JP2006308241A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner Download PDF

Info

Publication number
JP2006308241A
JP2006308241A JP2005132856A JP2005132856A JP2006308241A JP 2006308241 A JP2006308241 A JP 2006308241A JP 2005132856 A JP2005132856 A JP 2005132856A JP 2005132856 A JP2005132856 A JP 2005132856A JP 2006308241 A JP2006308241 A JP 2006308241A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
air conditioner
pump type
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005132856A
Other languages
Japanese (ja)
Other versions
JP4518998B2 (en
Inventor
Masateru Saito
真輝 斉藤
Shozo Tokuda
昌三 徳田
Masanobu Akama
正伸 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2005132856A priority Critical patent/JP4518998B2/en
Publication of JP2006308241A publication Critical patent/JP2006308241A/en
Application granted granted Critical
Publication of JP4518998B2 publication Critical patent/JP4518998B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type air conditioner capable of performing stable continuous operation by preventing the temperature drop of a heat exchanger in an exhaust passage, and eliminating the necessity of defrosting operation during heating operation. <P>SOLUTION: The heat pump type air conditioner is provided with a total enthalpy heat exchanger 4 between an air supply passage 2 and an exhaust passage 3 and constituted to switchingly perform air-conditioning operation and heating operation to an air-conditioned room by allowing a refrigerant from a compressor 12 to flow through a first heat exchanger 7 provided downstream of the total enthalpy heat exchanger 4 in the air supply passage 2, and a second heat exchanger 10 provided downstream of the total enthalpy heat exchanger 4 in the exhaust passage 3 in the order of the first heat exchanger and the second heat exchanger or reversely. The heat pump type air conditioner is further provided with a by-pass air passage 15 by-passing the total enthalpy heat exchanger 4 in the exhaust passage 2, and an opening control damper mechanism 16 in the by-pass air passage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は外気を導入して全熱交換器により被空調室からの還気と熱交換せしめ、冷媒回路の操作により冷房と暖房を切替えて行うことができるヒートポンプ式空気調和装置に関し、より詳しくは、暖房運転時において蒸発器として作用する熱交換器への着霜を防止できるようにした空気調和装置に関する。   The present invention relates to a heat pump type air conditioner that introduces outside air and exchanges heat with the return air from the air-conditioned room by a total heat exchanger, and can be performed by switching between cooling and heating by operating a refrigerant circuit. The present invention relates to an air conditioner capable of preventing frost formation on a heat exchanger acting as an evaporator during heating operation.

導入した外気を空気調和して被空調室に送り、被空調室からの還気を外部に排出する外気処理タイプの空気調和機においては、導入外気を空気調和して被空調室に送る給気流路と、被空調室からの還気を外部に排出する排気流路との間にこれら2つの流路を跨ぐ全熱交換器を設け、この全熱交換器による外気と還気との熱交換により還気中の残留熱エネルギを回収するとともに、前記2つの流路にそれぞれヒートポンプ回路の一方の熱交換器を配してさらなる廃熱回収を行い、省エネルギ化を図るようにしたものが従来から広く知られている(例えば、特許文献1参照)。   In the outside air processing type air conditioner that sends introduced outside air to the air-conditioned room after air conditioning and discharges the return air from the air-conditioned room to the outside, air supply air flow that sends the outside air to the air-conditioned room after air conditioning A total heat exchanger that straddles these two flow paths is provided between the passage and the exhaust flow path that exhausts the return air from the air-conditioned room to the outside, and heat exchange between the outside air and the return air by this total heat exchanger In the prior art, the residual heat energy in the return air is recovered by the above, and one of the heat exchangers of the heat pump circuit is disposed in each of the two flow paths to further recover waste heat, thereby saving energy. (For example, refer to Patent Document 1).

ところで、上述のような装置においては冬季の暖房運転時に排気流路における熱交換器が冷媒回路の蒸発器として作用するのであるが、外気温が低下すると同蒸発器における空気出口の温度が5℃以下に低下する場合がある。   By the way, in the apparatus as described above, the heat exchanger in the exhaust passage acts as an evaporator of the refrigerant circuit during the heating operation in winter, but when the outside air temperature decreases, the temperature of the air outlet in the evaporator becomes 5 ° C. May decrease to:

このような場合、蒸発器には着霜のおそれがあり、着霜した場合には蒸発器に圧縮機からの高温冷媒ガスを供給する除霜運転を行わなければならず、この除霜運転時には被空調室へ加温空気を供給することができず、したがって暖房運転が中断されてしまう。
特開平7−310964号公報(第1〜4頁、図1〜4)
In such a case, there is a risk of frost formation on the evaporator, and in the case of frost formation, a defrost operation for supplying high-temperature refrigerant gas from the compressor to the evaporator must be performed. Heating air cannot be supplied to the air-conditioned room, and thus the heating operation is interrupted.
JP-A-7-310964 (pages 1 to 4, FIGS. 1 to 4)

本発明は、排気流路における熱交換器の温度低下を防止し、暖房運転時における除霜運転の必要性を廃し、安定した連続運転を行うことができるヒートポンプ式空気調和装置を提供することを目的としている。   The present invention provides a heat pump type air conditioner that prevents a temperature drop of a heat exchanger in an exhaust passage, eliminates the need for a defrosting operation during heating operation, and can perform a stable continuous operation. It is aimed.

