JP2006308569A - Impact analysis method - Google Patents

Impact analysis method Download PDF

Info

Publication number
JP2006308569A
JP2006308569A JP2006085267A JP2006085267A JP2006308569A JP 2006308569 A JP2006308569 A JP 2006308569A JP 2006085267 A JP2006085267 A JP 2006085267A JP 2006085267 A JP2006085267 A JP 2006085267A JP 2006308569 A JP2006308569 A JP 2006308569A
Authority
JP
Japan
Prior art keywords
fracture
impact analysis
conditional expression
analysis method
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085267A
Other languages
Japanese (ja)
Other versions
JP4703453B2 (en
Inventor
Yukito Miyaguchi
幸人 宮口
Masaaki Tsutsubuchi
雅明 筒渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006085267A priority Critical patent/JP4703453B2/en
Publication of JP2006308569A publication Critical patent/JP2006308569A/en
Application granted granted Critical
Publication of JP4703453B2 publication Critical patent/JP4703453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact analysis method, capable of accurately realizing impact analysis on complex deformation processes of resin parts. <P>SOLUTION: In the impact analysis method, physical property values indicating mechanical properties of resin materials are set in an analysis program, to evaluate the impact characteristics of resin molded bodies and their failure behaviors. As a failure determination method for determining failure of the resin molded bodies, a ductile failure conditional expression is used to determine the failure. A ductile failure conditional expression, in which stress multi-axiality can be taken into consideration, may be used. Deformation speed dependence may be taken into consideration, in the ductile failure conditional expression for dealing with viscoelasticity characteristics to resins. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂成形体の衝撃負荷時の変形挙動を予測するために用いる衝撃解析方法に関する。   The present invention relates to an impact analysis method used for predicting a deformation behavior of a resin molded body under an impact load.

例えば、自動車用の樹脂内装部品を設計する場合、手間の掛かる実地試験の代わりにコンピュータを用いた衝撃解析方法を活用するのが望ましい。しかしながら、自動車用の樹脂内装部品は、リブ構造のような複雑な形状を有しており、さらに、衝突試験等においては、衝撃エネルギーを吸収するため大きく変形し、部分的に破壊に至る。また、樹脂材料は金属材料と異なり、粘弾性特性を有するため、物性値は歪み速度による影響を受ける。従って、樹脂部品の複雑な変形過程の衝撃解析を精度よく実現する物性値を設定することは難しかった。   For example, when designing resin interior parts for automobiles, it is desirable to use an impact analysis method using a computer instead of a labor-intensive field test. However, resin interior parts for automobiles have a complicated shape such as a rib structure. Further, in a collision test or the like, the resin interior parts are greatly deformed to absorb impact energy and partially break down. In addition, unlike a metal material, a resin material has viscoelastic properties, and thus the physical property value is affected by the strain rate. Therefore, it has been difficult to set physical property values that can accurately realize impact analysis of complicated deformation processes of resin parts.

上記のような衝突試験における衝撃特性を解析するための手法として提案された特許文献1の技術は、速度条件ごとに所定形状の樹脂成形体を用いた実地試験と、破断塑性歪みを変えた衝撃解析とを行い、実地試験結果と衝撃解析結果を比較して速度条件ごとの破断塑性歪みを決定するものである。これにより、歪み速度に対応したリブ部の破壊判定が可能となった。しかしながら、樹脂成形体のリブ部と基板部が一体となっていて、リブ部と基板部双方が破壊するような複雑な破壊挙動は、衝撃解析で再現することができなかった。   The technique of Patent Document 1 proposed as a method for analyzing the impact characteristics in the impact test as described above is based on an actual test using a resin molded body having a predetermined shape for each speed condition, and an impact with changed fracture plastic strain. Analysis and comparing the actual test result and the impact analysis result to determine the breaking plastic strain for each speed condition. Thereby, the fracture determination of the rib portion corresponding to the strain rate becomes possible. However, a complicated fracture behavior in which the rib portion and the substrate portion of the resin molded body are integrated and the rib portion and the substrate portion both break can not be reproduced by impact analysis.

また、衝突試験における衝撃特性を解析するための手法としては特許文献2のように種々の引張試験より得られる歪み速度と破断歪みの関係より破壊判定を行っているものもある。   In addition, as a technique for analyzing impact characteristics in a collision test, there is a technique in which fracture determination is performed based on the relationship between strain rate and fracture strain obtained from various tensile tests as disclosed in Patent Document 2.

一方、金属に関しては、延性破壊条件式を用いてその変形挙動を定量的に把握する試みがなされてきた。また、特許文献3では、弾塑性体(金属材料)の相当塑性歪み−応力多軸度の関係を考慮し、境界条件として与えられる外力を上下に更新しながら、各要素に対して亀裂発生条件を満足するか判定を行い、亀裂進展予測を行っている。   On the other hand, for metals, attempts have been made to quantitatively grasp the deformation behavior using a ductile fracture conditional expression. Further, in Patent Document 3, considering the equivalent plastic strain-stress multiaxiality relationship of the elastoplastic body (metal material), the crack generation condition for each element is updated while the external force given as the boundary condition is updated up and down. Is satisfied, and crack growth is predicted.

