JP2006307333A - Method for processing hydrogen sulfide, method for producing hydrogen and photocatalytic reactor - Google Patents

Method for processing hydrogen sulfide, method for producing hydrogen and photocatalytic reactor Download PDF

Info

Publication number
JP2006307333A
JP2006307333A JP2006088477A JP2006088477A JP2006307333A JP 2006307333 A JP2006307333 A JP 2006307333A JP 2006088477 A JP2006088477 A JP 2006088477A JP 2006088477 A JP2006088477 A JP 2006088477A JP 2006307333 A JP2006307333 A JP 2006307333A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
photocatalyst
liquid tank
electrode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088477A
Other languages
Japanese (ja)
Other versions
JP5194284B2 (en
Inventor
Hiromichi Matsumoto
博道 松本
Akira Kishimoto
章 岸本
Kazuyuki Taji
和幸 田路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nittetsu Mining Co Ltd
Original Assignee
Tohoku University NUC
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nittetsu Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2006088477A priority Critical patent/JP5194284B2/en
Publication of JP2006307333A publication Critical patent/JP2006307333A/en
Application granted granted Critical
Publication of JP5194284B2 publication Critical patent/JP5194284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of decomposing hydrogen sulfide and producing hydrogen efficiently by using a photocatalyst. <P>SOLUTION: In the method for treating hydrogen sulfide and the method for producing hydrogen, a liquid tank having at least a photocatalyst electrode 1 made of photocatalyst and a liquid tank having a metal electrode 2 are separated by a cation exchange film 3, liquid including hydrogen sulfide or organic substance is stored in the liquid tank having the photocatalyst electrode 1, the photocatalyst electrode 1 is electrically connected with the metal electrode 2 and the photocatalyst is exposed to light. An acidic solution is preferably stored in the liquid tank having the metal electrode 2, and the photocatalyst preferably includes metal sulfide and is preferably formed as fine particles having a lamellar nanocapsule structure. A reactor may be an electrolysis cell 11 in which a photoelectrochemical cell is included. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素や硫黄などを必要とする化学工業分野、脱硫工程などで発生した硫化水素などを処理する化学工業分野、及び悪臭物質や大気汚染物質を除去する環境保全分野などで利用可能な光触媒の利用法に関する。   INDUSTRIAL APPLICABILITY The present invention can be used in the chemical industry field requiring hydrogen, sulfur, etc., the chemical industry field for treating hydrogen sulfide generated in the desulfurization process, and the environmental conservation field for removing malodorous substances and air pollutants. The present invention relates to a method of using a photocatalyst.

光触媒技術の応用は、環境汚染物質や悪臭成分・雑菌などの分解など、様々な化学反応を促進する特性を利用した実用化が始まっている。その例としては、病院の手術室などで利用される抗菌タイル、空気清浄機やエア・コンディショナーのフィルタ、高速道路などの照明等のガラスなどが挙げられる。これら光触媒の酸化促進能力を利用した実用化の一方で、水などに光触媒を作用させて水素を得ることや、炭酸ガスに作用させて炭素を固定還元することを目的とした研究も行われている。   The application of photocatalytic technology has begun to be put into practical use by utilizing characteristics that promote various chemical reactions, such as decomposition of environmental pollutants, malodorous components and bacteria. Examples include antibacterial tiles used in hospital operating rooms, filters for air cleaners and air conditioners, and glass for lighting on highways. While these photocatalysts have been put into practical use using the ability to promote oxidation, research aimed at obtaining hydrogen by acting a photocatalyst on water, etc., and fixing carbon by acting on carbon dioxide gas has also been conducted. Yes.

一方、化石エネルギー資源の枯渇や地球温暖化による大気汚染など環境問題の観点から、クリーンで安全なエネルギーの獲得技術および環境汚染物質の浄化技術の確立が求められている。中でも光触媒の利用は有望であり、例えば、光触媒を原油や金属精練の脱硫工程に応用することが考えられる。   On the other hand, from the viewpoint of environmental problems such as depletion of fossil energy resources and air pollution due to global warming, establishment of clean and safe energy acquisition technology and purification technology of environmental pollutants is required. Among them, the use of a photocatalyst is promising. For example, it can be considered that the photocatalyst is applied to a desulfurization process of crude oil or metal smelting.

現在、一般的に行われている原油の脱硫工程は、原油を蒸留する際に、重質ナフサを水素化生成して原油に含まれるイオウ成分を全て硫化水素にして回収する。この硫化水素はクラウス法と呼ばれるプロセスを経て、イオウを酸化して回収する。クラウス法は、硫化水素の3分の1を酸化して亜硫酸ガスとし、これと残りの硫化水素とを反応させて元素イオンとするプロセスである。   Currently, in the crude oil desulfurization process, a heavy naphtha is produced by hydrogenation to recover all sulfur components contained in crude oil as hydrogen sulfide when the crude oil is distilled. This hydrogen sulfide passes through a process called the Claus method and oxidizes and recovers sulfur. The Claus method is a process in which one-third of hydrogen sulfide is oxidized to sulfurous acid gas, and this is reacted with the remaining hydrogen sulfide to form element ions.

このプロセスでは、亜硫酸ガスと硫化水素の触媒反応だけではなく、加熱や凝縮を繰り返すために、膨大なエネルギーを要している。また、亜硫酸ガスの管理にコストがかかるなどの問題を有している。硫化水素が溶解したアルカリ水に光触媒を加え、光を照射し、その照射光の光エネルギーを吸収して光触媒が発生する自由電子及び自由ホールにより、硫化水素が溶解したアルカリ水を酸化還元し、水素とイオウを得る方法、すなわち、光触媒により硫化水素を分解し、水素及びイオウを生成する方法が実用化できれば、より少ないエネルギーで有害物質である硫化水素を分解し、有用物質である水素及びイオウを生産することが可能になる。すなわち、環境問題の解決に寄与し、かつ、有用物質を生産できることに成る。   In this process, enormous energy is required not only for the catalytic reaction of sulfurous acid gas and hydrogen sulfide, but also for repeated heating and condensation. In addition, there is a problem such as costly management of sulfurous acid gas. Add photocatalyst to alkaline water in which hydrogen sulfide is dissolved, irradiate light, absorb the light energy of the irradiated light, and redox the alkaline water in which hydrogen sulfide is dissolved by free electrons and free holes generated by the photocatalyst, If a method for obtaining hydrogen and sulfur, that is, a method for decomposing hydrogen sulfide with a photocatalyst to produce hydrogen and sulfur can be put into practical use, hydrogen sulfide that is a harmful substance is decomposed with less energy, and hydrogen and sulfur that are useful substances are decomposed. Can be produced. That is, it contributes to the solution of environmental problems and can produce useful substances.

一方、水素を電気分解で生成する方法に関しては、太陽電池の起電力により水の電気分解を行う方法が行われている。しかしながら、このプロセスでは、太陽電池の性能次第で電気分解の効率が決まっている。そして、高性能の太陽電池を構成する素子は、高純度・高品質の素子であるため、高価であるという問題点があった。
この点に関しても、光触媒により水を分解し、水素を生成する方法が実用化できれば、より少ないエネルギーとコストで水素を生産することが可能になる。
On the other hand, as a method of generating hydrogen by electrolysis, a method of performing electrolysis of water by an electromotive force of a solar cell is performed. However, in this process, the efficiency of electrolysis is determined depending on the performance of the solar cell. And since the element which comprises a high performance solar cell is a high purity and high quality element, there existed a problem that it was expensive.
Also in this regard, if a method for decomposing water using a photocatalyst to generate hydrogen can be put to practical use, it becomes possible to produce hydrogen with less energy and cost.

しかしながら、従来の光触媒は、以下に述べる解決すべき課題があった。第1に、触媒活性が低い。第2に、光触媒に毒性がある。光触媒に光照射すると、自由電子と自由正孔(ホール)が生じるが、再結合してしまう確立が高く、また、酸化還元反応により分解された化学物質が再び再結合して元の化合物に戻ってしまう確率も高く、触媒活性が低くなってしまう。第3に、触媒の寿命が短い。光触媒に光照射すると、自由電子と自由正孔が生じるが、その強い酸化還元反応により、目的とする化学物質以外に触媒それ自身が酸化還元され、溶解してしまい、触媒作用を失うといった光溶解の問題がある。   However, the conventional photocatalyst has the following problems to be solved. First, the catalytic activity is low. Second, the photocatalyst is toxic. When the photocatalyst is irradiated with light, free electrons and free holes (holes) are generated, but there is a high probability that they will recombine, and chemical substances decomposed by the oxidation-reduction reaction will recombine and return to the original compound And the catalytic activity is low. Third, the life of the catalyst is short. When photocatalyst is irradiated with light, free electrons and free holes are generated, but due to its strong redox reaction, the catalyst itself is oxidized and reduced in addition to the target chemical substance and dissolved, resulting in loss of catalytic action. There is a problem.