上記課題を解決するために、本発明に係るヒートポンプ式空気調和装置は、外気導入口と被空調室への給気口とを有する給気流路と、被空調室からの還気口と外部への排気口とを有する排気流路との間に、これら給気流路と排気流路を跨ぐ全熱交換器を備え、前記給気流路における全熱交換器の下流側に設けた第1熱交換器と、前記排気流路における全熱交換器の下流側に設けた第2熱交換器とに対し、圧縮機からの冷媒を前記第1熱交換器と第2熱交換器の順またはその逆に流通せしめて被空調室に対する冷房運転と暖房運転を切替えて行うように構成したヒートポンプ式空気調和装置において、前記排気流路内において前記全熱交換器をバイパスするバイパス空気流路を設け、同バイパス空気流路内に開度制御用のダンパ機構を設けた構成のものとしてある。   In order to solve the above problems, a heat pump air conditioner according to the present invention includes an air supply passage having an outside air inlet and an air supply port to an air-conditioned room, an air return port from the air-conditioned room, and the outside. A first heat exchange provided between the supply air flow path and the exhaust flow path and provided downstream of the total heat exchanger in the supply air flow path. And the second heat exchanger provided on the downstream side of the total heat exchanger in the exhaust flow path, the refrigerant from the compressor is used in the order of the first heat exchanger and the second heat exchanger or vice versa. In the heat pump type air conditioner configured to switch between cooling operation and heating operation for the air-conditioned room, a bypass air flow path that bypasses the total heat exchanger is provided in the exhaust flow path. A structure in which a damper mechanism for opening control is provided in the bypass air flow path. There is as of.

また前記ダンパ機構は、暖房運転の際に外気温度が所定の値よりも低下すると、この温度の低下に伴って開度が大となるように制御されるように構成されている。   Further, the damper mechanism is configured to be controlled such that when the outside air temperature falls below a predetermined value during the heating operation, the opening degree increases as the temperature falls.

そして上記外気温度に代え、前記第2熱交換器の空気入口または同出口のうち少なくともいずれか一方の温度、前記第2熱交換器の蒸発圧力、前記第2熱交換器の出口冷媒温度、前記第2熱交換器の前面風速等の各種物理量の低下に伴って前記ダンパ機構の開度が大となるように制御するように構成する場合もある。 And instead of the outside air temperature, the temperature of at least one of the air inlet or the outlet of the second heat exchanger, the evaporation pressure of the second heat exchanger, the outlet refrigerant temperature of the second heat exchanger, In some cases, the damper mechanism may be controlled so that the opening degree of the damper mechanism increases as various physical quantities such as the front wind speed of the second heat exchanger decrease.

本発明によれば、排気流路において全熱交換器をバイパスするバイパス空気流路を設けてあるので、排気流路における第2熱交換器にはバイパス空気流路を通過し、全熱交換器を通過しないバイパス空気を供給することができる。   According to the present invention, since the bypass air flow path that bypasses the total heat exchanger is provided in the exhaust flow path, the second heat exchanger in the exhaust flow path passes through the bypass air flow path, and the total heat exchanger Bypass air that does not pass through can be supplied.

冬季の暖房運転時においては、前記バイパス空気は全熱交換器を通過した空気よりも温度が高いので、全熱交換器通過後の空気とバイパス空気とが混合されて第2熱交換器に供給されることにより、第2熱交換器への供給空気を昇温せしめることができ、したがって第2熱交換器の温度低下に起因する同熱交換器への着霜が防止され、除霜運転が不要となって安定した連続運転を行うことができる。   During the heating operation in winter, the temperature of the bypass air is higher than that of the air that has passed through the total heat exchanger, so the air that has passed through the total heat exchanger and the bypass air are mixed and supplied to the second heat exchanger. As a result, the temperature of the air supplied to the second heat exchanger can be raised, and therefore frost formation on the heat exchanger due to the temperature drop of the second heat exchanger is prevented, and the defrosting operation is performed. This eliminates the need for stable continuous operation.

また、前記バイパス空気流路にはダンパ機構を設けてあり、外気温等に応じて開度が調節されるように構成してあるので、前記バイパス空気量は必要に応じて制御され、十分な廃熱回収を期すことができる。 In addition, a damper mechanism is provided in the bypass air flow path, and the opening degree is adjusted according to the outside air temperature or the like, so that the bypass air amount is controlled as necessary and sufficient. Waste heat recovery can be expected.