特開2003-279456号公報Japanese Patent Laid-Open No. 2003-279456 特開2005-337784号公報JP-A-2005-337784 特開2004-069638号公報JP 2004-069638 A 後藤 学 「延性破壊条件式について」 塑性と加工(日本塑性加工学会誌) 第38巻 第434号 1997年3月 P200〜205Manabu Goto “Conditions for Ductile Fracture” Plasticity and Processing (Journal of the Japan Society for Technology of Plasticity) Vol.38, No.434, March 1997, P200-205 大矢根 守哉 「延性破壊の条件式について」 日本機械学会誌 第75巻 第639号 昭和47年4月 P596〜601Moriya Oyane “Conditions for Ductile Fracture” Journal of the Japan Society of Mechanical Engineers Vol. 75, No. 639 April 1972 P596-601

本発明は、前記事情に鑑みて為されたもので、樹脂成形体の複雑な変形過程の衝撃解析を精度よく実現する衝撃解析方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an impact analysis method for accurately realizing impact analysis of a complicated deformation process of a resin molded body.

すなわち本発明は、解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、樹脂成形体の破壊を判定するための破壊判定法として、延性破壊条件式を用いて破壊判定を行うことを特徴とする衝撃解析方法である。   That is, the present invention sets a physical property value indicating the mechanical properties of a resin material in an analysis program, and in the impact analysis method for evaluating the impact properties and fracture behavior of a resin molded body, As a determination method, it is an impact analysis method characterized by performing a fracture determination using a ductile fracture conditional expression.

また、本発明は、解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、有限要素モデルの各要素について、延性破壊条件式に関する破壊判定値と、延性破壊条件式に関する破壊判定基準値を算出する第1の工程と、第1の工程で求めた延性破壊条件式に関する破壊判定値と、延性破壊条件式に関する破壊判定基準値とを比較して破壊判定を行う第2の工程を有することを特徴とする衝撃解析方法である。   Further, the present invention provides a ductile fracture for each element of a finite element model in an impact analysis method for setting a physical property value indicating a mechanical characteristic of a resin material in an analysis program and evaluating an impact characteristic and a fracture behavior of a resin molded body. A first step of calculating a fracture judgment value related to the conditional formula, a fracture judgment reference value related to the ductile fracture conditional formula, a fracture judgment value related to the ductile fracture conditional formula obtained in the first step, and a fracture judgment related to the ductile fracture conditional formula It is an impact analysis method characterized by having the 2nd process of comparing with a standard value and performing destruction judgment.

本発明の衝撃解析方法によれば、樹脂成形体の複雑な変形過程の衝撃解析を精度よく実現することができる。   According to the impact analysis method of the present invention, impact analysis of a complicated deformation process of a resin molded body can be realized with high accuracy.

請求項1にかかる発明は、解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、樹脂成形体の破壊を判定するための破壊判定法として、延性破壊条件式を用いて破壊判定を行うことを特徴とする衝撃解析方法である。   According to the first aspect of the present invention, in the impact analysis method for setting the physical property value indicating the mechanical characteristics of the resin material in the analysis program and evaluating the impact characteristics and the fracture behavior of the resin molded body, the fracture of the resin molded body is determined. As a failure determination method, an impact analysis method characterized by performing a failure determination using a ductile failure conditional expression.

延性破壊条件式は、金属の破壊挙動を定量的に理解するために、開発されてきた手段である。延性破壊は所定量の変形の後に破壊が起きる点で、脆性破壊等の他の破壊様式と異なっている。一般に延性破壊では、(1)材料内の高い三軸引張場のところでボイドが発生し、(2)新たな発生を伴いながら、成長、合体してボイドが大きくなり、(3)やがて材料が破壊に至るというのがメカニズムである。   The ductile fracture condition is a means that has been developed to quantitatively understand the fracture behavior of metals. Ductile fracture is different from other fracture modes such as brittle fracture in that fracture occurs after a predetermined amount of deformation. In general, in ductile fracture, (1) a void is generated at a high triaxial tensile field in the material, (2) the void grows and merges with new generation, and (3) the material eventually breaks. Is the mechanism.

延性破壊条件式は、主に、塑性加工時の破壊を防ぐことを目的として開発されてきた。延性破壊条件式は、上記のような延性破壊の過程をモデル化し、数式化しようとするもので、非特許文献1に記載されているように、多くのものが提案されている。例えば、非特許文献2において、大矢根は、ボイド欠陥が生成・合体・成長していく過程を多孔質体で近似し、塑性変形によって体積変化をきたすとして、その体積変化の履歴を追跡することで破壊条件式が得られるとして、以下の式(1)を提案した。

Figure 2006308569
The ductile fracture condition formula has been developed mainly for the purpose of preventing fracture during plastic working. Ductile fracture conditional expressions are intended to model and formulate the above-described ductile fracture process, and many are proposed as described in Non-Patent Document 1. For example, in Non-Patent Document 2, Oyane approximates the process in which void defects are generated, coalesced, and grows with a porous body and tracks the volume change history by assuming a volume change due to plastic deformation. The following formula (1) was proposed on the assumption that the fracture condition formula can be obtained.
Figure 2006308569

発明者等は、このような延性破壊条件式が、樹脂成形体の破壊に応用できるのではないかと考え、本発明に至った。樹脂成形体は条件によっては延性的に破壊すると考えられるからである。勿論、金属と樹脂では相違点も大きい。例えば、樹脂は、初期状態において既に多くのボイドを有しており、また、粘弾性を有している点も弾性体である金属とは異なる。   The inventors have considered that such a ductile fracture conditional expression can be applied to the fracture of a resin molded body, and have reached the present invention. This is because the resin molded body is considered to be ductilely broken depending on conditions. Of course, there are significant differences between metals and resins. For example, the resin already has many voids in the initial state, and is different from a metal that is an elastic body in that it has viscoelasticity.

