JP2006308275A - Exhaust gas combustion device and method - Google Patents

Exhaust gas combustion device and method Download PDF

Info

Publication number
JP2006308275A
JP2006308275A JP2006043510A JP2006043510A JP2006308275A JP 2006308275 A JP2006308275 A JP 2006308275A JP 2006043510 A JP2006043510 A JP 2006043510A JP 2006043510 A JP2006043510 A JP 2006043510A JP 2006308275 A JP2006308275 A JP 2006308275A
Authority
JP
Japan
Prior art keywords
exhaust gas
furnace
combustion
combustion treatment
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006043510A
Other languages
Japanese (ja)
Other versions
JP4876621B2 (en
JP2006308275A5 (en
Inventor
Takeyoshi Akatsuka
健宜 赤塚
Masayoshi Washiyama
正芳 鷲山
Makoto Shigematsu
誠 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006043510A priority Critical patent/JP4876621B2/en
Publication of JP2006308275A publication Critical patent/JP2006308275A/en
Publication of JP2006308275A5 publication Critical patent/JP2006308275A5/ja
Application granted granted Critical
Publication of JP4876621B2 publication Critical patent/JP4876621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas combustion device and its method excellent in a decomposition process and making gas innoxious by continuously and surely burning toxic exhaust gas of large environmental load. <P>SOLUTION: In the exhaust gas combustion furnace in an approximately cylinder form having two or more exhaust gas introduction ducts into the furnace, a duct A is mounted in parallel with a center axis of which introduction port includes a center point of an end face of the furnace and one or more ducts B are provided so that at least part of them is mounted on an approximate cylinder surface of the furnace in a direction except for at 90° to a contact surface of the approximate cylinder surface of the furnace. In the exhaust gas combustion processing device, the introduction port of the duct B is mounted at a position closer to an end surface on which the duct A is mounted than an end surface without the duct A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、環境負荷の高い、有毒なガスを含む排ガスを高温で燃焼させることにより分
解処理するための排ガス処理装置および処理方法に関する。
The present invention relates to an exhaust gas treatment apparatus and a treatment method for performing a decomposition treatment by burning an exhaust gas containing a toxic gas having a high environmental load at a high temperature.

産業から排出されるガスには毒性の高い有毒なガスを含んでいることが多く、該排ガス
の主要な処理方法の1つとして排ガスを500℃〜1000℃の高温で燃焼することによ
り分解処理し、無害化されたガスを排出する方法が従来から知られており、ここで用いら
れる燃焼処理装置には様々な形態のものがある。
Gases emitted from industry often contain toxic and highly toxic gases, and as one of the main treatment methods of the exhaust gas, the exhaust gas is decomposed by burning it at a high temperature of 500 ° C to 1000 ° C. A method for discharging detoxified gas has been conventionally known, and there are various types of combustion treatment apparatuses used here.

たとえば、廃棄物の焼却炉にて廃棄物焼却炉内で発生した可燃性ガス、すなわち焼却炉
内未燃ガスの熱処理炉での燃焼処理においては、該未燃ガスを燃焼補助用の高温空気と別
々にほぼ同じ場所で炉壁面に沿った方向に該熱処理炉に導入するとともに旋廻流を形成さ
せている(例えば、特許文献1参照)。
For example, in the combustion treatment in the heat treatment furnace of the combustible gas generated in the waste incinerator in the waste incinerator, that is, the unburned gas in the incinerator, the unburned gas is used as high temperature air for combustion assistance. Separately, it is introduced into the heat treatment furnace in a direction along the furnace wall surface at substantially the same location, and a whirling flow is formed (for example, see Patent Document 1).

また、別の廃棄物の燃焼処理装置においては、一次燃焼室での燃焼により生成された排
ガス中の未燃焼成分を燃焼処理する二次燃焼室にて、二次燃焼室内で旋廻流が生じるよう
に該排ガスの二次燃焼室への導入口を二次燃焼室の断面中心線よりも外側に偏心設置して
該排ガスが円筒面の接線方向に導入されている。さらに二次燃焼室での補助的に必要とな
る二次燃焼室への供給空気が旋廻流を生じるように、二次燃焼室への空気導入口が該排ガ
スの導入口とは異なる場所で二次燃焼室の断面中心線よりも外側に偏心設置して該空気が
円筒面の接線方向に導入することにより、該空気と該未燃焼成分が効率的に混合され、未
燃焼成分が完全に処理できるとしている(例えば、特許文献2参照)。
Further, in another waste combustion treatment apparatus, a swirl flow is generated in the secondary combustion chamber in the secondary combustion chamber in which the unburned components in the exhaust gas generated by the combustion in the primary combustion chamber are subjected to the combustion treatment. Further, the exhaust gas is introduced in the tangential direction of the cylindrical surface by introducing the exhaust gas into the secondary combustion chamber eccentrically outside the center line of the cross section of the secondary combustion chamber. Further, the air inlet to the secondary combustion chamber is located at a location different from the exhaust gas inlet so that the supply air to the secondary combustion chamber, which is supplementarily required in the secondary combustion chamber, is swirled. The air is introduced eccentrically outside the center line of the cross section of the next combustion chamber and the air is introduced in the tangential direction of the cylindrical surface, so that the air and the unburned components are efficiently mixed, and the unburned components are completely processed. (For example, refer to Patent Document 2).

しかしながら、旋廻流はその導入口での流速、円筒の内径、処理炉内の圧力差などによ
り処理炉内での旋廻するルートや数が異なる。したがって、これら複数の流体をともに旋
廻流として別々に導入し、炉内で混合燃焼させて分解処理することはその旋廻流のルート
や数の違いにより互いに旋廻の位相があわないため十分に混合されず、その結果、十分に
燃焼、分解処理されない可能性がある。
特開2000−199620号公報 特開平07−229610号公報
However, the revolving flow differs in the route and number of revolving in the processing furnace depending on the flow velocity at the inlet, the inner diameter of the cylinder, the pressure difference in the processing furnace, and the like. Therefore, when these multiple fluids are introduced separately as a swirl flow, mixed and burned in the furnace and decomposed, the phases of swirl flow and the difference in the number of swirl flows are not mixed with each other. As a result, there is a possibility that the product is not sufficiently burned and decomposed.
JP 2000-199620 A Japanese Patent Application Laid-Open No. 07-229610

本発明の目的は、上記のような問題を解決すべく環境負荷が高く有毒な排ガスを連続的
に確実に燃焼させて分解処理、無害化する排ガス燃焼処理装置とその燃焼処理方法を提供
することにある。
An object of the present invention is to provide an exhaust gas combustion treatment apparatus and a combustion treatment method for decomposing and detoxifying the exhaust gas having high environmental load and toxic exhaust gas continuously and reliably to solve the above problems. It is in.

本発明は、上記課題を達成するため以下の構成を採用する。すなわち、
(1)炉内への排ガス導入ダクトを2つ以上有する略円筒状の排ガスの燃焼処理炉であっ
て、その導入口が炉の端面の中心点を含む、中心軸方向に並行に取りつけられた1つのダ
クトAおよび、炉の略円筒面の接面に対して90°以外の方向で、少なくともその一部が
略円筒面上に取りつけられた1つ以上のダクトBを有し、ダクトBの導入口がダクトAの
ない端面よりもダクトAのある端面に近い側に取りつけられていることを特徴とする排ガ
ス燃焼処理装置。
(2)ダクトBが排ガスの燃焼処理炉の略円筒面上または略円筒面と端面との縁に取りつ
けられ、その取りつけ方向が、ダクトB導入口を通る炉の略円筒面に略垂直な平面上にお
いて傾けられた方向であることを特徴とする前記(1)に記載の排ガス燃焼処理装置。
(3)排ガスの燃焼処理炉の形状について、以下の式を満たすことを特徴とする前記(1
)または(2)に記載の排ガス燃焼処理装置。
The present invention adopts the following configuration in order to achieve the above-described problems. That is,
(1) A substantially cylindrical exhaust gas combustion treatment furnace having two or more exhaust gas introduction ducts into the furnace, the inlet of which is installed in parallel to the central axis direction including the center point of the end face of the furnace One duct A and one or more ducts B at least partially mounted on the substantially cylindrical surface in a direction other than 90 ° with respect to the contact surface of the substantially cylindrical surface of the furnace, An exhaust gas combustion treatment apparatus, wherein the introduction port is attached to a side closer to an end face with the duct A than an end face without the duct A.
(2) The duct B is mounted on the substantially cylindrical surface of the exhaust gas combustion treatment furnace or the edge between the substantially cylindrical surface and the end surface, and the mounting direction is a plane substantially perpendicular to the substantially cylindrical surface of the furnace passing through the duct B inlet. The exhaust gas combustion treatment apparatus according to (1), wherein the exhaust gas combustion treatment apparatus is inclined in the upper direction.
(3) The shape of the combustion treatment furnace for exhaust gas satisfies the following formula (1):
) Or the exhaust gas combustion treatment apparatus according to (2).