これに対して、特許文献1は、触媒活性が高く、毒性がなく、寿命が長い光触媒を開示し上記3つの問題を解消したことを記述している。
また、光触媒に金属を賦活したストラティファイド構造電極を用いる硫化水素の処理方法または水素の製造方法等が知られている。
特開2001−190964号公報
On the other hand, Patent Document 1 discloses that a photocatalyst having high catalytic activity, no toxicity, and a long lifetime is disclosed to solve the above three problems.
Further, a hydrogen sulfide treatment method, a hydrogen production method, or the like using a stratified structure electrode in which a metal is activated as a photocatalyst is known.
JP 2001-190964 A

しかしながら、ストラティファイド構造電極は、金属側が硫化水素によって腐食されたり、金属表面にポリ硫化物イオン(S 2−)が吸着して硫化物が形成され、水素イオン(H)から水素ガスを生成するための金属表面部分が無くなり、水素ガスを生成できなくなるという問題があり、依然、効率的に満足できるものではなかった。
従って、本発明の目的は、上記従来技術の欠点を克服し、光触媒を用いて高効率で、硫化水素の分解、および水素の生成を可能にする技術、並びにこの技術に使用する装置を提供することである。
However, in the stratified structure electrode, the metal side is corroded by hydrogen sulfide, or polysulfide ions (S 2 2− ) are adsorbed on the metal surface to form sulfides, and hydrogen gas is generated from hydrogen ions (H + ). The metal surface portion for generating the gas was lost, and there was a problem that hydrogen gas could not be generated, and it was still not efficiently satisfied.
Accordingly, an object of the present invention is to overcome the above-mentioned drawbacks of the prior art and provide a technique enabling the decomposition of hydrogen sulfide and the production of hydrogen with high efficiency using a photocatalyst, and an apparatus used in this technique. That is.

本発明者らは、鋭意検討の結果、下記構成を採ることにより上記課題を解決することができた。即ち本発明は、以下の通りである。
(1) 少なくとも光触媒からなる光触媒電極を有する液槽と金属電極を有する液槽とを陽イオン交換膜で分離し、該光触媒電極を有する液槽には硫化水素を含む液を収容し、該光触媒電極と該金属電極とを電気的に接続し、該光触媒を光に曝す硫化水素の処理方法。
(2) 前記金属電極を有する液槽に収容する液を酸性溶液とする前記(1)記載の硫化水素の処理方法。
(3) 前記光触媒が金属硫化物を含む請求項1記載の硫化水素の処理方法。
(4) 前記光触媒が層状ナノカプセル構造を有する微粒子である前記(1)記載の硫化水素の処理方法。
As a result of intensive studies, the present inventors have been able to solve the above problems by adopting the following configuration. That is, the present invention is as follows.
(1) A liquid tank having at least a photocatalyst electrode composed of a photocatalyst and a liquid tank having a metal electrode are separated by a cation exchange membrane, and a liquid containing hydrogen sulfide is accommodated in the liquid tank having the photocatalyst electrode. A method for treating hydrogen sulfide in which an electrode and the metal electrode are electrically connected and the photocatalyst is exposed to light.
(2) The method for treating hydrogen sulfide according to (1), wherein the liquid stored in the liquid tank having the metal electrode is an acidic solution.
(3) The method for treating hydrogen sulfide according to claim 1, wherein the photocatalyst contains a metal sulfide.
(4) The method for treating hydrogen sulfide according to (1), wherein the photocatalyst is a fine particle having a layered nanocapsule structure.

(5) 前記硫化水素を含む液が、硫化水素ガスをアルカリ性液に吹き込んで溶解させたものである前記(1)記載の硫化水素の処理方法。
(6) 前記硫化水素ガスが、硫化水素と二酸化炭素を含むガスをメチルジエタノールアミン溶液に吹き込み、次いで該メチルジエタノールアミン溶液を常温より高い温度に加温して空気を吹き込み排出されたものである前記(5)記載の硫化水素の処理方法。
(5) The method for treating hydrogen sulfide according to (1), wherein the liquid containing hydrogen sulfide is obtained by blowing hydrogen sulfide gas into an alkaline liquid and dissolving it.
(6) The hydrogen sulfide gas is obtained by blowing a gas containing hydrogen sulfide and carbon dioxide into a methyldiethanolamine solution, and then heating the methyldiethanolamine solution to a temperature higher than room temperature and blowing in air. 5) The processing method of hydrogen sulfide as described.

(7) 少なくとも光触媒からなる光触媒電極を有する液槽と金属電極を有する液槽とを陽イオン交換膜で分離し、該光触媒電極を有する液槽には硫化水素または有機物を含む液を収容し、該光触媒電極と該金属電極とを電気的に接続し、該光触媒を光に曝す水素の製造方法。
(8) 前記金属電極を有する液槽に収容する液を酸性溶液とする前記(7)記載の水素の製造方法。
(9) 前記光触媒が金属硫化物を含む請求項7記載の水素の製造方法。
(10) 前記光触媒が層状ナノカプセル構造を有する微粒子である前記(7)記載の水素の製造方法。
(7) A liquid tank having at least a photocatalytic electrode composed of a photocatalyst and a liquid tank having a metal electrode are separated by a cation exchange membrane, and the liquid tank having the photocatalytic electrode contains a liquid containing hydrogen sulfide or an organic substance, A method for producing hydrogen, wherein the photocatalyst electrode and the metal electrode are electrically connected and the photocatalyst is exposed to light.
(8) The method for producing hydrogen according to (7), wherein the liquid stored in the liquid tank having the metal electrode is an acidic solution.
(9) The method for producing hydrogen according to claim 7, wherein the photocatalyst contains a metal sulfide.
(10) The method for producing hydrogen according to (7), wherein the photocatalyst is a fine particle having a layered nanocapsule structure.

(11) 前記硫化水素を含む液が、硫化水素ガスをアルカリ性液に吹き込んで溶解させたものである前記(7)記載の水素の製造方法。
(12) 前記硫化水素ガスが、硫化水素と二酸化炭素を含むガスをメチルジエタノールアミン溶液に吹き込み、次いで該メチルジエタノールアミン溶液を常温より高い温度に加温して空気を吹き込み排出されたものである前記(11)記載の水素の製造方法。
(11) The method for producing hydrogen according to (7), wherein the liquid containing hydrogen sulfide is obtained by blowing hydrogen sulfide gas into an alkaline liquid and dissolving it.
(12) The hydrogen sulfide gas is obtained by blowing a gas containing hydrogen sulfide and carbon dioxide into a methyldiethanolamine solution, then heating the methyldiethanolamine solution to a temperature higher than room temperature and blowing in air. 11) The method for producing hydrogen according to the above.

(13) 少なくとも光触媒からなる光触媒電極を有しかつ硫化水素を含む液を収容する第1の液槽と、金属電極を有する第2の液槽とを有し、該第1の液槽と第2の液槽との間は陽イオン交換膜で分離され、該光触媒電極と該金属電極は電気的に接続され、該光触媒電極への光照射が可能になるように構成されている光触媒反応装置。
(14) 硫化水素を含む液を収容する第1の液槽と、該第1の液槽の中に設けられた第2の液槽とを有し、該第2の液槽の隔壁材の1部は、導電性の板の1つの面には光触媒層が、その反対面には金属層がそれぞれ形成された部材からなり、かつ光触媒層を有する側が外側に、金属層を有する側が内側になるようにそれぞれ構成され、該第2の液槽の隔壁材の他の1部は、陽イオン交換膜で構成され、該光触媒層への光照射が可能になるように構成されている光触媒反応装置。
(15) 前記第2の液槽に酸性溶液を供給または循環させる手段を有する前記(13)または(14)記載の光触媒反応装置。
(13) a first liquid tank having at least a photocatalyst electrode made of a photocatalyst and containing a liquid containing hydrogen sulfide; and a second liquid tank having a metal electrode; The photocatalyst reaction apparatus is configured such that the photocatalyst electrode and the metal electrode are electrically connected to each other and can be irradiated with light. .
(14) A first liquid tank that contains a liquid containing hydrogen sulfide, and a second liquid tank provided in the first liquid tank, and a partition material for the second liquid tank 1 part consists of a member in which a photocatalyst layer is formed on one side of the conductive plate and a metal layer is formed on the opposite side, and the side having the photocatalyst layer is on the outside and the side having the metal layer is on the inside The other part of the partition material of the second liquid tank is composed of a cation exchange membrane, and is configured so that light can be irradiated onto the photocatalyst layer. apparatus.
(15) The photocatalytic reaction device according to (13) or (14), comprising means for supplying or circulating an acidic solution to the second liquid tank.

本発明によれば、可視光等の光エネルギーにより、効率よく、光触媒電極で直接硫化水素を分解し、金属電極で水素を製造することができる。   According to the present invention, hydrogen sulfide can be efficiently decomposed directly with a photocatalytic electrode and light can be produced with a metal electrode by light energy such as visible light.

以下に、本発明の実施の形態を図面を参照して詳細に説明する。但し、本発明は、これらの実施の形態に限定されるものではない。
なお、実施の形態を説明する2つの図面において、同一の機能を有する構成要素は同一符号を用いて示し、その繰返しの説明は省略する。
図1は、本発明の硫化水素の処理と水素の製造を実施する装置の一実施形態を概略的に示す図である。
図1の装置は、半導体光触媒電極と金属電極の間の光起電力によって被処理液の電気分解を行うことを基本原理とするものである。先ず装置の構成を説明し、続いて作用を説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. However, the present invention is not limited to these embodiments.
Note that components having the same function are denoted by the same reference symbols in the two drawings illustrating the embodiments, and the repetitive description thereof is omitted.
FIG. 1 is a diagram schematically showing an embodiment of an apparatus for performing hydrogen sulfide treatment and hydrogen production according to the present invention.
The apparatus shown in FIG. 1 is based on the basic principle of electrolyzing a liquid to be treated by photovoltaic power between a semiconductor photocatalyst electrode and a metal electrode. First, the configuration of the apparatus will be described, and then the operation will be described.

図1において、電気分解用セル11は、陽イオン交換膜3により分離されており、陽極側(図1の左側)には光触媒電極1が、陰極側(図1の右側)には金属電極2が設けられ、光触媒電極1と金属電極2は導電性部材である導線4より電気的に接続されるように構成されている。   In FIG. 1, an electrolysis cell 11 is separated by a cation exchange membrane 3, with a photocatalytic electrode 1 on the anode side (left side in FIG. 1) and a metal electrode 2 on the cathode side (right side in FIG. 1). Are provided, and the photocatalytic electrode 1 and the metal electrode 2 are configured to be electrically connected from a conductive wire 4 that is a conductive member.

上記のように構成された電解槽(セル)11を使用して、硫化水素の処理と水素の製造を行うために、光触媒電極1と金属電極2間の光起電力により、硫化水素等を含む液の電気分解を行う。
光エネルギーにて、光触媒電極1で硫化水素水中の硫化水素イオン(HS)を水素イオン(H)とポリ硫化物イオン(S 2−)に分解する。分解時に発生する電子と水素イオンは、導電性部材(電子)、陽イオン交換膜(水素イオン)を通って金属電極に移動し、金属電極2で水素イオンを還元し、水素ガスを発生させる。
上記の2工程の反応式は次式で示される。
In order to perform the treatment of hydrogen sulfide and the production of hydrogen using the electrolytic cell (cell) 11 configured as described above, the photoelectromotive force between the photocatalyst electrode 1 and the metal electrode 2 contains hydrogen sulfide and the like. Electrolyze the liquid.
The photocatalytic electrode 1 decomposes hydrogen sulfide ions (HS ) in the hydrogen sulfide water into hydrogen ions (H + ) and polysulfide ions (S 2 2− ) using light energy. Electrons and hydrogen ions generated at the time of decomposition move to the metal electrode through the conductive member (electrons) and the cation exchange membrane (hydrogen ions), reduce the hydrogen ions at the metal electrode 2, and generate hydrogen gas.
The reaction formula of the above two steps is shown by the following formula.

2HS → 2H+S 2−(光触媒電極)
2H+2e → H (金属電極)
2HS → 2H + + S 2 2− (photocatalytic electrode)
2H + + 2e → H 2 (metal electrode)

図6は、本発明の硫化水素の処理と水素の製造を実施する装置の別の実施形態を概略的に示す図である。
図1は、電気分解用セル11を、陽イオン交換膜3により光触媒電極1を有する第1の液槽と、金属電極2を有する第2の液槽とに2分するように構成した光触媒反応装置の概略説明図であるが、図6は、硫化水素を含む液を収容する液槽の中に第2の液槽を有する光触媒反応装置の概略構成断面図である。
FIG. 6 is a diagram schematically showing another embodiment of the apparatus for carrying out the treatment of hydrogen sulfide and the production of hydrogen according to the present invention.
FIG. 1 shows a photocatalytic reaction in which an electrolysis cell 11 is divided into a first liquid tank having a photocatalytic electrode 1 and a second liquid tank having a metal electrode 2 by a cation exchange membrane 3. FIG. 6 is a schematic cross-sectional view of a photocatalytic reaction device having a second liquid tank in a liquid tank that contains a liquid containing hydrogen sulfide.

図6において、光触媒反応装置は、電気分解セル11(第1の液槽)の中に、隔壁材の一方としてチタン板のような導電性の板33の外側が光触媒層31(光触媒電極1)で、内側が金属層32(金属電極2)で形成され、隔壁材の他の1方として陽イオン交換膜3で構成された光電気化学セル34(第2の液槽)が設けられて構成されている。   In FIG. 6, the photocatalytic reaction apparatus includes an electrolysis cell 11 (first liquid tank) in which an outer side of a conductive plate 33 such as a titanium plate is one of partition walls, and a photocatalytic layer 31 (photocatalytic electrode 1). Thus, the inner side is formed of the metal layer 32 (metal electrode 2), and the photoelectrochemical cell 34 (second liquid tank) configured by the cation exchange membrane 3 is provided as the other partition wall material. Has been.

上記のように構成された電解槽(セル)11を使用して、硫化水素の処理と水素の製造を行うために、光触媒電極1(光触媒層31)と金属電極2(金属層32)間の光起電力により、硫化水素等を含む液の電気分解を行う。
光エネルギーにて、光触媒電極1で第1の液槽内の硫化水素水中の硫化水素イオン(HS)を水素イオン(H)とポリ硫化物イオン(S 2−)に分解する。分解時に発生する電子と水素イオンは、導電性部材(電子)、陽イオン交換膜(水素イオン)を通って第2の液槽内の金属電極2に移動し、金属電極2で水素イオンを還元し、水素ガスを発生させる。
上記の2工程の反応式は上記の式で示したとおりである。
Between the photocatalyst electrode 1 (photocatalyst layer 31) and the metal electrode 2 (metal layer 32) in order to perform hydrogen sulfide treatment and hydrogen production using the electrolytic cell (cell) 11 configured as described above. Electrolysis of liquid containing hydrogen sulfide and the like is performed by photovoltaic power.
The photocatalytic electrode 1 decomposes hydrogen sulfide ions (HS ) in the hydrogen sulfide water into hydrogen ions (H + ) and polysulfide ions (S 2 2− ) using light energy. Electrons and hydrogen ions generated during decomposition move to the metal electrode 2 in the second liquid tank through the conductive member (electrons) and the cation exchange membrane (hydrogen ions), and the metal electrodes 2 reduce the hydrogen ions. Then, hydrogen gas is generated.
The reaction formula of the above two steps is as shown in the above formula.

本発明に係る光触媒反応装置は、図1に示す陽イオン交換膜分離方式であっても、また図6に示す光電気化学セル収容方式のいずれであっても、光触媒電極1へ光照射が可能になるように構成することが必須の要件である。
そのためには、例えば、装置の外側から太陽光やランプ等の光源に曝すように、装置(電気分解用セル11または第1の液槽)の天井部分を光透過性(透明な)材料(例えばアクリル樹脂)で構成したり、あるいは光触媒電極1(光触媒層31)に対向する第1の液槽の壁材を光透過性(透明な)材料で構成する必要がある。
しかしながら、防水性等のある光源(ランプ等)を第1の液槽の液中に入れる場合は、この限りではなく、むしろ電気分解用セル11または第1の液槽の光触媒電極1(光触媒層31)に対向する壁内面を光反射面(鏡面等)に構成することが好ましい。
The photocatalytic reaction apparatus according to the present invention can irradiate the photocatalytic electrode 1 with light regardless of the cation exchange membrane separation system shown in FIG. 1 or the photoelectrochemical cell housing system shown in FIG. It is an indispensable requirement to constitute so that.
For that purpose, for example, the ceiling portion of the device (electrolysis cell 11 or first liquid tank) is exposed to a light transmissive (transparent) material (for example, so as to be exposed to light sources such as sunlight and a lamp from the outside of the device. (Acrylic resin) or the wall material of the first liquid tank facing the photocatalyst electrode 1 (photocatalyst layer 31) needs to be composed of a light transmissive (transparent) material.
However, when a light source (lamp or the like) having a waterproof property is put in the liquid of the first liquid tank, this is not the case. Rather, the electrolysis cell 11 or the photocatalyst electrode 1 (photocatalytic layer of the first liquid tank). It is preferable that the wall inner surface facing 31) is formed as a light reflecting surface (mirror surface or the like).

なお、第1の液槽の中に第2の液槽を設ける光触媒反応装置においては、第2の液槽(光電気化学セル34)は、必ずしも図6に示すように垂直に設ける必要はなく、酸性溶液を供給または循環させる手段が上方に来るように斜めに設置してもよい。但し、この場合は、光触媒層31(光触媒電極1)が上面になるように設置することが、光触媒層31への光照射を容易にするために好都合であることは言うまでもない。酸性溶液の循環手段の酸性溶液の入口が下側に、出口が上側になるように構成することも、発生した水素の除去の容易さから言うまでもないことである。   In the photocatalytic reaction apparatus in which the second liquid tank is provided in the first liquid tank, the second liquid tank (photoelectrochemical cell 34) is not necessarily provided vertically as shown in FIG. Alternatively, the acidic solution may be installed obliquely so that the means for supplying or circulating the acidic solution comes upward. However, in this case, it goes without saying that it is convenient to place the photocatalyst layer 31 (photocatalyst electrode 1) on the upper surface in order to facilitate light irradiation to the photocatalyst layer 31. Needless to say, the acidic solution circulation means may be configured such that the acidic solution inlet is on the lower side and the outlet is on the upper side, and the generated hydrogen is easily removed.

また、本発明に係る光触媒反応装置においては、第2の液槽に酸性溶液を供給または循環させる手段を有することが好ましい。このような手段を設けることにより、第2の液槽中の液の水素イオン濃度が高まり、初期反応効率が更に良くなり、硫化水素の除去効率、水素発生効率の向上に有効である。また、金属電極上で発生した水素気泡の脱離性を良くし、安定した水素発生が可能となる(理由:気泡が付着したままだと反応面を気泡が覆ってしまい水素の還元反応が起こりにくくなる。)。さらに、水素気泡を酸性溶液の流れと共にセル外へ出し、容易に水素回収を行うことができる(理由:循環させないと気泡がセル内部に溜まってしまう。)。   In the photocatalytic reaction device according to the present invention, it is preferable to have means for supplying or circulating the acidic solution to the second liquid tank. By providing such means, the hydrogen ion concentration of the liquid in the second liquid tank is increased, the initial reaction efficiency is further improved, and it is effective in improving the hydrogen sulfide removal efficiency and the hydrogen generation efficiency. In addition, the desorption of hydrogen bubbles generated on the metal electrode is improved, and stable hydrogen generation is possible (reason: if bubbles remain attached, the reaction surface covers the bubbles and the hydrogen reduction reaction occurs. It becomes difficult.) Further, hydrogen bubbles can be taken out of the cell together with the flow of the acidic solution, and hydrogen can be easily recovered (reason: if the bubbles are not circulated, the bubbles will accumulate inside the cell).

以下に、本発明に係る装置を形成する各構成部材について詳細に説明する。
本発明で用いる少なくとも光触媒からなる光触媒電極の構成要素である光触媒としては、特に限定されないが、金属硫化物を含むものが好ましい。金属硫化物を含むものが好ましい理由は、硫化水素イオン(HS)が金属硫化物の表面に吸着すると水素発生電位が押し下げられるほか、金属元素の溶出に対してHSによる還元及び自己修復作用が生じ、その結果腐食せず、安定で長寿命の電極が実現するためである。
ここで金属硫化物としては、太陽光などの可視光をそのまま光触媒反応に利用することができる硫化カドミウムまたは硫化亜鉛が挙げられる。
Below, each structural member which forms the apparatus which concerns on this invention is demonstrated in detail.
Although it does not specifically limit as a photocatalyst which is a component of the photocatalyst electrode which consists of a photocatalyst used at least by this invention, The thing containing a metal sulfide is preferable. The reason why a metal sulfide is contained is that hydrogen sulfide ions (HS ) are adsorbed on the surface of the metal sulfide to reduce the hydrogen generation potential, and the reduction and self-healing action by HS against the elution of metal elements. This results in the formation of a stable and long-life electrode without corrosion.
Here, examples of the metal sulfide include cadmium sulfide and zinc sulfide that can use visible light such as sunlight as it is for a photocatalytic reaction.

光触媒の形態としては、粒子状、薄膜状等任意の形状のものを何等の制限なく使用することができる。
粒子としては、特開2003−265962号公報及び特開2004−25032号公報に開示されている層状ナノカプセル構造を持つ微粒子が、触媒活性が高く好ましいものである。
また薄膜状光触媒としては、特開2003−181297号公報に開示されている、シリコン、ガラス、ニッケル、亜鉛、白金、樹脂などからなる基材上に析出させて、薄膜状に形成したものが取り扱いに便利であるばかりでなく、少量の触媒によって広い面積を持つ光触媒が生成でき、また粒子状のように溶液中に分散せず基材上に固定されているため、照射角を最適な角度にすることで照射光のエネルギーの変換効率を向上させることができるという利点を有するために、好ましい形状の触媒といえる。
また、層状ナノカプセル構造を持つ微粒子を固定化し、電極化することで反応表面積の拡大により更に高い活性が得られる。
As a form of the photocatalyst, those having an arbitrary shape such as a particulate form or a thin film form can be used without any limitation.
As the particles, fine particles having a layered nanocapsule structure disclosed in JP-A Nos. 2003-265962 and 2004-25032 are preferable because of high catalytic activity.
Further, as a thin film photocatalyst, a thin film photocatalyst deposited on a substrate made of silicon, glass, nickel, zinc, platinum, resin, etc., as disclosed in JP-A-2003-181297 is handled. In addition to being convenient, it is possible to produce a photocatalyst with a large area with a small amount of catalyst, and because it is fixed on the substrate without being dispersed in the solution like particles, the irradiation angle is optimized. Thus, it can be said that the catalyst has a preferable shape because it has the advantage that the conversion efficiency of the energy of irradiation light can be improved.
Further, by fixing fine particles having a layered nanocapsule structure and forming electrodes, higher activity can be obtained by increasing the reaction surface area.

陽極となる上記した光触媒電極1に対して陰極となる金属電極2としては、特に限定されないが、白金、ニッケル等、水素化反応に活性を持つ金属が好ましく、特に白金が最も好ましい。   Although it does not specifically limit as the metal electrode 2 used as a cathode with respect to the above-mentioned photocatalyst electrode 1 used as an anode, The metal which has activity in hydrogenation reaction, such as platinum and nickel, is preferable, and especially platinum is the most preferable.

図6の第2の液槽(光電気化学セル34)において、光触媒層31と金属層32を形成する導電性の板33としては、チタン、ジルコニウム、ニッケル、亜鉛、白金などからなる導電性の板状基材であることが必要であるが、中でもチタン板が化学的に安定で強く軽く、プラント用配管材や航空機部分などに使用されており、容易に入手でき特に好ましい材料である。   In the second liquid tank (photoelectrochemical cell 34) of FIG. 6, the conductive plate 33 forming the photocatalyst layer 31 and the metal layer 32 is made of a conductive material made of titanium, zirconium, nickel, zinc, platinum or the like. Although it is necessary to be a plate-like base material, a titanium plate is chemically stable, strong, and light, and is used for a piping material for a plant, an aircraft part, and the like.

陽イオン交換膜は、水素イオン選択透過性を持つものであれば、特に限定されない。この陽イオン交換膜により、光触媒電極1を有する液槽中のOH、SHなどの陰イオンやO、Sなどの溶存物や析出物が、金属電極2を有する液槽中へ移動することがなく、Hイオンのみが選択的に移動することになり、金属電極浸漬槽中のHの濃度が高められ、ひいては水素ガスの発生量が増加することになる。 The cation exchange membrane is not particularly limited as long as it has hydrogen ion selective permeability. By this cation exchange membrane, anions such as OH and SH and dissolved substances and precipitates such as O 2 and S 2 in the liquid tank having the photocatalytic electrode 1 move into the liquid tank having the metal electrode 2. Therefore, only the H + ions are selectively moved, and the concentration of H + in the metal electrode immersion bath is increased, and as a result, the generation amount of hydrogen gas is increased.

本発明の硫化水素の処理方法および水素の製造方法に用いられる被処理液である硫化水素を含む液は、硫酸や硫黄系殺虫剤の製造工場の硫化水素含有廃液、石油の脱硫工程で発生した硫化水素含有廃水、または温泉の廃液などの初めから硫化水素が含まれている被処理液と、水素や硫黄などを必要とする化学工業分野の一方の原料としての硫化水素ガスを処理するために、水などの液体に硫化水素ガスを吹き込んで溶解させた被処理液の両方を包含する。後者の場合は、硫化水素ガスの溶存性を高めるために、水酸化ナトリウムのようなアルカリ剤を添加して硫化水素含有液をアルカリ性にすることは、当業界においては周知のことである。光触媒電極1槽中の液をアルカリ性にすることにより、硫化水素イオン(HS)濃度を上げ、水素発生電位を下げることができる。 The liquid containing hydrogen sulfide, which is the liquid to be treated used in the hydrogen sulfide treatment method and the hydrogen production method of the present invention, was generated in the hydrogen sulfide-containing waste liquid and petroleum desulfurization process of sulfuric acid and sulfur-based insecticide manufacturing plants. To treat hydrogen sulfide containing wastewater or hot water wastewater from the beginning, and hydrogen sulfide gas as one of the raw materials in the chemical industry that requires hydrogen, sulfur, etc. In addition, it includes both liquids to be treated in which hydrogen sulfide gas is blown into a liquid such as water. In the latter case, it is well known in the art to make the hydrogen sulfide-containing liquid alkaline by adding an alkaline agent such as sodium hydroxide in order to enhance the solubility of the hydrogen sulfide gas. By making the liquid in the tank of the photocatalyst electrode alkaline, the hydrogen sulfide ion (HS ) concentration can be increased and the hydrogen generation potential can be decreased.

また、本発明の硫化水素の処理方法および水素の製造方法では、下水処理場等で発生する硫化水素ガスを処理することもできる。この場合、下水処理場等で発生する硫化水素を含むガスは二酸化炭素も多く含んでいる。このような硫化水素と二酸化炭素を含むガスを前記の通りアルカリ性液に吹き込んでも、二酸化炭素の影響で硫化水素のアルカリ性液への吸収・溶解効率が低下する。   In the hydrogen sulfide treatment method and hydrogen production method of the present invention, hydrogen sulfide gas generated in a sewage treatment plant or the like can also be treated. In this case, the gas containing hydrogen sulfide generated in a sewage treatment plant or the like contains a large amount of carbon dioxide. Even if such a gas containing hydrogen sulfide and carbon dioxide is blown into the alkaline liquid as described above, the absorption / dissolution efficiency of hydrogen sulfide into the alkaline liquid is reduced due to the influence of carbon dioxide.

そこで、上記のような硫化水素と二酸化炭素を含むガスを、例えば常温(室温)下で、メチルジエタノールアミン水溶液等に吹き込み、これにより、硫化水素を該メチルジエタノールアミン溶液に吸収・溶解させ、一方、二酸化炭素は該該メチルジエタノールアミン溶液に吸収・溶解されずに排出させることができる。次いで、硫化水素を吸収・溶解させたメチルジエタノールアミン溶液を常温よりも高い温度(例えば約70℃)に加温し、空気を吹き込むことにより、該メチルジエタノールアミン溶液から吸収・溶解されていた硫化水素を脱離し、二酸化炭素を(ほとんど)含まない、純度(濃度)の高い硫化水素ガスを得ることができる。また、得られた高純度硫化水素ガスを再度または複数回同処理を繰り返して行うことにより、僅かに残った二酸化炭素をさらに除去し、より高純度の硫化水素ガスを得ることができる。
この得られた二酸化炭素を含まない、純度の高い硫化水素ガスを、アルカリ性液に吹き込むことにより、本発明の「硫化水素を含む液」とすることができる。
Therefore, a gas containing hydrogen sulfide and carbon dioxide as described above is blown into a methyldiethanolamine aqueous solution or the like, for example, at room temperature (room temperature), thereby absorbing and dissolving hydrogen sulfide in the methyldiethanolamine solution. Carbon can be discharged without being absorbed and dissolved in the methyldiethanolamine solution. Next, the methyldiethanolamine solution in which hydrogen sulfide is absorbed / dissolved is heated to a temperature higher than room temperature (for example, about 70 ° C.) and air is blown to remove the hydrogen sulfide absorbed / dissolved from the methyldiethanolamine solution. It is possible to obtain a hydrogen sulfide gas having high purity (concentration) that is desorbed and does not contain (almost) carbon dioxide. In addition, the obtained high-purity hydrogen sulfide gas is again or repeatedly subjected to the same treatment several times, so that the remaining carbon dioxide can be further removed to obtain a higher-purity hydrogen sulfide gas.
The obtained hydrogen sulfide gas containing no carbon dioxide and having a high purity is blown into an alkaline liquid, whereby the “liquid containing hydrogen sulfide” of the present invention can be obtained.

上記の、下水処理場等で発生する硫化水素と二酸化炭素を含むガスより、二酸化炭素を除去して高純度の硫化水素ガスを得る処理工程を図面を用いてさらに詳細に説明する。
硫化水素と二酸化炭素を含むガスを、メチルジエタノールアミン溶液に吹き込むのみは、例えば、図3に示す概略構成の装置・器具を使用して行うことができる。図3に示す概略構成の装置・器具は、少なくとも洗浄瓶21とエアポンプ22と送気管からなり、洗浄瓶21にメチルジエタノールアミン溶液を収容し、エアポンプ22にて硫化水素と二酸化炭素を含むガスを供給・送気する。
The above-described treatment process for obtaining high-purity hydrogen sulfide gas by removing carbon dioxide from the gas containing hydrogen sulfide and carbon dioxide generated in a sewage treatment plant will be described in more detail with reference to the drawings.
For example, only the gas containing hydrogen sulfide and carbon dioxide is blown into the methyldiethanolamine solution by using an apparatus / apparatus having a schematic configuration shown in FIG. The apparatus / apparatus having a schematic configuration shown in FIG. 3 includes at least a cleaning bottle 21, an air pump 22, and an air supply pipe. The cleaning bottle 21 contains a methyldiethanolamine solution, and the air pump 22 supplies a gas containing hydrogen sulfide and carbon dioxide.・ Air is sent.

硫化水素を吸収・溶解させたメチルジエタノールアミン溶液からの該硫化水素の脱離は、例えば、図4に示す概略構成の装置・器具を使用して行うことができる。図4に示す概略構成の装置・器具は、図3に少なくともさらにウォーターバス等の加熱手段23と水蒸気等を除去するためのミストセパレータ等の冷却手段24を具備してなる。加熱手段23で硫化水素を吸収・溶解させたメチルジエタノールアミン溶液を加熱し、エアポンプ22にて空気を供給・送気する。加熱したメチルジエタノールアミン溶液に吹き込ませて排出された空気には、硫化水素と水蒸気が含まれる。この水蒸気を冷却手段24により除去・分離する。   Desorption of the hydrogen sulfide from the methyldiethanolamine solution in which hydrogen sulfide is absorbed and dissolved can be performed using, for example, an apparatus / apparatus having a schematic configuration shown in FIG. 4 includes at least a heating unit 23 such as a water bath and a cooling unit 24 such as a mist separator for removing water vapor and the like. The methyldiethanolamine solution in which hydrogen sulfide is absorbed and dissolved by the heating means 23 is heated, and air is supplied and supplied by the air pump 22. The air discharged by blowing into the heated methyldiethanolamine solution contains hydrogen sulfide and water vapor. This water vapor is removed and separated by the cooling means 24.

このようにして得られた二酸化炭素を含まない、純度の高い硫化水素ガスを、アルカリ性液に吹き込む際には、例えば、図3に示す概略構成の装置・器具を使用することができる。洗浄瓶21にアルカリ性液を収容し、エアポンプ22にて純度の高い硫化水素ガスを供給・送気する。これにより、本発明の「硫化水素を含む液」とすることができる。   When the high-purity hydrogen sulfide gas not containing carbon dioxide thus obtained is blown into the alkaline liquid, for example, an apparatus / apparatus having a schematic configuration shown in FIG. 3 can be used. An alkaline liquid is accommodated in the cleaning bottle 21, and high-purity hydrogen sulfide gas is supplied and supplied by the air pump 22. Thereby, it can be set as the "liquid containing hydrogen sulfide" of this invention.

一方、陰極としての金属電極2を含浸する液槽に収容する液は、必ずしも酸性である必要はないが、酸性である方が初期反応効率が良く、硫化水素の除去効率、水素発生率が向上する。なお、金属電極2を含浸する液槽に収容する液を酸性にしなくとも、反応が進むうちに該槽の液の水素イオン濃度が徐々に高くなり、次第に反応効率が向上する。   On the other hand, the liquid stored in the liquid tank impregnated with the metal electrode 2 as the cathode does not necessarily need to be acidic, but the acidic reaction has better initial reaction efficiency and improved hydrogen sulfide removal efficiency and hydrogen generation rate. To do. Even if the liquid contained in the liquid tank impregnated with the metal electrode 2 is not acidified, the hydrogen ion concentration of the liquid in the tank gradually increases as the reaction proceeds, and the reaction efficiency is gradually improved.

以上に説明した装置、被処理液を使用することによって、太陽光等の光エネルギーにより光触媒電極で直接硫化水素を分解し、金属電極で水素を製造する本発明の方法を、高い効率で実施することが可能となる。   By using the apparatus and the liquid to be treated as described above, the method of the present invention in which hydrogen sulfide is decomposed directly by a photocatalytic electrode by light energy such as sunlight and hydrogen is produced by a metal electrode is carried out with high efficiency. It becomes possible.

以下に、本発明を実施例に基き説明するが、本発明は、この実施例により何等制限を受けるものではない。
〔実施例1〕
先ず実施例に使用する装置を図2について説明し、次いでその操作手順について説明する。
図2に示すように、光触媒によって硫化水素の処理を行うことにより水素発生の実験を行う装置は、陽極である光触媒電極1を浸漬し0.1mol/リットルの硫化ナトリウム溶液を満たすアクリル樹脂製円筒管5と、陰極である金属電極2を浸漬し0.1mol/リットルの硫酸溶液を満たす透明塩化ビニル樹脂製円筒管6を連結する、H型でブリッジの中央部分が陽イオン交換膜3で分離された、前記両電極槽の連結管である硬質塩化ビニル製管7により、それぞれの底部が連結されて一体に構成されている。8は光線照射用のXe照射灯であり、4は光触媒電極1と金属電極2とを電気的に接続する導線である。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples.
[Example 1]
First, the apparatus used in the embodiment will be described with reference to FIG. 2, and then the operation procedure will be described.
As shown in FIG. 2, an apparatus for performing hydrogen generation experiments by treating hydrogen sulfide with a photocatalyst is an acrylic resin cylinder that immerses the photocatalyst electrode 1 as an anode and fills a 0.1 mol / liter sodium sulfide solution. A tube 5 and a transparent vinyl chloride resin cylindrical tube 6 filled with a 0.1 mol / liter sulfuric acid solution immersed in a metal electrode 2 serving as a cathode are connected, and the central portion of the bridge is separated by a cation exchange membrane 3 The bottom portions are connected to each other by a rigid vinyl chloride tube 7 which is a connecting tube of the two electrode tanks, and is integrally formed. Reference numeral 8 denotes an Xe irradiation lamp for light irradiation, and reference numeral 4 denotes a conductive wire for electrically connecting the photocatalytic electrode 1 and the metal electrode 2.

光触媒電極は、特開2003−181297号公報に開示されている方法に従って、硫化カドミウムを導電性を有するITOガラス上に固定化し、電極面積80mm×15mmの寸法に製作して使用した。
一方、金属電極は、白金棒を使用したが、その電極サイズは4mmφ×80mmであった。
光触媒電極1と金属電極2を接続する導線4は銅線を使用し、ワニ口クリップにて前記の両電極1と2を電気的に連結した。
The photocatalyst electrode was used by immobilizing cadmium sulfide on a conductive ITO glass according to the method disclosed in Japanese Patent Application Laid-Open No. 2003-181297, and manufacturing the electrode with a size of 80 mm × 15 mm.
On the other hand, although the platinum electrode was used for the metal electrode, the electrode size was 4 mmφ × 80 mm.
The conducting wire 4 connecting the photocatalytic electrode 1 and the metal electrode 2 was a copper wire, and the electrodes 1 and 2 were electrically connected with an alligator clip.

光触媒電極1の受光部の材質は透明アクリル樹脂、それ以外の槽容器部分は透明塩化ビニル樹脂及び硬質塩化ビニル樹脂を使用して作製した。
光触媒電極1槽と金属電極2槽の各容量は60ミリリットルである。
The light receiving part of the photocatalyst electrode 1 was made of a transparent acrylic resin, and the other tank container part was made of a transparent vinyl chloride resin and a hard vinyl chloride resin.
Each capacity of one tank of photocatalyst electrode and two tanks of metal electrode is 60 ml.

上記に説明した構成の装置を使用し、両電極間に通電し、Xe照射灯からXe光を照射したところ、照射時間にほぼ比例して水素発生量が増加することを、気泡の発生状況の目視観察により確認した。
なお、光源にXe照射灯を使用したのは、実験を定量的に行うためであって、実用的には光源に太陽光を使用できることは言うまでもない。
Using the apparatus having the above-described configuration, energizing between both electrodes and irradiating Xe light from the Xe irradiation lamp, the amount of hydrogen generation increases in proportion to the irradiation time. This was confirmed by visual observation.
The reason why the Xe irradiation lamp is used as the light source is to perform experiments quantitatively, and it goes without saying that sunlight can be used as the light source practically.

〔実施例2〕
下水処理場等より発生する硫化水素と二酸化炭素を含有するガス処理を想定して実施した。
はじめに硫化水素ガス分離工程により、多量の二酸化炭素を含有するガス中から硫化水素ガスを分離し、得られた硫化水素ガスを硫化水素ガス溶解工程にてアルカリ液中に吸収させ硫化水素溶液を得た。この硫化水素溶液を光触媒反応工程で光触媒によって硫化水素の分解を行い水素を発生させた。
[Example 2]
This was carried out assuming gas treatment containing hydrogen sulfide and carbon dioxide generated from a sewage treatment plant.
First, hydrogen sulfide gas is separated from a gas containing a large amount of carbon dioxide by a hydrogen sulfide gas separation step, and the obtained hydrogen sulfide gas is absorbed into an alkali solution by a hydrogen sulfide gas dissolution step to obtain a hydrogen sulfide solution. It was. This hydrogen sulfide solution was decomposed by the photocatalyst in the photocatalytic reaction step to generate hydrogen.

硫化水素200ppm、二酸化炭素32%を含む混合ガス200リットルを、図3に示すように、エアポンプ22で1リットル/minの流速でガス洗浄瓶に供給し、ガス洗浄瓶21中の45wt%メチルジエタノールアミン溶液200ミリリットル中に硫化水素を吸収させた。二酸化炭素はメチルジエタノールアミン溶液にはほとんど吸収されずに洗浄瓶から排出される。   As shown in FIG. 3, 200 liters of mixed gas containing 200 ppm hydrogen sulfide and 32% carbon dioxide is supplied to the gas washing bottle at a flow rate of 1 liter / min by the air pump 22, and 45 wt% methyldiethanolamine in the gas washing bottle 21. Hydrogen sulfide was absorbed into 200 milliliters of the solution. Carbon dioxide is hardly absorbed by the methyldiethanolamine solution and discharged from the washing bottle.

図4に示すように、硫化水素を吸収させた液を含んだ洗浄瓶21を70℃の温水(ウォータバス:加熱手段23)にて加温し、エアポンプ22で空気を3.7リットル/minの流速でガス洗浄瓶に供給し曝気を行い、吸収液中に吸収されたガスを脱離させ、ガスを回収した。
回収されたガス量は170リットルで、硫化水素濃度は176ppm、二酸化炭素濃度は0.9%であった。
As shown in FIG. 4, the washing bottle 21 containing the liquid in which hydrogen sulfide is absorbed is heated with hot water (water bath: heating means 23) at 70 ° C., and the air is supplied by the air pump 22 to 3.7 liter / min. The gas was supplied to the gas washing bottle at a flow rate of aeration to perform aeration, desorb the gas absorbed in the absorption liquid, and collect the gas.
The amount of gas recovered was 170 liters, the hydrogen sulfide concentration was 176 ppm, and the carbon dioxide concentration was 0.9%.

回収されたガスを再度、図3に示すように、エアポンプで1リットル/minの流速でガス洗浄瓶21に供給し、ガス洗浄瓶21中の45wt%メチルジエタノールアミン溶液200ミリリットル中に硫化水素を吸収させた後、図4に示すように、硫化水素を吸収させた液を含んだ洗浄瓶21を70℃の温水にて加温し、エアポンプ22で空気を3.7リットル/minの流速でガス洗浄瓶21に供給し曝気を行い、吸収液中に吸収されたガスを脱離させた。
この操作により回収されたガス量は170リットルで、硫化水素濃度は155ppm、二酸化炭素濃度は0.07%であった。
As shown in FIG. 3, the recovered gas is supplied again to the gas washing bottle 21 with an air pump at a flow rate of 1 liter / min, and hydrogen sulfide is absorbed into 200 ml of the 45 wt% methyldiethanolamine solution in the gas washing bottle 21. Then, as shown in FIG. 4, the washing bottle 21 containing the liquid in which hydrogen sulfide has been absorbed is heated with hot water at 70 ° C., and air is supplied by the air pump 22 at a flow rate of 3.7 liter / min. It supplied to the washing bottle 21 and aerated, and the gas absorbed in the absorption liquid was desorbed.
The amount of gas recovered by this operation was 170 liters, the hydrogen sulfide concentration was 155 ppm, and the carbon dioxide concentration was 0.07%.

硫化水素ガス分離工程で得られたガスを、図3に示すように、エアポンプ22で洗浄瓶21に送り、洗浄瓶中の0.1mol/リットルの水酸化ナトリウム溶液200ミリリットル中に溶解させた。
合計18回分の硫化水素ガス分離工程で得られたガスを水酸化ナトリウム溶液に吸収させ、0.09mol/リットルの硫化水素溶液を200ミリリットル得た。
As shown in FIG. 3, the gas obtained in the hydrogen sulfide gas separation step was sent to the washing bottle 21 by the air pump 22 and dissolved in 200 ml of a 0.1 mol / liter sodium hydroxide solution in the washing bottle.
The gas obtained in the hydrogen sulfide gas separation step for a total of 18 times was absorbed in the sodium hydroxide solution to obtain 200 ml of a 0.09 mol / liter hydrogen sulfide solution.

光触媒によって硫化水素の処理を行うことにより水素発生の実験を行う装置は、図5に示すような、密閉系の電気分解用セル11aを用いた。この装置は、陽極側、陰極側を陽イオン交換膜3で分離し、陽極側には光触媒電極1を浸漬し硫化水素溶解工程で作成した0.09mol/リットルの硫化水素溶液を満たし、陰極側には金属電極2を浸漬し0.10mol/リットルの硫酸溶液を満たした。
8は光線照射用のXe照射灯であり、4は光触媒電極1と金属電極2とを電気的に接続する導線である。
光触媒電極1は、特開2003−181297号公報に開示されている方法に従って、硫化カドミウムをチタン板上に固定化し、電極面積100mm×100mmの寸法に製作して使用した。
一方、金属電極2は、チタン網に白金を被覆した電極を使用したが、その電極サイズは80mm×120mmであった。
An apparatus for conducting an experiment of hydrogen generation by treating hydrogen sulfide with a photocatalyst used a closed electrolysis cell 11a as shown in FIG. In this apparatus, the anode side and the cathode side are separated by a cation exchange membrane 3, and the photocatalyst electrode 1 is immersed on the anode side and filled with a 0.09 mol / liter hydrogen sulfide solution prepared in a hydrogen sulfide dissolution process. Was immersed in a metal electrode 2 and filled with a 0.10 mol / liter sulfuric acid solution.
Reference numeral 8 denotes an Xe irradiation lamp for light irradiation, and reference numeral 4 denotes a conductive wire for electrically connecting the photocatalytic electrode 1 and the metal electrode 2.
The photocatalytic electrode 1 was used by fixing cadmium sulfide on a titanium plate according to the method disclosed in Japanese Patent Application Laid-Open No. 2003-181297, and manufacturing the electrode with a size of 100 mm × 100 mm.
On the other hand, although the metal electrode 2 used the electrode which coat | covered platinum on the titanium net | network, the electrode size was 80 mm x 120 mm.

光触媒電極1と金属電極2を接続する導線4は銅線を使用し、電気的に連結した。
電気分解用セル(光触媒反応セル)11a容器部分はアクリル樹脂を使用して作製した。
光触媒電極1槽と金属電極2槽の各容量は200ミリリットルである。
上記に説明した構成の装置を使用し、キセノン照射灯からキセノン光を照射したところ、照射時間にほぼ比例して水素発生量が増加した。光照射開始10分後から水素発生量の測定を行い、測定開始から1時間後までの水素発生量は10.7ミリリットルであった。
なお、光源にキセノン照射灯8を使用したのは、実験を定量的に行うためであって、実用的には光源に太陽光を使用できることは言うまでもない。
The conducting wire 4 connecting the photocatalyst electrode 1 and the metal electrode 2 was electrically connected using a copper wire.
The container for electrolysis cell (photocatalytic reaction cell) 11a was prepared using an acrylic resin.
Each capacity of one photocatalyst electrode tank and two metal electrode tanks is 200 ml.
When the apparatus having the configuration described above was used and xenon light was irradiated from a xenon irradiation lamp, the amount of hydrogen generation increased substantially in proportion to the irradiation time. The hydrogen generation amount was measured 10 minutes after the start of the light irradiation, and the hydrogen generation amount from the measurement start to 1 hour later was 10.7 ml.
Note that the xenon irradiation lamp 8 is used as a light source in order to quantitatively conduct experiments, and it goes without saying that sunlight can be used practically.

〔実施例3〕
図6に示すように、光触媒によって硫化水素の処理を行うことにより水素発生の実験を行う第2の実施形態の装置は、HS濃度が0.1M、OH濃度が1Mとなるように硫化水素を水酸化ナトリウム水溶液に溶解した処理液を収容した、第1の液槽である電気分解用セル11の中に、第2の液槽である光電気化学セル34を浸漬するように設置したものである。
Example 3
As shown in FIG. 6, the apparatus of the second embodiment that conducts the hydrogen generation experiment by treating hydrogen sulfide with a photocatalyst is sulfided so that the HS - concentration is 0.1M and the OH - concentration is 1M. It installed so that the photoelectrochemical cell 34 which is a 2nd liquid tank might be immersed in the cell 11 for electrolysis which is the 1st liquid tank which accommodated the process liquid which melt | dissolved hydrogen in the sodium hydroxide aqueous solution. Is.

この光電気化学セル34は、その隔壁材の一方は導電性基板33としてのチタン板の外側の面に、光触媒31としての硫化カドミウムが、特開2003−181297号公報に開示されている方法に従って固定化されて、電極サイズ100mm×100mmの光触媒電極1が形成され、内側の面には金属層32としての白金が、上記光触媒層と反対面のチタン基板上に電気メッキ法で被覆されて金属電極2が形成された。
そして隔壁材のもう一方の反対面は陽イオン交換膜3で構成されて密閉系の光電気化学セル34を構成し、該セル34の上部には酸性溶液としての濃度0.5Mの硫酸を供給・循環させるアクリル樹脂製パイプを付設した。
In this photoelectrochemical cell 34, one of the partition materials is formed on the outer surface of a titanium plate as the conductive substrate 33, and cadmium sulfide as the photocatalyst 31 is in accordance with the method disclosed in Japanese Patent Laid-Open No. 2003-181297. The photocatalyst electrode 1 having an electrode size of 100 mm × 100 mm is formed, and platinum as the metal layer 32 is coated on the inner surface of the titanium substrate opposite to the photocatalyst layer by electroplating. Electrode 2 was formed.
The other opposite surface of the partition wall is composed of a cation exchange membrane 3 to form a closed photoelectrochemical cell 34, and sulfuric acid with a concentration of 0.5M as an acidic solution is supplied to the upper portion of the cell 34. -An acrylic resin pipe to be circulated was attached.

第1の液槽である電気分解用セル11を透明アクリル樹脂材で構成した。また、電気分解用セル11の外部より光線照射用Xe照射灯(図示省略)により、光触媒層31の光照射面積が15.9cm、光照射面強度が15.1Wになるように光照射した。
なお、電気分解用セル11の容量は1750ミリリットルで、光電気化学セル34の容量は175ミリリットルである。
The cell 11 for electrolysis which is a 1st liquid tank was comprised with the transparent acrylic resin material. Further, light was irradiated from the outside of the electrolysis cell 11 by a light irradiation Xe irradiation lamp (not shown) so that the light irradiation area of the photocatalyst layer 31 was 15.9 cm 2 and the light irradiation surface intensity was 15.1 W. .
The capacity of the electrolysis cell 11 is 1750 ml, and the capacity of the photoelectrochemical cell 34 is 175 ml.

上記に説明した構成の装置を使用し、キセノン照射灯からキセノン光を照射したところ、図7に示すように照射時間にほぼ比例して水素発生量が増加した。光照射開始30分後から水素発生量の測定を行い、測定開始から6時間後までの水素発生量は53.1ミリリットルであった。
また、光触媒反応(光照射)中の光触媒(CdS)層31(光触媒電極1)と金属(Pt)層32(金属電極2)間の光電流値がほぼ23mAと一定で、安定した光触媒反応、硫化水素の処理、および水素の製造が行われたことがわかる。
なお、光源にキセノン照射灯(図示省略)を使用したのは、実験を定量的に行うためであって、実用的には光源に太陽光を使用できることは言うまでもない。
When the apparatus having the above-described configuration was used and xenon light was irradiated from the xenon irradiation lamp, the amount of hydrogen generation increased substantially in proportion to the irradiation time as shown in FIG. The amount of hydrogen generation was measured 30 minutes after the start of light irradiation, and the amount of hydrogen generation from the start of measurement to 6 hours later was 53.1 ml.
In addition, the photocurrent value between the photocatalyst (CdS) layer 31 (photocatalyst electrode 1) and the metal (Pt) layer 32 (metal electrode 2) during the photocatalytic reaction (photoirradiation) is constant at about 23 mA, a stable photocatalytic reaction, It can be seen that hydrogen sulfide treatment and hydrogen production were performed.
The reason why the xenon irradiation lamp (not shown) is used as the light source is to perform the experiment quantitatively, and it goes without saying that sunlight can be used as the light source practically.

本発明の硫化水素の処理方法、水素の製造方法および光触媒反応装置は、水素を必要とするアンモニアやメタノールの製造工程や、硫黄を必要とする硫酸や殺虫剤の製造工業などの化学工業、及び脱硫工程などで発生した硫化水素などを処理する天然ガス、各種工業ガスや石油を生産したり、あるいは処理する化学工業分野に極めて有望な用途を有する。   The hydrogen sulfide treatment method, the hydrogen production method and the photocatalytic reaction apparatus of the present invention are a chemical industry such as ammonia or methanol production process requiring hydrogen, sulfuric acid or insecticide production industry requiring sulfur, and It has very promising applications in the chemical industry for producing or treating natural gas, various industrial gases and petroleum for treating hydrogen sulfide generated in the desulfurization process.

本発明の一実施形態の硫化水素の処理と水素の製造に用いる装置の原理的概略説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a principle schematic explanatory drawing of the apparatus used for the process of hydrogen sulfide and production of hydrogen of one Embodiment of this invention. 本発明の実施例1に用いた装置の構成を説明する概略図である。It is the schematic explaining the structure of the apparatus used for Example 1 of this invention. 硫化水素と二酸化炭素を含むガスを、メチルジエタノールアミン溶液に吹き込む際等に使用する装置・器具の概略図である。It is the schematic of the apparatus and instrument used when blowing the gas containing hydrogen sulfide and a carbon dioxide in a methyldiethanolamine solution. 硫化水素を吸収・溶解させたメチルジエタノールアミン溶液からの該硫化水素の脱離に使用する装置・器具の概略図である。It is the schematic of the apparatus and instrument used for the removal | desorption of this hydrogen sulfide from the methyldiethanolamine solution which absorbed and dissolved hydrogen sulfide. 本発明の実施例2の光触媒反応に用いた装置の構成を説明する概略図である。It is the schematic explaining the structure of the apparatus used for the photocatalytic reaction of Example 2 of this invention. 本発明の光触媒反応装置の別の実施形態および実施例3の光触媒反応に用いた装置の構成を説明する概略図である。It is the schematic explaining the structure of the apparatus used for another embodiment of the photocatalytic reaction apparatus of this invention, and the photocatalytic reaction of Example 3. FIG. 実施例3の光触媒反応における水素発生量および電極間光電流値の反応時間との関係を示すグラフである。It is a graph which shows the relationship with the reaction time of the amount of hydrogen generation in the photocatalytic reaction of Example 3, and the photocurrent value between electrodes.

符号の説明Explanation of symbols

1 光触媒電極
2 白金電極
3 陽イオン交換膜
4 導線
5 アクリル樹脂製管
6 透明塩化ビニル樹脂製管
7 硬質塩化ビニル樹脂製管
8 Xe照射灯
11 電気分解用セル
21 洗浄瓶
22 エアポンプ
23 加熱手段
24 冷却手段
31 光触媒層
32 金属層
33 導電性の板
34 光電気化学セル
DESCRIPTION OF SYMBOLS 1 Photocatalyst electrode 2 Platinum electrode 3 Cation exchange membrane 4 Conductor 5 Acrylic resin pipe 6 Transparent vinyl chloride resin pipe 7 Hard vinyl chloride resin pipe 8 Xe irradiation lamp 11 Electrolysis cell 21 Washing bottle 22 Air pump 23 Heating means 24 Cooling means 31 Photocatalyst layer 32 Metal layer 33 Conductive plate 34 Photoelectrochemical cell

Claims (15)

少なくとも光触媒からなる光触媒電極を有する液槽と金属電極を有する液槽とを陽イオン交換膜で分離し、該光触媒電極を有する液槽には硫化水素を含む液を収容し、該光触媒電極と該金属電極とを電気的に接続し、該光触媒を光に曝す硫化水素の処理方法。   A liquid tank having a photocatalyst electrode composed of at least a photocatalyst and a liquid tank having a metal electrode are separated by a cation exchange membrane, and the liquid tank having the photocatalyst electrode contains a liquid containing hydrogen sulfide. A method for treating hydrogen sulfide in which a metal electrode is electrically connected and the photocatalyst is exposed to light. 前記金属電極を有する液槽に収容する液を酸性溶液とする請求項1記載の硫化水素の処理方法。   The method for treating hydrogen sulfide according to claim 1, wherein the liquid stored in the liquid tank having the metal electrode is an acidic solution. 前記光触媒が金属硫化物を含む請求項1記載の硫化水素の処理方法。   The method for treating hydrogen sulfide according to claim 1, wherein the photocatalyst contains a metal sulfide. 前記光触媒が層状ナノカプセル構造を有する微粒子である請求項1記載の硫化水素の処理方法。   The method for treating hydrogen sulfide according to claim 1, wherein the photocatalyst is a fine particle having a layered nanocapsule structure. 前記硫化水素を含む液が、硫化水素ガスをアルカリ性液に吹き込んで溶解させたものである請求項1記載の硫化水素の処理方法。   The method for treating hydrogen sulfide according to claim 1, wherein the liquid containing hydrogen sulfide is obtained by blowing hydrogen sulfide gas into an alkaline liquid and dissolving it. 前記硫化水素ガスが、硫化水素と二酸化炭素を含むガスをメチルジエタノールアミン溶液に吹き込み、次いで該メチルジエタノールアミン溶液を常温より高い温度に加温して空気を吹き込み排出されたものである請求項5記載の硫化水素の処理方法。   6. The hydrogen sulfide gas according to claim 5, wherein a gas containing hydrogen sulfide and carbon dioxide is blown into a methyldiethanolamine solution, and then the methyldiethanolamine solution is heated to a temperature higher than normal temperature and air is blown into and discharged. Treatment method of hydrogen sulfide. 少なくとも光触媒からなる光触媒電極を有する液槽と金属電極を有する液槽とを陽イオン交換膜で分離し、該光触媒電極を有する液槽には硫化水素または有機物を含む液を収容し、該光触媒電極と該金属電極とを電気的に接続し、該光触媒を光に曝す水素の製造方法。   A liquid tank having a photocatalyst electrode composed of at least a photocatalyst and a liquid tank having a metal electrode are separated by a cation exchange membrane, and the liquid tank having the photocatalyst electrode contains a liquid containing hydrogen sulfide or an organic substance. And the metal electrode are electrically connected, and the photocatalyst is exposed to light. 前記金属電極を有する液槽に収容する液を酸性溶液とする請求項7記載の水素の製造方法。   The method for producing hydrogen according to claim 7, wherein the liquid stored in the liquid tank having the metal electrode is an acidic solution. 前記光触媒が金属硫化物を含む請求項7記載の水素の製造方法。   The method for producing hydrogen according to claim 7, wherein the photocatalyst contains a metal sulfide. 前記光触媒が層状ナノカプセル構造を有する微粒子である請求項7記載の水素の製造方法。   The method for producing hydrogen according to claim 7, wherein the photocatalyst is a fine particle having a layered nanocapsule structure. 前記硫化水素を含む液が、硫化水素ガスをアルカリ性液に吹き込んで溶解させたものである請求項7記載の水素の製造方法。   The method for producing hydrogen according to claim 7, wherein the liquid containing hydrogen sulfide is obtained by blowing hydrogen sulfide gas into an alkaline liquid and dissolving it. 前記硫化水素ガスが、硫化水素と二酸化炭素を含むガスをメチルジエタノールアミン溶液に吹き込み、次いで該メチルジエタノールアミン溶液を常温より高い温度に加温して空気を吹き込み排出されたものである請求項11記載の水素の製造方法。   12. The hydrogen sulfide gas according to claim 11, wherein the gas containing hydrogen sulfide and carbon dioxide is blown into a methyldiethanolamine solution, and then the methyldiethanolamine solution is heated to a temperature higher than room temperature and air is blown into and discharged. A method for producing hydrogen. 少なくとも光触媒からなる光触媒電極を有しかつ硫化水素を含む液を収容する第1の液槽と、
金属電極を有する第2の液槽とを有し、
該第1の液槽と第2の液槽との間は陽イオン交換膜で分離され、
該光触媒電極と該金属電極は電気的に接続され、
該光触媒電極への光照射が可能になるように構成されていることを特徴とする光触媒反応装置。
A first liquid tank having a photocatalyst electrode composed of at least a photocatalyst and containing a liquid containing hydrogen sulfide;
A second liquid tank having a metal electrode,
The first liquid tank and the second liquid tank are separated by a cation exchange membrane,
The photocatalytic electrode and the metal electrode are electrically connected,
A photocatalytic reaction device characterized in that the photocatalytic electrode can be irradiated with light.
硫化水素を含む液を収容する第1の液槽と、
該第1の液槽の中に設けられた第2の液槽とを有し、
該第2の液槽の隔壁材の1部は、導電性の板の1つの面には光触媒層が、その反対面には金属層がそれぞれ形成された部材からなり、かつ光触媒層を有する側が外側に、金属層を有する側が内側になるようにそれぞれ構成され、
該第2の液槽の隔壁材の他の1部は、陽イオン交換膜で構成され、
該光触媒層への光照射が可能になるように構成されていることを特徴とする光触媒反応装置。
A first liquid tank containing a liquid containing hydrogen sulfide;
A second liquid tank provided in the first liquid tank;
One part of the partition material of the second liquid tank is composed of a member in which a photocatalyst layer is formed on one surface of a conductive plate and a metal layer is formed on the opposite surface, and the side having the photocatalyst layer is The outer side is configured so that the side having the metal layer is the inner side,
Another part of the partition material of the second liquid tank is composed of a cation exchange membrane,
A photocatalytic reaction device configured to allow light irradiation to the photocatalyst layer.
前記第2の液槽に酸性溶液を供給または循環させる手段を有することを特徴とする請求項13または14記載の光触媒反応装置。   The photocatalytic reaction device according to claim 13 or 14, further comprising means for supplying or circulating an acidic solution to the second liquid tank.
JP2006088477A 2005-03-31 2006-03-28 Method for treating hydrogen sulfide, method for producing hydrogen, and photocatalytic reactor Active JP5194284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088477A JP5194284B2 (en) 2005-03-31 2006-03-28 Method for treating hydrogen sulfide, method for producing hydrogen, and photocatalytic reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005101849 2005-03-31
JP2005101849 2005-03-31
JP2006088477A JP5194284B2 (en) 2005-03-31 2006-03-28 Method for treating hydrogen sulfide, method for producing hydrogen, and photocatalytic reactor

Publications (2)

Publication Number Publication Date
JP2006307333A true JP2006307333A (en) 2006-11-09
JP5194284B2 JP5194284B2 (en) 2013-05-08

Family

ID=37474541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088477A Active JP5194284B2 (en) 2005-03-31 2006-03-28 Method for treating hydrogen sulfide, method for producing hydrogen, and photocatalytic reactor

Country Status (1)

Country Link
JP (1) JP5194284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059171A1 (en) * 2018-09-18 2020-03-26 日立化成株式会社 Method for producing functional water, and functional water generator
JP2020532426A (en) * 2017-08-18 2020-11-12 テュルキエ・ペトロル・ラフィネリレリ・アノニム・シルケティ・テュプラシュTurkiye Petrol Rafinerileri Anonim Sirketi Tupras Systems and methods for decomposing gaseous hydrogen sulfide into hydrogen gas and elemental sulfur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146883A (en) * 1980-04-15 1981-11-14 Mitsui Eng & Shipbuild Co Ltd Recovering method for hydrogen
JP2002265964A (en) * 2001-03-07 2002-09-18 Chiyoda Corp Process for removal of sulfur compound from natural gas
JP2003265962A (en) * 2002-03-18 2003-09-24 Nittetsu Mining Co Ltd Photocatalyst and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146883A (en) * 1980-04-15 1981-11-14 Mitsui Eng & Shipbuild Co Ltd Recovering method for hydrogen
JP2002265964A (en) * 2001-03-07 2002-09-18 Chiyoda Corp Process for removal of sulfur compound from natural gas
JP2003265962A (en) * 2002-03-18 2003-09-24 Nittetsu Mining Co Ltd Photocatalyst and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532426A (en) * 2017-08-18 2020-11-12 テュルキエ・ペトロル・ラフィネリレリ・アノニム・シルケティ・テュプラシュTurkiye Petrol Rafinerileri Anonim Sirketi Tupras Systems and methods for decomposing gaseous hydrogen sulfide into hydrogen gas and elemental sulfur
JP7083023B2 (en) 2017-08-18 2022-06-09 テュルキエ・ペトロル・ラフィネリレリ・アノニム・シルケティ・テュプラシュ Systems and methods for decomposing gaseous hydrogen sulfide into hydrogen gas and elemental sulfur
WO2020059171A1 (en) * 2018-09-18 2020-03-26 日立化成株式会社 Method for producing functional water, and functional water generator
JPWO2020059171A1 (en) * 2018-09-18 2021-08-30 昭和電工マテリアルズ株式会社 Fuctional water production method and fuctional water generator

Also Published As

Publication number Publication date
JP5194284B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
Feng et al. Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: a review
Butterfield et al. Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water
Xie et al. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation
EP2937131B1 (en) Exhaust gas purifying apparatus
CN108529714B (en) Photoelectrochemical reaction tank and method for treating hydrogen sulfide waste gas and waste water by using same
CN104496094B (en) A kind of high-risk wastewater treatment instrument in laboratory and treatment process
CN105236628B (en) Electrical enhanced photocatalysis degraded sewage device
Dou et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: efficiency enhancement and mechanisms
Mei et al. Efficient SO2 removal and highly synergistic H2O2 production based on a novel dual-function photoelectrocatalytic system
Nam et al. Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater
Zha et al. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode
Shaban Effective photocatalytic reduction of Cr (VI) by carbon modified (CM)-n-TiO2 nanoparticles under solar irradiation
CN105601002A (en) Processing system and method for purifying organic wastewater
US7985397B2 (en) Method of treating hydrogen sulfide, method of producing hydrogen, and photocatalytic-reaction apparatus
CN109160575A (en) A kind of double optoelectronic pole systems of automatic bias and application
CN105293644B (en) Optical electro-chemistry electrolysis installation and the battery lead plate for the optical electro-chemistry electrolysis installation
CN208927931U (en) A kind of photoelectrocatalysis synergistic air purification device
JP5194284B2 (en) Method for treating hydrogen sulfide, method for producing hydrogen, and photocatalytic reactor
KR20160060191A (en) Photoelectrocatalytic Water Treatment Apparatus by Using Immobilized Nanotubular photosensized electrode
KR100477945B1 (en) Apparatus for purifying water using by electrolysis
EP3990395B1 (en) Modular photocatalytic system
KR20140115495A (en) Air Pollutants Removal Apparatus using Electro-activated Catalyst Oxidation Process, And Operation Method Thereof
KR102209434B1 (en) Method and system for ordor treatment using adsorption tower and electrolytic oxidation apparatus
JP2007245047A (en) Wastwater treatment system
JP2015213888A (en) Exhaust gas treatment method and exhaust gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250