しかしながら、前者については、例えば式(1)は本来ボイド欠陥を有している多孔質体をモデルとしているので、基本的に問題が無いと考えられる。延性破壊条件式の中でも、式(1)のように、3次元的な変形を扱うのに必要と考えられる応力多軸度を考慮した式を用いることによって、より精度良く解析を行うことができる。

Figure 2006308569
However, for the former, for example, Equation (1) is modeled on a porous body that originally has void defects, so it is considered that there is basically no problem. Among the ductile fracture conditional expressions, analysis can be performed with higher accuracy by using an expression that takes into account the multiaxiality of stress that is considered necessary for handling three-dimensional deformation, such as Expression (1). .
Figure 2006308569

樹脂の粘弾性を考慮するためには、歪み速度依存性を考慮した式を用いることが好ましい。例えば、式(2−1)または式(2−2)に示すように、式(1)の右辺に、歪み速度に依存する因子を入れることにより、より精度良く解析を行うことができる。式(2−1)や式(2−2)において、左辺を対数とし、右辺の歪み速度を対数としたのは、一軸引張試験において破断歪みと歪み速度の関係が両対数上で直線近似できるからである。また、ある歪み速度以上では、樹脂はガラス状態になるので、その際は右辺をある一定の値とする。 In order to consider the viscoelasticity of the resin, it is preferable to use a formula that takes into account the strain rate dependency. For example, as shown in Formula (2-1) or Formula (2-2), analysis can be performed with higher accuracy by adding a factor depending on the strain rate to the right side of Formula (1). In formula (2-1) and formula (2-2), the logarithm is the left side and the strain rate on the right side is the logarithm. In the uniaxial tensile test, the relationship between the breaking strain and the strain rate can be linearly approximated on both logarithms. Because. Further, since the resin is in a glass state at a certain strain rate or higher, the right side is set to a certain value.

Figure 2006308569
Figure 2006308569

樹脂の粘弾性特性および、歪み速度が大きい際にガラス状態になることを表現するために、例えば、式(2−1)および式(2−2)を示したが、実験事実を表現できるようにした他の延性破壊条件式を用いるようにしても良い。例えば、大矢根の式(1)を右辺の歪み速度のみを対数とするように変形したものも、場合によっては、有効と思われる。

Figure 2006308569
In order to express the viscoelastic properties of the resin and the fact that it becomes a glass state when the strain rate is large, for example, Equation (2-1) and Equation (2-2) are shown. Other ductile fracture condition formulas may be used. For example, a modification of Oya's equation (1) so that only the strain rate on the right side is a logarithm may be effective in some cases.
Figure 2006308569

本発明の衝撃解析方法を適用する樹脂成形体が、リブ部と基板部とを有する樹脂成形体である場合、該樹脂成形体全体の破壊を判定するための破壊判定法として、延性破壊条件式を用いて破壊判定を行っても良いが、通常、樹脂成形体のリブ部と基板部では衝撃の加わる方向が異なるため、リブ部と基板部では異なる破壊判定法を用いて衝撃解析を行うことが好ましい。リブ部と基板部とを有する樹脂成形体では、基板部では板面に直交する方向に衝撃力が作用するのに対し、リブ部では、概ね板面に沿って衝撃力が作用する。従って、破断に至る過程も異なるので、それぞれに異なる破壊判定法を用いることが好ましい。特に、基板部では前述した延性破壊方向式を用いて破壊判定を行い、リブ部については異なる破壊判定法を用いることが好ましい。   When the resin molded body to which the impact analysis method of the present invention is applied is a resin molded body having a rib portion and a substrate portion, a ductile fracture conditional expression is used as a fracture determination method for determining the fracture of the entire resin molded body. However, since the direction of the impact is different between the rib part and the board part of the resin molded body, the impact analysis should be performed using different fracture judgment methods for the rib part and the board part. Is preferred. In a resin molded body having a rib portion and a substrate portion, an impact force acts in a direction perpendicular to the plate surface at the substrate portion, whereas an impact force acts substantially along the plate surface at the rib portion. Therefore, since the process leading to the rupture is different, it is preferable to use a different rupture determination method for each. In particular, it is preferable to perform the fracture determination using the ductile fracture direction formula described above for the substrate portion and to use a different fracture determination method for the rib portion.

例えば、樹脂成形品にリブ部が有る場合は、リブ部の破壊判定法として、所定形状の樹脂成形体を用いた実地試験と、破断塑性歪みを変えた衝撃解析を複数行い、実地試験結果と衝撃解析結果を比較して決定した破断塑性歪みを用いることが好ましい。   For example, if the resin molded product has a rib part, as a method for determining the fracture of the rib part, conduct a plurality of field tests using a resin molded body of a predetermined shape and impact analysis with different fracture plastic strains. It is preferable to use a fracture plastic strain determined by comparing impact analysis results.

また、樹脂成形品にリブ部が有る場合に、リブ部の破壊判定法として、種々の引張速度での一軸引張試験を行うことで得られる破断歪みと歪み速度との関係を用いることも好ましい。   In addition, when the resin molded product has a rib portion, it is also preferable to use the relationship between the breaking strain and the strain rate obtained by conducting a uniaxial tensile test at various tensile speeds as a method for determining the fracture of the rib portion.

また、本発明の他の態様は、解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、有限要素モデルの各要素について、延性破壊条件式に関する破壊判定値(式(2−1)または式(2−2)の左辺)と延性破壊条件式に関する破壊判定基準値(式(2−1)または式(2−2)の右辺)を算出する第1の工程と、第1の工程で求めた延性破壊条件式に関する破壊判定値(式(2−1)または式(2−2)の左辺)と延性破壊条件式に関する破壊判定基準値(式(2−1)または式(2−2)の右辺)とを比較して破壊判定を行う第2の工程を有する。   According to another aspect of the present invention, in the impact analysis method for setting the physical property value indicating the mechanical characteristics of the resin material in the analysis program and evaluating the impact characteristics and fracture behavior of the resin molded body, each element of the finite element model For the ductile fracture condition formula (the left side of formula (2-1) or formula (2-2)) and the fracture criterion value for the ductile fracture condition formula (formula (2-1) or formula (2-2) ) On the right side) and the fracture determination value (the left side of formula (2-1) or formula (2-2)) and the ductile fracture condition formula regarding the ductile fracture condition formula obtained in the first step. A destruction determination reference value (the right side of Expression (2-1) or Expression (2-2)) is compared with the second step of performing the destruction determination.

以下、図面を参照しつつ発明の好適な実施の形態をさらに詳しく説明する。この実施例では、図1に示すような樹脂成形体の衝撃特性および変形挙動を解析プログラムを用いた衝撃解析手法で予測する。図1には、衝撃解析の対象となる樹脂成形体10を正面から見た形状が、コンピュータグラフィックスを用いて描かれている。この樹脂成形体10は、リブ部12と、平板状の基板部14とからなっている。リブ部12は、一定厚さの複数のリブ板が基板部14からこれに対して直交するように延び、規則的な格子を形成するように構成されている。格子の配列は幅方向×長方向が3×9であり、格子間隔は30mmであり、リブの高さは25mmである。リブ部12には型抜きのためのテーパが形成され、板厚は基端側(基板部側)が1.12mm、先端側が0.69mmである。基板部14は幅150mm、長さ310mm、板厚2mmである。解析モデルを作成する際は、リブ部はシェル要素を、基板部はソリッド要素を用いることが望ましい。   Hereinafter, preferred embodiments of the invention will be described in more detail with reference to the drawings. In this embodiment, the impact characteristics and deformation behavior of a resin molded body as shown in FIG. 1 are predicted by an impact analysis method using an analysis program. In FIG. 1, the shape of a resin molded body 10 as an object of impact analysis as viewed from the front is drawn using computer graphics. The resin molded body 10 includes a rib portion 12 and a flat substrate portion 14. The rib portion 12 is configured such that a plurality of rib plates having a constant thickness extend from the substrate portion 14 so as to be orthogonal to the plate portion 14 to form a regular lattice. The arrangement of the lattice is 3 × 9 in the width direction × length direction, the lattice interval is 30 mm, and the height of the rib is 25 mm. The rib portion 12 is formed with a taper for die cutting, and the plate thickness is 1.12 mm on the base end side (substrate side) and 0.69 mm on the tip end side. The substrate part 14 has a width of 150 mm, a length of 310 mm, and a plate thickness of 2 mm. When creating an analysis model, it is desirable to use a shell element for the rib portion and a solid element for the substrate portion.

この樹脂成形体10について、樹脂材料の機械的特性を示す物性値を設定し、図2に示すような衝突試験における衝撃特性、変形挙動を解析プログラムを用いて解析する。この試験では成形体の先端側をバリア(固体障壁)16に向けて対向配置し、基端側からダート18を5.7m/sと4.5m/sで前進させて成形体に衝突させ、その際の成形体の変形と負荷される荷重を測定する。ダート18は、質量6.8kgで直径165mmの半球の衝突体である。   With respect to the resin molded body 10, physical property values indicating the mechanical characteristics of the resin material are set, and the impact characteristics and deformation behavior in the collision test as shown in FIG. 2 are analyzed using an analysis program. In this test, the front end side of the molded body is opposed to the barrier (solid barrier) 16 and the dart 18 is advanced from the base end side at 5.7 m / s and 4.5 m / s to collide with the molded body. At that time, the deformation of the molded body and the applied load are measured. The dirt 18 is a hemispherical impactor having a mass of 6.8 kg and a diameter of 165 mm.

樹脂材料の機械的特性を示す物性値には、弾性率、ポアソン比、密度、降伏応力、歪み硬化度、および延性破壊条件式の材料定数が含まれる。これらの物性値のうち、降伏応力については種々の引張速度で一軸引張試験を実施することで決定できる。樹脂素材では、降伏応力には通常歪み速度依存性が顕著に見られ、一般に歪み速度が大きいほど降伏応力も大きくなる。   The physical property values indicating the mechanical properties of the resin material include elastic modulus, Poisson's ratio, density, yield stress, strain hardening degree, and material constants of the ductile fracture condition formula. Among these physical property values, the yield stress can be determined by carrying out a uniaxial tensile test at various tensile speeds. In the resin material, the yield stress is usually significantly dependent on the strain rate, and generally the yield stress increases as the strain rate increases.

歪み硬化度については応力多軸度性を考慮することができる。歪み硬化度は降伏後真応力が一定である場合を0とし、真応力が一軸引張試験結果の真応力に従う場合を1とする。   Regarding the strain hardening degree, stress multiaxiality can be considered. The degree of strain hardening is 0 when the true stress after yielding is constant, and 1 when the true stress follows the true stress of the uniaxial tensile test result.

