042787A (en) 2000-07-28 2000-07-28 Lithium secondary battery and manufacturing method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228606A JP2002042787A (en) 2000-07-28 2000-07-28 Lithium secondary battery and manufacturing method for it

Publications (1)

Publication Number Publication Date
JP2002042787A true JP2002042787A (en) 2002-02-08

Family

ID=18721856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228606A Pending JP2002042787A (en) 2000-07-28 2000-07-28 Lithium secondary battery and manufacturing method for it

Country Status (1)

Country Link
JP (1) JP2002042787A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP2006504234A (en) * 2002-10-23 2006-02-02 イドロ−ケベック Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use
CN102623702A (en) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 Li-ion battery as well as cathode plate and preparation method thereof
CN104335397A (en) * 2012-05-30 2015-02-04 株式会社Lg化学 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
JP2017525087A (en) * 2014-06-03 2017-08-31 アーケマ・インコーポレイテッド Solvent-free electrode manufacturing
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US10547044B2 (en) * 2015-09-01 2020-01-28 Worcester Polytechnic Institute Dry powder based electrode additive manufacturing
US10700341B2 (en) 2012-12-19 2020-06-30 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP4561041B2 (en) * 2002-03-28 2010-10-13 Tdk株式会社 Lithium secondary battery
JP2006504234A (en) * 2002-10-23 2006-02-02 イドロ−ケベック Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use
JP4824930B2 (en) * 2002-10-23 2011-11-30 イドロ−ケベック Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use
CN102623702A (en) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 Li-ion battery as well as cathode plate and preparation method thereof
CN104335397A (en) * 2012-05-30 2015-02-04 株式会社Lg化学 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
JP2015520921A (en) * 2012-05-30 2015-07-23 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US10700341B2 (en) 2012-12-19 2020-06-30 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2017525087A (en) * 2014-06-03 2017-08-31 アーケマ・インコーポレイテッド Solvent-free electrode manufacturing
US10547044B2 (en) * 2015-09-01 2020-01-28 Worcester Polytechnic Institute Dry powder based electrode additive manufacturing

Similar Documents

Publication Publication Date Title
JP6090249B2 (en) Composite active material and method for producing the same
Wu et al. Investigations on high energy lithium-ion batteries with aqueous binder
CN100505390C (en) Lithium ion secondary battery
CN113241424B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN113937289A (en) Dry-process battery pole piece based on graphene, battery and manufacturing method of dry-process battery pole piece
KR100938058B1 (en) Negative electrode for lithium rechargeable battery and lithium rechargeable battery adopting the same
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
JP2015072793A (en) Method for manufacturing nonaqueous electrolyte secondary battery
CN108365164B (en) Method for manufacturing battery
CN114843441B (en) Electrochemical device, method for manufacturing the same, and electronic device
JP5483092B2 (en) Battery, battery electrode and method for producing the same
CN114156487A (en) Pole piece and lithium ion battery
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP2002042787A (en) Lithium secondary battery and manufacturing method for it
JP2017084533A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2005071918A (en) Cathode for lithium ion secondary battery, and lithium ion secondary battery
JP2000195518A (en) Nonaqueous electrolyte secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
KR101122938B1 (en) Preparation method of electrode active material particle
CN114420999A (en) Electrochemical device and electronic device including the same
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP6958342B2 (en) Manufacturing method of laminated electrode body
JP2004273181A (en) Electrode plate for battery
JP6217333B2 (en) Base layer for battery electrode, current collector using the same, electrode and lithium ion secondary battery