D/L≦0.4
ただし、D:燃焼処理炉の平均炉幅
L:燃焼処理炉の炉長
(4)排ガスの燃焼処理炉内において、ダクトAのない端面とダクトBとの間に、板によって炉の断面開口部面積が狭められている部分が、少なくとも1箇所設けられてなることを特徴とする前記(1)〜(3)のいずれかに記載の排ガス燃焼処理装置。
(5)板によって炉の断面開口部面積が狭められている部分における開口部面積が、炉の最も大きい断面開口部面積の60%以下であることを特徴とする前記(4)に記載の排ガス燃焼処理装置。
(6)略円筒状の排ガスの燃焼処理炉において、処理する排ガスの全てを炉の中心軸方向に流れる中心流として導入し、空気を炉の内壁部を旋廻流として1ヶ所以上の導入口から該燃焼処理炉に導入することを特徴とする排ガス燃焼処理方法。
(7)略円筒状の排ガスの燃焼処理炉において、処理する排ガスの一部を炉の中心軸方向に流れる中心流として該燃焼処理炉へ導入し、残りの処理する排ガスを炉の内壁部を旋廻しながら流れる旋廻流として1ヶ所以上の導入口から該燃焼処理炉に導入し、さらに空気を炉の内壁部を旋廻しながら流れる旋廻流として1ヶ所以上の排ガス導入口とは別の導入口から該燃焼処理炉に導入することを特徴とする排ガス燃焼処理方法。
(8)略円筒状の排ガスの燃焼処理炉において、処理する排ガスの一部を炉の中心軸方向に流れる中心流として該燃焼処理炉へ導入し、残りの処理する排ガスを炉の内壁を旋回流として1ヶ所以上の導入口から該燃焼処理炉に導入することを特徴とする排ガス燃焼処理方法。
(9)略円筒状の排ガスの燃焼処理炉の内壁を旋廻流として導入される空気または高酸素濃度の排ガスに、導入前に助燃用燃焼ガスを混合することを特徴とする前記(6)〜(8)のいずれかに記載に排ガス燃焼処理方法。
(10)略円筒状の排ガスの燃焼処理炉に導入する低酸素濃度である排ガスのうちの少なくとも一部に、導入前に燃焼補助用として空気または高酸素濃度である排ガスを混合しておくことを特徴とする前記(6)〜(9)のいずれかに記載の排ガス燃焼処理方法。
(11)燃焼処理炉内に導入する排ガスについて、以下の式を満たすことを特徴とする前記(6)〜(10)のいずれかに記載の排ガス燃焼処理方法。
D / L ≦ 0.4
However, D: Average furnace width of the combustion treatment furnace L: Length of the combustion treatment furnace (4) In the combustion treatment furnace of the exhaust gas, a cross-sectional opening of the furnace is provided by a plate between the end surface without the duct A and the duct B The exhaust gas combustion treatment apparatus according to any one of (1) to (3), wherein at least one portion whose area is narrowed is provided.
(5) The exhaust gas according to (4), wherein the opening area in the portion where the cross-sectional opening area of the furnace is narrowed by the plate is 60% or less of the largest cross-sectional opening area of the furnace Combustion processing equipment.
(6) In a substantially cylindrical exhaust gas combustion treatment furnace, all of the exhaust gas to be treated is introduced as a central flow that flows in the direction of the central axis of the furnace, and air is introduced from one or more inlets with the inner wall of the furnace as a revolving flow. An exhaust gas combustion treatment method, which is introduced into the combustion treatment furnace.
(7) In a substantially cylindrical exhaust gas combustion treatment furnace, a part of the exhaust gas to be treated is introduced into the combustion treatment furnace as a central flow flowing in the central axis direction of the furnace, and the remaining exhaust gas to be treated is passed through the inner wall of the furnace. As a swirling flow that flows while turning, it is introduced into the combustion treatment furnace from one or more inlets. Further, as a swirling flow that flows while turning the inner wall of the furnace, it is different from one or more exhaust gas inlets. An exhaust gas combustion treatment method characterized by being introduced into the combustion treatment furnace.
(8) In a substantially cylindrical exhaust gas combustion treatment furnace, a part of the exhaust gas to be treated is introduced into the combustion treatment furnace as a central flow flowing in the central axis direction of the furnace, and the remaining exhaust gas to be treated is swirled on the inner wall of the furnace An exhaust gas combustion treatment method, wherein the exhaust gas is introduced into the combustion treatment furnace from one or more inlets as a stream.
(9) The combustion gas for auxiliary combustion is mixed with the air or the exhaust gas having a high oxygen concentration, which is introduced as a swirl flow through the inner wall of the combustion treatment furnace of the substantially cylindrical exhaust gas, before the introduction (6) to (8) The exhaust gas combustion processing method according to any one of (8).
(10) Mixing at least a part of the exhaust gas having a low oxygen concentration introduced into the combustion treatment furnace of the substantially cylindrical exhaust gas with air or an exhaust gas having a high oxygen concentration as a combustion auxiliary before introduction. The exhaust gas combustion treatment method according to any one of (6) to (9), characterized in that:
(11) The exhaust gas combustion treatment method according to any one of (6) to (10), wherein the exhaust gas introduced into the combustion treatment furnace satisfies the following formula.

Dv/Lv≦0.4
ただし、Dv:燃焼処理炉内での旋廻流の平均径
Lv:中心流の燃焼処理炉内通過部の長さ
(12)燃焼処理炉内に導入する排ガスの流量について、以下の式を満たすことを特徴とする前記(6)〜(11)のいずれかに記載の排ガス燃焼処理方法。
Dv / Lv ≦ 0.4
However, Dv: Average diameter of the revolving flow in the combustion treatment furnace Lv: Length of the central flow passage in the combustion treatment furnace (12) The flow rate of the exhaust gas introduced into the combustion treatment furnace satisfies the following formula The exhaust gas combustion treatment method according to any one of (6) to (11), characterized in that:

Vr/Vc≧7
ただし、Vr:旋廻流量の和
Vc:中心流量
(13)燃焼処理炉内に導入する排ガスの燃焼熱量について、以下の式を満たすことを特徴とする前記(6)〜(12)のいずれかに記載の排ガス燃焼処理方法。
Vr / Vc ≧ 7
However, Vr: Sum of revolving flow rate Vc: Center flow rate (13) The combustion heat quantity of the exhaust gas introduced into the combustion treatment furnace satisfies the following formula, and any one of the above (6) to (12) The exhaust gas combustion processing method as described.

Qbe‐r/Qbe‐c≦0.3
ただし、Qbe‐r:旋廻流排ガス中に元来含まれる自燃成分の燃焼熱量
Qbe‐c:中心流排ガス中に元来含まれる自燃成分の燃焼熱量
(14)燃焼処理炉内に導入されるガスの熱量について、以下の式を満たすことを特徴とする前記(6)〜(13)のいずれかに記載の排ガス燃焼処理方法。
Qbe-r / Qbe-c ≦ 0.3
However, Qbe-r: Combustion heat quantity of the self-combustion component originally contained in the swirling exhaust gas Qbe-c: Combustion heat quantity of the self-combustion component originally contained in the central flow exhaust gas (14) Gas introduced into the combustion treatment furnace The exhaust gas combustion processing method according to any one of (6) to (13), wherein the following equation is satisfied for the amount of heat:

[Qr/Vr]/[Qc/Vc]≧0.1
ただし、
[Qr / Vr] / [Qc / Vc] ≧ 0.1
However,

Figure 2006308275
Figure 2006308275

以下に説明するとおり、本発明の燃焼処理装置または燃焼処理方法では、燃焼処理炉内の温度斑が小さく、排ガスが高温部分に効率的に接触するため、排ガスを確実に燃焼させて分解処理、無害化することができる。   As described below, in the combustion treatment apparatus or combustion treatment method of the present invention, the temperature spots in the combustion treatment furnace are small, and the exhaust gas efficiently contacts the high temperature portion, so that the exhaust gas is reliably burned and decomposed, It can be detoxified.

以下、図面に示す実施態様に基づいて、本発明についてさらに詳細に説明する。
図1aは本発明に係る排ガス燃焼処理装置の一例を示す見取り図で、図1bはその側面図、図1cは図1bで示すA−A′矢視断面図である。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.
FIG. 1a is a sketch showing an example of an exhaust gas combustion treatment apparatus according to the present invention, FIG. 1b is a side view thereof, and FIG. 1c is a cross-sectional view taken along the line AA 'shown in FIG. 1b.

処理される排ガスは、導入ダクト2からと導入ダクト3−1、3−2の少なくとも一方とから導入され、燃焼処理炉1内で燃焼、分解されたのち、排出ダクト4より排出される。   The exhaust gas to be treated is introduced from the introduction duct 2 and at least one of the introduction ducts 3-1 and 3-2, burned and decomposed in the combustion treatment furnace 1, and then discharged from the discharge duct 4.

本排ガス処理装置における燃焼処理炉(以下、単に炉ということがある)1の例では排ガス導入のダクトを3つ有しており、形状は略円筒状である。ここで略円筒とは、両端面間6−1,6−2の間のどの断面においてもその形状が真円または楕円である円筒を含むものであり、楕円の場合はその楕円について、短径/長径≧0.8を満たすものであることが好ましい。また、計器のための孔や扉などによる凹凸や製作上形成される歪みや凹凸はその有無に関係なく略円筒に該当するとみなす。また略円筒面とは、略円筒の曲面を形成している側面のことである。ここで、略円筒状の端面6−1、6−2と円筒面5のなす角度θ1、θ2は90°が望ましいが、占めるスペースの観点から70°〜100°であってもよい。   An example of a combustion treatment furnace (hereinafter sometimes simply referred to as a furnace) 1 in this exhaust gas treatment apparatus has three ducts for introducing exhaust gas, and has a substantially cylindrical shape. Here, the substantially cylinder includes a cylinder whose shape is a perfect circle or an ellipse in any cross section between both end surfaces 6-1 and 6-2. / A major axis ≧ 0.8 is preferable. Irregularities due to holes and doors for instruments, distortions and irregularities formed in production are considered to correspond to substantially cylinders regardless of their presence or absence. The substantially cylindrical surface is a side surface forming a substantially cylindrical curved surface. Here, the angles θ1 and θ2 formed by the substantially cylindrical end surfaces 6-1 and 6-2 and the cylindrical surface 5 are preferably 90 °, but may be 70 ° to 100 ° from the viewpoint of occupied space.