本発明に係るヒートポンプ式空気調和装置の実施例を添付図面に基づいて詳細に説明する。
ケーシング1内には、外気導入口2aから被空調室(図示省略)への給気口2bに至る給気流路2と、被空調室からの還気を導入する還気口3aから外部への排気口3bに至る排気流路3とが設けられていて、給気流路2と排気流路3との間には、これら2つの流路を跨ぐ全熱交換器4を備えている。
An embodiment of a heat pump type air conditioner according to the present invention will be described in detail with reference to the accompanying drawings.
In the casing 1, there are an air supply passage 2 extending from an outside air inlet 2a to an air supply port 2b to an air-conditioned room (not shown), and a return air port 3a for introducing return air from the air-conditioned room to the outside. An exhaust passage 3 reaching the exhaust port 3b is provided, and a total heat exchanger 4 straddling the two passages is provided between the air supply passage 2 and the exhaust passage 3.

前記給気流路2には、外気口2a側から給気口2bに向かって順に、フィルタ5、前記全熱交換器4、加湿器6、第1熱交換器7、送風機8を設けてあり、前記排気流路3には、還気口3Aから排気口3Bに向かって順に、フィルタ9、前記全熱交換器4、第2熱交換器10、送風機11を設けてある。
なお、給気流路2内におけるフィルタ5は、例えばプレフィルタ5aと中性能フィルタ5bとの2段構成のものとしてある。
In the air supply flow path 2, a filter 5, the total heat exchanger 4, the humidifier 6, the first heat exchanger 7, and the blower 8 are provided in this order from the outside air outlet 2 a toward the air inlet 2 b. The exhaust passage 3 is provided with a filter 9, the total heat exchanger 4, the second heat exchanger 10, and the blower 11 in order from the return air port 3 </ b> A toward the exhaust port 3 </ b> B.
The filter 5 in the air supply channel 2 has a two-stage configuration of, for example, a pre-filter 5a and a medium performance filter 5b.

また、上記排気流路3におけるフィルタ9と全熱交換器4との間には、冷媒回路の圧縮機12を設けてあり、同圧縮機12からの冷媒は、前記第1熱交換器7と第2熱交換器10をこの順に、またはその逆となるように四方弁13により切替えて供給され、アキュムレータ14を介して圧縮機に戻される構成となっており、上記四方弁の切替えによって冷房運転と暖房運転が切替えられる。   Further, a compressor 12 of a refrigerant circuit is provided between the filter 9 and the total heat exchanger 4 in the exhaust passage 3, and the refrigerant from the compressor 12 is exchanged with the first heat exchanger 7. The second heat exchanger 10 is switched and supplied by the four-way valve 13 in this order or vice versa, and is returned to the compressor via the accumulator 14, and the cooling operation is performed by switching the four-way valve. And heating operation are switched.

具体的には、冷房運転時には図1中に実線矢印で示されるように、圧縮機12からの冷媒が四方弁13を介して第2熱交換器10に送られ、排気流路3を流過する空気との熱交換により凝縮されて第1熱交換器7に送られ、同第1熱交換器において蒸発させられて給気流路2内を流過する空気を冷却してアキュムレータ14に送られ、同アキュムレータにて気液分離されて圧縮機12に戻される。
なお、第1熱交換器7にて冷却された空気は被空調室に送られる。
Specifically, during cooling operation, as indicated by solid arrows in FIG. 1, the refrigerant from the compressor 12 is sent to the second heat exchanger 10 via the four-way valve 13 and flows through the exhaust passage 3. The air is condensed by heat exchange with the air to be sent and sent to the first heat exchanger 7. The air evaporated in the first heat exchanger and flowing through the air supply passage 2 is cooled and sent to the accumulator 14. The gas and liquid are separated by the accumulator and returned to the compressor 12.
The air cooled by the first heat exchanger 7 is sent to the air-conditioned room.

また、暖房運転時には図1中に破線矢印で示されるように、圧縮機12からの冷媒が四方弁13を介して第1熱交換器7に送られ、給気流路2を流過する空気との熱交換によって凝縮して給気流路内の空気を加熱し、凝縮した冷媒は第2熱交換器10に送られて蒸発させられて排気流路3内を流過する空気の熱を奪い、その後アキュムレータにて気液分離されて圧縮機12に戻される。
なお、第1熱交換器7にて加熱された空気は被空調室に送られる。
Further, during the heating operation, as indicated by broken line arrows in FIG. 1, the refrigerant from the compressor 12 is sent to the first heat exchanger 7 through the four-way valve 13, and the air flowing through the air supply passage 2 The heat is condensed by the heat exchange to heat the air in the air supply flow path, and the condensed refrigerant is sent to the second heat exchanger 10 to be evaporated and take the heat of the air flowing through the exhaust flow path 3, Thereafter, the gas and liquid are separated by an accumulator and returned to the compressor 12.
In addition, the air heated with the 1st heat exchanger 7 is sent to an air-conditioned room.