延性破壊条件式は、上述したように、大矢根の式(1)を変形した式(2−1)および式(2−2)を用いる。

Figure 2006308569
As described above, the ductile fracture conditional expression uses the expression (2-1) and the expression (2-2) obtained by modifying the Oyane expression (1).
Figure 2006308569

上記の物性値のうち、延性破壊条件式の材料定数を決定する方法としては、例えば、以下のような方法を採用することができる。

Figure 2006308569
Among the above physical property values, as a method for determining the material constant of the ductile fracture condition formula, for example, the following method can be adopted.
Figure 2006308569

Figure 2006308569
Figure 2006308569

解析モデルの要素は無限に小さくすることはできないため、試験時に亀裂先端で発生する応力や歪みなどが解析では再現できない。そのため、割れの起点は再現できても、割れの伝播は再現できない場合がある。その場合、破壊した要素の周囲は破壊が起こりやすくなるように設定して、計算を行っても良い。例えば、破壊した要素の周囲にある要素の破壊判定を行う際は式(2−1)または式(2−2)の左辺の値に重み付けを行って、破壊しやすくなるようにする。

Figure 2006308569
Since the elements of the analysis model cannot be made infinitely small, the stress and strain generated at the crack tip during the test cannot be reproduced in the analysis. Therefore, even if the starting point of the crack can be reproduced, the propagation of the crack may not be reproduced. In that case, the calculation may be performed by setting the area around the destroyed element so that the destruction is likely to occur. For example, when the destruction determination of the elements around the destroyed element is performed, the value on the left side of the equation (2-1) or the equation (2-2) is weighted so as to facilitate destruction.
Figure 2006308569

また、基板部の1つのソリッド要素が破壊している場合に、その要素の基板部の厚み方向にある全てのソリッド要素を削除するように設定して計算を行っても良い。 Further, when one solid element of the substrate portion is destroyed, the calculation may be performed by setting so as to delete all the solid elements in the thickness direction of the substrate portion of the element.

以下、この実施の形態の衝撃解析方法の工程を、図3のフロー図を用いて説明する。
まず、ステップ1において、有限要素モデルを作成し、静的物性値のデータ、降伏応力の歪み速度依存性のデータ、歪み硬化度の応力多軸度性のデータおよび延性破壊条件式の材料定数を入力し、汎用有限要素プログラムLS-DYNAで計算をスタートする。次に、ステップ2において、ある時刻tが終了時間以下である場合には、各時間ステップで決定される時間増分Δtごとに時間を進める。そして、ステップ3において、汎用有限要素プログラムLS-DYNAで節点の変位を計算し、ステップ4において、時刻tにおける要素を順次選択し、ステップ5においてその要素について、応力と延性破壊条件式の破壊判定値と破壊基準値を計算する。
Hereinafter, the steps of the impact analysis method of this embodiment will be described with reference to the flowchart of FIG.
First, in Step 1, a finite element model is created, static property value data, yield stress strain rate data, strain hardening stress multiaxiality data, and ductile fracture condition material constants. Input and start calculation with the general-purpose finite element program LS-DYNA. Next, in step 2, when a certain time t is less than or equal to the end time, the time is advanced for each time increment Δt determined in each time step. Then, in step 3, the displacement of the node is calculated by the general-purpose finite element program LS-DYNA. In step 4, the elements at time t are sequentially selected. In step 5, the failure determination of the stress and the ductile fracture conditional expression is performed for the element. Calculate the value and failure criterion.

次に、ステップ6において、ステップ5で求めた値が式(2−1)および式(2−2)を充足するかどうかを判定する。破壊判定値が破壊基準値より大きいか等しい場合には、ステップ7においてその要素を削除し、破壊判定値が破壊基準値より小さい場合にはそのままで、ステップ4に戻り、未計算の要素が残っている限り、ステップ5において次の要素に関する応力と延性破壊条件式の破壊判定値と破壊基準値を計算する。このようにして、終了時間までステップ3〜ステップ7を繰り返す。   Next, in Step 6, it is determined whether or not the value obtained in Step 5 satisfies Expression (2-1) and Expression (2-2). If the destruction judgment value is greater than or equal to the destruction criterion value, the element is deleted in step 7, and if the destruction judgment value is smaller than the destruction criterion value, the process returns to step 4 and uncalculated elements remain. As long as this is the case, in step 5, the stress for the next element, the fracture judgment value of the ductile fracture condition formula, and the fracture reference value are calculated. In this way, steps 3 to 7 are repeated until the end time.

図4は、破壊した要素の周囲を破壊しやすくする場合のフロー図である。この方法では、ステップ5でその要素について応力と延性破壊条件式の破壊判定値と破壊基準値を計算した後、ステップ6でその要素と接する要素が破壊しているかどうかを判定する。そして、破壊している場合は、ステップ7において破壊判定値に重み付けを行い、破壊していない場合はそのままで、ステップ8において破壊条件式を満たすかどうかを判定する。そして、破壊判定値が破壊基準値より大きいか等しい場合には、ステップ9においてその要素を削除する。その他の工程は、先の場合と同様である。 FIG. 4 is a flowchart for making it easy to break around the broken element. In this method, after calculating the stress, the fracture determination value of the ductile fracture condition formula and the fracture reference value for the element in step 5, it is determined in step 6 whether the element in contact with the element is broken. If it is destroyed, the destruction determination value is weighted in step 7, and if it is not destroyed, it is left as it is, and in step 8, it is determined whether the destruction conditional expression is satisfied. If the destruction determination value is greater than or equal to the destruction reference value, the element is deleted in step 9. Other steps are the same as in the previous case.

基板部の1つのソリッド要素が破壊したらその要素の基板部の厚み方向にある全てのソリッド要素を削除する場合は、ステップ8において破壊条件式を満たさない場合において、図に破線で示すように、ステップ10で基板部の同じ厚み方向にある要素が破壊しているかを判定し、破壊している場合はステップ9に戻ってその要素を削除するようにする。 When one solid element of the substrate part is destroyed, when all solid elements in the thickness direction of the substrate part of the element are deleted, when the destruction conditional expression is not satisfied in step 8, as shown by a broken line in the figure, In step 10, it is determined whether an element in the same thickness direction of the substrate portion is destroyed. If the element is destroyed, the process returns to step 9 to delete the element.

樹脂成形体の素材として、住友化学株式会社製ノーブレンAZ864E4を用いた場合の衝撃特性および破壊挙動を評価する衝撃解析方法を以下に示す。
(1)解析に用いたソフトウェア
解析ソフト:LS-DYNA version9.70(Livermore
Software Technology Corporation製)
(2)解析方法
空間の離散化:有限要素法
時間積分:中心差分に基づく陽解法
材料モデル:LS-DYNA物性タイプ44(ユーザー定義物性)
(3)物性値
AZ864E4の物性値としては以下のような値を用いた。
弾性率:1000MPa
降伏応力:22.8MPa
ポアソン比:0.40
比重:0.90
真応力−真塑性歪み曲線:図5
降伏応力−歪み速度:図6
歪み硬化度−応力多軸度:図7
延性破壊条件式の材料定数:C=0.970、C=67.2、
=−0.128、C=0.168、
=1.51×1014、C=−1.65
なお、延性破壊条件式(2−1)、(2−2)の材料定数は、上記の材料定数の決定方法の一例で示したように、決めたものである。
An impact analysis method for evaluating impact properties and fracture behavior when Noblen AZ864E4 manufactured by Sumitomo Chemical Co., Ltd. is used as the material of the resin molding is shown below.
(1) Software analysis software used for analysis: LS-DYNA version 9.70 (Livermore
Software Technology Corporation)
(2) Discretization of analysis method space: Finite element method Time integration: Explicit solution based on center difference Material model: LS-DYNA physical property type 44 (user-defined physical property)
(3) Physical property values
The following values were used as physical properties of AZ864E4.
Elastic modulus: 1000MPa
Yield stress: 22.8 MPa
Poisson's ratio: 0.40
Specific gravity: 0.90
True stress-true plastic strain curve: FIG.
Yield stress-strain rate: FIG.
Strain hardening-stress multiaxiality: FIG.
Material constants of the ductile fracture condition formula: C 1 = 0.970, C 2 = 67.2,
C 3 = −0.128, C 4 = 0.168,
C 5 = 1.51 × 10 14 , C 6 = −1.65
The material constants of the ductile fracture conditional expressions (2-1) and (2-2) are determined as shown in the example of the material constant determination method.

解析モデルの要素が基板部の割れの伝播を再現するには大きいと考え、破壊した要素の周囲は破壊が起こりやすくした。
重み係数は、W=3.0とした。
また、基板部のソリッド要素が破壊すると、その要素の基板部の厚み方向にある全てのソリッド要素も削除するようにして計算を行った。
Considering that the elements of the analysis model are large enough to reproduce the propagation of cracks in the substrate part, the surroundings of the broken elements were easily broken.
The weighting factor was set to W = 3.0.
Further, when the solid element of the substrate portion was destroyed, the calculation was performed so as to delete all the solid elements in the thickness direction of the substrate portion of the element.

図1および図2に示す解析対象モデルの成形体10を実際に作成し、衝突速度5.7m/sと4.5m/sにおいて実地試験を行った。次に図2に示す解析モデルに対して上記の物性値を樹脂成形体10に用いて衝突速度5.7m/sと4.5m/sにおいて、本発明の衝撃解析方法で解析を行った(実施例)。具体的には、歪み速度がC以下の場合は式(2−1)を、Cを超える場合は式(2−2)を用いた。

Figure 2006308569
The molded object 10 of the analysis target model shown in FIGS. 1 and 2 was actually created, and a field test was performed at collision speeds of 5.7 m / s and 4.5 m / s. Next, the analysis model shown in FIG. 2 was analyzed by the impact analysis method of the present invention at the collision speeds of 5.7 m / s and 4.5 m / s using the above physical property values for the resin molded body 10 ( Example). Specifically, if the strain rate is C 5 below formula (2-1), if more than C 5 using the equation (2-2).
Figure 2006308569

また、比較例として、図2に示す解析モデルに対して上記の物性値を樹脂成形体10に用いて衝突速度5.7m/sと4.5m/sにおいて、LS-DYNA物性タイプ24(多直線近似等方弾塑性体)で、解析を行った。物性タイプ24では降伏応力の歪み速度依存性を考慮することができ、破断塑性歪みは歪み速度に寄らず一定であるモデルである。破断塑性歪みのデータとしては比較例1では0.56とし、比較例2では0.57とした。   As a comparative example, LS-DYNA physical property type 24 (multiple types) was used at the collision speeds of 5.7 m / s and 4.5 m / s using the above physical property values for the molded resin 10 in the analysis model shown in FIG. Analysis was performed using a linear approximate isotropic elasto-plastic body. In the physical property type 24, the strain rate dependence of the yield stress can be considered, and the fracture plastic strain is a model that is constant regardless of the strain rate. The data of fracture plastic strain was 0.56 in Comparative Example 1 and 0.57 in Comparative Example 2.

実地試験、実施例、比較例1および2の結果である荷重−変位曲線を図8に、基板部要素の破壊の有無について表1に示す。図8において(a)は、速度5.7m/sの結果、(b)は速度4.5m/sの結果である。
解析対象モデルの成形体10の実施例、比較例1および2の衝撃解析結果後の形状を図9(a)、(b)および(c)に示す。
速度5.7m/sおよび速度4.5m/sにおける基板部の破壊状況を図10および図11に示す。図10,図11において(a)は実地試験の結果、(b)は実施例の方法による解析結果、(c)は比較例1の結果、(d)は比較例2の結果である。
A load-displacement curve as a result of the field test, the example, and the comparative examples 1 and 2 is shown in FIG. In FIG. 8, (a) shows the result of the speed 5.7 m / s, and (b) shows the result of the speed 4.5 m / s.
FIGS. 9A, 9B, and 9C show the shapes of the molded object 10 of the analysis target model after the impact analysis results of Comparative Examples 1 and 2. FIG.
FIG. 10 and FIG. 11 show the destruction state of the substrate portion at a speed of 5.7 m / s and a speed of 4.5 m / s. 10 and 11, (a) shows the results of the field test, (b) shows the results of analysis by the method of the example, (c) shows the results of Comparative Example 1, and (d) shows the results of Comparative Example 2.

Figure 2006308569
Figure 2006308569

これらの結果より、比較例の方法では、速度によって基板部が破壊するか破壊しないかの判定を行うことができなかったが、実施例の方法では判定を行うことができた。また、図8の荷重−変位曲線もよく一致していることが分かる。 From these results, in the method of the comparative example, it was not possible to determine whether the substrate portion was broken or not broken depending on the speed, but in the method of the example, it was possible to make a determination. It can also be seen that the load-displacement curves in FIG.

衝撃解析を行う対象の樹脂成形体である。This is a resin molded body to be subjected to impact analysis. 衝撃試験の構成の概略を示す概念図である。It is a conceptual diagram which shows the outline of a structure of an impact test. この実施の形態の衝撃解析方法の工程を示すフロー図である。It is a flowchart which shows the process of the impact analysis method of this embodiment. この実施の形態の衝撃解析方法の工程を示すフロー図である。It is a flowchart which shows the process of the impact analysis method of this embodiment. 樹脂成形体の供試材料の真応力−真塑性歪み曲線である。It is the true stress-true plastic strain curve of the test material of a resin molding. 樹脂成形体の供試材料の降伏応力−歪み速度曲線である。It is a yield stress-strain rate curve of the test material of a resin molding. 樹脂成形体の供試材料の歪み硬化度−応力多軸度曲線である。It is a strain hardening degree-stress multiaxial degree curve of the test material of a resin molding. 樹脂成形体の衝撃特性を評価するための荷重−変位曲線である。It is a load-displacement curve for evaluating the impact characteristic of a resin molding. 樹脂成形体の破壊状況を示す図である。It is a figure which shows the destruction condition of a resin molding. 速度5.7m/sでの衝撃試験における樹脂成形体の基板部の破壊状況を示す図である。It is a figure which shows the destruction condition of the board | substrate part of the resin molding in the impact test at a speed of 5.7 m / s. 速度4.5m/sでの衝撃試験における樹脂成形体の基板部の破壊状況を示す図である。It is a figure which shows the destruction condition of the board | substrate part of the resin molding in the impact test at a speed of 4.5 m / s.

符号の説明Explanation of symbols

10 樹脂成形体
12 リブ部
14 基板部
16 バリア(固体障壁)
18 ダート
DESCRIPTION OF SYMBOLS 10 Resin molding 12 Rib part 14 Substrate part 16 Barrier (solid barrier)
18 Dirt

Claims (7)

解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、
樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、
樹脂成形体の破壊を判定するための破壊判定法として延性破壊条件式を用いて破壊判定を行うことを特徴とする衝撃解析方法。
Set physical properties that indicate the mechanical properties of the resin material in the analysis program,
In the impact analysis method to evaluate the impact characteristics and fracture behavior of resin moldings,
An impact analysis method comprising performing a failure determination using a ductile failure conditional expression as a failure determination method for determining the failure of a resin molded body.
前記延性破壊条件式に応力多軸度を考慮することができる延性破壊条件式を用いたことを特徴とする請求項1に記載の衝撃解析方法。   The impact analysis method according to claim 1, wherein a ductile fracture conditional expression capable of considering multiaxiality of stress is used as the ductile fracture conditional expression. 前記延性破壊条件式に歪み速度依存性を考慮することを特徴とする請求項1又は請求項2に記載の衝撃解析方法。   The impact analysis method according to claim 1 or 2, wherein a strain rate dependency is considered in the ductile fracture conditional expression. 前記樹脂成形体はリブ部および基板部を有し、該基板部については延性破壊条件式を用いて破壊判定を行い、前記リブ部については異なる破壊判定法を用いることを特徴とする請求項1ないし請求項3のいずれかに記載の衝撃解析方法。   The resin molded body has a rib portion and a substrate portion, the substrate portion is subjected to failure determination using a ductile fracture conditional expression, and a different failure determination method is used for the rib portion. The impact analysis method according to claim 3. 前記リブ部の破壊判定の際に、所定形状の樹脂成形体を用いた実地試験と、破断塑性歪みを変えた衝撃解析を複数行い、実地試験結果と衝撃解析結果を比較して決定した破断塑性歪みを用いることを特徴とする請求項4に記載の衝撃解析方法。   Rupture plasticity determined by comparing the actual test results and impact analysis results by conducting multiple tests using a resin molded body of a predetermined shape and impact analysis with different fracture plastic strains when determining the fracture of the rib part. The impact analysis method according to claim 4, wherein strain is used. 前記リブ部の破壊判定の際に、種々の引張速度での一軸引張試験を行うことで得られる破断歪みと歪み速度との関係を用いることを特徴とする請求項4に記載の衝撃解析方法。   5. The impact analysis method according to claim 4, wherein a relationship between a fracture strain and a strain rate obtained by performing a uniaxial tensile test at various tensile speeds is used when determining the fracture of the rib portion. 解析プログラムに樹脂材料の機械的特性を示す物性値を設定し、
樹脂成形体の衝撃特性および破壊挙動を評価する衝撃解析方法において、
有限要素モデルの各要素について、延性破壊条件式に関する破壊判定値と、延性破壊条件式に関する破壊判定基準値を算出する第1の工程と、
第1の工程で求めた延性破壊条件式に関する破壊判定値と、延性破壊条件式に関する破壊判定基準値とを比較して破壊判定を行う第2の工程を有することを特徴とする衝撃解析方法。
Set physical properties that indicate the mechanical properties of the resin material in the analysis program,
In the impact analysis method to evaluate the impact characteristics and fracture behavior of resin moldings,
For each element of the finite element model, a first step of calculating a fracture determination value related to the ductile fracture conditional expression and a fracture determination reference value related to the ductile fracture conditional expression;
An impact analysis method comprising a second step of performing a fracture determination by comparing a fracture determination value related to a ductile fracture conditional expression obtained in the first step and a fracture determination reference value related to a ductile fracture conditional expression.
JP2006085267A 2005-03-30 2006-03-27 Impact analysis method Expired - Fee Related JP4703453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085267A JP4703453B2 (en) 2005-03-30 2006-03-27 Impact analysis method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005098024 2005-03-30
JP2005098024 2005-03-30
JP2005098023 2005-03-30
JP2005098023 2005-03-30
JP2006085267A JP4703453B2 (en) 2005-03-30 2006-03-27 Impact analysis method

Publications (2)

Publication Number Publication Date
JP2006308569A true JP2006308569A (en) 2006-11-09
JP4703453B2 JP4703453B2 (en) 2011-06-15

Family

ID=37475598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085267A Expired - Fee Related JP4703453B2 (en) 2005-03-30 2006-03-27 Impact analysis method

Country Status (1)

Country Link
JP (1) JP4703453B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027026A (en) * 2006-07-19 2008-02-07 Sumitomo Chemical Co Ltd Method for analyzing destructive behavior
CN101676709A (en) * 2008-09-17 2010-03-24 宝理塑料株式会社 Method for predicting impact breakage
JP2012132933A (en) * 2012-03-09 2012-07-12 Mitsubishi Heavy Ind Ltd Deterioration assessing method for heat-resistant steel and deterioration assessing method for turbines
JP2014199219A (en) * 2013-03-29 2014-10-23 三菱化学株式会社 Impact analysis method for fiber-reinforced resin
WO2017077668A1 (en) * 2015-11-05 2017-05-11 ソニー株式会社 Information processing device, information processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191098A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Method for predicting molding defect in spinning machining
JP2002296164A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Impact analysis method and design method for resin molding
JP2003279456A (en) * 2002-03-25 2003-10-02 Sumitomo Chem Co Ltd Impact analytical method
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191098A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Method for predicting molding defect in spinning machining
JP2002296164A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Impact analysis method and design method for resin molding
JP2003279456A (en) * 2002-03-25 2003-10-02 Sumitomo Chem Co Ltd Impact analytical method
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027026A (en) * 2006-07-19 2008-02-07 Sumitomo Chemical Co Ltd Method for analyzing destructive behavior
CN101676709A (en) * 2008-09-17 2010-03-24 宝理塑料株式会社 Method for predicting impact breakage
JP2010071734A (en) * 2008-09-17 2010-04-02 Polyplastics Co Method of estimating impact fracture
JP2012132933A (en) * 2012-03-09 2012-07-12 Mitsubishi Heavy Ind Ltd Deterioration assessing method for heat-resistant steel and deterioration assessing method for turbines
JP2014199219A (en) * 2013-03-29 2014-10-23 三菱化学株式会社 Impact analysis method for fiber-reinforced resin
WO2017077668A1 (en) * 2015-11-05 2017-05-11 ソニー株式会社 Information processing device, information processing method, and program
JPWO2017077668A1 (en) * 2015-11-05 2018-08-16 ソニー株式会社 Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JP4703453B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
Mirone et al. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening
Chakraborty et al. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method
JP6229718B2 (en) Method for determining bending fracture of metal plate, program, and storage medium
Dolinski et al. Modeling adiabatic shear failure from energy considerations
JP4703453B2 (en) Impact analysis method
Bresciani et al. Numerical modelling to reproduce fragmentation of a tungsten heavy alloy projectile impacting a ceramic tile: Adaptive solid mesh to the SPH technique and the cohesive law
JP4329848B2 (en) Structure analysis apparatus and structure analysis method
Hu et al. 3D continuum-discrete coupled modelling of triaxial Hopkinson bar tests on rock under multiaxial static-dynamic loads
JP3708067B2 (en) Method for predicting crack growth and deformation of elastoplastic material
Meguid et al. Development and validation of novel FE models for 3D analysis of peening of strain-rate sensitive materials
JP2010256351A (en) Device and method for estimating fatigue fracture probability of member, and computer program
Torabi et al. Brittle failure of key-hole notches under mixed mode I/II loading with negative mode I contributions
Brannon et al. Validating theories for brittle damage
JP4774515B2 (en) Prediction method of stress corrosion cracking behavior and remaining life of actual structure
Chen et al. Three-dimensional modelling on the impact fracture of glass using a GPGPU-parallelised FDEM
Lee et al. Application of element deletion method for numerical analyses of cracking
Shariati et al. A damage model for granite subjected to quasi‐static contact loading
JP2008027026A (en) Method for analyzing destructive behavior
Ismail et al. How cracks affect the contact characteristics during impact of solid particles on glass surfaces: A computational study using anisotropic continuum damage mechanics
Joun et al. Finite element analysis of central bursting defects occurring in cold forward extrusion
Shterenlikht 3D CAFE modelling of transitional ductile-brittle fracture in steels
Yang et al. Numerical investigation on crack branching during collision for rock-like material
JP5111472B2 (en) Stress analysis method in rolling contact fatigue
JP2006337343A (en) Estimation system of true stress-logarithmic strain curve of structure comprising crystalline polymer
Hu et al. Flow stress of open-celled aluminum foams based on current density and the optimal foam for energy absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees