JP2006308433A - Soil water moving speed deriving method and soil water moving speed measuring instrument - Google Patents

Soil water moving speed deriving method and soil water moving speed measuring instrument Download PDF

Info

Publication number
JP2006308433A
JP2006308433A JP2005131711A JP2005131711A JP2006308433A JP 2006308433 A JP2006308433 A JP 2006308433A JP 2005131711 A JP2005131711 A JP 2005131711A JP 2005131711 A JP2005131711 A JP 2005131711A JP 2006308433 A JP2006308433 A JP 2006308433A
Authority
JP
Japan
Prior art keywords
soil
water
heat
constant
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131711A
Other languages
Japanese (ja)
Other versions
JP4644806B2 (en
Inventor
Yasushi Mori
也寸志 森
Masayuki Ishii
将幸 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2005131711A priority Critical patent/JP4644806B2/en
Publication of JP2006308433A publication Critical patent/JP2006308433A/en
Application granted granted Critical
Publication of JP4644806B2 publication Critical patent/JP4644806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply deriving a soil water moving speed at once while dispensing with considerable computer resources. <P>SOLUTION: This soil water moving speed deriving method is a method for deriving the moving speed of water in soil. Two temperature sensors 21 and 23 and a heater 22 are aligned in the order of the temperature sensor 21, heater 22, and temperature sensor 23, in a straight line along the moving direction of the water in the soil which is a measurement place, and two temperature measurement terminals 21 and 23 are aligned within a distance allowing them to sense heat conduction based on the ON-OFF of the heater 22. The thermal diffusion coefficient k (constant) previously measured of the relevant soil is used to find thermal flux V in the relevant soil based on expression (1) expressed in the form of differentiation. This thermal flux V and the heat capacity C<SB>s</SB>(constant) previously measured of the relevant soil are used to derive the moving speed of the water in the relevant soil based on expression (2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土壌水移動速度導出方法および土壌水移動速度測定装置に関し、特に、1カ所の測定地点のみで水の移動速度をモニタリング可能な土壌水移動速度導出方法および土壌水移動速度測定装置に関する。   The present invention relates to a soil water movement speed derivation method and a soil water movement speed measurement apparatus, and more particularly, to a soil water movement speed derivation method and a soil water movement speed measurement apparatus capable of monitoring the water movement speed only at one measurement point. .

農学や環境工学では、土壌中の水の移動速度を知ることは極めて重要である。例えば、農学分野では、肥料が農作物の生育に有効に使われたのか、それとも、肥料が地下水に流出してしまったのか、を知る上で重要である。また、環境工学の分野では、汚染物質が土壌に漏出した場合に、その土壌汚染物質が移動しているのかいないのか、いるとすれば、地下水領域に到達するのに何年かかるか、ということを知る上で重要である。   In agriculture and environmental engineering, it is extremely important to know the speed of water movement in the soil. For example, in the field of agriculture, it is important to know whether fertilizers have been used effectively for growing crops or whether fertilizers have flowed into groundwater. Also, in the field of environmental engineering, if a pollutant leaks into the soil, whether the soil pollutant is moving or not, how many years will it take to reach the groundwater area? It is important to know.

水の移動を測定するために、従来では、数十センチ離れた2カ所にプローブを差し込んで透水係数を掛け合わせるダルシーの法則に基づく速度導出方法が知られていた。また、ヒータから熱パルスを放出し、数ミリ離れた場所における温度の上昇下降を測定して水の速度を求めるヒートパルス法に基づく方法も知られていた。   In order to measure the movement of water, conventionally, a speed deriving method based on Darcy's law in which probes are inserted at two locations separated by several tens of centimeters and multiplied by a hydraulic conductivity is known. In addition, a method based on a heat pulse method is known in which a heat pulse is emitted from a heater and a temperature rise and fall at a location several millimeters apart is measured to obtain a water velocity.

特開2003−329625号公報JP 2003-329625 A Y.mori,et al 'Multi-Functional Heat Pulse Probe for the Simultaneous Measurement of Soil Water Content,Solute Concentration, and Heat Transport Parameters' Published in Vadose Zone Journal 2:561-571(2003)Y.mori, et al 'Multi-Functional Heat Pulse Probe for the Simultaneous Measurement of Soil Water Content, Solute Concentration, and Heat Transport Parameters' Published in Vadose Zone Journal 2: 561-571 (2003)

しかしながら、従来の技術では以下の問題点があった。
すなわち、土壌中の水は、ほとんどの場合鉛直上方から鉛直下方に流れるため、ダルシーの法則に基づく方法では、2つのプローブのうちの少なくとも一方は深い場所に差し込む必要があり手間がかかるという問題点があった。
However, the conventional technique has the following problems.
That is, in most cases, the water in the soil flows from vertically upward to vertically downward, and in the method based on Darcy's law, it is necessary to insert at least one of the two probes in a deep place, which is troublesome. was there.

また、この方法では、透水係数の非線形性や空間変動性が強いため、求めた数値が真値に近いのかどうか、必ずしも精度が高くないという原理的な問題点があった。   In addition, this method has a problem in principle that the non-linearity and spatial variability of the hydraulic conductivity are strong, and the accuracy is not necessarily high whether the obtained numerical value is close to the true value.

また、ヒートパルス法に基づく方法では、上記のような問題点は解消されるが、解を得るべき方程式が式(3)で表現される積分形式であるので、多大なコンピュータ資源が要求されるという問題点があった。すなわち、一つの解(一カ所の測定点における流速)を得るために、専用のソフトウェアを用いて数分以上の計算が必要となり、実質的にモニタリング(即時計測)が不可能であるという問題点があった。特に、土壌のモニタリングは数十カ所以上で評価する必要がある場合が多く、この問題点がいっそう顕著となってくる。   Further, the method based on the heat pulse method solves the above-mentioned problems, but requires a great amount of computer resources because the equation to be solved is an integral form expressed by Equation (3). There was a problem. That is, in order to obtain one solution (flow velocity at one measurement point), it is necessary to calculate for several minutes or more using dedicated software, and monitoring (immediate measurement) is practically impossible. was there. In particular, soil monitoring often needs to be evaluated at several tens of locations, and this problem becomes even more pronounced.

Figure 2006308433
Figure 2006308433

本発明は上記に鑑みてなされたものであって、多大なコンピュータ資源を必要とせず簡便に土壌水移動速度を即時的に導出可能な方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the method which can derive | lead-out the soil water movement speed instantly simply without requiring a great amount of computer resources.

また、土壌水移動速度を簡便にモニタリング可能で可搬な装置を提供することを目的とする。   Moreover, it aims at providing the portable apparatus which can monitor the soil water moving speed simply.

上記の目的を達成するために、請求項1に記載の土壌水移動速度導出方法は、土壌中の水の移動速度Jを導出する方法であって、測定場所である土壌中の水の移動方向に沿った一直線上に、二つの温度測定端子と熱源端子とを、温度測定端子−熱源端子−温度測定端子の順に、かつ、熱源端子のON−OFFに基づく熱伝導を感受可能な距離内に二つの温度測定端子を並べ、あらかじめ測定しておいた当該土壌の熱拡散係数κ(定数)を用い、微分形式で表現される式(1)に基づいて当該土壌における熱フラックスVを求め、この熱フラックスVとあらかじめ測定しておいた当該土壌の熱容量C(定数)とを用いて、式(2)により当該土壌の水の移動速度Jを導出することを特徴とする。 In order to achieve the above object, the method for deriving the soil water movement speed according to claim 1 is a method for deriving the water movement speed J in the soil, and the direction of water movement in the soil as the measurement location The two temperature measurement terminals and the heat source terminal are placed on a straight line along the line, in the order of the temperature measurement terminal-the heat source terminal-the temperature measurement terminal, and within a distance in which heat conduction based on ON / OFF of the heat source terminal can be sensed. Two temperature measurement terminals are arranged, and the heat diffusion coefficient κ (constant) of the soil that has been measured in advance is used to obtain the heat flux V in the soil based on the expression (1) expressed in the differential form. Using the heat flux V and the heat capacity C s (constant) of the soil that has been measured in advance, the water movement speed J of the soil is derived from Equation (2).

Figure 2006308433
ただし、
:上流側温度測定端子の位置における温度
:下流側温度測定端子の位置における温度
:上流側温度測定端子と熱源端子との間隔(定数)
:下流側温度測定端子と熱源端子との間隔(定数)
t :時間
:熱源端子における熱の印加時間(定数)
Figure 2006308433
However,
T u : temperature at the position of the upstream temperature measurement terminal T d : temperature at the position of the downstream temperature measurement terminal x u : interval between the upstream temperature measurement terminal and the heat source terminal (constant)
x d : Distance between the downstream temperature measurement terminal and the heat source terminal (constant)
t: time t 0 : heat application time (constant) at the heat source terminal

Figure 2006308433
ただし、
:水の熱容量(定数)
Figure 2006308433
However,
C w : heat capacity of water (constant)

すなわち、請求項1にかかる発明は、水の移動方向に沿った方向の一直線上に端子を並べることにより解析式が微分形式で表現可能に簡略化でき、積分形式に比べて著しく計算回数を低減させることが可能となる。なお、
=cρ+cρθ
=cρ
なる式で現され、cおよびcはそれぞれ土壌の比熱と水の密度を、ρおよびρはそれぞれ土壌の密度と水の密度を現す(その具体的数値例は後述する)。また、θは土壌に含まれる体積あたりの水分率(体積含水率)であって、実験状況に応じて変わる値である。なお、Cは定数として扱って差し支えなく、Cに関してもひとくくりの数値として求められるため、実際には土壌の水分量を特に意識する必要はない。なお、熱容量Cや拡散係数κは実験毎に求められる数値である。
In other words, the invention according to claim 1 can simplify the analytical expression so that it can be expressed in the differential form by arranging the terminals on a straight line along the direction of movement of the water, and the number of calculations is significantly reduced compared to the integral form. It becomes possible to make it. In addition,
C s = c s ρ s + c w ρ w θ
C w = c w ρ w
C s and c w represent the specific heat of the soil and the density of water, and ρ s and ρ w represent the density of the soil and the water, respectively (specific numerical examples will be described later). Further, θ is a moisture content per volume (volume moisture content) contained in the soil, and is a value that varies depending on the experimental situation. In addition, C w is not safely be treated as a constant, because it is also required as a number of enclosed people in relation to C s, there is no particular need to be aware of the moisture content of the soil in practice. Incidentally, the heat capacity C s and the diffusion coefficient κ is a value obtained for each experiment.

また、請求項2に記載の土壌水移動速度測定装置は、土壌中の水の移動速度Jを測定する装置であって、外部に露出し、一直線上に温度測定端子−熱源端子−温度測定端子の順に並ばせた熱源端子および二つの温度測定端子と、熱源端子が所定時間tの間発熱するように制御する熱源制御部と、あらかじめ測定しておいた当該土壌の熱拡散係数κ(定数)および当該土壌の熱容量C(定数)を用い微分形式で表現される式(1)および式(2)に基づいて、当該土壌の水の移動速度Jを算出する演算チップと、演算チップにより算出された移動速度Jを出力する出力部と、を具備したことを特徴とする。 Moreover, the soil water moving speed measuring device according to claim 2 is a device for measuring the water moving speed J in the soil, exposed to the outside, and in a straight line, the temperature measuring terminal-the heat source terminal-the temperature measuring terminal. A heat source terminal and two temperature measurement terminals arranged in this order, a heat source control unit for controlling the heat source terminal to generate heat for a predetermined time t 0 , and a thermal diffusion coefficient κ (constant of the soil) measured in advance ) And the heat capacity C s (constant) of the soil based on the equations (1) and (2) expressed in a differential format, And an output unit for outputting the calculated moving speed J.

すなわち、請求項2にかかる発明は、水の移動方向に沿った方向の一直線上に端子を並べることにより解析式が微分形式で表現可能に簡略化でき、積分形式に比べて著しく計算回数を低減させることが可能となるので、解析を担わせる部分をチップ化でき、制御部を含めて、小型の可搬な大きさとすることができる。   In other words, the invention according to claim 2 can simplify the analytical expression so that it can be expressed in the differential form by arranging the terminals on a straight line along the direction of movement of the water, and the number of calculations is significantly reduced compared to the integral form. Therefore, the part responsible for the analysis can be made into a chip, and the size including the control unit can be made small and portable.

なお、本願では、例えば、温度測定端子−熱源端子−温度測定端子が一直線に並んだ方向に垂直な方向にも温度測定端子を複数設け(例えば、上記直線を挟んだ両側)、水の移動方向の補正を加えることも、請求項にいう「水の移動方向に沿った一直線上に、・・・、温度端子を並べる」との記載に含まれるものとする。これは、原理的に、移動方向を補正するだけであり、移動方向に沿って速度Jを算出する本願発明と原理と等価であるからである。   In the present application, for example, a plurality of temperature measurement terminals are provided in a direction perpendicular to the direction in which the temperature measurement terminal, the heat source terminal, and the temperature measurement terminal are aligned (for example, both sides across the straight line), and the water movement direction. It is also included in the description in the claims that “the temperature terminals are arranged on a straight line along the direction of movement of water” in the claims. This is because, in principle, only the movement direction is corrected, and this is equivalent to the present invention for calculating the speed J along the movement direction.

本発明の土壌水移動速度導出方法(請求項1)によれば、水の移動方向に沿った方向の一直線上に端子を並べることにより解析式が微分形式で表現可能に簡略化でき、積分形式に比べて著しく計算回数を低減させることが可能となるので、多大なコンピュータ資源を必要とせず簡便に土壌水移動速度を即時的に導出可能となる。   According to the soil water movement speed derivation method of the present invention (Claim 1), by arranging terminals on a straight line in a direction along the water movement direction, the analytical expression can be simplified so that it can be expressed in a differential form, and an integral form Since the number of calculations can be remarkably reduced as compared with the above, it is possible to easily and immediately derive the soil water movement speed without requiring a large amount of computer resources.