しかして本発明の装置においては、前記排気流路3内の全熱交換器4をバイパスするバイパス空気流路15を設けてあって、同バイパス空気流路にはダンパ機構16を備えており、同ダンパ機構の開度が制御されることにより、排気流路3内を流れる空気の一部を、全熱交換器を流過させることなく第2熱交換器10に送ることができる構成となっている。   Therefore, in the apparatus of the present invention, a bypass air flow path 15 that bypasses the total heat exchanger 4 in the exhaust flow path 3 is provided, and a damper mechanism 16 is provided in the bypass air flow path, By controlling the opening degree of the damper mechanism, a part of the air flowing in the exhaust passage 3 can be sent to the second heat exchanger 10 without flowing through the total heat exchanger. ing.

前記ダンパ機構16は、例えば外気導入口2aの内側に設けた温度センサ(図示省略)と、温度制御器(図示省略)からの信号によって開度が調節されるものとしてあって、冬季の暖房運転時において外気温が予め設定された温度よりも低下すると、その低下の度合いに応じて開度が大となるように構成されている。
なお、図1中において符号17、18はそれぞれ第1熱交換器、第2熱交換器用の各膨張弁、19、20はそれぞれ第1熱交換器、第2熱交換器用の逆止弁を示している。
The damper mechanism 16 is configured such that the opening degree is adjusted by a signal from a temperature sensor (not shown) provided inside the outside air inlet 2a and a temperature controller (not shown), for example, and heating operation in winter When the outside air temperature falls below a preset temperature at the time, the opening degree is configured to increase according to the degree of the fall.
In FIG. 1, reference numerals 17 and 18 denote first heat exchangers and expansion valves for the second heat exchanger, and 19 and 20 denote check valves for the first heat exchanger and the second heat exchanger, respectively. ing.

次に、上述した構成の装置による作用について説明する。
夏季の冷房運転時においては、外気導入口2aからの空気がフィルタ5を経て全熱交換器4を流過し、排気流路3内の空気と熱交換した後、冷房運転時には原則として稼動されない加湿器6を通過して第1熱交換器7に送られる。
Next, the operation of the apparatus having the above-described configuration will be described.
During the cooling operation in summer, the air from the outside air inlet 2a flows through the total heat exchanger 4 through the filter 5 and exchanges heat with the air in the exhaust passage 3, and is not operated in principle during the cooling operation. It passes through the humidifier 6 and is sent to the first heat exchanger 7.

冷房運転時においてはこの第1熱交換器7が蒸発器として作用するので、給気流路2内の空気は第1熱交換器において所要の温度に冷却され、送風機8の駆動により給気口2bから送出され、給気口に接続されたダクト等(図示省略)の送気手段によって被空調室に送られる。 Since the first heat exchanger 7 acts as an evaporator during the cooling operation, the air in the air supply passage 2 is cooled to a required temperature in the first heat exchanger, and the air supply port 2b is driven by driving the blower 8. And is sent to the air-conditioned room by air supply means such as a duct (not shown) connected to the air supply port.

そして、被空調室からダクト等の送気手段によって戻された還気は、還気口3aから排気流路3内に流入してフィルタ9を通過し、全熱交換器4に送られて給気流路2内の空気と熱交換し、第2熱交換器10にて冷媒の凝縮熱を奪い、送風機11の駆動により排気口3bから外部に排出される。   The return air returned from the air-conditioned room by the air supply means such as a duct flows into the exhaust passage 3 from the return air port 3a, passes through the filter 9, and is sent to the total heat exchanger 4 to be supplied. Heat is exchanged with the air in the air flow path 2, the heat of condensation of the refrigerant is taken away by the second heat exchanger 10, and the air is discharged from the exhaust port 3 b to the outside by driving the blower 11.

なお、冷房運転時においては排気流路3を流過する空気は原則として全量が全熱交換器4を経るものとし、バイパス空気流路15のダンパ機構16は全閉としておく。   In the cooling operation, all the air flowing through the exhaust passage 3 passes through the total heat exchanger 4 in principle, and the damper mechanism 16 of the bypass air passage 15 is fully closed.

また冬季の暖房運転時においては、外気導入口2aからの空気がフィルタ5を経て全熱交換器4を流過し、排気流路3内の空気と熱交換した後、加湿器6によって湿度が調節されて第1熱交換器7に送られる。 Further, during the heating operation in winter, the air from the outside air inlet 2a flows through the total heat exchanger 4 through the filter 5 and exchanges heat with the air in the exhaust passage 3, and then the humidity is increased by the humidifier 6. It is adjusted and sent to the first heat exchanger 7.