また、排ガス導入ダクトのうち、1つの導入ダクト2は、その導入口2−aが炉1の端面6−1の中心点を含み、その取りつけ方向が略円筒の中心軸方向に並行となっており、残りの導入ダクト3−1、3−2はその取りつけ方向と、導入口3−1−a、3−2−aにおける炉1の略円筒面5の接面7−1、7−2とのなす角度α1、α2が90°以外となっている(図1aでは接面7−1、角度α1を省略)ことが重要であり、角度α1、α2は20°〜60°であることが好ましい。ここで、導入ダクト3−1、3−2は略円筒面5のみに取りつけられていてもよいし、一部のみ、すなわち略円筒面5と端面6−1との間にまたがってとりつけられていてもよい。また、導入ダクト3−1、3−2の導入口3−1−a、3−2−aは導入ダクト2の導入口2−aのない端面6−2よりも導入ダクト2の導入口2−aのある端面6−1に近い距離に取りつけられている。なお、導入ダクト3−1、3−2はガスの組成によっては一方がなくてもよく、または逆に同様の導入ダクトがさらに1つ以上あってもかまわない。   In addition, among the exhaust gas introduction ducts, one introduction duct 2 has an introduction port 2-a including the center point of the end surface 6-1 of the furnace 1, and its mounting direction is parallel to the central axis direction of the substantially cylinder. The remaining introduction ducts 3-1 and 3-2 are attached to each other, and contact surfaces 7-1 and 7-2 of the substantially cylindrical surface 5 of the furnace 1 at the introduction ports 3-1-a and 3-2-a. It is important that the angles α1 and α2 are other than 90 ° (in FIG. 1a, the contact surface 7-1 and the angle α1 are omitted), and the angles α1 and α2 are 20 ° to 60 °. preferable. Here, the introduction ducts 3-1 and 3-2 may be attached only to the substantially cylindrical surface 5, or only a part thereof, that is, between the substantially cylindrical surface 5 and the end surface 6-1. May be. In addition, the inlets 3-1 and 3-2-a of the inlet ducts 3-1 and 3-2 are closer to the inlet 2 of the inlet duct 2 than the end surface 6-2 where the inlet 2a of the inlet duct 2 is not provided. It is attached at a distance close to the end face 6-1 having -a. One of the introduction ducts 3-1 and 3-2 may be omitted depending on the gas composition, or conversely, one or more similar introduction ducts may be provided.

図2、図3は本発明の排ガス燃焼処理装置の他の実施例を示す側面図である。前述のとおり、図1a〜図1cに示す例の燃焼処理装置では図1cからわかるように、導入ダクト3−1、3−2はその取りつけ方向と該導入口3−1−a、3−2−aにおける炉の略円筒面の接面7−1、7−2とのなす角度γ1、γ2が90°以外であり、角度γ1、γ2は20°〜60°であることが好ましい。また図1bからわかるように、その取りつけ方向は、導入ダクト3−1、3−2の導入口3−1−a、3−2−aを通る、炉の略円筒面に略垂直な平面8−1、8−2上にある。ここで、略垂直な平面というのは平面8−1や8−2の、炉の略円筒面とのなす角度β1、β2が85°〜95°であることが好ましい。この構成により、図2、図3に示すように、導入ダクト3−1、3−2の取りつけ方向がそれぞれ導入ダクト3−1、3−2の導入口3−1−a、3−2−aを通る炉の略円筒面5に垂直な平面8−1、8−2上にない場合よりも円筒の燃焼処理炉1内での旋廻流の旋廻数が多くなり、炉壁部分での流れの斑がなくなるため、より確実に旋廻流が中心炎を包み込むことができ、排ガスをより効率的に分解させることができる。   2 and 3 are side views showing another embodiment of the exhaust gas combustion treatment apparatus of the present invention. As described above, in the example of the combustion treatment apparatus shown in FIGS. 1 a to 1 c, as can be seen from FIG. 1 c, the introduction ducts 3-1 and 3-2 have their mounting directions and the introduction ports 3-1-a and 3-2. The angles γ1 and γ2 formed by the contact surfaces 7-1 and 7-2 of the substantially cylindrical surface of the furnace at −a are other than 90 °, and the angles γ1 and γ2 are preferably 20 ° to 60 °. As can be seen from FIG. 1b, the mounting direction is a plane 8 that passes through the inlets 3-1a and 3-2-a of the inlet ducts 3-1 and 3-2 and is substantially perpendicular to the substantially cylindrical surface of the furnace. -1, 8-2. Here, the substantially vertical plane is preferably such that the angles β1 and β2 of the planes 8-1 and 8-2 and the substantially cylindrical surface of the furnace are 85 ° to 95 °. With this configuration, as shown in FIGS. 2 and 3, the installation directions of the introduction ducts 3-1 and 3-2 are respectively in the introduction ports 3-1-a and 3-2 of the introduction ducts 3-1 and 3-2. The number of revolving flows in the cylindrical combustion treatment furnace 1 is larger than that in the case where it is not on the planes 8-1 and 8-2, which are substantially perpendicular to the cylindrical surface 5 of the furnace passing through a, and the flow at the furnace wall portion Therefore, the swirl flow can wrap the central flame more reliably, and the exhaust gas can be decomposed more efficiently.

また、導入ダクト2、3−1、3−2に流れるガスの種類によっては、それぞれ処理炉
導入前に予め燃焼補助用の空気を混合させるのがよい。
Further, depending on the type of gas flowing through the introduction ducts 2, 3-1 and 3-2, it is preferable to previously mix combustion assist air before introducing the processing furnace.

また、炉1の炉長Lと炉の平均炉幅D(図1a参照)について、D/L≦0.4であることが望ましく、0.1≦D/L≦0.4であることがより望ましい。以上のように構成することにより、中心火炎が炉壁部まで行き渡るため、機幅方向の温度斑が軽減し、効率的に分解することが可能となる。ここで、平均炉幅とは、略円筒断面のうち断面の面積が最大部の平均直径と最小部の平均直径の平均値とする。なお平均直径とは、断面の直径の最長部と最短部の平均値とする。   Further, regarding the furnace length L of the furnace 1 and the average furnace width D of the furnace (see FIG. 1a), it is desirable that D / L ≦ 0.4, and 0.1 ≦ D / L ≦ 0.4. More desirable. By configuring as described above, since the central flame spreads to the furnace wall, temperature spots in the machine width direction are reduced, and it is possible to efficiently decompose. Here, the average furnace width is an average value of the average diameter of the maximum portion and the average diameter of the minimum portion of the cross-sectional area of the substantially cylindrical cross section. The average diameter is the average value of the longest part and the shortest part of the cross-sectional diameter.

なお炉長Lや平均炉幅Dは本明細書では炉内部における長さをさす。   The furnace length L and the average furnace width D refer to the length inside the furnace in this specification.

また炉内には図6,7に示すように、ダクトAのない端面とダクトBとの間に、板9によって炉の断面開口部面積が狭まっている部分を設けるとさらに好ましい。ここで、炉の断面とは、略円筒状の炉の長手方向に直交する面による炉の断面をいう。開口部を部分的に炉の最も大きい断面開口部よりも狭くすることにより、炉内でガスがより混合され機幅方向の温度斑が軽減され、排ガスをより効率的に分解することが可能となるからである。図6や7ではかかる部分を2箇所設けてある。その設置箇所は多いほど好ましいが、多すぎても効果の増加があまりみられないこともあり、また、圧損増加によって排ガスの送気により大きなエネルギーを消費するため、2箇所から4箇所とするのがより好ましい。   Further, as shown in FIGS. 6 and 7, it is more preferable that a portion where the cross-sectional opening area of the furnace is narrowed by the plate 9 is provided between the end face without the duct A and the duct B in the furnace. Here, the cross section of a furnace means the cross section of the furnace by the surface orthogonal to the longitudinal direction of a substantially cylindrical furnace. By making the opening partly narrower than the largest cross-sectional opening of the furnace, the gas is mixed more in the furnace, the temperature spots in the machine width direction are reduced, and the exhaust gas can be decomposed more efficiently Because it becomes. 6 and 7, two such portions are provided. The number of installation locations is preferably as many as possible, but if the number is too large, the effect may not be increased so much, and more energy is consumed by exhaust gas supply due to increased pressure loss. Is more preferable.

断面開口部面積が狭まっている部分における開口部の位置には特に制限はなく、図6,7に示すように炉の断面形状の片側一部の形状をした板の設置によって作られる位置でもよく、またパンチング状の板や、中心部がくりぬかれたドーナツ状の板の設置によって作られる位置でもよい。ただし断面開口部面積が狭まった場所を複数箇所設置する場合には、その隣合う2箇所の開口部の位置が重なり合わないように、たとえば、図6,7に示すように逆になるようにした方がよりガス混合効果が増すため好ましい。   The position of the opening in the area where the cross-sectional opening area is narrow is not particularly limited, and may be a position formed by installing a plate having a partial shape on one side of the cross-sectional shape of the furnace as shown in FIGS. Alternatively, it may be a position formed by installing a punching-like plate or a donut-like plate with a hollowed center. However, when installing a plurality of places where the cross-sectional opening area is narrowed, the positions of the two adjacent openings do not overlap, for example, as shown in FIGS. This is preferable because the gas mixing effect is further increased.

また、断面開口部面積が狭められている部分における開口部面積は、炉内で最も大きい断面開口部の断面積の60%以下、好ましくは20%以上60%以下であるのが良い。60%を超えるとそのガスの混合効果の低減につながり、20%未満であると圧損増加によって排ガスの送気により大きなエネルギーを消費するようになるためである。   Further, the opening area in the portion where the sectional opening area is narrowed is 60% or less, preferably 20% or more and 60% or less of the sectional area of the largest sectional opening in the furnace. This is because if it exceeds 60%, the mixing effect of the gas will be reduced, and if it is less than 20%, a large amount of energy will be consumed by exhaust gas supply due to an increase in pressure loss.

次に、本発明の排ガス燃焼処理装置を用いた排ガス燃焼処理方法について説明する。   Next, an exhaust gas combustion processing method using the exhaust gas combustion processing apparatus of the present invention will be described.

本発明の排ガス燃焼処理方法の一実施態様として、燃焼処理させる排ガスは全て導入ダクト2より炉の中心軸方向に流れる中心流として燃焼処理炉1内へ導入させて炉内で中心火炎を形成させ、一方で導入ダクト3−1からは空気を導入させて旋廻流を形成させる方法がある。上記方法により、旋廻流が中心火炎を包みこむため中心流の壁部近くにおける温度低下が抑制され、また中心火炎の炉壁部への流出を防止することができるため、全体として排ガスの燃焼効率が高くなる。   As an embodiment of the exhaust gas combustion treatment method of the present invention, all exhaust gas to be burnt is introduced into the combustion treatment furnace 1 as a central flow flowing in the direction of the center axis of the furnace from the introduction duct 2 to form a central flame in the furnace. On the other hand, there is a method of forming a swirl flow by introducing air from the introduction duct 3-1. By the above method, the swirl flow wraps the central flame, so the temperature drop near the wall of the central flow is suppressed and the outflow of the central flame to the furnace wall can be prevented. Becomes higher.

しかしながら、処理排ガス量が燃焼処理炉1の大きさに対して過大である場合、すべて
導入ダクト2より中心流として導入するとそれに応じた旋廻流としての空気を導入しなけ
ればならないため、炉に投入させるガス総流量が莫大になり、滞留時間が低下し、燃焼効
率の低下につながる。このような場合で排ガスの種類が複数あり、かつ、各排ガスの燃焼
熱量に大きな差がある場合には、燃焼熱量の高い排ガスを導入ダクト2から中心流として
導入し、他の排ガスを、空気を導入する導入ダクト3−1とは別の導入ダクト3−2より
旋廻流として導入するとよい。この方法により導入ダクト3−1からの空気の流量を削減
でき、滞留時間の増加が図れるため燃焼効率が向上する。なおこの時、空気と排ガスを予
め混合してから導入ダクト3−1より導入してもよいが、導入ダクト3−1内の圧損上昇
を抑制するために導入口3−1−aの面積を大きくせざるを得ず、旋廻流の形状が乱れや
すくなるため、別々の導入口より導入した方がより好ましい。
However, when the amount of the treated exhaust gas is excessive with respect to the size of the combustion treatment furnace 1, if it is introduced as a central flow from the introduction duct 2, all the air as a revolving flow must be introduced. The total gas flow to be made becomes enormous, the residence time is lowered, and the combustion efficiency is lowered. In such a case, when there are a plurality of types of exhaust gas and there is a large difference in the amount of combustion heat of each exhaust gas, the exhaust gas having a high amount of combustion heat is introduced as a central flow from the introduction duct 2 and other exhaust gases are introduced into the air It is good to introduce | transduce as a rotational flow from the introduction duct 3-2 different from the introduction duct 3-1. By this method, the flow rate of air from the introduction duct 3-1 can be reduced, and the residence time can be increased, so that the combustion efficiency is improved. At this time, the air and the exhaust gas may be mixed in advance and then introduced from the introduction duct 3-1, but the area of the introduction port 3-1-a is reduced in order to suppress an increase in pressure loss in the introduction duct 3-1. Since it must be enlarged and the shape of the swirl flow is likely to be disturbed, it is more preferable to introduce it from a separate inlet.

さらにこの時、燃焼熱量の低い方の排ガスの量が十分な場合には、空気自体は導入せず、旋廻流は全て該排ガスの導入により形成させて、排ガス分解処理をしてもよい。空気の使用量を完全に削減でき、また、滞留時間の増加が図れるため燃焼効率がより向上する。   Further, at this time, if the amount of the exhaust gas having the lower combustion heat amount is sufficient, the air itself may not be introduced, and the entire revolving flow may be formed by introducing the exhaust gas, and the exhaust gas decomposition treatment may be performed. The amount of air used can be completely reduced, and the residence time can be increased, so that the combustion efficiency is further improved.

一方で、排ガス中の成分の燃焼熱量のみではガスの分解に必要な燃焼温度まで温度上昇できない時は、導入前に空気に助燃用燃焼ガスを混合させて燃焼熱量を高くした後、バーナー炎状で炉の内壁部を旋回しながら流れる旋回流として燃焼処理炉1内に導入する。この方法により、排ガスの分解処理に必要な燃焼温度まで温度上昇できるのは無論、旋廻流の温度自体も高くなるため機幅方向での温度斑が軽減され、より排ガスの燃焼効率が高くなる。この時、空気の役割は酸素を供給して助燃用燃焼ガスの燃焼を促進させることであり、空気と助燃用燃焼ガスの流量比にはその助燃用燃焼ガスの種類より適した比があるので、その比になるように混合することが望ましい。またこの時、燃焼処理炉1に導入する1種類または複数種類の排ガスの中に高酸素濃度である排ガスがある場合には、空気の代用として該排ガスを用い、助燃用燃焼ガスを混合させて燃焼処理炉1内に旋廻流として導入してもよい。   On the other hand, when the temperature cannot be increased to the combustion temperature necessary for gas decomposition only by the amount of combustion heat of the components in the exhaust gas, the combustion heat amount is mixed with air before introduction to increase the combustion heat amount, then burner flame Then, it is introduced into the combustion treatment furnace 1 as a swirling flow that flows while swirling the inner wall of the furnace. Of course, the temperature can be raised to the combustion temperature necessary for the decomposition treatment of the exhaust gas by this method, and the temperature of the swirl flow itself is also increased, so that temperature spots in the machine width direction are reduced and the combustion efficiency of the exhaust gas is further increased. At this time, the role of air is to supply oxygen to promote combustion of the combustion gas for auxiliary combustion, and the flow rate ratio of air and combustion gas for auxiliary combustion has a ratio that is more suitable than the type of combustion gas for auxiliary combustion. It is desirable to mix so that it may become the ratio. At this time, if there is an exhaust gas having a high oxygen concentration in one or a plurality of types of exhaust gas to be introduced into the combustion treatment furnace 1, the exhaust gas is used as a substitute for air and the combustion combustion gas is mixed. You may introduce | transduce into the combustion processing furnace 1 as a revolving flow.

また、燃焼処理炉1に導入する1種類または複数種類の排ガスの中に低酸素濃度である排ガスがある場合には、燃焼処理炉1への導入前に燃焼補助用空気を混合しておくことがよい。この方法により炉内での排ガスがより効率よく燃焼される。またこのとき、燃焼処理炉1に導入する1種類または複数種類の排ガスの中に高酸素濃度である排ガスがある場合には、燃焼補助用空気の代用として該排ガスを用いてもよい。この方法により燃焼処理炉1に投入する空気の量を削減できるので滞留時間の増加が図れ、燃焼効率が向上する。   In addition, when there is an exhaust gas having a low oxygen concentration in one or a plurality of types of exhaust gas to be introduced into the combustion treatment furnace 1, combustion auxiliary air is mixed before introduction into the combustion treatment furnace 1. Is good. By this method, the exhaust gas in the furnace is burned more efficiently. At this time, when there is an exhaust gas having a high oxygen concentration in one or a plurality of types of exhaust gas introduced into the combustion treatment furnace 1, the exhaust gas may be used as a substitute for combustion auxiliary air. This method can reduce the amount of air introduced into the combustion treatment furnace 1, thereby increasing the residence time and improving the combustion efficiency.


なお前述の低酸素濃度とは酸素濃度が5vol%未満であることをさし、高酸素濃度とは酸素濃度が5vol%以上であることをさす。
また、燃焼処理炉1内に導入する排ガスの流れについて以下の条件を満たすことが望ましい。

The low oxygen concentration mentioned above means that the oxygen concentration is less than 5 vol%, and the high oxygen concentration means that the oxygen concentration is 5 vol% or more.
Moreover, it is desirable that the following conditions are satisfied for the flow of exhaust gas introduced into the combustion treatment furnace 1.

Dv/Lv≦0.4
より望ましくは、
0.1≦Dv/Lv≦0.4
である。
ただし、Dv:燃焼処理炉1内での旋廻流の平均径
Lv:中心流の燃焼処理炉1内通過部の長さ
ここで、旋廻流の平均径Dvは燃焼処理炉1の平均炉幅Dと同じ長さであり、中心流の燃焼処理炉内通過部の長さLvは燃焼処理炉の炉長Lと同じ長さと定義する。以上の条件を満たすことにより、中心火炎が炉壁部まで行き渡るため機幅方向の温度斑が軽減され、排ガスを効率的に分解することが可能となる。
Dv / Lv ≦ 0.4
More preferably,
0.1 ≦ Dv / Lv ≦ 0.4
It is.
However, Dv: Average diameter of the swirl flow in the combustion treatment furnace 1 Lv: Length of the central flow passage portion in the combustion treatment furnace 1 Here, the mean diameter Dv of the swirl flow is the average furnace width D of the combustion treatment furnace 1 The length Lv of the central flow combustion treatment furnace passage portion is defined as the same length as the furnace length L of the combustion treatment furnace. By satisfying the above conditions, since the central flame reaches the furnace wall, temperature spots in the machine width direction are reduced, and the exhaust gas can be efficiently decomposed.

また、燃焼処理炉1内に導入する排ガスの流量について以下の条件を満たすことが望ましい。   Moreover, it is desirable that the following conditions are satisfied for the flow rate of the exhaust gas introduced into the combustion treatment furnace 1.

Vr/Vc≧7
より望ましくは、
7≦Vr/Vc≦20
である。
ただし、Vr:旋廻流量(の総和)
Vc:中心流量
以上の条件を満たすことにより、旋廻流が中心火炎を十分に包むことができるため、炉壁部の保温がなされ機幅方向の温度斑が軽減し、排ガスを分解することが可能となる。Vr/Vcが7未満では機幅方法の温度斑が増大して分解効率の低減につながり、20を超過すると相対的に中心火炎が小さくなり火炎の形状安定性が下がるため十分に燃焼できなくなる。
Vr / Vc ≧ 7
More preferably,
7 ≦ Vr / Vc ≦ 20
It is.
However, Vr: Turning flow rate (total)
Vc: Center flow rate By satisfying the above conditions, the swirling flow can sufficiently wrap the center flame, so that the furnace wall can be kept warm, temperature fluctuations in the machine width direction can be reduced, and the exhaust gas can be decomposed. It becomes. If Vr / Vc is less than 7, the temperature variation of the machine width method increases, leading to a reduction in decomposition efficiency. If it exceeds 20, the central flame becomes relatively small and the shape stability of the flame is lowered, so that the combustion becomes impossible.

また、燃焼処理炉1内に導入する排ガスの燃焼熱量について、以下の条件を満たすことが望ましい。   Moreover, it is desirable that the following conditions are satisfied for the amount of combustion heat of the exhaust gas introduced into the combustion treatment furnace 1.

Qbe‐r/Qbe‐c≦0.3
より望ましくは、
0.05≦Qbe‐r/Qbe‐c≦0.3
である。
ただし、Qbe‐r:旋廻流排ガス中に元来含まれる自燃成分の燃焼熱量
Qbe‐c:中心流排ガス中に元来含まれる自燃成分の燃焼熱量
以上の条件を満たすことにより、燃焼分解成分の多くが中心流に含まれ中心炎がより安定して形成されるため排ガスを効率的に分解することができる。
Qbe-r / Qbe-c ≦ 0.3
More preferably,
0.05 ≦ Qbe-r / Qbe-c ≦ 0.3
It is.
However, Qbe-r: Combustion calorie of the self-combustion component originally contained in the swirling exhaust gas Qbe-c: Combustion calorie of the self-combustion component originally contained in the central flow exhaust gas By satisfying the above conditions, Many are contained in the central flow, and the central flame is more stably formed, so that the exhaust gas can be decomposed efficiently.

また、燃焼処理炉1内に導入されるガスの熱量について、以下の条件を満たすことが望ましい。   Moreover, it is desirable that the following conditions are satisfied for the amount of heat of the gas introduced into the combustion treatment furnace 1.

[Qr/Vr]/[Qc/Vc]≧0.1
より望ましくは、
0.1≦[Qr/Vr]/[Qc/Vc]≦20
である。
ただし、
[Qr / Vr] / [Qc / Vc] ≧ 0.1
More preferably,
0.1 ≦ [Qr / Vr] / [Qc / Vc] ≦ 20
It is.
However,

Figure 2006308275
Figure 2006308275

以上の条件を満たせば、中心流の発熱反応による上昇温度よりも旋廻流の発熱反応による上昇温度の方が高くなるため両者の温度差が小さくなり、排ガスを効率的に分解することが可能となる。逆に[Qr/Vr]/[Qc/Vc]が0.1未満であると、中心流の発熱反応による上昇温度に対して旋廻流の発熱反応による上昇温度が著しく小さくなるため機幅方法の温度斑が増大して分解効率の低減につながり、また20を超過すると、炉壁部の温度が非常に高くなるため熱で内壁が割れるなど損傷する可能性が生じる。   If the above conditions are met, the temperature rise due to the exothermic reaction of the swirl flow is higher than the temperature rise due to the exothermic reaction of the central flow, so that the temperature difference between the two becomes small and the exhaust gas can be decomposed efficiently. Become. On the other hand, if [Qr / Vr] / [Qc / Vc] is less than 0.1, the temperature rise due to the exothermic reaction in the central flow is significantly smaller than the temperature rise due to the exothermic reaction in the central flow. The temperature spots increase and lead to a reduction in decomposition efficiency. If the temperature exceeds 20, the temperature of the furnace wall becomes very high, so that there is a possibility of damage such as cracking of the inner wall by heat.

また、燃焼処理炉1に投入する処理排ガスや空気等のガスの総流量は、炉内での排ガス混合性や、炉内温度むらなどによる燃焼分解効率への影響を考慮して1000〜40000Nm/hであることが望ましい。 In addition, the total flow rate of the treated exhaust gas and air or the like to be introduced into the combustion treatment furnace 1 is 1000 to 40000 Nm 3 in consideration of the effect on the combustion decomposition efficiency due to the exhaust gas mixing property in the furnace and the temperature unevenness in the furnace. / H is desirable.

実施例1
アクリル系繊維として、アクリロニトリル系の重合体を紡糸、延伸、水洗した後、油剤を付着し、繊維糸条を得た。この糸条の群を連続生産にて炭素繊維にすべく、この糸条の群の高温処理炉(1)入側での合計の通過量を200kg/hとして、高温熱処理炉(1)にて200℃〜300℃の空気雰囲気下で80分間熱処理したのち、高温熱処理炉(2)にて500℃〜1800℃の窒素雰囲気下で10分間熱処理し、炭素繊維を得た。この時、高温処理炉(1)での新鮮空気の給気流量、排ガス流量はともに3500Nm/h、排ガス温度は200℃とした。また高温処理炉(2)での新鮮窒素の給気流量、排ガス流量はともに300Nm/h、排ガス温度は400℃とした。これら排ガスには有毒で環境負荷の高いHCNが含まれている(排ガスを放出する前にHCNを分解処理する必要がある。)が、本例では高温熱処理炉(1)の排ガス中のHCNの濃度が0.1vol%、高温処理炉(2)からの排ガス中のHCNの濃度が2vol%であった。また、この時、各排ガスの自燃成分の燃焼熱量は、高温処理炉(1)からの排ガスで11kcal/Nm、高温処理炉(2)からの排ガスで1250kcal/Nmとなった。これらの排ガスを炉長Lが3m、炉幅Dが1.1mである図1a〜図1cに示す形式の燃焼処理装置にて燃焼分解処理を実施した。導入ダクト2からは予め150Nm/hの空気と混合させた高温熱処理炉(2)からの排ガス300Nm/hを導入口2−aにて400℃で導入した。また、導入ダクト3−1からは灯油50l/hと高温熱処理炉(1)からの排ガスのうち500Nm/hを混合したガスを導入口3−1−aにて200℃で導入し、導入口で点火させた。灯油の燃焼熱量は8000kcal/lであった。また導入ダクト3−2からは高温処理炉(1)からの残りの排ガス3000Nm/hを導入口3−2−aにて200℃で導入した。以上のようにして燃焼分解処理を実施した結果、炉内燃焼温度は800℃となり、処理後排ガスのHCN濃度は5volppmとなり十分分解処理できていた。なお前述、及び後述の実施例、比較例における空気、排ガスの比熱はすべて0.35kcal/Nm・℃であった。
Example 1
As an acrylic fiber, an acrylonitrile polymer was spun, drawn, and washed with water, and then an oil agent was adhered to obtain a fiber yarn. In order to make this yarn group into carbon fiber by continuous production, the total passing amount of this yarn group at the entrance to the high-temperature treatment furnace (1) is set to 200 kg / h in the high-temperature heat treatment furnace (1). After heat treatment for 80 minutes in an air atmosphere at 200 ° C. to 300 ° C., heat treatment was performed in a high temperature heat treatment furnace (2) for 10 minutes in a nitrogen atmosphere at 500 ° C. to 1800 ° C. to obtain carbon fibers. At this time, the supply flow rate and exhaust gas flow rate of fresh air in the high-temperature treatment furnace (1) were both 3500 Nm 3 / h, and the exhaust gas temperature was 200 ° C. In addition, the supply flow rate and exhaust gas flow rate of fresh nitrogen in the high-temperature treatment furnace (2) were both 300 Nm 3 / h, and the exhaust gas temperature was 400 ° C. These exhaust gases contain HCN that is toxic and has a high environmental load (it is necessary to decompose HCN before releasing the exhaust gases). In this example, the HCN in the exhaust gas of the high-temperature heat treatment furnace (1) is used. The concentration was 0.1 vol%, and the concentration of HCN in the exhaust gas from the high temperature treatment furnace (2) was 2 vol%. At this time, heat of combustion of the self-retardant component of the exhaust gas, high temperature processing furnace (1) in the exhaust gas from 11kcal / Nm 3, was a 1250kcal / Nm 3 in the exhaust gas from the high temperature processing furnace (2). These exhaust gases were subjected to combustion decomposition treatment in a combustion treatment apparatus of the type shown in FIGS. 1a to 1c in which the furnace length L is 3 m and the furnace width D is 1.1 m. From the introduction duct 2, the exhaust gas 300Nm 3 / h from the high temperature heat treatment furnace (2) previously mixed with 150 Nm 3 / h air was introduced at 400 ° C. through the introduction port 2-a. Further, a gas in which 500 Nm 3 / h of exhaust gas from kerosene 50 l / h and high-temperature heat treatment furnace (1) is mixed is introduced from the introduction duct 3-1 at 200 ° C. through the introduction port 3-1-a. I ignited in the mouth. The combustion heat quantity of kerosene was 8000 kcal / l. Further, from the introduction duct 3-2, the remaining exhaust gas 3000Nm 3 / h from the high temperature treatment furnace (1) was introduced at 200 ° C. through the introduction port 3-2-a. As a result of carrying out the combustion decomposition treatment as described above, the combustion temperature in the furnace was 800 ° C., and the HCN concentration of the exhaust gas after treatment was 5 volppm, which was sufficient for the decomposition treatment. In addition, the specific heat of the air and exhaust gas in the above-mentioned examples and later-described examples and comparative examples were all 0.35 kcal / Nm 3 · ° C.

実施例2
実施例1において糸条の群3組を組別に高温熱処理炉(1)、高温熱処理炉(2)にて焼成し炭素繊維を得た。この時、各組にて糸条の群の高温熱処理炉(1)入側での合計の通過量を700kg/hとし、各組の高温処理炉(1)での新鮮空気の給気流量、排ガス流量はともに11500Nm/h、各組の高温処理炉(2)での新鮮窒素の給気流量、排ガス流量はともに1000Nm/hとし、残りの炉の条件は実施例1と同様とした。この時、各組の高温熱処理炉(1)の排ガス中のHCNの濃度が0.1vol%、各組の高温熱処理炉(2)からの排ガス中のHCNの濃度が2vol%であった。またこの時の排ガスの自燃成分の燃焼熱量は、高温熱処理炉(1)からの排ガスで各組10kcal/Nm、各高温熱処理炉(2)からの排ガスで各組1310kcal/Nmとなった。これら各組からの排ガスを高温熱処理炉別毎に混合させ、高温処理炉(1)からの総排ガス量34500Nm/hと高温熱処理炉(2)からの総排ガス量3000Nm/hを、炉長Lが6.2m、炉幅Dが2mである図1に示す形式の燃焼処理装置にて燃焼分解処理を実施した。導入ダクト2からは予め1500Nm/hの空気と混合させた高温熱処理炉(2)からの排ガス3000Nm/hを導入口2−aにて400℃で導入した。また導入ダクト3−1からは灯油500l/hと高温熱処理炉(1)からの排ガスのうち5000Nm/hを混合したガスを導入口3−1−aにて200℃で導入し、導入口で点火させた。灯油の燃焼熱量は8000kcal/lであった。また導入ダクト3−2からは高温処理炉(1)からの残りの排ガス29500Nm/hを導入口3−2−aにて200℃で導入した。以上のようにして燃焼分解処理を実施した結果、炉内燃焼温度は800℃となり処理後排ガスのHCN濃度は5volppmとなり十分分解処理できていた。
Example 2
In Example 1, three yarn groups were fired separately in a high temperature heat treatment furnace (1) and a high temperature heat treatment furnace (2) to obtain carbon fibers. At this time, the total passing amount of the yarn group in the high temperature heat treatment furnace (1) on the entry side is 700 kg / h in each group, and the fresh air supply flow rate in each high temperature treatment furnace (1), the flow rate of the flue gas together 11500Nm 3 / h, the air supply flow rate of fresh nitrogen at each set of high-temperature processing furnace (2), exhaust gas flow rate are both set to 1000 Nm 3 / h, the condition of rest of the furnace was the same as in example 1 . At this time, the concentration of HCN in the exhaust gas from each set of high-temperature heat treatment furnaces (1) was 0.1 vol%, and the concentration of HCN in the exhaust gas from each set of high-temperature heat treatment furnaces (2) was 2 vol%. The heat of combustion of the self-retardant component of the exhaust gas at this time, each set 10 kcal / Nm 3 in the exhaust gas from the high-temperature heat treatment furnace (1), became each set 1310kcal / Nm 3 in the exhaust gas from the high-temperature heat treatment furnace (2) . The exhaust gases from these respective sets were mixed in a high-temperature heat treatment furnace by each, the total amount of exhaust gas 3000 Nm 3 / h of the total quantity of exhaust gas 34500Nm 3 / h and the high-temperature heat treatment furnace from the high temperature processing furnace (1) (2), the furnace Combustion decomposition treatment was performed in a combustion treatment apparatus of the type shown in FIG. 1 having a length L of 6.2 m and a furnace width D of 2 m. From the introduction duct 2, exhaust gas 3000 Nm 3 / h from the high-temperature heat treatment furnace (2) previously mixed with 1500 Nm 3 / h air was introduced at 400 ° C. through the introduction port 2-a. Further, from the introduction duct 3-1, a gas mixed with 5000 Nm 3 / h of the kerosene 500 l / h and the exhaust gas from the high-temperature heat treatment furnace (1) is introduced at 200 ° C. through the introduction port 3-1-a, I ignited with. The combustion heat quantity of kerosene was 8000 kcal / l. Further, from the introduction duct 3-2, the remaining exhaust gas 29500 Nm 3 / h from the high temperature treatment furnace (1) was introduced at 200 ° C. through the introduction port 3-2-a. As a result of carrying out the combustion decomposition treatment as described above, the combustion temperature in the furnace was 800 ° C., and the HCN concentration of the exhaust gas after treatment was 5 volppm, and the decomposition treatment could be sufficiently performed.

実施例3
図2で示す形式の燃焼処理装置を用い、実施例1と同様な条件でガスを燃焼処理炉1に導入して燃焼分解処理を行った。このときの炉内燃焼温度も800℃となり、処理後排ガスのHCN濃度は15volppmとなり分解処理できていた。
Example 3
A combustion treatment apparatus of the type shown in FIG. 2 was used to introduce a gas into the combustion treatment furnace 1 under the same conditions as in Example 1 to perform the combustion decomposition treatment. The combustion temperature in the furnace at this time was also 800 ° C., and the HCN concentration of the exhaust gas after treatment was 15 volppm, which could be decomposed.

実施例4
実施例1において旋廻流と中心流の比をかえるべく、高温熱処理炉(1)からの排ガスのうち500Nm/hを高温処理炉(2)からの排ガス300Nm/hと混合させた。高温熱処理炉(1)からの排ガスには空気が十分含まれているため実施例1のような空気とのあらたな混合はせず、この排ガスを導入ダクト2より導入口2−aにて350℃で燃焼処理炉1内に導入した。また導入ダクト3−1からは灯油45l/hと高温熱処理炉(1)からの排ガスのうち450Nm/hを混合して導入口3−1−aにて200℃で導入し、点火させた。また、導入ダクト3−2からは高温処理炉(1)からの残りの排ガス2550Nm/hを導入口3−2−aにて200℃で導入し、他の条件は実施例1と同様として燃焼分解処理を行った。この時炉内燃焼温度は800℃となり、処理後のHCNの濃度は20volppmとなり、やや分解処理能力は減少していた。
Example 4
To change the ratio of the rotational flow and the central stream in Example 1, were mixed with the exhaust gas 300 Nm 3 / h of 500 Nm 3 / h of exhaust gas from the high-temperature heat treatment furnace (1) from the high temperature processing furnace (2). Since the exhaust gas from the high-temperature heat treatment furnace (1) contains sufficient air, it is not mixed with the air as in the first embodiment, and this exhaust gas is supplied from the introduction duct 2 through the introduction port 2-a at 350. It was introduced into the combustion treatment furnace 1 at 0 ° C. Further, from the introduction duct 3-1, kerosene 45 l / h and 450 Nm 3 / h of the exhaust gas from the high-temperature heat treatment furnace (1) were mixed and introduced at 200 ° C. through the introduction port 3-1-a and ignited. . Further, from the introduction duct 3-2, the remaining exhaust gas 2550Nm 3 / h from the high-temperature treatment furnace (1) is introduced at 200 ° C. through the introduction port 3-2-a, and other conditions are the same as in the first embodiment. Combustion decomposition treatment was performed. At this time, the combustion temperature in the furnace was 800 ° C., the concentration of HCN after the treatment was 20 vol ppm, and the decomposition treatment capacity was slightly reduced.

実施例5
実施例1において、炉長Lが2.5m、炉幅Dは1.5mである図1a〜図1cで示す形式の燃焼処理装置を用い、他の条件は同様にして燃焼分解処理を行なった。この時炉内燃焼温度は800℃となり、処理後のHCNの濃度は20volppmとなりやや分解処理能力は減少していた。
Example 5
In Example 1, a combustion treatment apparatus of the type shown in FIGS. 1a to 1c in which the furnace length L is 2.5 m and the furnace width D is 1.5 m was used, and the combustion decomposition treatment was performed in the same manner under other conditions. . At this time, the combustion temperature in the furnace was 800 ° C., and the concentration of HCN after the treatment was 20 vol ppm, and the decomposition treatment capacity was slightly reduced.

実施例6
実施例1において、導入ダクト2からは、高温熱処理炉(1)からの排ガスのうち75Nm/hと高温処理炉(2)からの排ガスのうち225Nm/hと空気150Nm/hを混合したガスを、導入口2−aにて400℃にて導入した。また導入ダクト3−1からは灯油50l/hと高温熱処理炉(1)からの排ガスのうち500Nm/hを混合したガスを、導入口3−1−aにて200℃で導入し、点火させた。また導入ダクト3−2からは高温熱処理炉(1)からの残りの排ガス2925Nm/hと高温処理炉(2)からの残りの排ガス75Nm/hを混合したガスを、導入口3−2−aにて200℃で導入し、他の条件は実施例1と同様として燃焼分解処理を行った。この時炉内燃焼温度は800℃となり、処理後のHCNの濃度は20volppmとなりやや分解処理能力は減少していた。
Example 6
Mixed in Example 1, from the inlet duct 2, a 225 nm 3 / h and air 150 Nm 3 / h of exhaust gas from 75 nM 3 / h and the high-temperature processing furnace of the exhaust gas from the high-temperature heat treatment furnace (1) (2) The introduced gas was introduced at 400 ° C. through the inlet 2-a. In addition, a gas obtained by mixing 500 Nm 3 / h of the exhaust gas from kerosene 50 l / h and the high-temperature heat treatment furnace (1) is introduced from the introduction duct 3-1 at 200 ° C. through the introduction port 3-1-a and ignited. I let you. The remaining exhaust gas 2925Nm 3 / h and the remaining exhaust gas 75 nM 3 / h were mixed gases from the high temperature processing furnace (2) from the high-temperature heat treatment furnace from the inlet duct 3-2 (1), inlet 3-2 -A was introduced at 200 ° C., and the combustion decomposition treatment was performed in the same manner as in Example 1 except for the other conditions. At this time, the combustion temperature in the furnace was 800 ° C., and the concentration of HCN after the treatment was 20 vol ppm, and the decomposition treatment capacity was slightly reduced.

実施例7
図6で示すように、板9の設置によって2箇所で断面開口部面積を狭めた以外は実施例1と同様な装置、条件でガスを燃焼処理炉1に導入して燃焼分解処理を行った。なお、板9を設置した部分の断面開口部面積は、板9を設置していない部分の断面開口部面積の70%であった。このときの炉内燃焼温度は800℃となり、処理後排ガスのHCN濃度は4volppmとなり実施例1よりもさらに十分な分解処理ができていた。
Example 7
As shown in FIG. 6, the combustion decomposition treatment was performed by introducing gas into the combustion treatment furnace 1 under the same apparatus and conditions as in Example 1 except that the cross-sectional opening area was narrowed at two locations by installing the plate 9. . In addition, the cross-sectional opening area of the part in which the plate 9 was installed was 70% of the cross-sectional opening area in the part where the plate 9 was not installed. The furnace combustion temperature at this time was 800 ° C., and the HCN concentration of the exhaust gas after treatment was 4 vol ppm, which was a further sufficient decomposition treatment than in Example 1.

実施例8
図7で示すように、板9の設置によって2箇所で断面開口部面積が狭めた以外は実施例1と同様な装置、条件でガスを燃焼処理炉1に導入して燃焼分解処理を行った。なお、板9を設置した部分の断面開口部面積は、板9を設置していない部分の断面開口部面積の40%であった。このときの炉内燃焼温度は800℃となり、処理後排ガスのHCN濃度は2volppmとなり実施例7よりもさらに十分な分解処理ができていた。
Example 8
As shown in FIG. 7, gas was introduced into the combustion treatment furnace 1 under the same apparatus and conditions as in Example 1 except that the cross-sectional opening area was narrowed at two locations by installing the plate 9, and the combustion decomposition treatment was performed. . In addition, the cross-sectional opening area of the part in which the plate 9 was installed was 40% of the cross-sectional opening area in the part where the plate 9 was not installed. The in-furnace combustion temperature at this time was 800 ° C., and the HCN concentration of the exhaust gas after treatment was 2 vol ppm, so that the decomposition treatment could be performed more sufficiently than in Example 7.

比較例1
図1a〜図1cに示す燃焼処理装置において、図4に示す導入ダクト2がない形式の燃焼処理装置を用いて実施例1と同様に排出される排ガスに対し、導入ダクト3−1からは、高温処理炉(1)からの排ガスのうち500Nm/hと灯油501/hとを混合させたガスを導入口3−1−aにて200℃で燃焼処理炉1内に導入し、点火させた。また導入ダクト3−2からは高温処理炉(1)からの残りの排ガス3000Nm/hと高温処理炉(2)から排出される300Nm/hとを混合させたガスを導入口3−2−aにて200℃で燃焼処理炉1内に導入した。以上のようにして燃焼分解処理を行った結果、炉内燃焼温度は800℃となったが、旋廻流しか生じていないため、処理後のHCNの濃度は200volppmとなり分解処理能力は不十分であった。
Comparative Example 1
In the combustion treatment apparatus shown in FIGS. 1a to 1c, for the exhaust gas discharged in the same manner as in Example 1 using the combustion treatment apparatus of the type without the introduction duct 2 shown in FIG. Of the exhaust gas from the high temperature treatment furnace (1), a gas in which 500 Nm 3 / h and kerosene 501 / h are mixed is introduced into the combustion treatment furnace 1 at 200 ° C. at the inlet 3-1-a and ignited. It was. Further, from the introduction duct 3-2, a gas obtained by mixing the remaining exhaust gas 3000Nm 3 / h from the high temperature treatment furnace (1) and 300 Nm 3 / h discharged from the high temperature treatment furnace (2) is introduced into the introduction port 3-2. -A was introduced into the combustion treatment furnace 1 at 200 ° C. As a result of the combustion decomposition treatment as described above, the combustion temperature in the furnace became 800 ° C. However, since only a revolving flow was generated, the concentration of HCN after treatment was 200 volppm, and the decomposition treatment capacity was insufficient. It was.

比較例2
図1に示す燃焼処理装置において、図5に示す導入ダクト3−1,3−2がない形式の
燃焼処理装置を用いて、実施例1と同様に排出される排ガスに対し、導入ダクト2から高
温処理炉(1)からの排ガス3500Nm/hと灯油50lと高温処理炉(2)からの排出ガス300Nm/hを予め混合した後、導入口2−aにて200℃で燃焼処理炉1に導入して点火し、燃焼分解処理を行った。この時炉内燃焼温度は800℃となったが、中心流しか生じていないため処理後のHCNの濃度は500volppmとなり分解処理能力は不十分であった。
Comparative Example 2
In the combustion treatment apparatus shown in FIG. 1, exhaust gas discharged from the introduction duct 2 is exhausted in the same manner as in the first embodiment using the combustion treatment apparatus of the type without the introduction ducts 3-1 and 3-2 shown in FIG. 5. The exhaust gas 3500 Nm 3 / h from the high-temperature treatment furnace (1), 50 l of kerosene and the exhaust gas 300 Nm 3 / h from the high-temperature treatment furnace (2) are mixed in advance, and then the combustion treatment furnace at 200 ° C. at the inlet 2-a 1 was ignited and subjected to combustion decomposition treatment. At this time, the combustion temperature in the furnace was 800 ° C., but since only the central flow was generated, the HCN concentration after the treatment was 500 volppm, and the decomposition treatment capacity was insufficient.

本発明の排ガス燃焼処理装置の一例を示す見取り図である。It is a sketch which shows an example of the exhaust gas combustion processing apparatus of this invention. 図1aの側面図である。1b is a side view of FIG. 図1bのA−A’矢視図である。It is A-A 'arrow line view of FIG. 1b. 本発明の排ガス燃焼処理装置の他の実施例を示す側面図である。It is a side view which shows the other Example of the exhaust gas combustion processing apparatus of this invention. 本発明の排ガス燃焼処理装置のさらに他の実施例を示す側面図である。It is a side view which shows the further another Example of the exhaust gas combustion processing apparatus of this invention. 従来の排ガス燃焼処理装置の一例を示す見取り図である。It is a sketch which shows an example of the conventional exhaust gas combustion processing apparatus. 従来の排ガス燃焼処理装置の他の一例を示す見取り図である。It is a sketch which shows another example of the conventional exhaust gas combustion processing apparatus. 本発明の排ガス燃焼処理装置のさらに他の実施例を示す透視側面図である。It is a see-through | perspective side view which shows the further another Example of the exhaust gas combustion processing apparatus of this invention. 本発明の排ガス燃焼処理装置のさらに他の実施例を示す透視側面図である。It is a see-through | perspective side view which shows the further another Example of the exhaust gas combustion processing apparatus of this invention.

符号の説明Explanation of symbols

1:燃焼処理炉
2:導入ダクト
2−a:導入ダクト2の導入口
3−1:導入ダクト
3−1−a:導入ダクト3−1の導入口
3−2:導入ダクト
3−2−a:導入ダクト3−2の導入口
4:排出ダクト
5:略円筒面
6−1:燃焼処理炉の端面
6−2:燃焼処理炉の端面
7−1:導入ダクト3−1の導入口3−1−aにおける、炉の略円筒面5の接面(仮想面)
7−2:導入ダクト3−2の導入口3−2−aにおける、炉の略円筒面5の接面(仮想面)
8−1:導入ダクト3−1の導入口3−1−aを通る、炉の略円筒面5に垂直な平面(仮想面)
8−2:導入ダクト3−2の導入口3−2−aを通る、炉の略円筒面5に垂直な平面(仮想面)
9:板
1: Combustion treatment furnace 2: Introduction duct 2-a: Introduction port of introduction duct 2 3-1: Introduction duct 3-1-a: Introduction port of introduction duct 3-1 3-2: Introduction duct 3-2-a : Introduction port of introduction duct 3-2: discharge duct 5: substantially cylindrical surface 6-1: end surface of combustion treatment furnace 6-2: end surface of combustion treatment furnace 7-1: introduction port 3 of introduction duct 3-1 1-a, the contact surface (virtual surface) of the substantially cylindrical surface 5 of the furnace
7-2: Contact surface (virtual surface) of the substantially cylindrical surface 5 of the furnace at the introduction port 3-2-a of the introduction duct 3-2
8-1: A plane (virtual plane) passing through the inlet 3-1-a of the introduction duct 3-1 and perpendicular to the substantially cylindrical surface 5 of the furnace
8-2: A plane (virtual plane) passing through the introduction port 3-2-a of the introduction duct 3-2 and perpendicular to the substantially cylindrical surface 5 of the furnace
9: Board

Claims (14)

炉内への排ガス導入ダクトを2つ以上有する略円筒状の排ガスの燃焼処理炉であって、
その導入口が炉の端面の中心点を含む、中心軸方向に並行に取りつけられた1つのダクト
Aおよび、炉の略円筒面の接面に対して90°以外の方向で、少なくともその一部が略円
筒面上に取りつけられた1つ以上のダクトBを有し、ダクトBの導入口がダクトAのない
端面よりもダクトAのある端面に近い側に取りつけられていることを特徴とする排ガス燃
焼処理装置。
A combustion treatment furnace for a substantially cylindrical exhaust gas having two or more exhaust gas introduction ducts into the furnace,
One duct A, the inlet of which includes the center point of the end face of the furnace, which is mounted in parallel in the direction of the central axis, and at least a part thereof in a direction other than 90 ° with respect to the contact surface of the substantially cylindrical surface of the furnace Has one or more ducts B mounted on a substantially cylindrical surface, and the inlet of the duct B is mounted closer to the end surface with the duct A than the end surface without the duct A. Exhaust gas combustion treatment equipment.
ダクトBが排ガスの燃焼処理炉の略円筒面上または略円筒面と端面との縁に取りつけら
れ、その取りつけ方向が、ダクトBの導入口を通る炉の略円筒面に略垂直な平面上におい
て傾けられた方向であることを特徴とする請求項1に記載の排ガス燃焼処理装置。
Duct B is mounted on the substantially cylindrical surface of the exhaust gas combustion treatment furnace or on the edge between the substantially cylindrical surface and the end surface, and the mounting direction is on a plane substantially perpendicular to the substantially cylindrical surface of the furnace passing through the inlet of duct B. 2. The exhaust gas combustion treatment apparatus according to claim 1, wherein the exhaust gas combustion treatment apparatus is inclined.
排ガスの燃焼処理炉の形状について、以下の式を満たすことを特徴とする請求項1また
は2に記載の排ガス燃焼処理装置。
D/L≦0.4
ただし、D:燃焼処理炉の平均炉幅
L:燃焼処理炉の炉長
The exhaust gas combustion treatment apparatus according to claim 1, wherein the following formula is satisfied with respect to a shape of the exhaust gas combustion treatment furnace.
D / L ≦ 0.4
Where D: average furnace width of the combustion treatment furnace L: furnace length of the combustion treatment furnace
排ガスの燃焼処理炉内において、ダクトAのない端面とダクトBとの間に、板によって炉の断面開口部面積が狭められている部分が、少なくとも1箇所設けられてなることを特徴とする請求項1〜3のいずれかに記載の排ガス燃焼処理装置。   In the exhaust gas combustion treatment furnace, at least one portion in which the cross-sectional opening area of the furnace is narrowed by a plate is provided between the end surface without the duct A and the duct B. Item 4. The exhaust gas combustion treatment apparatus according to any one of Items 1 to 3. 板によって炉の断面開口部面積が狭められている部分における開口部面積が、炉の最も大きい断面開口部面積の60%以下であることを特徴とする請求項4に記載の排ガス燃焼処理装置。   The exhaust gas combustion treatment apparatus according to claim 4, wherein an opening area in a portion where the cross-sectional opening area of the furnace is narrowed by the plate is 60% or less of a largest cross-sectional opening area of the furnace. 略円筒状の排ガスの燃焼処理炉において、処理する排ガスの全てを炉の中心軸方向に流
れる中心流として導入し、空気を炉の内壁部を旋廻流として1ヶ所以上の導入口から該燃
焼処理炉に導入することを特徴とする排ガス燃焼処理方法。
In a substantially cylindrical exhaust gas combustion treatment furnace, all of the exhaust gas to be treated is introduced as a central flow that flows in the direction of the central axis of the furnace, and air is combusted from one or more inlets with the inner wall of the furnace as a revolving flow. An exhaust gas combustion treatment method characterized by being introduced into a furnace.
略円筒状の排ガスの燃焼処理炉において、処理する排ガスの一部を炉の中心軸方向に流
れる中心流として該燃焼処理炉へ導入し、残りの処理する排ガスを炉の内壁部を旋廻しな
がら流れる旋廻流として1ヶ所以上の導入口から該燃焼処理炉に導入し、さらに空気を炉
の内壁部を旋廻流として排ガス導入口とは別の1ヶ所以上の導入口から該燃焼処理炉に導
入することを特徴とする排ガス燃焼処理方法。
In a combustion treatment furnace for a substantially cylindrical exhaust gas, a part of the exhaust gas to be treated is introduced into the combustion treatment furnace as a central flow flowing in the central axis direction of the furnace, and the remaining exhaust gas to be treated is rotated on the inner wall of the furnace Introduce into the combustion treatment furnace from one or more inlets as a flowing swirl, and further introduce air into the combustion treatment furnace from one or more inlets separate from the exhaust gas inlet through the inner wall of the furnace. An exhaust gas combustion treatment method comprising:
略円筒状の排ガスの燃焼処理炉において、処理する排ガスの一部を炉の中心軸方向に流
れる中心流として該燃焼処理炉へ導入し、残りの処理する排ガスを炉の内壁を旋回流とし
て1ヶ所以上の導入口から該燃焼処理炉に導入することを特徴とする排ガス燃焼処理方法
In a combustion treatment furnace for a substantially cylindrical exhaust gas, a part of the exhaust gas to be treated is introduced into the combustion treatment furnace as a central flow that flows in the central axis direction of the furnace, and the remaining exhaust gas to be treated is a swirl flow on the inner wall of the furnace. An exhaust gas combustion treatment method comprising introducing into the combustion treatment furnace from more than one inlet.
略円筒状の排ガスの燃焼処理炉の内壁を旋廻流として導入される空気または高酸素濃度
の排ガスに、導入前に助燃用燃焼ガスを混合することを特徴とする請求項6〜8のいずれかに記載に排ガス燃焼処理方法。
9. An auxiliary combustion combustion gas is mixed with air or high oxygen concentration exhaust gas introduced as a swirl flow through the inner wall of a combustion treatment furnace of substantially cylindrical exhaust gas before introduction. 2. An exhaust gas combustion processing method described in 1.
略円筒状の排ガスの燃焼処理炉に導入する低酸素濃度である排ガスのうちの少なくとも
一部に、導入前に燃焼補助用として空気または高酸素濃度である排ガスを混合しておくこ
とを特徴とする請求項6〜9のいずれかに記載の排ガス燃焼処理方法。
It is characterized in that air or high oxygen concentration exhaust gas is mixed with at least a part of the exhaust gas having a low oxygen concentration introduced into the combustion treatment furnace of the substantially cylindrical exhaust gas before the introduction as a combustion auxiliary. The exhaust gas combustion processing method according to any one of claims 6 to 9.
燃焼処理炉内に導入する排ガスについて、以下の式を満たすことを特徴とする請求項6
〜10のいずれかに記載の排ガス燃焼処理方法。
Dv/Lv≦0.4
ただし、Dv:燃焼処理炉内での旋廻流の平均径
Lv:中心流の燃焼処理炉内通過部の長さ
The exhaust gas introduced into the combustion treatment furnace satisfies the following formula:
The exhaust gas combustion treatment method according to any one of 10 to 10.
Dv / Lv ≦ 0.4
However, Dv: Average diameter of the swirling flow in the combustion treatment furnace
Lv: Length of the central flow passage in the combustion treatment furnace
燃焼処理炉内に導入する排ガスの流量について、以下の式を満たすことを特徴とする請
求項6〜11のいずれかに記載の排ガス燃焼処理方法。
Vr/Vc≧7
ただし、Vr:旋廻流量の和
Vc:中心流量
The exhaust gas combustion treatment method according to any one of claims 6 to 11, wherein the following expression is satisfied with respect to a flow rate of the exhaust gas introduced into the combustion treatment furnace.
Vr / Vc ≧ 7
However, Vr: Sum of turning flow rate
Vc: Center flow rate
燃焼処理炉内に導入する排ガスの燃焼熱量について、以下の式を満たすことを特徴とす
る請求項6〜12のいずれかに記載の排ガス燃焼処理方法。
Qbe‐r/Qbe‐c≦0.3
ただし、Qbe‐r:旋廻流排ガス中に元来含まれる自燃成分の燃焼熱量
Qbe‐c:中心流排ガス中に元来含まれる自燃成分の燃焼熱量
The exhaust gas combustion treatment method according to any one of claims 6 to 12, wherein the following equation is satisfied with respect to the amount of combustion heat of the exhaust gas introduced into the combustion treatment furnace.
Qbe-r / Qbe-c ≦ 0.3
However, Qbe-r: Combustion heat quantity of the self-combustion component originally contained in the swirling flow exhaust gas Qbe-c: Combustion heat amount of the self-combustion component originally contained in the central flow exhaust gas
燃焼処理炉内に導入されるガスの熱量について、以下の式を満たすことを特徴とする請
求項6〜13のいずれかに記載の排ガス燃焼処理方法。
[Qr/Vr]/[Qc/Vc]≧0.1
ただし、
Figure 2006308275
The exhaust gas combustion processing method according to any one of claims 6 to 13, wherein the following equation is satisfied with respect to the amount of heat of the gas introduced into the combustion processing furnace.
[Qr / Vr] / [Qc / Vc] ≧ 0.1
However,
Figure 2006308275
JP2006043510A 2005-03-31 2006-02-21 Exhaust gas treatment method for carbon fiber production Active JP4876621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043510A JP4876621B2 (en) 2005-03-31 2006-02-21 Exhaust gas treatment method for carbon fiber production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005101467 2005-03-31
JP2005101467 2005-03-31
JP2006043510A JP4876621B2 (en) 2005-03-31 2006-02-21 Exhaust gas treatment method for carbon fiber production

Publications (3)

Publication Number Publication Date
JP2006308275A true JP2006308275A (en) 2006-11-09
JP2006308275A5 JP2006308275A5 (en) 2009-04-09
JP4876621B2 JP4876621B2 (en) 2012-02-15

Family

ID=37475352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043510A Active JP4876621B2 (en) 2005-03-31 2006-02-21 Exhaust gas treatment method for carbon fiber production

Country Status (1)

Country Link
JP (1) JP4876621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067420A (en) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd Method for manufacturing carbon fiber
WO2018230055A1 (en) 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330043A (en) * 1976-09-01 1978-03-20 Kureha Chemical Ind Co Ltd Method of treating unburned gas
JP2000199617A (en) * 1999-01-05 2000-07-18 Showa Denko Kk Method for treating exhaust gas of vapor phase carbon fiber
JP2000220817A (en) * 1999-01-29 2000-08-08 Nkk Corp Combustor/processor for exhaust gas containing dust
JP2001193918A (en) * 1999-11-02 2001-07-17 Ebara Corp Combustor for disposal of exhaust gas
JP2001324119A (en) * 2000-05-12 2001-11-22 Mitsubishi Rayon Co Ltd Exhaust gas treatment device for carbonizing furnace and method of treating exhaust gas from carbonizing furnace
JP2004003738A (en) * 2002-05-31 2004-01-08 Tsukishima Kikai Co Ltd External heat kiln and thermal decomposition treatment method for material treated by external heat kiln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330043A (en) * 1976-09-01 1978-03-20 Kureha Chemical Ind Co Ltd Method of treating unburned gas
JP2000199617A (en) * 1999-01-05 2000-07-18 Showa Denko Kk Method for treating exhaust gas of vapor phase carbon fiber
JP2000220817A (en) * 1999-01-29 2000-08-08 Nkk Corp Combustor/processor for exhaust gas containing dust
JP2001193918A (en) * 1999-11-02 2001-07-17 Ebara Corp Combustor for disposal of exhaust gas
JP2001324119A (en) * 2000-05-12 2001-11-22 Mitsubishi Rayon Co Ltd Exhaust gas treatment device for carbonizing furnace and method of treating exhaust gas from carbonizing furnace
JP2004003738A (en) * 2002-05-31 2004-01-08 Tsukishima Kikai Co Ltd External heat kiln and thermal decomposition treatment method for material treated by external heat kiln

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067420A (en) * 2010-09-24 2012-04-05 Mitsubishi Rayon Co Ltd Method for manufacturing carbon fiber
WO2018230055A1 (en) 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method
CN110709542A (en) * 2017-06-13 2020-01-17 东丽株式会社 Method for producing carbon fiber
KR20200016214A (en) 2017-06-13 2020-02-14 도레이 카부시키가이샤 Method of manufacturing carbon fiber
US11261545B2 (en) 2017-06-13 2022-03-01 Toray Industries, Inc. Carbon fiber production method
KR102507504B1 (en) 2017-06-13 2023-03-08 도레이 카부시키가이샤 Manufacturing method of carbon fiber

Also Published As

Publication number Publication date
JP4876621B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP0160146B1 (en) Apparatus for coal combustion
TWI680792B (en) Exhaust gas treating device
US6102691A (en) Combustion apparatus
TWI675170B (en) Exhaust gas treatment method and exhaust gas treatment device
WO2001033141A1 (en) Combustor for exhaust gas treatment
CN110056862B (en) Low nitrogen oxide burner
JP2003518603A (en) Partial oxidation of hydrogen sulfide
JP4876621B2 (en) Exhaust gas treatment method for carbon fiber production
JP6659471B2 (en) Exhaust gas treatment equipment
TWI398293B (en) Cyclone Oxygen Combustion Unit for Treatment of Emissions from Semiconductor Processes
JP2017089985A (en) Exhaust gas treatment device
JP3812638B2 (en) Combustor for exhaust gas treatment
JP6659461B2 (en) Exhaust gas treatment equipment
US20030013059A1 (en) Conical flame waste gas combustion reactor
JP5635285B2 (en) Glass melting furnace and method for treating exhaust gas in glass melting furnace
KR102233712B1 (en) A multi-staged combined swirling combustion Device
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
JP3698690B2 (en) CFC detoxification method using cement kiln
JP2001059613A (en) Pretreatment apparatus for exhaust gas from semiconductor manufacturing process
KR20160073007A (en) Scrubber for plasma burner having an aqua barrier from being formed on the inner part of the reactor
JP3239181U (en) burner
CN109477636B (en) Exhaust gas treatment method, exhaust gas treatment device, and carbon fiber production system
JP2019074305A (en) Method for supplying oxygen-containing gas to secondary combustion chamber, and secondary combustion facility
JP2008032310A (en) Combustion detoxifying device
SU1151769A1 (en) Device for burning waste gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4876621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3