また、本発明の土壌水移動速度導出方法(請求項2)は、水の移動方向に沿った方向の一直線上に端子を並べることにより解析式が微分形式で表現可能に簡略化でき、積分形式に比べて著しく計算回数を低減させることが可能となるので、解析を担わせる部分をチップ化でき、制御部を含めて、小型で可搬な大きさとすることができる。これにより、土壌水移動速度を簡便にモニタリング可能となる。   Moreover, the soil water movement speed deriving method of the present invention (Claim 2) can simplify the analytical expression so that it can be expressed in a differential form by arranging terminals on a straight line in the direction along the water movement direction. Since the number of calculations can be remarkably reduced as compared to the above, the portion responsible for the analysis can be made into a chip, and the size including the control unit can be made small and portable. Thereby, the soil water movement speed can be easily monitored.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
図1は、本発明のモニタリング装置の一構成例を示した図である。図示したように、モニタリング装置1は、プローブ部2と、ケーブル部3と、解析表示部4とから構成される。プローブ部2は、3つの一直線上に並んだ端子から構成されている。これらは、それぞれ、温度センサ21と、ヒータ22と、温度センサ23である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of a monitoring apparatus according to the present invention. As illustrated, the monitoring device 1 includes a probe unit 2, a cable unit 3, and an analysis display unit 4. The probe unit 2 is composed of terminals arranged on three straight lines. These are the temperature sensor 21, the heater 22, and the temperature sensor 23, respectively.

プローブ部2からはケーブル部3が延伸し、このケーブル部3の他端は、解析表示部4に接続可能なソケット31が形成されている。プローブ部2は、ケーブル部3とともに、モニタリングをおこないたい地中、例えば、30cmに埋設される。なお、プローブ部2は、円筒が横になるように、すなわち、温度センサ21とヒータ22と温度センサ23の先端が鉛直方向に並ぶように地中に埋設する。これは、後述するように、これらの端子が水の流れに沿った配置とする必要があるためであるが、地中を含め、ベイドース・ゾーン(Vadose Zone:地表から地下水面までの土壌層)では、ほとんどの場合、水の流れが鉛直方向となるためである。   A cable part 3 extends from the probe part 2, and a socket 31 that can be connected to the analysis display part 4 is formed at the other end of the cable part 3. The probe unit 2 and the cable unit 3 are embedded in the ground to be monitored, for example, 30 cm. The probe unit 2 is embedded in the ground so that the cylinder is horizontal, that is, the tips of the temperature sensor 21, the heater 22, and the temperature sensor 23 are aligned in the vertical direction. This is because, as will be described later, these terminals need to be arranged along the flow of water, but the Vadose Zone (the soil layer from the surface to the groundwater surface) including the underground In most cases, the water flow is vertical.

解析表示部4は、ソケット31の差込口であるソケット受41と、水の移動速度を表示する表示部42と、図には表れない解析部44と、制御部43と、電源45と、を備える。図2は、解析表示部4を中心としたモニタリング装置1の機能的な構成を表したブロック図である。制御部43は、ケーブル部3を介してヒータ22の発熱ON−OFFの制御をおこなう。また、制御部43は、温度センサ21および温度センサ23からの温度情報を取得する。解析部44は、制御部43が駆動したヒータ22の加熱時間や取得した温度情報から、プローブ部2が埋設された土壌の水の移動速度を導出する。導出に用いる解析計算については後述する。得られた移動速度は、表示部42で表示される。   The analysis display unit 4 includes a socket receiver 41 that is an insertion port of the socket 31, a display unit 42 that displays the moving speed of water, an analysis unit 44 that does not appear in the figure, a control unit 43, a power supply 45, Is provided. FIG. 2 is a block diagram showing a functional configuration of the monitoring apparatus 1 with the analysis display unit 4 as the center. The control unit 43 controls heat ON / OFF of the heater 22 via the cable unit 3. Further, the control unit 43 acquires temperature information from the temperature sensor 21 and the temperature sensor 23. The analysis unit 44 derives the moving speed of the water in the soil in which the probe unit 2 is embedded, from the heating time of the heater 22 driven by the control unit 43 and the acquired temperature information. The analytical calculation used for derivation will be described later. The obtained moving speed is displayed on the display unit 42.

このような構成とすれば、計測者が解析表示部4だけ持ち歩き、測定点から地上に露出しているソケット31をつなぐだけで、順次各測定点における水の移動速度をモニタリングできる。なお、使用の態様によっては、総ての測定点に解析表示部4を接続しておき、表示部42の代わりに記録部を設け、制御部43により定期的に水の移動速度を測定して記録部に記録させるようにしてもよい。これにより長期的なモニタリング(一日の変化、季節による変化)が可能となる。   With such a configuration, it is possible to monitor the water movement speed at each measurement point in sequence by the measurer carrying only the analysis display unit 4 and connecting the socket 31 exposed to the ground from the measurement point. Depending on the mode of use, the analysis display unit 4 is connected to all measurement points, a recording unit is provided instead of the display unit 42, and the moving speed of water is measured periodically by the control unit 43. You may make it record on a recording part. This enables long-term monitoring (daily changes, seasonal changes).

次に、解析部44について説明する。本願発明者等は、従来積分形式でしか表現されていなかった水の移動速度に関する解析方法を、所定条件下で本モニタリング装置1を用いた場合に微分形式で表現可能となることを発見した。   Next, the analysis unit 44 will be described. The inventors of the present application have found that an analysis method related to the moving speed of water, which has been conventionally expressed only in an integral form, can be expressed in a differential form when the monitoring apparatus 1 is used under a predetermined condition.

従来では、式(3)を解析することによりVを求めていたが、一点法に基づく場合はノイズの影響を受けて結果の信頼性が低い場合があり、もしくは、最適化同定方法により良い結果を導出する場合は時間がかかりすぎるという不具合点があった。   Conventionally, V has been obtained by analyzing equation (3). However, when it is based on the one-point method, the reliability of the result may be low due to the influence of noise, or a better result by the optimized identification method. There was a problem that it took too much time to derive.

すなわち、本願発明者等は、従来では、式(3)に表される上流および下流の温度の変化を解析するという手法に代えて、上流側の温度センサの温度変化と下流側の温度センサの温度変化とをそれぞれ温度の変化割合として把握する方が、精度的にも計算時間的にも計算に有利であるとの発見に基づき本発明を着想するに至った。   That is, the inventors of the present invention conventionally replaced the method of analyzing the upstream and downstream temperature changes represented by Equation (3) with the temperature change of the upstream temperature sensor and the downstream temperature sensor. The present invention has been conceived based on the discovery that it is more advantageous for calculation both in terms of accuracy and calculation time to grasp each temperature change as a temperature change rate.

詳述すると、本願発明者等は、まず、下流側の温度センサ23の温度Tdの変化を規定する式(4)、および、上流側の温度センサ21の温度変化Tuを規定する式(5)を時間微分し、式(6)および式(7)を導出し、これらを割ることにより、式(1)を得るに至った。   Specifically, the inventors of the present application firstly formula (4) defining the change in the temperature Td of the downstream temperature sensor 23 and formula (5) defining the temperature change Tu of the upstream temperature sensor 21. Was time-differentiated to derive Equation (6) and Equation (7), and these were divided to arrive at Equation (1).

式(1)の表現から分かるように、式(1)は、ヒータに与えた熱qに依存しない。従来では、ヒータの熱は回路に流れる電流を正確に計ってヒータの抵抗値を乗ずることにより算出していたが、加えた熱量qを正確に測定できない場合が多く、これが、従来方法の問題点の原因になっていた。また、ヒータに加えた熱を電気的に正確に求めたとしても、ヒータ部分の構造に熱をロスする部分があれば土壌に加えられた熱は実際には異なり、絶対値から熱フラックスを計算せざるを得ない従来方法式(3)では、ヒータを含み周囲の工作も完璧であることが前提となる。   As can be seen from the expression of equation (1), equation (1) does not depend on the heat q applied to the heater. In the past, the heat of the heater was calculated by accurately measuring the current flowing through the circuit and multiplying it by the resistance value of the heater. However, there are many cases where the applied heat quantity q cannot be measured accurately, which is a problem of the conventional method. It was the cause. In addition, even if the heat applied to the heater is accurately obtained electrically, the heat applied to the soil will actually differ if there is a heat loss in the heater structure, and the heat flux is calculated from the absolute value. In the conventional method (3), which must be done, it is assumed that the surrounding work including the heater is also perfect.

一方、熱のロスにかかわらずヒータを中心とする熱伝搬は(水流による影響は別として)上流下流とも同じと仮定できる。本願発明者等は、この仮定を最大限に生かし、絶対値qの把握が必要ではなくなる方法を研究し、本発明を着想するに至ったのである。   On the other hand, regardless of heat loss, heat propagation centered on the heater can be assumed to be the same for upstream and downstream (apart from the influence of water flow). The inventors of the present application have made the idea of the present invention by making use of this assumption to the maximum and studying a method that does not require the grasp of the absolute value q.

Figure 2006308433
Figure 2006308433

Figure 2006308433
Figure 2006308433

Figure 2006308433
Figure 2006308433

Figure 2006308433
Figure 2006308433

次に、モニタリング装置1を用いた検証実験をおこなうこととした。検証に際しては、マルチステップ流出法試験をおこない、実際の流量値と、モニタリング装置1を用いた解析結果を比較することとした。   Next, a verification experiment using the monitoring device 1 was performed. In the verification, a multi-step outflow test was conducted, and the actual flow rate value was compared with the analysis result using the monitoring device 1.

図3は、本実験系の概略構成を示した図である。これは、ごく簡単に説明すると、円筒容器に鳥取砂丘の砂をつめ、上部から水滴をたらし、下部からしたたり落ちてくる水滴量に基づいて水の移動速度を実測値として測定する装置である。なお、円筒容器にはプローブ部2を差し込み別途数値的にも流速を計算可能なようにしている。なお、上部から水滴をたらす時間を調整し、下部からしたたり落ちる量(排水量)を測定した結果を図4に示す。図で示したように、実験開始から、250分後、500分後、1000分後、1700分後におもだった滴下をおこなうこととした。なお、排水量が変化していない時間は水の移動が生じていない時間である。   FIG. 3 is a diagram showing a schematic configuration of this experimental system. In a very simple way, this is a device that fills a cylindrical container with sand from the Tottori Dune, drops water from the top, and measures the water movement speed as an actual measurement value based on the amount of water dropped from the bottom. is there. A probe portion 2 is inserted into the cylindrical container so that the flow velocity can be calculated numerically separately. In addition, the result of having adjusted the time which drops a water droplet from the upper part, and measuring the amount dripped from the lower part (drainage amount) is shown in FIG. As shown in the figure, it was decided to drop mainly after 250 minutes, 500 minutes, 1000 minutes, and 1700 minutes from the start of the experiment. In addition, the time when the amount of drainage does not change is the time when the movement of water does not occur.

なお、用いたプローブ部2の温度センサ21とヒータ22、および、温度センサ23とヒータ22との距離は、共に6.00mmに調整したものであり、ヒータの加熱時間tは8秒間とした。図5は、上流側の温度センサ(温度センサ21)と、下流側の温度センサ(温度センサ22)、のヒータ加熱前からの温度差の経時変化を示した図である。図示したように、下流側の温度センサは、水流によって多くの熱が効率よく伝搬するので、高いピークを示している。 The distances between the temperature sensor 21 and the heater 22 and the temperature sensor 23 and the heater 22 in the probe unit 2 used were adjusted to 6.00 mm, and the heater heating time t 0 was 8 seconds. . FIG. 5 is a diagram showing the change over time in the temperature difference between the upstream temperature sensor (temperature sensor 21) and the downstream temperature sensor (temperature sensor 22) before heating the heater. As shown in the figure, the temperature sensor on the downstream side shows a high peak because a lot of heat is efficiently propagated by the water flow.

また、このほか、この実験での土壌の熱拡散係数κは6.5×10−7[m−1]であり、比熱c=0.795[Jg−1−1]、充填密度ρ=1.63[g・cm−3]である。なお、これらの数値は実験に先立ちあらかじめ測定しておいたものである。また、水の比熱としてc=4.18[Jg−1K−1]を,密度としてρ=0.998[g・cm−3]を用いた。 In addition, the thermal diffusion coefficient κ of the soil in this experiment is 6.5 × 10 −7 [m 2 s −1 ], the specific heat c s = 0.795 [Jg −1 K −1 ], filling The density ρ s is 1.63 [g · cm −3 ]. These numerical values were previously measured prior to the experiment. Further, c w = 4.18 [Jg −1 K −1 ] was used as the specific heat of water, and ρ w = 0.998 [g · cm −3 ] was used as the density.

図6は、モニタリング装置1による流速測定結果(計算値)と実測値との関係を、滴下速度を様々に振って示した図である。図から明らかなように、モニタリング装置の結果と実測値は、絶対値の観点からも極めて近似した値であることが確認できた。換言すれば、モニタリング装置1は、少なくとも測定した範囲である水の移動速度が、0.1〜27[m/day](1.15×10−6〜3.13×10−4[m/s])の範囲であれば十分信頼性がある結果であるといえる。 FIG. 6 is a diagram showing the relationship between the flow velocity measurement result (calculated value) by the monitoring device 1 and the actual measurement value with various dropping speeds. As can be seen from the figure, it was confirmed that the results of the monitoring device and the actual measurement values were very close in terms of absolute values. In other words, the monitoring device 1 has a water moving speed of at least 0.1 to 27 [m / day] (1.15 × 10 −6 to 3.13 × 10 −4 [m / day). If it is in the range of s]), it can be said that the result is sufficiently reliable.

なお、モニタリング装置1による測定結果は、数秒で得られるのに対し、従来手法では、CPU=2.4GHz、RAM=512MB、解析専用ソフトウェアMATHCAD11(Mathsoft Engineering & Education社製(米国))を用いて、2〜3分必要であった。この点からも、モニタリング装置1の方が、従来手法よりも、大きさの観点からも解析時間の観点からも、コストの観点からも優れていることがいえる。   The measurement result obtained by the monitoring apparatus 1 can be obtained in a few seconds, whereas the conventional method uses CPU = 2.4 GHz, RAM = 512 MB, and analysis-dedicated software MATCAD 11 (Mathsoft Engineering & Education (USA)). 2 to 3 minutes were required. Also from this point, it can be said that the monitoring device 1 is superior to the conventional method from the viewpoint of size, analysis time, and cost.

なお、以上は、いわゆる飽和系、すなわち、土砂間に水のみが充満している系における解析であるが、いわゆる不飽和系、すなわち、土砂間に空気(微細気泡)も混在している系でも同様に測定可能であることを確認した。   Note that the above is an analysis in a so-called saturated system, that is, a system in which only water is filled between sediments. Similarly, it was confirmed that measurement was possible.

本発明を用いれば、農業では効率的な施肥タイミングを知ることができ、また、効果的な施肥量も評価可能となる。また、本発明を用いれば、例えば化学工場周辺では、汚染モニタリングが可能となる。   By using the present invention, it is possible to know an efficient fertilization timing in agriculture and to evaluate an effective fertilization amount. Further, if the present invention is used, for example, contamination monitoring can be performed around a chemical factory.

本発明のモニタリング装置の一構成例を示した図である。It is the figure which showed one structural example of the monitoring apparatus of this invention. 解析表示部を中心としたモニタリング装置の機能的な構成を表したブロック図である。It is a block diagram showing the functional structure of the monitoring apparatus centering on the analysis display part. 本実験系の概略構成を示した図である。It is the figure which showed schematic structure of this experimental system. 本実験系における滴下の様子を示した図である。It is the figure which showed the mode of dripping in this experimental system. 上流側の温度センサと、下流側の温度センサの、ヒータ加熱前からの温度差の経時変化を示した図である。It is the figure which showed the time-dependent change of the temperature difference before a heater heating of an upstream temperature sensor and a downstream temperature sensor. モニタリング装置による流速測定結果と実測値との関係を、滴下速度を様々に振って示した図である。It is the figure which showed the relationship between the flow velocity measurement result by a monitoring apparatus, and a measured value, shaking various dropping speeds.

符号の説明Explanation of symbols

1 モニタリング装置
2 プローブ部
3 ケーブル部
4 解析表示部
21 温度センサ
22 ヒータ
23 温度センサ
31 ソケット
41 ソケット受
42 表示部
43 制御部
44 解析部
45 電源


DESCRIPTION OF SYMBOLS 1 Monitoring apparatus 2 Probe part 3 Cable part 4 Analysis display part 21 Temperature sensor 22 Heater 23 Temperature sensor 31 Socket 41 Socket receptacle 42 Display part 43 Control part 44 Analysis part 45 Power supply


Claims (2)

土壌中の水の移動速度Jを導出する方法であって、
測定場所である土壌中の水の移動方向に沿った一直線上に、二つの温度測定端子と熱源端子とを、温度測定端子−熱源端子−温度測定端子の順に、かつ、熱源端子のON−OFFに基づく熱伝導を感受可能な距離内に二つの温度測定端子を並べ、
あらかじめ測定しておいた当該土壌の熱拡散係数κ(定数)を用い、微分形式で表現される式(1)に基づいて当該土壌における熱フラックスVを求め、
この熱フラックスVとあらかじめ測定しておいた当該土壌の熱容量C(定数)とを用いて、式(2)により当該土壌の水の移動速度Jを導出することを特徴とする土壌水移動速度導出方法。
Figure 2006308433
:上流側温度測定端子の位置における温度
:下流側温度測定端子の位置における温度
:上流側温度測定端子と熱源端子との間隔(定数)
:下流側温度測定端子と熱源端子との間隔(定数)
t :時間
:熱源端子における熱の印加時間(定数)
Figure 2006308433
:水の熱容量(定数)
A method for deriving a movement speed J of water in soil,
Two temperature measurement terminals and a heat source terminal are placed on a straight line along the direction of movement of water in the soil, which is the measurement location, in the order of the temperature measurement terminal, the heat source terminal, and the temperature measurement terminal, and the heat source terminal is turned on and off. Line up two temperature measuring terminals within a distance that can sense heat conduction based on
Using the thermal diffusion coefficient κ (constant) of the soil that has been measured in advance, the heat flux V in the soil is determined based on the equation (1) expressed in the differential form,
Using this heat flux V and the heat capacity C s (constant) of the soil that has been measured in advance, the water movement speed J of the soil is derived from Equation (2). Derivation method.
Figure 2006308433
T u : temperature at the position of the upstream temperature measurement terminal T d : temperature at the position of the downstream temperature measurement terminal x u : interval between the upstream temperature measurement terminal and the heat source terminal (constant)
x d : Distance between the downstream temperature measurement terminal and the heat source terminal (constant)
t: time t 0 : heat application time (constant) at the heat source terminal
Figure 2006308433
C w : heat capacity of water (constant)
土壌中の水の移動速度Jを測定する装置であって、
外部に露出し、一直線上に温度測定端子−熱源端子−温度測定端子の順に並ばせた熱源端子および二つの温度測定端子と、
熱源端子が所定時間tの間発熱するように制御する熱源制御部と、
あらかじめ測定しておいた当該土壌の熱拡散係数κ(定数)および当該土壌の熱容量C(定数)を用い微分形式で表現される式(1)および式(2)に基づいて、当該土壌の水の移動速度Jを算出する演算チップと、
演算チップにより算出された移動速度Jを出力する出力部と、
を具備したことを特徴とする土壌水移動速度測定装置。

A device for measuring the speed of movement J of water in the soil,
A heat source terminal and two temperature measurement terminals that are exposed to the outside and arranged in the order of temperature measurement terminal-heat source terminal-temperature measurement terminal in a straight line;
A heat source controller that controls the heat source terminal to generate heat for a predetermined time t 0 ;
Based on equations (1) and (2) expressed in a differential form using the thermal diffusion coefficient κ (constant) of the soil and the heat capacity C s (constant) of the soil measured in advance, An arithmetic chip for calculating the water movement speed J;
An output unit for outputting the moving speed J calculated by the arithmetic chip;
An apparatus for measuring the rate of movement of soil water, comprising:

JP2005131711A 2005-04-28 2005-04-28 Soil water movement speed deriving method and soil water movement speed measuring device Active JP4644806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131711A JP4644806B2 (en) 2005-04-28 2005-04-28 Soil water movement speed deriving method and soil water movement speed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131711A JP4644806B2 (en) 2005-04-28 2005-04-28 Soil water movement speed deriving method and soil water movement speed measuring device

Publications (2)

Publication Number Publication Date
JP2006308433A true JP2006308433A (en) 2006-11-09
JP4644806B2 JP4644806B2 (en) 2011-03-09

Family

ID=37475492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131711A Active JP4644806B2 (en) 2005-04-28 2005-04-28 Soil water movement speed deriving method and soil water movement speed measuring device

Country Status (1)

Country Link
JP (1) JP4644806B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101813A (en) * 2008-10-25 2010-05-06 Kajima Corp Method and device for measuring vertical flow velocity of ground water
CN106442940A (en) * 2016-10-26 2017-02-22 成都信息工程大学 Soil information automatic monitor based on two-dimensional code fruit whole-course multi-source information tracing
KR20180065610A (en) * 2016-12-08 2018-06-18 한국과학기술원 Apparatus for measuring thermal conductivity
CN114674880A (en) * 2022-03-11 2022-06-28 中国地质大学(武汉) Device for simulating migration-diffusion process of pollutants between karsts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929464B2 (en) * 2007-02-28 2012-05-09 国立大学法人島根大学 Soil management method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329625A (en) * 2002-05-15 2003-11-19 Japan Science & Technology Corp Method of detecting soil pollution caused by organic liquid substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329625A (en) * 2002-05-15 2003-11-19 Japan Science & Technology Corp Method of detecting soil pollution caused by organic liquid substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010049526, 森也寸志,石井将幸, "熱パルスセンサーによる土壌水流動の直接測定", 島根大学生物資源科学部研究報告, 20040831, 第9号, 島根大学 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101813A (en) * 2008-10-25 2010-05-06 Kajima Corp Method and device for measuring vertical flow velocity of ground water
CN106442940A (en) * 2016-10-26 2017-02-22 成都信息工程大学 Soil information automatic monitor based on two-dimensional code fruit whole-course multi-source information tracing
KR20180065610A (en) * 2016-12-08 2018-06-18 한국과학기술원 Apparatus for measuring thermal conductivity
KR101881921B1 (en) 2016-12-08 2018-07-26 한국과학기술원 Apparatus for measuring thermal conductivity
CN114674880A (en) * 2022-03-11 2022-06-28 中国地质大学(武汉) Device for simulating migration-diffusion process of pollutants between karsts

Also Published As

Publication number Publication date
JP4644806B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
Di Prima Automated single ring infiltrometer with a low-cost microcontroller circuit
Whalley et al. Measurement of the matric potential of soil water in the rhizosphere
JP4644806B2 (en) Soil water movement speed deriving method and soil water movement speed measuring device
Bryant et al. Evaluating oxygen fluxes using microprofiles from both sides of the sediment‐water interface
CN207675681U (en) A kind of materials for wall thermal conductivity measuring apparatus
US20180088099A1 (en) Method and apparatus for robotic, in-pipe water quality testing
Rocha et al. Void fraction measurement and signal analysis from multiple-electrode impedance sensors
JP4421627B2 (en) Heated groundwater logging method, heated groundwater logging sensor and measuring device for heated groundwater logging
US9702745B2 (en) Characterizing multiphase fluid flow
US9625399B2 (en) Device for determining thermal conductivity and methods for the use thereof
CN103376138A (en) Vertical flow measurement device and current meter in underground water monitoring well and detection method
Watanabe et al. Micro‐chilled‐mirror hygrometer for measuring water potential in relatively dry and partially frozen soils
US5339694A (en) Monitoring probe for groundwater flow
CN106560709A (en) Outburst water quality pollution source tracing system and outburst water quality pollution source tracing method
Ren et al. Comparing heat‐pulse and time domain reflectometry soil water contents from thermo‐time domain reflectometry probes
US6393925B1 (en) Groundwater velocity probe
Lentz et al. An automated vacuum extraction control system for soil water percolation samplers
US11543377B2 (en) Sensing apparatus and sensing method
ATE514056T1 (en) SENSOR FOR LIQUID MEASUREMENT AND FILL LEVEL MEASUREMENT
WO2009066990A2 (en) Apparatus for soil nutrient analysis
Skinner et al. A null-buoyancy thermal flow meter with potential application to the measurement of the hydraulic conductivity of soils
US9404952B2 (en) Conductivity measurement of fluids
CN206740572U (en) A kind of device of continuous demarcation soil moisture content probe
JP5944730B2 (en) Construction management method for residual soil saturation
KR101737506B1 (en) Multiple liquid level sensor and method for measuring liquid level using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150