暖房運転時においてはこの第1熱交換器7が凝縮器として作用するので、給気流路2内の空気は第1熱交換器において所要の温度に加温され、送風機8の駆動により給気口2bから送出され、給気口に接続されたダクト等(図示省略)の送気手段によって被空調室に送られる。 Since the first heat exchanger 7 acts as a condenser during the heating operation, the air in the air supply passage 2 is heated to a required temperature in the first heat exchanger, and the air supply port is driven by driving the blower 8. 2b and sent to the air-conditioned room by air supply means such as a duct (not shown) connected to the air supply port.

そして、被空調室からダクト等の送気手段によって戻された還気は、還気口3aから排気流路3内に流入してフィルタ9を通過し、全熱交換器4に送られて給気流路2内の空気と熱交換し、第2熱交換器10にて冷媒の気化冷熱を奪い、送風機11の駆動により排気口3bから外部に排出される。   The return air returned from the air-conditioned room by the air supply means such as a duct flows into the exhaust passage 3 from the return air port 3a, passes through the filter 9, and is sent to the total heat exchanger 4 to be supplied. Heat is exchanged with the air in the air flow path 2, the refrigerant evaporates and cools in the second heat exchanger 10, and is discharged to the outside through the exhaust port 3 b by driving the blower 11.

上述した暖房運転時においては、原則として前記バイパス空気流路15はダンパ機構16によって閉止されているが、外気温が低下すると上記ダンパ機構の開度が大となるように制御され、全熱交換器を流過しない空気の割合が大となる。   During the heating operation described above, the bypass air flow path 15 is closed by the damper mechanism 16 in principle. However, when the outside air temperature decreases, the opening degree of the damper mechanism is controlled to be large, and the total heat exchange is performed. The proportion of air that does not flow through the vessel increases.

上述のように全熱交換器を流過しない空気量が大になるということは、全熱交換器において給気流路を流れる外気の冷熱に冷却されない比較的温度の高い空気の量が増加することになり、第2熱交換器10に送られる空気の温度が上昇する。   As described above, the amount of air that does not flow through the total heat exchanger becomes large, which means that the amount of relatively high-temperature air that is not cooled by the cold heat of the outside air that flows through the supply air passage in the total heat exchanger increases. Thus, the temperature of the air sent to the second heat exchanger 10 rises.

したがって、第2熱交換器10における温度の低下が防止されてこの温度を5℃より高い温度すなわち第2熱交換器への着霜のおそれがない温度とすることができ、このため第2熱交換器を除霜するための除霜運転を行う必要がなくなる。   Therefore, a decrease in temperature in the second heat exchanger 10 is prevented, and this temperature can be set to a temperature higher than 5 ° C., that is, a temperature at which there is no fear of frost formation on the second heat exchanger. There is no need to perform a defrosting operation for defrosting the exchanger.

すなわち、本発明の装置は除霜運転が不要であるから、安定した連続的な暖房運転を行うことができるだけでなく、除霜運転用の冷媒回路も不要となり、また除霜運転に伴うエネルギロスもなくすことができるというメリットもある。   That is, since the device of the present invention does not require a defrosting operation, not only can a stable continuous heating operation be performed, but also a refrigerant circuit for the defrosting operation is not required, and energy loss associated with the defrosting operation is eliminated. There is also an advantage that it can be lost.

図2は、本発明の装置における空気の状態を湿り空気線図に示したものであり、外気が乾球温度0.6℃、湿度33%、還気が乾球温度22℃、湿度40%で、パイパス空気量を35%としてシミュレーションを行った結果を、第2熱交換器10の空気入口における空気状態をa1、同出口における空気状態をa2として示したものである。   FIG. 2 is a moist air diagram showing the air state in the apparatus of the present invention. The outside air is a dry bulb temperature of 0.6 ° C. and a humidity of 33%, and the return air is a dry bulb temperature of 22 ° C. and a humidity of 40%. The results of the simulation with the bypass air amount set to 35% are shown as a1 in the air state at the air inlet of the second heat exchanger 10 and a2 in the air state at the outlet.

また比較のために、外気および還気の条件を上記と同様にして、バイパス空気量を0とした場合における第2熱交換器10の空気入口における空気状態をb1、同出口における空気状態をb2として示した。   For comparison, the air condition at the air inlet of the second heat exchanger 10 is b1 and the air condition at the outlet is b2 when the conditions of the outside air and the return air are the same as above, and the bypass air amount is zero. As shown.

図2の空気線図から明らかなように、バイパス空気量を0とした場合には第2熱交換器出口における空気温度が約0℃となり着霜が懸念されるのに対し、バイパス空気量を35%とした本発明のものでは、第2熱交換器出口における空気温度が乾球温度で7.3℃となり、着霜のおそれがないことがわかる。   As is apparent from the air diagram of FIG. 2, when the bypass air amount is set to 0, the air temperature at the outlet of the second heat exchanger is about 0 ° C., and frost formation is a concern. It can be seen that the air temperature at the outlet of the second heat exchanger is 7.3 ° C. in terms of dry bulb temperature and there is no risk of frost formation in the present invention with 35%.

上述した実施例においては、バイパス空気の量を調節するダンパ機構の開度制御を、外気導入口2a内側における温度に基づいて行う構成としてあるが、外気温そのものに基づく制御に代えて、外気温に伴って変動する各種物理量に基づいて制御する場合もあり、例えば第2熱交換器の空気入口または出口における空気温度、第2熱交換器における冷媒の蒸発圧力やその冷媒出口における冷媒温度の低下、減少に基づいて制御する場合もあり、また、第2熱交換器における前面風速の減少、すなわち第2熱交換器への着霜開始による通風抵抗の上昇に基づいて制御する場合もある。   In the embodiment described above, the opening degree control of the damper mechanism that adjusts the amount of bypass air is performed based on the temperature inside the outside air inlet 2a, but instead of the control based on the outside air temperature itself, the outside air temperature is changed. In some cases, control is performed based on various physical quantities that fluctuate along with, for example, the air temperature at the air inlet or outlet of the second heat exchanger, the evaporating pressure of the refrigerant in the second heat exchanger, or the refrigerant temperature at the refrigerant outlet In some cases, the control is based on a decrease, and in some cases, the control is based on a decrease in front wind speed in the second heat exchanger, that is, an increase in ventilation resistance due to the start of frost formation on the second heat exchanger.

本発明に係る装置の実施例の構成を示す系統図。The system diagram which shows the structure of the Example of the apparatus which concerns on this invention. 本発明の作用を説明するための湿り空気線図。The wet air diagram for demonstrating the effect | action of this invention.

符号の説明Explanation of symbols

1 ケーシング
2 給気流路
3 排気流路
4 全熱交換器
5 フィルタ
6 加湿器
7 第1熱交換器
8 送風機
9 フィルタ
10 第2熱交換器
11 送風機
12 圧縮機
13 四方弁
14 アキュムレータ
15 バイパス空気流路
16 ダンパ機構
17、18 膨張弁
19、20 逆止弁
DESCRIPTION OF SYMBOLS 1 Casing 2 Supply air flow path 3 Exhaust flow path 4 Total heat exchanger 5 Filter 6 Humidifier 7 1st heat exchanger 8 Blower 9 Filter 10 2nd heat exchanger 11 Blower 12 Compressor 13 Four-way valve 14 Accumulator 15 Bypass air flow Path 16 Damper mechanism 17, 18 Expansion valve 19, 20 Check valve

Claims (7)

外気導入口と被空調室への給気口とを有する給気流路と、被空調室からの還気口と外部への排気口とを有する排気流路との間に、これら給気流路と排気流路を跨ぐ全熱交換器を備え、前記給気流路における全熱交換器の下流側に設けた第1熱交換器と、前記排気流路における全熱交換器の下流側に設けた第2熱交換器とに対し、圧縮機からの冷媒を前記第1熱交換器と第2熱交換器の順またはその逆に流通せしめて被空調室に対する冷房運転と暖房運転を切替えて行うように構成したヒートポンプ式空気調和装置において、前記排気流路内において前記全熱交換器をバイパスするバイパス空気流路を設け、同バイパス空気流路内に開度制御用のダンパ機構を設けてなるヒートポンプ式空気調和装置。   These air supply passages are provided between an air supply passage having an outside air introduction port and an air supply port to the air-conditioned room, and an exhaust passage having a return air port from the air-conditioned room and an exhaust port to the outside. A first heat exchanger provided on the downstream side of the total heat exchanger in the supply air flow path; and a first heat exchanger provided on the downstream side of the total heat exchanger in the exhaust flow path. The refrigerant from the compressor is circulated through the two heat exchangers in the order of the first heat exchanger and the second heat exchanger or vice versa so as to switch between the cooling operation and the heating operation for the air-conditioned room. In the heat pump type air conditioner configured, a heat pump type in which a bypass air passage for bypassing the total heat exchanger is provided in the exhaust passage, and a damper mechanism for opening degree control is provided in the bypass air passage. Air conditioner. 前記ダンパ機構は、暖房運転の際に外気温度が所定の値よりも低下すると、この温度の低下に伴って開度が大となるように制御されることを特徴とする請求項1に記載のヒートポンプ式空気調和装置。   2. The damper mechanism according to claim 1, wherein when the outside air temperature is lower than a predetermined value during the heating operation, the damper mechanism is controlled so that the opening degree increases as the temperature decreases. Heat pump type air conditioner. 前記ダンパ機構は、暖房運転の際に外気温度の変化に伴って変動する物理量に応じて開度が制御されることを特徴とする請求項1に記載のヒートポンプ式空気調和装置。   The heat pump air conditioner according to claim 1, wherein the damper mechanism has an opening controlled according to a physical quantity that varies with a change in outside air temperature during heating operation. 前記物理量は、前記第2熱交換器の空気入口または同出口のうち少なくともいずれか一方の温度であり、該温度が所定の値よりも低下すると、該温度の低下に伴って前記ダンパ機構の開度が大となるように制御されることを特徴とする請求項3に記載のヒートポンプ式空気調和装置。   The physical quantity is a temperature of at least one of the air inlet and the outlet of the second heat exchanger, and when the temperature falls below a predetermined value, the damper mechanism opens as the temperature falls. The heat pump type air conditioner according to claim 3, wherein the heat pump type air conditioner is controlled so as to increase the degree. 前記物理量は、前記第2熱交換器の蒸発圧力であり、該圧力が所定の値よりも低下すると、該圧力の低下に伴って前記ダンパ機構の開度が大となるように制御されることを特徴とする請求項3に記載のヒートポンプ式空気調和装置。   The physical quantity is an evaporation pressure of the second heat exchanger, and when the pressure falls below a predetermined value, the opening of the damper mechanism is controlled to increase as the pressure falls. The heat pump type air conditioner according to claim 3. 前記物理量は、前記第2熱交換器の出口冷媒温度であり、該温度が所定の値よりも低下すると、該温度の低下に伴って前記ダンパ機構の開度が大となるように制御されることを特徴とする請求項3に記載のヒートポンプ式空気調和装置。   The physical quantity is the outlet refrigerant temperature of the second heat exchanger, and when the temperature falls below a predetermined value, the opening of the damper mechanism is controlled to increase as the temperature falls. The heat pump type air conditioner according to claim 3. 前記物理量は、前記第2熱交換器の前面風速であり、該風速が所定の値よりも低下すると、該風速の低下に伴って前記ダンパ機構の開度が大となるように制御されることを特徴とする請求項3に記載のヒートポンプ式空気調和装置。
The physical quantity is the front wind speed of the second heat exchanger, and when the wind speed falls below a predetermined value, the opening of the damper mechanism is controlled to increase as the wind speed falls. The heat pump type air conditioner according to claim 3.
JP2005132856A 2005-04-28 2005-04-28 Heat pump air conditioner Expired - Fee Related JP4518998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132856A JP4518998B2 (en) 2005-04-28 2005-04-28 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132856A JP4518998B2 (en) 2005-04-28 2005-04-28 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2006308241A true JP2006308241A (en) 2006-11-09
JP4518998B2 JP4518998B2 (en) 2010-08-04

Family

ID=37475322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132856A Expired - Fee Related JP4518998B2 (en) 2005-04-28 2005-04-28 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP4518998B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309364A (en) * 2007-06-12 2008-12-25 Toyo Eng Works Ltd Heat pump type air conditioning device
ITTV20090004A1 (en) * 2009-01-19 2010-07-20 Clivet S P A APPARATUS FOR CARRYING OUT THE AIR RENOVATION OF A LIVING SPACE
WO2011155069A1 (en) * 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
WO2015075882A1 (en) * 2013-11-20 2015-05-28 株式会社デンソー Heat pump cycle device
KR20150062172A (en) * 2012-12-21 2015-06-05 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
CN105202795A (en) * 2011-01-19 2015-12-30 北狄空气应对加拿大公司 Heat pump system having a pre-processing module
KR101680095B1 (en) * 2016-03-23 2016-11-28 천두황 One body type heat-pump air-conditioner
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US10274210B2 (en) 2010-08-27 2019-04-30 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
CN111140976A (en) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 Fresh air conditioning system and control method thereof
WO2020121598A1 (en) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 Heat-exchange-type ventilation apparatus equipped with dehumidifying function
JP2020094771A (en) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 Heat-exchange-type ventilation apparatus with dehumidifying function
JP2021004708A (en) * 2019-06-27 2021-01-14 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device with dehumidification function
WO2021154051A1 (en) * 2020-01-31 2021-08-05 Lg Electronics Inc. Air conditioner and control method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355917A (en) * 2014-04-08 2017-11-17 上海诺佛尔生态科技股份有限公司 A kind of secondary recuperation of heat Fresh air handing device of central air conditioner system
CN107940627A (en) * 2014-04-08 2018-04-20 上海诺佛尔生态科技有限公司 The Fresh air handing device with secondary recuperation of heat for central air conditioner system
CN107923641B (en) * 2015-10-29 2019-10-25 三菱电机株式会社 Heat exchange ventilating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197931A (en) * 1985-02-26 1986-09-02 Mitsubishi Electric Corp Ventilation device
JPH03148535A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Cooling and heating ventilation
JPH10318593A (en) * 1997-05-19 1998-12-04 Mitsubishi Electric Corp Control method for air-conditioning device and air-conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197931A (en) * 1985-02-26 1986-09-02 Mitsubishi Electric Corp Ventilation device
JPH03148535A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Cooling and heating ventilation
JPH10318593A (en) * 1997-05-19 1998-12-04 Mitsubishi Electric Corp Control method for air-conditioning device and air-conditioning device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309364A (en) * 2007-06-12 2008-12-25 Toyo Eng Works Ltd Heat pump type air conditioning device
ITTV20090004A1 (en) * 2009-01-19 2010-07-20 Clivet S P A APPARATUS FOR CARRYING OUT THE AIR RENOVATION OF A LIVING SPACE
WO2011155069A1 (en) * 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
CN102939504A (en) * 2010-06-11 2013-02-20 三菱电机株式会社 Ventilation and air-conditioning apparatus and method for controlling same
US20130048267A1 (en) * 2010-06-11 2013-02-28 Mitsubishi Electric Corporation Ventilation and air-conditioning apparatus and method for controlling the same
EP2581675A1 (en) * 2010-06-11 2013-04-17 Mitsubishi Electric Corporation Ventilation and air-conditioning apparatus and method for controlling same
EP2581675A4 (en) * 2010-06-11 2013-10-23 Mitsubishi Electric Corp Ventilation and air-conditioning apparatus and method for controlling same
JP5591329B2 (en) * 2010-06-11 2014-09-17 三菱電機株式会社 Ventilation air conditioner and control method thereof
KR101475131B1 (en) * 2010-06-11 2014-12-23 미쓰비시덴키 가부시키가이샤 Ventilation and air-conditioning apparatus and method for controlling same
CN102939504B (en) * 2010-06-11 2015-04-22 三菱电机株式会社 Ventilation and air-conditioning apparatus and method for controlling same
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US10274210B2 (en) 2010-08-27 2019-04-30 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US9920960B2 (en) 2011-01-19 2018-03-20 Nortek Air Solutions Canada, Inc. Heat pump system having a pre-processing module
CN105202795A (en) * 2011-01-19 2015-12-30 北狄空气应对加拿大公司 Heat pump system having a pre-processing module
KR101576431B1 (en) * 2012-12-21 2015-12-21 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
JP2015535071A (en) * 2012-12-21 2015-12-07 フレクト・ウッズ・アクチボラグFlakt Woods Ab Method and apparatus for defrosting an evaporator for an air conditioner
KR20150062172A (en) * 2012-12-21 2015-06-05 플라크트 우드스 에이비 Method and apparatus for defrosting of an evaporator in connection with an air handling unit
US10634392B2 (en) 2013-03-13 2020-04-28 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
WO2015075882A1 (en) * 2013-11-20 2015-05-28 株式会社デンソー Heat pump cycle device
KR101680095B1 (en) * 2016-03-23 2016-11-28 천두황 One body type heat-pump air-conditioner
WO2020121598A1 (en) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 Heat-exchange-type ventilation apparatus equipped with dehumidifying function
JP2020094771A (en) * 2018-12-14 2020-06-18 パナソニックIpマネジメント株式会社 Heat-exchange-type ventilation apparatus with dehumidifying function
JP2021004708A (en) * 2019-06-27 2021-01-14 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device with dehumidification function
CN111140976A (en) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 Fresh air conditioning system and control method thereof
WO2021154051A1 (en) * 2020-01-31 2021-08-05 Lg Electronics Inc. Air conditioner and control method thereof

Also Published As

Publication number Publication date
JP4518998B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4518998B2 (en) Heat pump air conditioner
EP2665978B1 (en) Heat pump system having a pre-processing module
US5819551A (en) Air conditioning apparatus for a vehicle
JP2006317078A (en) Heat pump type air conditioner
JP2994303B2 (en) Air conditioning system and operating method thereof
JP4582243B2 (en) Dehumidification system
JP2004161267A (en) Combination of cooling plant with heat pump for automobile for performing cooling, heating and dehumidification in cabin
JP3800210B2 (en) Water source heat pump unit
JP2008309364A (en) Heat pump type air conditioning device
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
KR102436706B1 (en) Method for controlling multi-type air conditioner
WO2019064335A1 (en) Refrigeration cycle device
JP2018063090A (en) Heat pump water heater with cooling/heating function
KR20120071018A (en) Heat pump type cooling and heating system for vehicle
US11486591B2 (en) Air conditioner capable of performing dehumidification while maintaining a temperature of indoor air at a constant level
KR101146477B1 (en) Heat Pump System for Car
WO2019155614A1 (en) Air-conditioning device, air-conditioning system, and heat exchange unit
KR102548912B1 (en) Cooling System and Control Method thereof
JP2010243005A (en) Dehumidification system
KR101137266B1 (en) Air conditioner type heat pump
JP2006232145A (en) Air-conditioner for vehicle
JP4989307B2 (en) Air conditioner
JP7013990B2 (en) Vehicle air conditioner
KR100820820B1 (en) Air conditioning system and control method for the same
JP7398617B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees