JP2006307177A - Polyproylene based resin foam particle, process for production of polyproylene based resin foam particle molded propduct and polyproylene based resin foam particle molded product - Google Patents

Polyproylene based resin foam particle, process for production of polyproylene based resin foam particle molded propduct and polyproylene based resin foam particle molded product Download PDF

Info

Publication number
JP2006307177A
JP2006307177A JP2006080753A JP2006080753A JP2006307177A JP 2006307177 A JP2006307177 A JP 2006307177A JP 2006080753 A JP2006080753 A JP 2006080753A JP 2006080753 A JP2006080753 A JP 2006080753A JP 2006307177 A JP2006307177 A JP 2006307177A
Authority
JP
Japan
Prior art keywords
diameter
particles
straight line
average
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080753A
Other languages
Japanese (ja)
Other versions
JP4883681B2 (en
Inventor
Hidehiro Sasaki
秀浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2006080753A priority Critical patent/JP4883681B2/en
Publication of JP2006307177A publication Critical patent/JP2006307177A/en
Application granted granted Critical
Publication of JP4883681B2 publication Critical patent/JP4883681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene based resin foam particles capable to produce a molded product showing excellent appearance with little voids, even when molded under a low compression rate, and excellent moisture barrier property, with a very short cooling time. <P>SOLUTION: The foam particles comprise a base resin containing polypropylene based resin, and have cell walls forming multiple foams, in which the foam particles are in a spherical form having holes penetrating from one end to the other end with a diameter H<SB>D</SB>(mm) and have a specifically defined maximum diameter D<SB>0</SB>(mm), average radius direction foam diameter L<SB>CV</SB>and average circumferential direction foam diameter L<SB>CH</SB>, with a L<SB>CV</SB>/L<SB>CH</SB>ratio ≥1.05, a H<SB>D</SB>/D<SB>0</SB>ratio of 0.08-0.4 and a H<SB>D</SB>/L<SB>CV</SB>ratio of 0.1-10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリプロピレン系発泡粒子(以下、発泡粒子と称することがある)、ポリプロピレン系樹脂発泡粒子成形体(以下、成形体と称することがある)の製造方法及びその方法により得られる成形体に関する。   The present invention relates to a method for producing polypropylene expanded particles (hereinafter sometimes referred to as expanded particles), a polypropylene resin expanded particle molded body (hereinafter also referred to as a molded body), and a molded body obtained by the method. .

ポリプロピレン系発泡粒子は、一般的に、ポリプロピレン系樹脂粒子(以下、樹脂粒子と称することがある)を水に分散させ、加圧、加熱下において物理発泡剤を含浸せしめた後、樹脂粒子を低圧域に放出することにより製造される(分散媒放出発泡法)。また、他の方法としては、ポリプロピレン系樹脂を押出機内で溶融させ、発泡剤と混合させた後、ダイより押出して発泡させた後又は発泡させつつ適宜長さにカットすることにより発泡粒子を製造することも可能である。また、ポリプロピレン系樹脂発泡粒子成形体は、一般的に、発泡粒子を金型内に充填した後、又はベルト間に挟んでトンネル状通路内に導いた後、スチームを用いて加熱融着させる方法により製造される(型内成形方法)。前者の場合は金型内が成形型内であり、後者の場合はトンネル状通路内が成形型内である。   In general, polypropylene-based expanded particles are obtained by dispersing polypropylene-based resin particles (hereinafter sometimes referred to as resin particles) in water, impregnating with a physical foaming agent under pressure and heating, and then lowering the resin particles to low pressure. It is manufactured by discharging to a zone (dispersion medium release foaming method). As another method, after the polypropylene resin is melted in an extruder and mixed with a foaming agent, the foamed particles are produced by extruding and foaming from a die or by cutting to an appropriate length while foaming. It is also possible to do. In addition, the polypropylene resin foamed particle molded body is generally a method in which foamed particles are filled in a mold or guided between the belts and guided into a tunnel-shaped passage, and then heat-sealed using steam. (In-mold molding method). In the former case, the inside of the mold is in the mold, and in the latter case, the inside of the tunnel-shaped passage is in the mold.

該成形体は、その優れた性能からエネルギー吸収材、断熱材、緩衝材、軽量通函箱等として多岐な分野で用いられている。これらのエネルギー吸収材、断熱材、緩衝材、軽量通函箱等は、外観が美麗で滑らかな表面を要求される上に、その目的から空気や水が常識の範囲内で貫流しない性能、即ち遮水性能を当然の品質として要求される。即ち、型内成形時に、発泡粒子どうしが隙間なく加熱融着することにより、水が透水しなくなることが要求される。ところが、この遮水性に優れていることが、スチームによる型内成形時の冷却時間を長期化させ、生産性の向上が容易ではないという問題の発生に繋がっている。   The molded body is used in various fields as an energy absorbing material, a heat insulating material, a cushioning material, a lightweight box, etc. due to its excellent performance. These energy absorbing materials, heat insulating materials, cushioning materials, lightweight boxes, etc. are required to have a beautiful and smooth surface, and for that purpose, air and water do not flow within the range of common sense, that is, Water shielding performance is required as a natural quality. That is, during in-mold molding, it is required that water does not permeate when the foamed particles are heat-sealed without gaps. However, this excellent water shielding property prolongs the cooling time during in-mold molding with steam, leading to the problem that productivity is not easily improved.

即ち、スチームを導入して発泡粒子を加熱し二次発泡させて発泡粒子どうしを融着させようとすると、二次発泡することにより発泡粒子間の間隙が狭くなってスチームが浸入しにくくなる。その結果、発泡粒子どうしを隙間なく融着させて遮水性能向上させるためには、大量のスチームが必要となり、成形時における冷却時間が長くなり、生産性の向上が妨げられる。   That is, when steam is introduced and the foamed particles are heated and subjected to secondary foaming to fuse the foamed particles, the secondary foaming narrows the gap between the foamed particles and makes it difficult for the steam to enter. As a result, a large amount of steam is required to fuse the expanded particles without gaps and improve the water shielding performance, and the cooling time during molding becomes longer, which hinders improvement in productivity.

この問題を解決し、スチームを用いて発泡粒子を隙間なく融着させて遮水性能を向上させると同時に、冷却時間を短縮化するために、貫通孔を設けた異形の発泡粒子を用いて型内成形を行う方法が提案された(特許文献1)。この方法では、前記発泡粒子を加圧処理して1.3〜7kgf/cmの内圧を付与し、次に加圧処理した発泡粒子を型内成形して成形体を得る。 In order to solve this problem and improve the water shielding performance by fusing the foamed particles without any gaps using steam, at the same time to shorten the cooling time, the mold using the irregular shaped foam particles with through holes is used. A method of performing in-molding has been proposed (Patent Document 1). In this method, the foamed particles are subjected to pressure treatment to give an internal pressure of 1.3 to 7 kgf / cm 2 , and then the pressure-treated foamed particles are molded in a mold to obtain a molded body.

しかしながら、この方法は型内成形に先立って加圧処理による発泡粒子への発泡能の付与を必要とするので、生産工程が増えるという問題を有していた。即ち、発泡粒子を高圧雰囲気に曝し発泡粒子の気泡内に空気や窒素等のガスを追添して気泡内圧を高める操作(以下、加圧処理ともいう)をしなければ、発泡粒子どうしが隙間なく融着して遮水性能に優れる成形体を得ることができなかった。敢えて、加圧処理することなく型内成形を行うと、スチーム加熱の温度を高めて無理やり成形する必要が生じるため、収縮が大きい成形体しか得られないか、或いは収縮を抑えた成形を行った場合には空隙が残る成形体しか得られなかった。この場合、発泡粒子を型内へ充填する際に圧縮率を高めて発泡能の不足を補えば、発泡粒子が隙間なく融着した遮水性能に優れる成形体を得ることはできる。しかし、圧縮率が高すぎるため発泡粒子本来の発泡倍率が大きく低下し、低発泡倍率(高密度)の成形体しか得られないという問題があり、更に冷却時間の短縮化効果もそれほど大きいものではなかった。   However, this method has a problem that the production process is increased because it is necessary to impart foaming ability to the foamed particles by pressure treatment prior to in-mold molding. That is, if the foamed particles are exposed to a high-pressure atmosphere and a gas such as air or nitrogen is added to the foamed bubbles to increase the pressure inside the foam (hereinafter also referred to as pressure treatment), the foamed particles are not separated from each other. It was not possible to obtain a molded article that was fused and excellent in water shielding performance. Dare to perform in-mold molding without pressure treatment, it is necessary to increase the steam heating temperature and forcibly molding, so that only compacts with large shrinkage can be obtained, or molding with reduced shrinkage was performed In some cases, only a molded body in which voids remained was obtained. In this case, when filling the foamed particles into the mold to increase the compressibility to compensate for the lack of foaming ability, it is possible to obtain a molded article having excellent water shielding performance in which the foamed particles are fused without gaps. However, since the compression ratio is too high, the original expansion ratio of the expanded particles is greatly reduced, and there is a problem that only a molded product having a low expansion ratio (high density) can be obtained. Further, the effect of shortening the cooling time is not so large. There wasn't.

特開2002−248645号公報Japanese Patent Laid-Open No. 2002-248645

本発明は前記問題を解決すべくなされたものであって、発泡粒子を加圧処理することなく、型内に充填し、スチームを用いて型内成形した場合に、冷却時間が短い上、使用する発泡粒子の発泡倍率に対して発泡倍率の低下が少なく、しかも空隙が少ない成形体を製造することができる発泡粒子を提供することを目的とする。本発明は、更に該発泡粒子を用いて製造された空隙率の少ない成形体、及び該成形体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problem, and when the foamed particles are filled in the mold without being subjected to pressure treatment and molded in-mold using steam, the cooling time is short and used. It is an object of the present invention to provide foamed particles capable of producing a molded article with little reduction in the foaming ratio with respect to the foaming ratio of the foamed particles to be produced and having few voids. Another object of the present invention is to provide a molded article having a low porosity produced using the expanded particles, and a method for producing the molded article.

本発明によれば、以下に示すポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子成形体の製造方法およびポリプロピレン系樹脂発泡粒子成形体が提供される。
〔1〕ポリプロピレン系樹脂を含む基材樹脂からなり複数の気泡を画成する気泡壁からなる発泡粒子であって、該発泡粒子は、内部に一端から他端に延びる貫通孔を有する球状体であると共に、下記により定義される最大径D(mm)、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、貫通孔の直径H(mm)を有し、比LCV/LCHが1.05以上であり、比H/Dが0.08〜0.4であり、比H/LCVが0.1〜10であることを特徴とする発泡粒子が提供される。
、LCV、LCH及びHの定義
前記最大径D、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、および貫通孔の直径Hは、次のように測定される:
(a)10個の発泡粒子を任意に採取する、
(b)採取した各発泡粒子を前記貫通孔の一端と他端を結ぶ直線の中央位置において該直線に対して垂直な面で切断して、外周縁および内周縁を持つ環状断面を得る、
(c)断面を、顕微鏡を用いて画面上に写し出すか又は写真撮影する、
(d)該画面上に写し出された断面又は写真撮影された断面において、外周縁の2点D01、D02および内周縁の2点と交わり、かつ、2点D01、D02の間の距離が最大となるように第1の直線を引く、
(e)2点D01、D02の間の距離Dnを測定する、
(f)第1の直線と直交する直線であって、外周縁の2点d01、d02及び内周縁の2点と交わり、かつ、2点d01、d02の間の距離が最大となるように第2の直線を引く、
(g)第1および第2の直線の交点P1を中心として、半径Dn/4の円C1を描く、
(h)該円C1と該画面上に写し出された断面又は写真撮影された断面上の気泡壁との交点の数Nnを数える、
(i)第1の直線と円C1の外周との交点P2、P3の各々を中心として、半径Dn/8の円C2、C3を描く、
(j)第1の直線と、円C2およびC3の各々の上に位置する気泡壁との交点の数を数えて、大きいほうの数Nnを選択する、
(k)平均径LnCVを下記(1)式から求める、
LnCV=0.405×(Dn/Nn) (1)
(l)平均径LnCHを下記(2)式から求める、
LnCH=0.810×Dn×sin(π/Nn) (2)
(m)該画面上に写し出された断面又は写真撮影された断面において、貫通孔を形成する内周縁上の2点を結ぶ直線の中で最も長い直線の長さHn(mm)を測定する、
(n)最大径Dは採取した10個の発泡粒子のDnの相加平均である、
(o)半径方向の平均気泡径LCVは採取した10個の発泡粒子のLnCVの相加平均である、
(p)円周方向平均気泡径LCHは採取した10個の発泡粒子のLnCHの相加平均である、
(q)貫通孔の直径Hは採取した10個の発泡粒子のHnの相加平均である。
〔2〕見掛け密度が36g/L未満である前記〔1〕に記載の発泡粒子。
〔3〕前記〔1〕又は〔2〕に記載の発泡粒子を加圧処理することなく成形型内に充填し、スチームで型内成形することからなる、発泡粒子成形体の製造方法。
〔4〕前記〔3〕に記載の方法により得られる発泡粒子成形体。
According to the present invention, the following polypropylene-based resin expanded particles, a method for producing a polypropylene-based resin expanded particle molded body, and a polypropylene-based resin expanded particle molded body are provided.
[1] A foamed particle comprising a base resin containing a polypropylene resin and comprising a cell wall defining a plurality of cells, wherein the foamed particle is a spherical body having a through-hole extending from one end to the other end. And having a maximum diameter D 0 (mm) defined by the following, an average bubble diameter L CV in the radial direction, an average bubble diameter L CH in the circumferential direction, and a diameter H D (mm) of the through hole, and the ratio L CV Expanded particles characterized in that / L CH is 1.05 or more, ratio H D / D 0 is 0.08 to 0.4, and ratio H D / L CV is 0.1 to 10 Provided.
D 0, L CV, L CH and H D defined the maximum diameter D 0, the average cell diameter L CV radial diameter H D of the circumferential average cell diameter L CH, and the through-hole, as follows Measured:
(A) arbitrarily collecting 10 expanded particles;
(B) cutting each of the collected expanded particles at a center position of a straight line connecting one end and the other end of the through hole with a surface perpendicular to the straight line to obtain an annular cross section having an outer peripheral edge and an inner peripheral edge;
(C) The cross section is projected on a screen or photographed using a microscope.
(D) In the Projected section or photographed cross-section on said screen, intersects the two points 2 points D 01, D 02 and the inner periphery of the outer peripheral edge, and, between the two points D 01, D 02 Draw the first straight line so that the distance is maximum,
(E) measuring the distance Dn 0 between the two points D 01 , D 02 ;
(F) a straight line perpendicular to the first straight line, intersects the two points 2 points d 01, d 02 and the inner periphery of the outer peripheral edge, and the distance between two points d 01, d 02 is the maximum Draw a second straight line so that
(G) about the intersection P1 of the first and second straight line, draw a radius Dn 0/4 of the circle C1,
(H) Count the number of intersections Nn H between the circle C1 and the cross-section projected on the screen or the bubble wall on the photographed cross-section,
(I) about the respective intersections P2, P3 of the outer periphery of the first straight line and the circle C1, a circle C2, C3 of the radial Dn 0/8,
(J) Count the number of intersections between the first straight line and the bubble walls located on each of the circles C2 and C3, and select the larger number Nn V.
(K) The average diameter Ln CV is obtained from the following equation (1).
Ln CV = 0.405 × (Dn 0 / Nn V ) (1)
(L) determining the average diameter Ln CH from the following equation (2),
Ln CH = 0.810 × Dn 0 × sin (π / Nn H ) (2)
(M) The length Hn D (mm) of the longest straight line among the straight lines connecting two points on the inner peripheral edge forming the through hole is measured in the cross section projected on the screen or the cross section photographed. ,
(N) The maximum diameter D 0 is an arithmetic average of Dn 0 of 10 collected expanded particles.
(O) The average cell diameter L CV in the radial direction is an arithmetic average of Ln CV of 10 foam particles collected.
(P) Circumferential average cell diameter L CH is an arithmetic average of Ln CH of 10 foam particles collected.
(Q) The diameter H D of the through hole is an arithmetic average of Hn D of the 10 collected foam particles.
[2] The expanded particles according to [1], wherein the apparent density is less than 36 g / L.
[3] A method for producing a foamed particle molded body comprising filling the foamed particles according to the above [1] or [2] into a molding die without pressurizing and molding with a steam.
[4] A foamed particle molded body obtained by the method according to [3].

本発明の発泡粒子を用いれば、発泡粒子を加圧処理することなく型内成形を行っても、遮水性能および外観に優れる発泡粒子成形体を得ることができ、その上発泡粒子本来の発泡倍率を大きく低下させることなく成形体を得ることができ、または/及び冷却時間を従来の方法に比較して短縮化することができる。   By using the foamed particles of the present invention, it is possible to obtain a foamed particle molded body having excellent water shielding performance and appearance even if in-mold molding is performed without pressure treatment of the foamed particles. A molded body can be obtained without greatly reducing the magnification, and / or the cooling time can be shortened as compared with the conventional method.

更に、本発明による発泡粒子を用いれば、発泡粒子気泡内にスチームが浸透し易く、従来の発泡粒子より多くのスチームが気泡内に浸透し、また、冷却時に、通常よりもより多くのスチームが浸透している分だけ、凝縮熱が増大し、冷却速度、体積収縮速度が速まることになる。その結果、成形体を十分に冷却して取出すまでの冷却時間が短縮される。   Furthermore, when the foamed particles according to the present invention are used, it is easy for the steam to penetrate into the foamed particle bubbles, so that more steam than the conventional foamed particles penetrates into the bubbles, and more cooling than usual during the cooling. Condensation heat increases by the amount of penetration, and the cooling rate and volume shrinkage rate increase. As a result, the cooling time until the molded body is sufficiently cooled and taken out is shortened.

また、本発明の発泡粒子成形体の製造方法よれば、前記の発泡粒子を加圧処理することなく成形型内に充填し、スチームで型内成形することにより、遮水性能に優れるポリプロピレン系樹脂発泡粒子成形体を従来のものより安価かつ迅速に得ることができ、その上に発泡粒子本来の発泡倍率をさほど低下させることなく(即ち、発泡粒子本来の嵩密度を大きく上昇させることなく)成形体を得ることができ、または/及び冷却時間を従来の方法に比較して短縮化することができる。   In addition, according to the method for producing a foamed particle molded body of the present invention, the polypropylene-based resin having excellent water shielding performance by filling the foamed particles in a mold without pressure treatment and molding the mold with steam. It is possible to obtain a foamed particle molded body at a lower cost and faster than the conventional one, and further molding without lowering the original foaming ratio of the foamed particles (that is, without significantly increasing the original bulk density of the foamed particles). The body can be obtained or / and the cooling time can be shortened compared to conventional methods.

本発明の方法により得られるポリプロピレン系樹脂発泡粒子成形体は、従来のものより安価かつ迅速に製造され、空隙率が小さく、遮水性能に優れ、発泡粒子相互の融着性、圧縮強度に優れ、緩衝材、包装資材、各種容器等として好適な発泡体である。   The polypropylene resin expanded particle molded body obtained by the method of the present invention is manufactured at a lower cost and faster than the conventional one, has a low porosity, excellent water shielding performance, and excellent fusion property between compressed particles and compressive strength. It is a foam suitable as a cushioning material, packaging material, various containers and the like.

以下、本発明について添付図面を参照しつつ詳細に説明する。
尚、図1は本発明の発泡粒子の平面図であり、図2は図1のII−IIに沿う断面図であり、図3は本発明の発泡粒子の他の例を示す断面図である。図中、1は発泡粒子を、2は貫通孔を、2a、2bは貫通孔の一端と他端を、10は気泡壁を、11は気泡をそれぞれ示す。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
1 is a plan view of the expanded particles of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a sectional view showing another example of the expanded particles of the present invention. . In the figure, 1 represents expanded particles, 2 represents a through-hole, 2a and 2b represent one end and the other end of the through-hole, 10 represents a bubble wall, and 11 represents a bubble.

本発明の発泡粒子は、ポリプロピレン系樹脂を含む基材樹脂からなるものであり、該発泡粒子は、図2に示すように、複数の気泡11を画成する気泡壁10からなる。更に、該発泡粒子1は、図1に示すように、内部に一端2aから他端2bに延びる貫通孔2を有する球状体である。本発明で言う球状体とは真球、楕円球、長円球、角柱、円柱、立方体、直方体、円錐台、角錐台等を含むものであり、これらが変形して非対称の立体形である場合も含むものである。角柱、円柱、立方体、直方体、円錐台、角錐台等の角部は丸みを帯びていることが好ましい。   The foamed particles of the present invention are made of a base resin containing a polypropylene-based resin, and the foamed particles are composed of a bubble wall 10 that defines a plurality of bubbles 11 as shown in FIG. Further, as shown in FIG. 1, the expanded particle 1 is a spherical body having a through hole 2 extending from one end 2a to the other end 2b. The spherical body referred to in the present invention includes a true sphere, an oval sphere, an oval, a prism, a cylinder, a cube, a rectangular parallelepiped, a truncated cone, a truncated pyramid, and the like, and these are deformed and are asymmetric solid shapes. Is also included. Corners such as prisms, cylinders, cubes, rectangular parallelepipeds, truncated cones and truncated pyramids are preferably rounded.

図3(a)〜2(d)に、該球状体の形状例を該貫通孔に対して垂直方向に切断した断面図で示す。球状体には、図3(a)に示すような断面が中空円形または中空長円形のものや、図3(b)に示すような断面が中空楕円形のものや、図3(c)に示すような断面が丸みを帯びた中空三角形のものや、図3(d)に示すような断面が丸みを帯びた中空多角形のものが含まれる。また、図1のような平面図で見た場合、球状体の外形は図3(a)〜図3(d)のような形状であって良い。   FIGS. 3A to 2D are cross-sectional views cut along a direction perpendicular to the through-holes with examples of the shape of the spherical body. The spherical body has a hollow or hollow oval cross section as shown in FIG. 3A, a hollow elliptical cross section as shown in FIG. A hollow triangle having a round cross-section as shown in FIG. 3 and a hollow polygon having a round cross-section as shown in FIG. Further, when viewed in a plan view as shown in FIG. 1, the outer shape of the spherical body may be as shown in FIGS. 3 (a) to 3 (d).

尚、本発明の発泡粒子は、貫通孔の一端2aと他端2bとを結ぶ直線と一致する方向の発泡粒子の最大長さをLmax(図1参照)とした時に、後述する長径DのLmaxに対する比(D/Lmax)が0.8〜1.25の範囲であるような形状であることが、成形型内に充填された時に、発泡粒子間の空隙が大きくならず、空隙の少ない成形体が得られるため好ましい。 The foamed particles of the present invention have a long diameter D 0 described later when the maximum length of the foamed particles in the direction matching the straight line connecting the one end 2a and the other end 2b of the through hole is Lmax (see FIG. 1). When the ratio to Lmax (D 0 / Lmax) is in the range of 0.8 to 1.25, the gap between the expanded particles does not increase when the mold is filled, This is preferable because a small number of molded articles can be obtained.

本発明の発泡粒子は、下記により定義される最大径D(mm)、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、貫通孔の直径H(mm)を有し、比LCV/LCHが1.05以上であり、比H/Dが0.08〜0.4であり、比H/LCVが0.1〜10である。 The expanded particles of the present invention have a maximum diameter D 0 (mm) defined by the following, an average bubble diameter L CV in the radial direction, an average bubble diameter L CH in the circumferential direction, and a diameter H D (mm) of the through hole. The ratio L CV / L CH is 1.05 or more, the ratio H D / D 0 is 0.08 to 0.4, and the ratio H D / L CV is 0.1 to 10.

前記最大径D、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、および貫通孔の直径Hは、次のように測定される:
(a)10個の発泡粒子を任意に採取する。
(b)採取した各発泡粒子を、図1に示すように、貫通孔2の一端2aと多端2bを結ぶ直線(長さL)の中央位置において該直線に対して垂直な面で切断して、外周縁B1および内周縁B2を持つ環状断面を得る。
(c)断面を、顕微鏡を用いて画面上に写し出すか又は写真撮影する。
(d)該画面上に写し出された断面又は写真撮影された断面(図2)において、外周縁B1の2点D01、D02および内周縁B2の2点F01、F02と交わり、かつ、2点D01、D02の間の距離が最大となるように第1の直線E1を引く。この場合、2点D01、D02の間の距離が最大となるような直線が2つ以上存在するときは、内周縁B2の2点F01、F02間の距離が最大となる直線(この直線が2つ以上存在する場合はどれを選んでも良い)を直線E1とする。
(e)2点D01、D02の間の距離Dnを測定する。
(f)第1の直線E1と直交する直線であって、外周縁B1と2点d01、d02及び内周縁B2の2点f01、f02と交わり、かつ、2点d01、d02の間の距離が最大となるように第2の直線E2を引く。この場合、2点d01、d02の間の距離が最大となるような直線が2つ以上存在するときは、内周縁B2の2点f01、f02間の距離が最大となる直線(この直線が2つ以上存在する場合はどれを選んでも良い)を直線E2とする。
(g)第1および第2の直線E1、E2の交点P1を中心として、半径Dn/4の円C1を描く。
(h)該円C1と該画面上に写し出された断面又は写真撮影された断面上の気泡壁との交点(図2で黒丸で示される)の数Nnを数える。
(i)第1の直線E1と円C1の外周との交点P2、P3の各々を中心として、半径Dn/8の円C2、C3を描く。
(j)第1の直線E1と、円C2およびC3の各々の上に位置する気泡壁との交点(図2で黒三角で示される)の数を数え、大きい方の数Nnを選択する(例えば、図2の場合では円C2のNnは3であり、円C3のNnは2であるため、円C2のNnの3を選択する)。
(k)平均径LnCVを下記(1)式から求める。
LnCV=0.405×(Dn/Nn) (1)
(l)平均径LnCHを下記(2)式から求める。
LnCH=0.810×Dn×sin(π/Nn) (2)
(m)該画面上に写し出された断面又は写真撮影された断面において、貫通孔2を形成する内周縁B2上の2点を結ぶ直線の中で最も長い直線の長さHn(mm)を測定する。
(n)最大径Dは採取した10個の発泡粒子のDnの相加平均である。
(o)半径方向の平均気泡径LCVは採取した10個の発泡粒子のLnCVの相加平均である。
(p)円周方向平均気泡径LCHは採取した10個の発泡粒子のLnCHの相加平均である。
(q)貫通孔の直径Hは採取した10個の発泡粒子のHnの相加平均である。
The maximum diameter D 0 , the radial average bubble diameter L CV , the circumferential average bubble diameter L CH , and the through hole diameter H D are measured as follows:
(A) Collecting 10 expanded particles arbitrarily.
(B) As shown in FIG. 1, each collected expanded particle is cut at a center position of a straight line (length L) connecting one end 2 a and the multi-end 2 b of the through hole 2 with a plane perpendicular to the straight line. An annular cross section having an outer peripheral edge B1 and an inner peripheral edge B2 is obtained.
(C) The cross section is projected on a screen or photographed using a microscope.
(D) intersects two points D 01 and D 02 on the outer peripheral edge B1 and two points F 01 and F 02 on the inner peripheral edge B2 in the cross-section projected on the screen or the photographed cross-section (FIG. 2); The first straight line E1 is drawn so that the distance between the two points D 01 and D 02 is maximized. In this case, when there are two or more straight lines that maximize the distance between the two points D 01 and D 02 , the straight line that maximizes the distance between the two points F 01 and F 02 of the inner peripheral edge B2 ( A straight line E1 is selected as long as two or more straight lines are present).
(E) The distance Dn 0 between the two points D 01 and D 02 is measured.
(F) A straight line that is orthogonal to the first straight line E1, intersects the outer peripheral edge B1, the two points d 01 and d 02, and the two points f 01 and f 02 of the inner peripheral edge B2, and the two points d 01 and d The second straight line E2 is drawn so that the distance between 02 becomes maximum. In this case, when there are two or more straight lines that maximize the distance between the two points d 01 and d 02 , the straight line that maximizes the distance between the two points f 01 and f 02 of the inner peripheral edge B2 ( If there are two or more straight lines, any one may be selected) as a straight line E2.
(G) about the intersection P1 of the first and second linear E1, E2, draw a radius Dn 0/4 of the circle C1.
(H) counting the number Nn H of intersection of the circular C1 and said screen on Projected section or photographed cross-section on the cell walls (as shown in Figure 2 by black circles).
(I) about the respective intersections P2, P3 of the outer periphery of the first straight line E1 and the circle C1, a circle C2, C3 of the radial Dn 0/8.
(J) Count the number of intersections (indicated by black triangles in FIG. 2) between the first straight line E1 and the bubble walls located on each of the circles C2 and C3, and select the larger number Nn V (e.g., an Nn V 3 of circle C2 in the case of FIG. 2, for Nn V circle C3 is 2, and selects the third Nn V circle C2).
(K) The average diameter Ln CV is obtained from the following equation (1).
Ln CV = 0.405 × (Dn 0 / Nn V ) (1)
(L) determining the average diameter Ln CH from the following equation (2).
Ln CH = 0.810 × Dn 0 × sin (π / Nn H ) (2)
(M) The length Hn D (mm) of the longest straight line among the straight lines connecting two points on the inner peripheral edge B2 forming the through-hole 2 in the cross-section projected on the screen or the cross-section photographed. taking measurement.
(N) the maximum diameter D 0 is the arithmetic mean of Dn 0 of ten expanded beads taken.
(O) The average cell diameter L CV in the radial direction is an arithmetic average of Ln CVs of 10 collected expanded particles.
(P) The circumferential direction average cell diameter L CH is an arithmetic average of Ln CH of 10 collected foam particles.
(Q) The diameter H D of the through hole is an arithmetic average of Hn D of the 10 collected foam particles.

ここで、前記(1)式は、次のように導かれたものである。
一般的に、線分L(長さL)上の気泡壁の数Nと平均気泡径Lとの間には下記(3)式の関係が成り立つ。
=1.62×(L/N) (3)
従って、単に、(3)式のLd、およびNに代えて、それぞれLnCV、Dn/4およびNnを代入すれば、(1)式が導かれる。
Here, the equation (1) is derived as follows.
Generally, the relationship of the following formula (3) is established between the number N of bubble walls on the line segment L 0 (length L 0 ) and the average bubble diameter L d .
L d = 1.62 × (L 0 / N) (3)
Thus, simply, (3) instead of expression of L d, L 0 and N, by substituting Ln CV, Dn 0/4 and Nn V respectively, is derived (1).

また、前記(2)式は次のように導かれる。
半径D/4の円に内接するN辺の正多角形の周囲の長さlは下記(4)式で与えられる。
=2×(D/4)×sin(2π/2N)×N (4)
図2に示すような円C1に内接するN辺の多角形の周囲の長さは、円C1に内接するN辺の正多角形の周囲の長さlに近似できるので、単に、前記(3)式のLd、およびNに代えて、それぞれLnCH、lおよびNnを代入することにより(2)式が導かれる。
The equation (2) is derived as follows.
N H length l 0 of the surrounding regular polygon sides inscribed in a circle of radius D 0/4 is given by the following equation (4).
l 0 = 2 × (D 0 /4) × sin (2π / 2N H) × N H (4)
Since the length of the circumference of the polygon on the N H side inscribed in the circle C1 as shown in FIG. 2 can be approximated to the length l 0 of the regular polygon on the N H side inscribed in the circle C1, simply, By substituting Ln CH , 10 and Nn H for L d, L 0 and N in the formula (3), the formula (2) is derived.

本発明においては、比LCV/LCHが1.05以上であり、比H/Dが0.08〜0.4であり、比H/LCVが0.1〜10であることが重要である。本発明の発泡粒子は、この条件を満足するため、従来の発泡粒子より少ないスチーム量で効率よく二次発泡する。即ち、加圧処理を行わなくても、外観及び遮水性にすぐれた成形体を与えることができる。また、型内成形に必要なスチーム量が少なくてすみ、発泡粒子本来の発泡倍率を大きく低下させることなく成形体を得ることができる。更に、短い冷却時間でも容易に成形体を得ることができる。 In the present invention, the ratio L CV / L CH is 1.05 or more, the ratio H D / D 0 is 0.08 to 0.4, and the ratio H D / L CV is 0.1 to 10. This is very important. Since the expanded particles of the present invention satisfy this condition, secondary expansion is efficiently performed with a smaller amount of steam than the conventional expanded particles. That is, it is possible to give a molded article excellent in appearance and water shielding properties without performing pressure treatment. Further, the amount of steam required for in-mold molding can be reduced, and a molded body can be obtained without greatly reducing the original expansion ratio of the expanded particles. Furthermore, a molded body can be easily obtained even with a short cooling time.

比LCV/LCHが1.05未満の場合には、無加圧成形での二次発泡性、加熱効率が向上しない。そのため、比LCV/LCHは1.07以上が好ましく、1.10以上がより好ましい。一方、比LCV/LCHが大きくなりすぎると、伝熱効率は高くなるものの、気泡形状が細長くなりすぎて、得られる成形体が挫屈しやすくなる虞がある。そのため、比LCV/LCHは3以下であることが好ましい。 When the ratio L CV / L CH is less than 1.05, the secondary foamability and heating efficiency in pressureless molding are not improved. Therefore, the ratio L CV / L CH is preferably 1.07 or more, and more preferably 1.10 or more. On the other hand, if the ratio L CV / L CH is too large, the heat transfer efficiency is increased, but the bubble shape becomes too long, and the obtained molded body may be easily bent. Therefore, the ratio L CV / L CH is preferably 3 or less.

また、スチームを発泡粒子内部に迅速に浸入させるという効果を高め、かつ、独立気泡率を高める観点から、半径方向の平均気泡径LCVは30μm以上であることが好ましく、50μm以上がより好ましく、100μm以上が更に好ましく、130μm以上であることが最も好ましい。また、二次発泡に適する気泡壁の厚みが得られることから、LCVは1000μm以下であることが好ましく、700μm以下であることがより好ましい。 In addition, from the viewpoint of increasing the effect of rapidly invading the steam into the foamed particles and increasing the closed cell ratio, the radial average cell diameter L CV is preferably 30 μm or more, more preferably 50 μm or more, More preferably, it is 100 μm or more, and most preferably 130 μm or more. Further, since the thickness of the cell walls that are suitable for secondary expansion is obtained, it is preferable that L CV is 1000μm or less, and more preferably less 700 .mu.m.

また、独立気泡率を高める観点から、円周方向平均気泡径LCHは28μm以上であることが好ましく、47μm以上がより好ましく、95μm以上が更に好ましい。二次発泡に適する気泡壁の厚みが得られることから、LCHは950μm以下であることが好ましく、600μm以下であることがより好ましい。
本発明の効果が得られやすいためには、上記図2の断面における第1の直線E1上の気泡の数は5〜40個が好ましく、6〜30個がより好ましい。
Further, from the viewpoint of increasing the closed cell ratio, the circumferential average bubble diameter L CH is preferably 28 μm or more, more preferably 47 μm or more, and further preferably 95 μm or more. L CH is preferably 950 μm or less, and more preferably 600 μm or less, because a cell wall thickness suitable for secondary foaming can be obtained.
In order to easily obtain the effect of the present invention, the number of bubbles on the first straight line E1 in the cross section of FIG. 2 is preferably 5 to 40, and more preferably 6 to 30.

本発明の発泡粒子においては、長径D(mm)に対する貫通孔の直径H(mm)の比H/Dが0.08未満の場合、貫通孔が小さすぎて、加熱効率の向上や、断熱膨張による冷却効果が乏しくなる。H/Dが0.4を超える場合には、貫通孔が大きすぎて、遮水性能に優れる成形体を得ることが困難になる。そのため、H/Dは0.1〜0.25であることが好ましい。更に、平均気泡径LCV(mm)に対する貫通孔の直径H(mm)の比H/LCVが0.1未満の場合、得られる成形体が気泡により挫屈しやすくなったり、加熱効率の向上や、断熱膨張による冷却効果が乏しくなる。H/LCVが10を超える場合、遮水性能に優れる成形体を得ることが困難になる。そのため、H/LCVは0.5〜8であることが好ましく、1.2〜5.5であることがより好ましい。 In the foamed particles of the present invention, when the ratio H D / D 0 of the diameter H D (mm) of the through hole to the long diameter D 0 (mm) is less than 0.08, the through hole is too small and the heating efficiency is improved. In addition, the cooling effect due to adiabatic expansion becomes poor. When H D / D 0 exceeds 0.4, the through hole is too large, and it becomes difficult to obtain a molded article having excellent water shielding performance. Therefore, it is preferable that H D / D 0 is 0.1 to 0.25. Furthermore, when the ratio H D / L CV of the diameter H D (mm) of the through holes to the average bubble diameter L CV (mm) is less than 0.1, the resulting molded body is easily cramped by the bubbles, or the heating efficiency And the cooling effect due to adiabatic expansion becomes poor. When H D / L CV exceeds 10, it becomes difficult to obtain a molded article having excellent water shielding performance. Therefore, it is preferred that the H D / L CV 0.5 to 8, more preferably from 1.2 to 5.5.

貫通孔の直径Hの大きさは、スチームが通過することさえできれば制限されないが、加熱効率の向上や、断熱膨張による冷却効果を得るためには、0.16mm以上が好ましく、0.2mm以上がより好ましい。その上限は、型内への均一充填できること、また成形時の加熱効率および冷却効率を高める理由で、1.8mmであることが好ましく、1.6mm以下であることがさらに好ましく、1.2mm以下であることがより好ましく、0.9mm以下であることが特に好ましい。 The size of the diameter H D of the through hole is even not limited as long as it can steam passes, improvement of heating efficiency, in order to obtain a cooling effect due to adiabatic expansion is preferably at least 0.16 mm, 0.2 mm or more Is more preferable. The upper limit is preferably 1.8 mm, more preferably 1.6 mm or less, and more preferably 1.2 mm or less for the reason that the mold can be uniformly filled and the heating efficiency and cooling efficiency during molding are increased. More preferably, it is 0.9 mm or less.

貫通孔2は、図2に示す断面において、内周縁B1が円C1の円周の内側にあるようなサイズおよび形状であることが好ましい。また、貫通孔の内周縁B1は、C2、C3の各円周の外側に存在していることが好ましいが、内周縁B1と重なった部分のC2、C3の各円弧の長さが円C2、C3の各円周の長さの30%以内であれば、内周縁B1と円C2、C3の円周と重なっていても良い。   In the cross section shown in FIG. 2, the through hole 2 is preferably sized and shaped so that the inner peripheral edge B1 is inside the circumference of the circle C1. In addition, the inner peripheral edge B1 of the through hole is preferably present outside the respective circumferences of C2 and C3, but the length of each arc of C2 and C3 that overlaps the inner peripheral edge B1 is the circle C2, As long as it is within 30% of the length of each circumference of C3, it may overlap with the circumference of inner circumference B1 and the circumferences of circles C2 and C3.

更に、高発泡の優れた成形体を得るためには、見掛け密度D(g/L)は20〜35g/Lであることがより好ましく、23〜34g/Lであることが更に好ましい。但し、本発明の発泡粒子を用いると、従来技術では成形が困難であった見掛け密度D(g/L)が36g/L未満の場合であっても、その発泡倍率をさほど低下させることなく高発泡の優れた成形体が得られる。 Furthermore, in order to obtain a molded article excellent in high foaming, the apparent density D t (g / L) is more preferably 20 to 35 g / L, and still more preferably 23 to 34 g / L. However, when the foamed particles of the present invention are used, even if the apparent density D t (g / L), which is difficult to be molded by the prior art, is less than 36 g / L, the foaming ratio is not reduced so much. A molded article excellent in high foaming is obtained.

本明細書における発泡粒子の見掛け密度Dは次のように求める。まず、発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置する。次に同恒温室内にて、10日間放置した発泡粒子を500個以上採取し、該発泡粒子群の重量W1(g)を測定した後ただちに23℃のメタノールが入ったメスシリンダー中に上記重量を測定した発泡粒子群を金網等を使用して沈め、エタノールのメニスカスの上昇分より発泡粒子群の体積V1(cm)を読み取り、下記(5)式により発泡粒子の見掛け密度Dを計算する。
=1000×W1/V1 (5)
The apparent density D t of the expanded particles in this specification is determined as follows. First, the expanded particles are allowed to stand for 10 days in a temperature-controlled room under conditions of atmospheric pressure, relative humidity of 50%, and 23 ° C. Next, 500 or more foamed particles left for 10 days in the same temperature chamber were collected, and after measuring the weight W1 (g) of the foamed particle group, the above weight was put in a graduated cylinder containing methanol at 23 ° C. The measured expanded particle group is submerged using a wire mesh or the like, the volume V1 (cm 3 ) of the expanded particle group is read from the rising amount of the meniscus of ethanol, and the apparent density D t of the expanded particle is calculated by the following equation (5). .
D t = 1000 × W1 / V1 (5)

本発明の発泡粒子を用いれば、発泡粒子を加圧処理することなく型内成形を行っても、遮水性能および外観に優れる発泡粒子成形体を得ることができ、その上発泡粒子本来の発泡倍率を大きく低下させることなく成形体を得ることができ、または/及び冷却時間を従来の方法に比較して短縮化することができる。   By using the foamed particles of the present invention, it is possible to obtain a foamed particle molded body having excellent water shielding performance and appearance even if in-mold molding is performed without pressure treatment of the foamed particles. A molded body can be obtained without greatly reducing the magnification, and / or the cooling time can be shortened as compared with the conventional method.

このような本発明の発泡粒子の際立った効果は、次のようなメカニズムにより得られるものと推定される。即ち、半径方向の平均気泡径LCVが円周方向平均気泡径LCHよりも大きい(LCV/LCHが1.05以上である)ことから、気泡は半径方向に細長くなっており、且つ該貫通孔の周りに放射状に配列している。また、貫通孔が適度に小さいサイズで存在している(L/Dが0.08〜0.4及びL/LCVが0.1〜10である)。このような気泡の形状及び配列のために、本発明の発泡粒子は、従来の発泡粒子(LCV/LCHが1.00未満)に比較して、型内成形における二次発泡性が優れるものと考えられる。 Such remarkable effects of the expanded particles of the present invention are presumed to be obtained by the following mechanism. That is, since the average bubble diameter L CV in the radial direction is larger than the average bubble diameter L CH in the circumferential direction (L CV / L CH is 1.05 or more), the bubbles are elongated in the radial direction, and They are arranged radially around the through holes. Moreover, the through-hole exists in a moderately small size (L / D 0 is 0.08 to 0.4 and L / L CV is 0.1 to 10). Due to the shape and arrangement of the bubbles, the foamed particles of the present invention are superior in secondary foamability in in-mold molding compared to conventional foamed particles (L CV / L CH is less than 1.00). It is considered a thing.

さらに詳しく説明すると、発泡粒子が充填された成形型内にスチームが導入されると、発泡粒子はスチームにより外側より熱せられると同時に、スチームが外皮を通過し内部の気泡に徐々に浸透し、発泡粒子は内部からも加熱される。その後、成形型内部の圧力を大気と略同等とする圧力開放により発泡粒子は二次発泡する。このとき、浸透したスチームは該発泡粒子が元々保有していた気泡内の空気と共に、発泡剤として二次発泡に寄与すると考えられる。従って、二次発泡性を向上させて、発泡粒子どうしを隙間なく融着させて遮水性に優れる成形体を得るためには、より迅速且つ均一にスチームを発泡粒子内部に浸入させることが望ましい。本発明においては、そのための第一の手段として発泡粒子に貫通孔が形成される。   More specifically, when steam is introduced into a mold filled with foamed particles, the foamed particles are heated from the outside by the steam, and at the same time, the steam passes through the outer skin and gradually penetrates into the bubbles inside the foam. The particles are also heated from the inside. Thereafter, the foamed particles undergo secondary foaming by releasing the pressure within the mold so as to be substantially equal to the atmosphere. At this time, the permeated steam is considered to contribute to the secondary foaming as a foaming agent together with the air in the bubbles originally possessed by the foamed particles. Therefore, in order to improve the secondary foamability and fuse the foamed particles without gaps to obtain a molded article having excellent water shielding properties, it is desirable to allow steam to penetrate into the foamed particles more quickly and uniformly. In the present invention, through-holes are formed in the expanded particles as a first means for that purpose.

即ち、発泡粒子に貫通孔が形成されていると、(i)型内成形の際、スチームが貫通孔を通過するため、発泡粒子1個当たりのスチームに対する接触面積が増加するので、スチームによる加熱効率が向上し、結果的に発泡粒子を二次発泡させるのに必要以上に加熱する必要がなくなる。更に、(ii)発泡粒子が成形型内に均一に充満してからも、貫通孔の分だけ余分に二次発泡しなければならないため、二次発泡の際に断熱膨張する体積が大きくなり、結果的に発泡粒子内部での断熱膨張による冷却効果が大きくなり、水冷時間の短縮が達成される。   In other words, if through-holes are formed in the foam particles, (i) steam passes through the through-holes during in-mold molding, so the contact area with the steam per foam particle increases, so heating by steam The efficiency is improved, and as a result, it is not necessary to heat more than necessary for secondary foaming of the foamed particles. Furthermore, (ii) even after the foamed particles are uniformly filled in the mold, secondary foaming must be performed in excess of the amount of the through-holes, so that the volume of adiabatic expansion during secondary foaming increases. As a result, the cooling effect due to adiabatic expansion inside the expanded particles is increased, and the water cooling time is shortened.

しかしながら、発泡粒子を加圧処理することなく型内成形(以下、無加圧成形と称することがある)を行なって遮水性に優れる成形体を得るためには、発泡粒子に貫通孔を形成するだけでは不十分である。   However, in order to obtain a molded article having excellent water shielding properties by performing in-mold molding (hereinafter sometimes referred to as pressureless molding) without subjecting the foam particles to pressure treatment, through holes are formed in the foam particles. It is not enough.

本発明の発泡粒子においては、細長い気泡が、その長径を貫通孔の中心(P)から外側に向けて放射状に配列しているので、即ち、気泡形状が上記垂直断面孔の中心から外周へ向かう方向に細長いので、スチームが貫通孔から発泡粒子内部に浸入する際に透過しなければならない気泡膜の数が少ないので、スチームは従来の発泡粒子より迅速に発泡粒子内部に浸入することができると考えられる。言い換えると、発泡粒子の貫通孔と外周との間の気泡の数が少ないほどスチームは従来の発泡粒子より迅速に発泡粒子内部に浸入することができると考えられる。このような気泡の形状及び配列のために、本発明の発泡粒子は、型内成形における二次発泡性が優れるものと考えられる。即ち、無加圧成形を行っても遮水性能および外観に優れる発泡粒子成形体を得ることができ、その上に発泡粒子本来の発泡倍率を大きく低下させることなく成形体を得ることができる。 In the expanded particles of the present invention, the elongated bubbles are arranged radially from the center (P 1 ) of the through hole toward the outside, that is, the bubble shape extends from the center of the vertical sectional hole to the outer periphery. Since it is elongated in the direction of the direction, the number of bubble membranes that must be permeated when steam enters the inside of the foamed particle from the through-hole, so that the steam can enter the inside of the foamed particle more rapidly than the conventional foamed particle. it is conceivable that. In other words, it is considered that the smaller the number of bubbles between the through hole and the outer periphery of the expanded particle, the more the steam can enter the expanded particle than the conventional expanded particle. Due to the shape and arrangement of the bubbles, it is considered that the expanded particles of the present invention are excellent in secondary foamability in in-mold molding. That is, even if pressureless molding is performed, a foamed particle molded body excellent in water shielding performance and appearance can be obtained, and a molded body can be obtained without greatly reducing the original foaming ratio of the foamed particles.

更に、本発明の発泡粒子の場合、発泡粒子気泡内にスチームが浸透し易く、従来の発泡粒子より多くのスチームが気泡内に浸透し、また、冷却時に、通常よりもより多くのスチームが浸透している分だけ、凝縮熱が増大し、冷却速度、体積収縮速度が速まることになる。その結果、成形体を十分に冷却して取出すまでの冷却時間が短縮される。   Furthermore, in the case of the foamed particles of the present invention, the steam easily penetrates into the foamed particle bubbles, so that more steam penetrates into the foam than the conventional foamed particles, and more steam penetrates than usual when cooled. Condensation heat is increased by the amount, and the cooling rate and volume shrinkage rate are increased. As a result, the cooling time until the molded body is sufficiently cooled and taken out is shortened.

本発明の発泡粒子の基材樹脂はポリプロピレン系樹脂であり、該ポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレン系ブロック共重合体またはプロピレン系ランダム共重合体が使用される。ここで、プロピレン系ランダム共重合体、プロピレン系ブロック共重合体とは、それぞれプロピレン成分を60モル%以上含有するプロピレンと他のコモノマーとの共重合体である。プロピレンと共重合される他のコモノマーとしては、エチレン、1−ブテン、1−ペテン、1−ヘキセン等のプロピレン以外のα−オレフィン等が挙げられる。   The base resin of the expanded particles of the present invention is a polypropylene resin, and as the polypropylene resin, a propylene homopolymer, a propylene block copolymer or a propylene random copolymer is used. Here, the propylene-based random copolymer and the propylene-based block copolymer are copolymers of propylene and other comonomers each containing 60 mol% or more of a propylene component. Examples of other comonomers copolymerized with propylene include α-olefins other than propylene such as ethylene, 1-butene, 1-petene, and 1-hexene.

上記プロピレン系ブロック共重合体は、プロピレン−エチレンブロック共重合体、プロピレン−ブテンブロック共重合体等の2元共重合体であっても、プロピレン−エチレン−ブテンブロック共重合体等の3元共重合体であっても良い。また、上記プロピレン系ランダム共重合体は、プロピレン−エチレンランダム共重合体、プロピレン−ブテンランダム共重合体、プロピレン−エチレンランダム共重合等の2元共重合体であっても、プロピレン−エチレン−ブテンランダム共重合体等の3元共重合体であっても良い。
共重合体中におけるプロピレン以外のコモノマー成分の割合は、0.05〜15重量%、特に0.1〜10重量%が好ましい。
The propylene-based block copolymer may be a binary copolymer such as a propylene-ethylene block copolymer or a propylene-butene block copolymer, or a ternary copolymer such as a propylene-ethylene-butene block copolymer. It may be a polymer. The propylene random copolymer may be a binary copolymer such as propylene-ethylene random copolymer, propylene-butene random copolymer, propylene-ethylene random copolymer, or propylene-ethylene-butene. A terpolymer such as a random copolymer may be used.
The proportion of the comonomer component other than propylene in the copolymer is preferably 0.05 to 15% by weight, particularly preferably 0.1 to 10% by weight.

なお、本発明の発泡粒子を構成するポリプロピレン系樹脂は、架橋ポリプロピレン系樹脂であっても無架橋ポリプロピレン系樹脂であってもよいが、リサイクルが容易な無架橋プロピレン系樹脂が好ましい。   The polypropylene resin constituting the expanded particles of the present invention may be a crosslinked polypropylene resin or a non-crosslinked polypropylene resin, but is preferably a non-crosslinked propylene resin that can be easily recycled.

本発明で用いられる基材樹脂は、前記ポリプロピレン系樹脂の中でも、発泡粒子を成形する際の生産性や設備コスト等を考慮すると、融点が165℃以下のプロピレン系ランダム共重合体が好ましく、特に135〜160℃のプロピレン系ランダム共重合体が好ましい。   The base resin used in the present invention is preferably a propylene random copolymer having a melting point of 165 ° C. or lower, considering the productivity and equipment cost when molding expanded particles among the polypropylene resins. A propylene-based random copolymer at 135 to 160 ° C. is preferred.

更に、貫通孔周辺の気泡を細長く、貫通孔を中心として放射状に配列させるためには、発泡時に気泡が成長する段階で発泡剤の膨張により、前記発泡粒子断面の中心から外周へ向かう方向に細長く配向した気泡をその状態に維持させる必要がある。そのためには、メルトフローレイト(MFR)が0.1〜60g/10分のものが好ましく、0.2〜50g/10分のものがより好ましく、0.5〜35g/10分のものが更に好ましく、2〜25g/10分のものが特に好ましい。
尚、メルトフローレイト(MFR)はJIS K7210の試験条件14(230℃/2.16kgf荷重)で測定される値である。
Furthermore, in order to elongate the bubbles around the through-holes and arrange them radially around the through-holes, the bubbles are elongated in the direction from the center of the expanded particle cross section toward the outer periphery due to the expansion of the foaming agent at the stage where the bubbles grow during foaming. It is necessary to maintain the oriented bubbles in that state. For that purpose, the melt flow rate (MFR) is preferably 0.1 to 60 g / 10 min, more preferably 0.2 to 50 g / 10 min, further 0.5 to 35 g / 10 min. The one having 2 to 25 g / 10 minutes is particularly preferred.
The melt flow rate (MFR) is a value measured under test condition 14 (230 ° C./2.16 kgf load) of JIS K7210.

また、成形体に更なる柔軟性が要求される場合は、エチレン−プロピレンラバー等のエラストマーを上記した基材樹脂に5〜40wt%添加することが好ましい。また、本発明では、本発明の目的を阻害しない範囲内において、前記ポリプロピレン系樹脂に、ポリプロピレン系樹脂以外の熱可塑性樹脂や熱可塑性エラストマーを添加して使用することもできる。ただし、この場合は、ポリプロピレン系樹脂以外の熱可塑性樹脂や熱可塑性エラストマーの添加量はポリプロピレン系樹脂100重量部あたり、多くとも30重量部が好ましい。   Moreover, when further flexibility is requested | required of a molded object, it is preferable to add 5-40 wt% of elastomers, such as ethylene-propylene rubber, to the above-mentioned base resin. In the present invention, a thermoplastic resin other than the polypropylene resin and a thermoplastic elastomer can be added to the polypropylene resin and used within the range not impairing the object of the present invention. However, in this case, the addition amount of the thermoplastic resin or thermoplastic elastomer other than the polypropylene resin is preferably at most 30 parts by weight per 100 parts by weight of the polypropylene resin.

また、本発明の発泡粒子は、高温ピークを有することが望ましい。高温ピークの熱量の範囲としては、2J/g〜45J/gが好ましく、更に好ましくは、5J/g〜40J/gである。更に、高温ピーク熱量の範囲は、基材樹脂の融解熱量によって変化する傾向があり、発泡粒子にした場合のトータル熱量Hに対する高温ピークの熱量Hの比(H/H)が0.05から0.5の範囲に入るのが最も好ましい。 Moreover, it is desirable that the expanded particles of the present invention have a high temperature peak. The range of the amount of heat at the high temperature peak is preferably 2 J / g to 45 J / g, more preferably 5 J / g to 40 J / g. Further, the range of the high temperature peak heat amount tends to change depending on the heat of fusion of the base resin, and the ratio of the heat amount H H of the high temperature peak to the total heat amount H T in the case of foamed particles (H H / H T ) is 0. Most preferred is in the range of .05 to 0.5.

本明細書における発泡粒子の高温側ピーク熱量Hは、発泡粒子1〜8mgを示差走査熱量計を用いて10℃/minの速度で220℃まで昇温して得たDSC曲線(図4)における高温側ピークbの面積に相当し、次のように求めることができる。まず、図4に示すようにDSC曲線上80℃の点Iと、DSC曲線上の該樹脂の融解終了温度を示す点IIとを結ぶ直線を引く。次に、固有吸熱ピークaと高温側ピークbとの谷部にあたるDSC曲線の点IIIを通りグラフ横軸の温度に対して垂直な直線を、点Iと点IIとを結んだ直線へ引き、その交点をIVとする。このようにして求めた点IVと点IIとを結ぶ直線、点IIIと点IVとを結ぶ直線及び点IIIと点IIを結ぶDSC曲線によって囲まれる部分(図4:斜線部分)の面積が高温側ピークの吸熱量に相当する。 The high temperature side peak calorific value H H of the expanded particles in this specification is a DSC curve obtained by heating 1 to 8 mg of expanded particles to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (FIG. 4). It corresponds to the area of the high temperature side peak b in and can be obtained as follows. First, as shown in FIG. 4, a straight line connecting a point I on the DSC curve at 80 ° C. and a point II on the DSC curve indicating the melting end temperature of the resin is drawn. Next, a straight line passing through point III of the DSC curve corresponding to the valley between the intrinsic endothermic peak a and the high temperature side peak b and perpendicular to the temperature on the horizontal axis of the graph is drawn to a straight line connecting point I and point II. Let the intersection be IV. The area of the portion (FIG. 4: hatched portion) surrounded by the straight line connecting points IV and II, the straight line connecting point III and point IV, and the DSC curve connecting point III and point II is high. This corresponds to the endothermic amount of the side peak.

又、本明細書における全ピーク熱量Hは、固有吸熱ピークaの面積と高温側ピークbの面積との合計に相当する。又、固有吸熱ピークaの面積は、点IVと点Iとを結ぶ直線、点IIIと点IVとを結ぶ直線及び点IIIと点Iを結ぶDSC曲線によって囲まれる部分(図4:白抜部分)の面積に相当する。尚、発泡粒子の高温側ピーク熱量Hの調節方法は、例えば特開2001−151928号等に開示されている。 Further, the total peak heat H T herein, corresponds to the sum of the areas of the area of the specific endothermic peak a and the high-temperature side peak b. The area of the intrinsic endothermic peak a is a portion surrounded by a straight line connecting the points IV and I, a straight line connecting the points III and IV, and a DSC curve connecting the points III and I (FIG. 4: white portions). ). Incidentally, methods of modulating the high-temperature side peak heat H H of the expanded beads is disclosed in, for example, JP-2001-151928 and the like.

本発明においては、気泡径を調節するために、基材樹脂に気泡調節剤を添加することが好ましい。該気泡調節剤としては、タルク、炭酸カルシウム、ホウ砂、ホウ酸亜鉛、水酸化アルミニウム等の無機物が挙げられる。その添加量は、半径方向の平均気泡径LCVを30μm以上に維持することが容易なため、基材樹脂100重量部あたり、0.001〜10重量部が好ましく、0.01〜5重量部がより好ましい。
尚、基材樹脂に気泡調節剤を添加する場合、気泡調節剤をそのまま基材樹脂に練り込むこともできるが、通常は分散性等を考慮して気泡調節剤のマスターバッチを作り、これと基材樹脂とを混練することが好ましい。
In the present invention, in order to adjust the bubble diameter, it is preferable to add a bubble regulator to the base resin. Examples of the air conditioner include inorganic substances such as talc, calcium carbonate, borax, zinc borate, and aluminum hydroxide. The amount added is preferably 0.001 to 10 parts by weight, preferably 0.01 to 5 parts by weight per 100 parts by weight of the base resin since the average cell diameter L CV in the radial direction can be easily maintained at 30 μm or more. Is more preferable.
In addition, when adding a foam control agent to the base resin, the foam control agent can be kneaded into the base resin as it is, but usually a master batch of the foam control agent is made in consideration of dispersibility and the like. It is preferable to knead the base resin.

また、基材樹脂には、着色顔料、染料を添加することができ、この場合にもLCVを30μm以上に維持することを基準として、その添加量が定められる。
尚、基材樹脂に着色顔料、染料を添加を添加する場合も分散性等を考慮して、着色顔料、染料のマスターバッチを作り、これと基材樹脂とを混練することが好ましい。
In addition, a coloring pigment and a dye can be added to the base resin. In this case as well, the addition amount is determined on the basis of maintaining the LCV at 30 μm or more.
In addition, when adding a color pigment and dye to the base resin, it is preferable to make a master batch of the color pigment and dye in consideration of dispersibility and knead this with the base resin.

(I)本発明の発泡粒子は、例えば、未発泡の貫通孔を有する樹脂粒子を作製してから分散媒放出発泡法により樹脂粒子を発泡させることにより得ることができる。また、(II)該発泡粒子は、押出機を用いて未発泡の樹脂粒子を溶融させて発泡剤と混合した発泡性溶融樹脂組成物を、円筒状の紐状物が押出しうる断面形状を有するダイから押出発泡させ、発泡途上の又は発泡完了後の発泡体を適当な長さにカットすることによる押出発泡により製造することもできる。   (I) The foamed particles of the present invention can be obtained, for example, by preparing resin particles having unfoamed through holes and then foaming the resin particles by a dispersion medium discharge foaming method. Further, (II) the foamed particles have a cross-sectional shape in which a cylindrical string-like product can extrude a foamable molten resin composition obtained by melting unfoamed resin particles using an extruder and mixing with a foaming agent. It can also be produced by extrusion foaming by extruding and foaming from a die and cutting the foam in the middle of foaming or after completion of foaming into an appropriate length.

いずれの方法(I)(II)においても、本発明の発泡粒子を得るには、発泡が生じない高圧下から発泡の生じる低圧下へ放出又は押出する際の高圧下と低圧下の差圧を400kPa以上、好ましくは500〜15000kPaとすることが好ましい。また、貫通孔の直径H、発泡粒子の最大径D及び半径方向の平均気泡径LCVを、上記H/D比が0.08〜0.4、H/LCV比が0.1〜10となるように調整することを要する。 In any of the methods (I) and (II), in order to obtain the expanded particles of the present invention, the pressure difference between the high pressure and the low pressure when discharging or extruding from the high pressure at which foaming does not occur to the low pressure at which foaming occurs is obtained. It is preferably 400 kPa or more, preferably 500 to 15000 kPa. Further, the diameter H D of the through hole, the maximum diameter D 0 of the expanded particles, and the average bubble diameter L CV in the radial direction are such that the H D / D 0 ratio is 0.08 to 0.4, and the H D / L CV ratio is It is necessary to adjust so that it may become 0.1-10.

貫通孔の直径Hは、一般的には、得られる発泡粒子の発泡倍率が大きいほど、貫通孔を有する未発泡の樹脂粒子の貫通孔の大きさが大きいほど又は押出発泡に際しては発泡体に貫通孔を形成させるための部材の直径が大きいほど、大きな値を示す。また、発泡粒子の最大径Dは、一般的には、得られる発泡粒子の発泡倍率が大きいほど、貫通孔を有する樹脂粒子の肉厚み又は貫通孔を有する発泡粒子の肉厚が大きいほど、大きな値を示す。また、半径方向の平均気泡径LCVは、得ようとする発泡粒子の平均気泡径の大きさを制御することにより調整できる。平均気泡径の大きさは、通常は、発泡剤の種類と量、発泡温度と気泡調節剤の添加量で調節される。また、発泡倍率は、通常は、発泡剤の添加量と発泡温度と、発泡時の上記差圧により調節される。適正な範囲内においては、一般的に、発泡剤の添加量が多いほど、発泡温度が高いほど、上記差圧が大きいほど、得られる発泡粒子の発泡倍率は大きくなる。 Diameter H D of the through hole, in general, the more expansion ratio of the foamed particles obtained is large, the foam when the larger size or extrusion foaming of the through hole of the unfoamed resin particles having a through hole The larger the diameter of the member for forming the through hole, the larger the value. In addition, the maximum diameter D 0 of the expanded particles is generally such that the larger the expansion ratio of the obtained expanded particles, the greater the thickness of the resin particles having through holes or the greater the thickness of the expanded particles having through holes, Indicates a large value. Moreover, the average cell diameter L CV in the radial direction can be adjusted by controlling the size of the average cell diameter of the expanded particles to be obtained. The size of the average cell diameter is usually adjusted by the type and amount of the foaming agent, the foaming temperature, and the amount of the foam regulator added. The expansion ratio is usually adjusted by the amount of foaming agent added, the foaming temperature, and the differential pressure during foaming. In an appropriate range, generally, the larger the amount of the foaming agent added, the higher the foaming temperature, and the larger the differential pressure, the larger the expansion ratio of the resulting expanded particles.

前記(II)押出発泡による筒状発泡粒子は、例えば、ヨーロッパ特許第588321号、ヨーロッパ特許第968077号等に記載の方法において、ダイの出口形状を筒状の発泡体が得られるように変更することにより製造できる。   In the method described in (II) Extrusion Foaming, for example, the method described in European Patent No. 588321, European Patent No. 968077, etc., the outlet shape of the die is changed so as to obtain a cylindrical foam. Can be manufactured.

前記(I)分散媒放出発泡法においては、該樹脂粒子を物理発泡剤等と共にオートクレーブ等の密閉容器内において水に分散させ、樹脂粒子の軟化温度以上の温度に加熱し、樹脂粒子内に発泡剤を含浸させ、次に、密閉容器内の圧力を発泡剤の蒸気圧以上の圧力に保持しながら、密閉容器内の水面下の一旦を開放し、樹脂粒子と水とを同時に容器内よりも低圧の雰囲気下に放出することによって得ることができる。
その際、樹脂粒子が球状ではないものであっても、密閉容器中で加熱され可塑化された樹脂粒子を分散媒の樹脂粒子に対する表面張力の作用により、球状に変化させることができる。
尚、発泡粒子の貫通孔は樹脂粒子の貫通孔より大きくなるのが通常である。
In the (I) dispersion medium releasing foaming method, the resin particles are dispersed in water in a closed container such as an autoclave together with a physical foaming agent, and heated to a temperature equal to or higher than the softening temperature of the resin particles, and foamed in the resin particles. Next, while maintaining the pressure in the sealed container at a pressure equal to or higher than the vapor pressure of the foaming agent, once under the water surface in the sealed container is released, and the resin particles and water are simultaneously released from the container. It can be obtained by discharging in a low-pressure atmosphere.
At that time, even if the resin particles are not spherical, the resin particles heated and plasticized in the closed container can be changed to spherical by the action of the surface tension on the resin particles of the dispersion medium.
Note that the through holes of the foam particles are usually larger than the through holes of the resin particles.

更に、発泡剤を含浸させてから発泡温度で低圧域に放出する際、密閉容器内の高圧域の圧力を0.5MPa(G)以上にすることが、貫通孔周辺の気泡を貫通孔を中心として縦長に配向させるために好ましく、1.5MPa(G)以上にすることがより好ましい。   Furthermore, when the foaming agent is impregnated and released into the low pressure region at the foaming temperature, the pressure in the high pressure region in the sealed container can be increased to 0.5 MPa (G) or more so that the bubbles around the through hole are centered on the through hole. It is preferable to make it vertically oriented, and more preferably 1.5 MPa (G) or more.

分散媒放出発泡法で用いられる発泡剤としては、通常、プロパン、イソブタン、ブタン、イソペンタン、ペンタン、シクロペンタン、ヘキサン、シクロブタン、シクロヘキサン、クロロフルオロメタン、トリフルオロメタン、1,1,1,2−テトラフルオロエタン、1−クロロ−1,1−ジフルオロエタン、1,1−ジフルオロエタン、1−クロロ−1,2,2,2−テトラフルオロエタン等の有機系物理発泡剤や、窒素、二酸化炭素、アルゴン、空気等の無機系物理発泡剤が挙げられる。これらの中でもオゾン層の破壊がなく且つ安価な無機ガス系発泡剤が好ましく、特に窒素、空気、二酸化炭素が好ましい。又、これらの発泡剤の二種以上の混合系にて使用することもでき、見掛け密度の小さい(発泡倍率の高い)発泡粒子を製造する場合には、二酸化炭素とブタンとの混合発泡剤が好ましい。   As the blowing agent used in the dispersion medium release foaming method, propane, isobutane, butane, isopentane, pentane, cyclopentane, hexane, cyclobutane, cyclohexane, chlorofluoromethane, trifluoromethane, 1,1,1,2-tetra Organic physical foaming agents such as fluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, nitrogen, carbon dioxide, argon, Examples thereof include inorganic physical foaming agents such as air. Among these, an inexpensive inorganic gas-based foaming agent that does not destroy the ozone layer is preferable, and nitrogen, air, and carbon dioxide are particularly preferable. Also, it can be used in a mixed system of two or more of these foaming agents. When producing foamed particles having a small apparent density (high foaming ratio), a mixed foaming agent of carbon dioxide and butane is used. preferable.

発泡剤の使用量は、得ようとする発泡粒子の見掛け密度と発泡温度との関係に応じて適宜に選択される。具体的には、窒素、空気を除く上記発泡剤の場合、発泡剤の使用量は通常樹脂粒子100重量部当り2〜50重量部である。また窒素、空気の場合は、密閉容器内の圧力が10〜70kgf/cmGの圧力範囲内となる量が使用される。 The amount of the foaming agent used is appropriately selected according to the relationship between the apparent density of the foamed particles to be obtained and the foaming temperature. Specifically, in the case of the above foaming agent excluding nitrogen and air, the amount of foaming agent used is usually 2 to 50 parts by weight per 100 parts by weight of resin particles. In the case of nitrogen and air, an amount is used in which the pressure in the sealed container is within the pressure range of 10 to 70 kgf / cm 2 G.

密閉容器内において、樹脂粒子を分散させるための分散媒としては水が好ましいが、樹脂粒子を溶解しないものであれば使用することができ、このような分散媒としては例えば、エチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。   In the closed container, water is preferable as a dispersion medium for dispersing the resin particles, but any dispersion medium that does not dissolve the resin particles can be used. Examples of such a dispersion medium include ethylene glycol, glycerin, Examples include methanol and ethanol.

密閉容器内において、基材樹脂粒子を分散媒に分散せしめて発泡温度に加熱するに際し、樹脂粒子相互の融着を防止するために融着防止剤を用いることもできる。融着防止剤としては水等に溶解せず、加熱によっても溶融しないものであれば、無機系、有機系を問わずいずれも使用可能であるが、一般的には無機系のものが好ましい。   In the closed container, when the base resin particles are dispersed in the dispersion medium and heated to the foaming temperature, an anti-fusing agent can be used to prevent the resin particles from fusing each other. As the anti-fusing agent, any inorganic or organic one can be used as long as it does not dissolve in water or the like and does not melt even when heated. In general, an inorganic one is preferable.

無機系の融着防止剤としては、カオリン、タルク、マイカ、酸化アルミニウム、酸化チタン、水酸化アルミニウム等の粉体が好適である。該融着防止剤としては平均粒径0.001〜100μm、特に0.001〜30μmのものが好ましい。また融着防止剤の添加量は樹脂粒子100重量部に対し、通常は0.01〜10重量部が好ましい。   As the inorganic anti-fusing agent, powders such as kaolin, talc, mica, aluminum oxide, titanium oxide, and aluminum hydroxide are suitable. The anti-fusing agent preferably has an average particle size of 0.001 to 100 μm, particularly 0.001 to 30 μm. Moreover, the addition amount of the anti-fusing agent is usually preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin particles.

また分散助剤としてドデシルベンゼンスルフォン酸ナトリウム、オレイン酸ナトリウム等のアニオン系界面活性剤や硫酸アルミニウムが好適に使用される。該分散助剤は樹脂粒子100重量部当たり、通常0.001〜5重量部添加することが好ましい。   Further, anionic surfactants such as sodium dodecylbenzene sulfonate and sodium oleate and aluminum sulfate are preferably used as a dispersion aid. The dispersion aid is usually preferably added in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the resin particles.

前記発泡粒子の製造に用いる樹脂粒子は、次のようにすれば得ることができる。
気泡調節剤を加えた基材樹脂を押出機内で加熱、混練して目的とする発泡粒子の断面形状と相似の断面形状を有するダイから、中空状(貫通孔を有する)の多数のストランドとして押出し、該ストランドを水中を通して冷却してから、適宜長さに切断する等の手段により樹脂粒子を作製することができる。
The resin particles used for producing the foamed particles can be obtained as follows.
The base resin added with the air conditioner is heated and kneaded in an extruder and extruded from a die having a cross-sectional shape similar to the cross-sectional shape of the target expanded particle as a plurality of hollow strands (having through holes). The resin particles can be produced by means such as cooling the strands through water and then cutting them appropriately.

尚、内部に貫通孔を有する筒状の樹脂粒子は、溶融樹脂出口に所望の樹脂粒子の断面形状と同様の(環状の)スリットを有する押出機ダイを使用することにより製造できる。更に、貫通孔を有する筒状として押出されたストランドの孔が潰れることを防ぐために、前記スリットの内側にストランドの貫通孔内部の圧力を大気圧もしくはそれ以上に保つための圧力調整孔を設けたダイを使用することが好ましい。尚、圧力調整孔を気体圧入装置に連結させて空気等をストランドの貫通孔内部に供給したり、ストランドの貫通孔内部を大気圧部と連通させることにより、貫通孔内部を大気圧又はそれ以上の圧力に保つことができる。   In addition, the cylindrical resin particle which has a through-hole inside can be manufactured by using the extruder die | dye which has the (circular) slit similar to the cross-sectional shape of a desired resin particle in molten resin exit. Furthermore, in order to prevent the strand hole extruded as a cylinder having a through hole from being crushed, a pressure adjusting hole for maintaining the pressure inside the through hole of the strand at atmospheric pressure or higher is provided inside the slit. It is preferred to use a die. It should be noted that the pressure adjustment hole is connected to a gas press-fitting device to supply air or the like to the inside of the strand through-hole, or the inside of the through-hole of the strand is communicated with the atmospheric pressure portion, so that the inside of the through-hole is at atmospheric pressure or higher. Can be kept at a pressure of.

該樹脂粒子の重量は、樹脂粒子及び発泡粒子の貫通孔の維持が容易で、また、型内への発泡粒子の均一な充填性を確保できることから、0.02〜20mgが好ましく、0.1〜6mgがより好ましい。   The weight of the resin particles is preferably 0.02 to 20 mg, since it is easy to maintain the through holes of the resin particles and the expanded particles, and the uniform filling property of the expanded particles in the mold can be secured. -6 mg is more preferred.

また、樹脂粒子に形成する貫通孔の直径は、ダイから出たストランドの互着による、貫通孔が閉塞した樹脂粒子の混在がないこと、比LCV/LCHが1.05以上である発泡粒子が容易に得られること及び所望の遮水性を有する成形体が得られることから、0.05〜0.24mmが好ましく、0.05mm〜0.23mmがより好ましく、0.06〜0.20mmが更に好ましい。尚、樹脂粒子に形成する貫通孔の直径は、発泡粒子の貫通孔の直径Hと同様の測定方法で求められる貫通孔の最大長さを意味する。 The diameter of the through hole formed in the resin particle is such that there is no mixture of resin particles with the through hole closed due to the mutual attachment of the strands coming out of the die, and the ratio L CV / L CH is 1.05 or more. 0.05 to 0.24 mm is preferable, 0.05 mm to 0.23 mm is more preferable, and 0.06 to 0.20 mm because particles can be easily obtained and a molded body having a desired water barrier property can be obtained. Is more preferable. The diameter of the through hole formed in the resin particles, means the maximum length of the through-holes obtained in the diameter H D similar to the measuring method of the through hole of the expanded beads.

樹脂粒子を製造するためのポリプロピレン系樹脂のメルトフローレート(MFR)は、樹脂粒子の製造過程でMFRが大きく変化するということはないので、前述した発泡粒子を構成するポリプロピレン系樹脂と同様に選択すればよい。   The melt flow rate (MFR) of the polypropylene resin for producing the resin particles is selected in the same manner as the polypropylene resin constituting the foamed particles because the MFR does not change greatly during the resin particle production process. do it.

本発明のポリプロピレン系樹脂発泡粒子成形体は、本発明の発泡粒子を加圧処理することなく成形型内に充填し、スチームで加熱成形することにより得られたものであり、空隙率が0〜11体積%である。
空隙率が11体積%を超えると、得られる成形体は発泡粒子相互の融着が不充分で、緩衝材、包装資材、各種容器等として使用する場合に要求される圧縮強度、融着強度等を得ることができない虞があり、外観において従来公知の成形体よりも劣るものとなる。
The polypropylene resin expanded particle molded body of the present invention is obtained by filling the expanded particle of the present invention into a mold without pressure treatment and heat molding with steam, and the porosity is 0 to 0. 11% by volume.
When the porosity exceeds 11% by volume, the obtained molded product has insufficient fusion between the expanded particles, and compression strength, fusion strength, etc. required when used as a buffer material, packaging material, various containers, etc. May not be obtained, and the appearance is inferior to a conventionally known molded body.

又、本発明の発泡粒子成形体の透水係数は0cm/secが好ましい。該透水係数が0cm/secでない場合も空隙率が11体積%を超える場合と同様に、要求される圧縮強度、融着強度等を得ることができない虞がある。特に、透水係数が0cm/secでなければ、魚箱等の液体を入れる容器としては使用することができない。   The water permeability coefficient of the foamed particle molded body of the present invention is preferably 0 cm / sec. Even when the water permeability coefficient is not 0 cm / sec, the required compressive strength, fusion strength and the like may not be obtained as in the case where the porosity exceeds 11% by volume. In particular, unless the water permeability coefficient is 0 cm / sec, it cannot be used as a container for storing a liquid such as a fish box.

本明細書における空隙率(A)は下記(6)式によって算出される。
A(%)=〔(B−C)/B〕×100 (6)
The porosity (A) in this specification is calculated by the following equation (6).
A (%) = [(BC) / B] × 100 (6)

但し、Bは成形体の外形寸法から算出される体積(cm)であり、Cは成形体の空隙部を除いた体積(cm)であり、成形体を液体(例えばアルコール)中に沈めた時の増量分として該体積を測定することによって求めることができる。 However, B is a volume (cm 3 ) calculated from the outer dimensions of the molded body, C is a volume (cm 3 ) excluding the voids of the molded body, and the molded body is submerged in a liquid (for example, alcohol). The volume can be determined by measuring the volume as an increase in the amount.

本明細書における透水係数は、JIS A1218に準拠し、試料として砂に代えて本発明の発泡粒子成形体(縦120mm、横120mm、厚さ50mm)を用い、試料を入れる円筒に代えて角筒を用い、定水位式による透水性測定を行なうことによって求められる。   The water permeability coefficient in this specification is based on JIS A1218. The foamed particle molded body of the present invention (length 120 mm, width 120 mm, thickness 50 mm) is used instead of sand as a sample, and a square tube is used instead of a cylinder in which a sample is placed. Is obtained by performing water permeability measurement by a constant water level equation.

前記発泡粒子を用いる本発明方法によれば、前記発泡粒子を加圧処理することなく成形型内に充填し、スチームを金型内に導入して加熱成形することにより、空隙率が0〜11体積%の本発明の成形体を得ることができる。即ち、該発泡粒子を閉鎖し得るが密閉し得ない成形型内に充填した後、該成形型内にスチームを導入することにより、発泡粒子を加熱し発泡させ、相互に融着させて成形空間の形状に見合った成形体を得ることができる。   According to the method of the present invention using the expanded particles, the expanded particles are filled in a mold without pressure treatment, and steam is introduced into the mold and heat-molded. A molded article of the present invention of volume% can be obtained. That is, after filling in a mold that can close the foamed particles but cannot be sealed, by introducing steam into the mold, the foamed particles are heated and foamed and fused together to form a molding space. It is possible to obtain a molded body suitable for the shape.

本発明方法においては、成形型内に充填された発泡粒子の形状、基材樹脂の融点、該発泡粒子の成形型内での膨張力、成形体の収縮等を十分考慮して加熱温度、加熱時間等の加熱条件が適宜決定される。   In the method of the present invention, the heating temperature and the heating are sufficiently considered in consideration of the shape of the expanded particles filled in the mold, the melting point of the base resin, the expansion force of the expanded particles in the mold, and the contraction of the molded body. Heating conditions such as time are appropriately determined.

尚、発泡粒子の加熱融着成形後、得られた成形体を成形型内において冷却するに当たっては、水冷方式を採用することもできるが、バキューム方式によりスチームの気化熱を利用して冷却することが好ましい。   In addition, after cooling and foaming the foamed particles, the resulting molded product can be cooled in the mold by using a water-cooling method, but by using the vaporization heat of the steam to cool it. Is preferred.

本発明方法においては、嵩密度D(g/L)に対する見掛け密度D(g/L)の比(D/D)が1.6〜2.6であることが好ましく、1.6〜2.1であることがより好ましく、1.6〜1.9であることが更に好ましい。比(D/D)がこの範囲内であれば、遮水性能に優れる成形体を容易に得ることができ、しかも冷却時間を従来の方法に比較して短縮化することができる。 In the method of the present invention, the ratio (D t / D b ) of the apparent density D t (g / L) to the bulk density D b (g / L) is preferably 1.6 to 2.6. It is more preferably 6 to 2.1, and still more preferably 1.6 to 1.9. When the ratio (D t / D b ) is within this range, a molded article having excellent water shielding performance can be easily obtained, and the cooling time can be shortened as compared with the conventional method.

比(D/D)が1.6未満の場合は、型内成形により得られる成形体は外観及び物性共に良好なものとなるが、発泡粒子が膨張する体積が小さいことから、スチーム断熱膨張による冷却効果が小さくなるので、本発明の目的とする成形サイクルの短縮化が達成できない虞がある。
一方、比(D/D)が、2.6を超える場合は、型内成形により得られる成形体中に連通した空隙が形成されて透水性が大きくなってしまい、通常の成形体と同等の外観及び物性を有するものが得られない虞がある。
When the ratio (D t / D b ) is less than 1.6, the molded product obtained by in-mold molding has good appearance and physical properties, but the expanded volume of the foamed particles is small, so steam insulation Since the cooling effect by expansion becomes small, there is a possibility that the shortening of the molding cycle aimed at by the present invention cannot be achieved.
On the other hand, when the ratio (D t / D b ) exceeds 2.6, voids communicating with each other are formed in the molded body obtained by in-mold molding, resulting in an increase in water permeability. There is a possibility that a product having the same appearance and physical properties cannot be obtained.

本明細書における発泡粒子の嵩密度Dは次のように求められる。
まず、発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置する。次に同恒温室内にて、10日間放置した発泡粒子を500個以上採取し、該発泡粒子群の重量W(g)を測定した後ただちに空のメスシリンダー中に上記重量を測定した発泡粒子群を入れて、メスシリンダーの目盛りから該発泡粒子群の体積V(cm)を読み取り、下記(7)式により発泡粒子の嵩密度Dを計算する。
=1000×W/V (7)
Bulk density D b of the expanded particles in the present specification is determined as follows.
First, the expanded particles are allowed to stand for 10 days in a temperature-controlled room under conditions of atmospheric pressure, relative humidity of 50%, and 23 ° C. Next, 500 or more foamed particles left for 10 days in the same constant temperature room were collected, and after measuring the weight W 2 (g) of the foamed particle group, the above-mentioned foamed particles were measured in an empty graduated cylinder. The group is put in, the volume V 2 (cm 3 ) of the expanded particle group is read from the scale of the graduated cylinder, and the bulk density D b of the expanded particle is calculated by the following equation (7).
D b = 1000 × W 2 / V 2 (7)

本発明においては、発泡粒子を、成形型内に圧縮率が4〜25体積%となるように、好ましくは5〜20体積%となるように充填した後、スチームにより型内成形する方法を採用することによっても目的とする成形体を得ることができる。   In the present invention, a method is adopted in which foamed particles are filled in the mold so that the compression ratio is 4 to 25% by volume, preferably 5 to 20% by volume, and then molded in-mold with steam. By doing so, a desired molded article can be obtained.

圧縮率が4体積%未満の場合は、発泡粒子に適当な内圧を付与したものを使用しなければ、型内成形により発泡粒子相互の融着が不充分となり、空隙率が0〜11体積%の成形体を得ることができない虞がある。一方、圧縮率が25体積%を超える場合は、得られる成形体の密度が発泡粒子の嵩密度に対して著しく大きくなり、発泡粒子本来の発泡倍率を有効に利用できなくなる。   When the compression rate is less than 4% by volume, if the foamed particles are not provided with an appropriate internal pressure, the in-mold molding results in insufficient fusion between the expanded particles, and the porosity is 0 to 11% by volume. There is a possibility that the molded product cannot be obtained. On the other hand, when the compression ratio exceeds 25% by volume, the density of the obtained molded body is remarkably increased with respect to the bulk density of the expanded particles, and the original expansion ratio of the expanded particles cannot be effectively used.

圧縮率の調整は、発泡粒子を成形型内(キャビティー)に充填する際に、キャビティー体積を超える発泡粒子の量を充填することにより行なわれる。発泡粒子を成形型に充填する際に成形型内の空気を金型内から排気したり、発泡粒子の成形型内への充填を効率を良く行うために、成形型を完全に閉鎖させないようにする成形型の開き部分をクラッキングとよぶが、クラッキングは成形型内に発泡粒子を充填後、スチームを導入する際には最終的に閉じられ、その結果充填された発泡粒子は圧縮される。   The compression ratio is adjusted by filling the foamed particles in the mold (cavity) with an amount of foamed particles exceeding the cavity volume. When filling the mold with foam particles, do not close the mold completely in order to exhaust the air in the mold from the mold or to efficiently fill the mold with foam particles. The opening portion of the mold is called cracking. The cracking is finally closed when the steam is introduced after the foam particles are filled in the mold, and as a result, the filled foam particles are compressed.

本明細書における圧縮率は、下記(8)式により求められる。尚、式中において、aは成形型内に充填した発泡粒子の重量(g)を、bは発泡粒子の嵩密度(g/L)を、cは成形型内体積(L)をそれぞれ表す。
圧縮率(%)=[(a/(b×c))−1]×100 (8)
The compression rate in this specification is calculated | required by following (8) Formula. In the formula, a represents the weight (g) of the expanded particles filled in the mold, b represents the bulk density (g / L) of the expanded particles, and c represents the volume (L) in the mold.
Compression rate (%) = [(a / (b × c)) − 1] × 100 (8)

本発明によれば、以上説明した方法により成形体を製造するので、発泡粒子を加圧処理しないでも空隙率が0〜11体積%の成形体を得ることができ、成形サイクルを短縮化することもできる。   According to the present invention, since a molded body is produced by the method described above, it is possible to obtain a molded body having a porosity of 0 to 11% by volume without pressing the foamed particles, and shorten the molding cycle. You can also.

次に、具体的な実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されるものではない。   Next, the present invention will be described in more detail with specific examples. However, the present invention is not limited to the examples.

実施例、比較例で用いたポリプロピレン系樹脂を次に示す。
A)プロピレン−エチレンランダム共重合体(以下、rPPともいう。)、MFR:7g/10分、融点143℃
B)プロピレン−エチレンブロック共重合体(以下、bPPともいう。)、MFR:10g/10分、融点160℃
C)プロピレン単独重合体(以下、hPPともいう。)、MFR:10g/10分、融点165℃
The polypropylene resins used in the examples and comparative examples are shown below.
A) Propylene-ethylene random copolymer (hereinafter also referred to as rPP), MFR: 7 g / 10 min, melting point 143 ° C.
B) Propylene-ethylene block copolymer (hereinafter also referred to as bPP), MFR: 10 g / 10 min, melting point 160 ° C.
C) Propylene homopolymer (hereinafter also referred to as hPP), MFR: 10 g / 10 min, melting point 165 ° C.

実施例1〜7、 比較例1〜7 Examples 1-7, Comparative Examples 1-7

表1に示す各基材樹脂と、気泡調節剤としてホウ酸亜鉛とを押出機内で溶融混練し、その後、スリットを有するダイから円筒形状(比較例1と2では円柱状)のストランドを押し出して水中で急冷した後、所定の長さにカットして1個当たりの平均重量が2mgの樹脂粒子を得た。尚、ホウ酸亜鉛は配合量が0.05重量%となるように(実施例3、比較例2、3、6では0.01重量%となるように)マスターバッチで添加した。また、樹脂粒子の樹脂粒子の直径に対す長さ比と、樹脂粒子の貫通孔の径は、表1の通りであった。   Each base resin shown in Table 1 and zinc borate as a foam regulator are melt-kneaded in an extruder, and then a cylindrical strand (columnar in Comparative Examples 1 and 2) is extruded from a die having a slit. After quenching in water, it was cut to a predetermined length to obtain resin particles having an average weight of 2 mg per piece. Zinc borate was added in a master batch so that the blending amount was 0.05% by weight (in Example 3, Comparative Examples 2, 3, and 6 it was 0.01% by weight). The length ratio of the resin particles to the diameter of the resin particles and the diameter of the through holes of the resin particles are shown in Table 1.

次いで、表1記載の発泡剤を使用し、融着防止剤としてカオリン3g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.06g、上記樹脂粒子1kgを水3リットルに添加して(実施例3、比較例2、3、6では更に分散助剤として硫酸アルミニウム0.01gを水に添加して)密閉容器(容積5リットルのオートクレーブ)内で攪拌しながら昇温し表1の温度、平衡蒸気圧で15分間保持した。次いで、平衡蒸気圧に等しい背圧をかけつつ(使用した発泡剤と同じ種類の高圧の気体をオートクレーブに導入することで)、その圧力を保持したまま密閉容器の下端を開放して樹脂粒子と水とを大気圧下に同時に放出して、樹脂粒子を発泡せしめ、貫通孔を有する又は貫通孔を有しない発泡粒子を得た。発泡粒子を室温下で乾燥した後、各種の物性を測定した。結果を表2に示す。   Next, using the foaming agent described in Table 1, 3 g of kaolin as an anti-fusing agent, 0.06 g of sodium dodecylbenzenesulfonate as a surfactant, and 1 kg of the above resin particles were added to 3 liters of water (Example 3, In Comparative Examples 2, 3, and 6, 0.01 g of aluminum sulfate was further added to water as a dispersion aid) and the temperature was raised while stirring in a closed container (autoclave having a volume of 5 liters). For 15 minutes. Next, while applying a back pressure equal to the equilibrium vapor pressure (by introducing a high-pressure gas of the same kind as the used blowing agent into the autoclave), the lower end of the sealed container is opened while the pressure is maintained, and the resin particles and Water was simultaneously released under atmospheric pressure to foam the resin particles to obtain expanded particles having through holes or no through holes. After the expanded particles were dried at room temperature, various physical properties were measured. The results are shown in Table 2.

発泡粒子を、表3に記載の成形条件(成形スチーム圧力、冷却時間、発泡面圧)で型内成形することにより、縦20cm×横25cm×厚み5cmの直方体状の成形体を得た。発泡粒子は加圧ガスによる内圧付与処理を行うことなく型内に充填した。表3には、成形型内に充填された発泡粒子の圧縮率を併せて示す。得られた成形体の密度、空隙率、透水係数を測定し、外観を観察した。更に、これらに基づいて、外観の評価、冷却効率の評価、総合評価を行った結果を表3に示す。尚、冷却時間は、成形体を成形型から取り出してももはや膨張しなくなる程度まで、成形体を冷却するのに要した時間を示す。また、発泡面圧は、成形時に成形体が示した成形型内面に対する最大圧力を意味する。尚、冷却時間は得られる成形体の密度が大きいものほど樹脂量が多くなるため長い時間が必要になるので、冷却効率の評価は成形体の密度を考慮して行った。表中、○は良を、×は不良を示す。   The foamed particles were molded in-mold under the molding conditions shown in Table 3 (molding steam pressure, cooling time, foaming surface pressure) to obtain a cuboid shaped product having a length of 20 cm, a width of 25 cm, and a thickness of 5 cm. The foamed particles were filled in the mold without performing an internal pressure application treatment with a pressurized gas. Table 3 also shows the compression rate of the expanded particles filled in the mold. The density, porosity, and water permeability coefficient of the obtained molded body were measured, and the appearance was observed. Furthermore, based on these, the results of evaluation of appearance, evaluation of cooling efficiency, and comprehensive evaluation are shown in Table 3. The cooling time indicates the time required to cool the molded body to such an extent that the molded body is no longer expanded even when the molded body is removed from the mold. The foaming surface pressure means the maximum pressure with respect to the inner surface of the molding die indicated by the molded body during molding. In addition, since the amount of resin increases as the density of the obtained molded body increases, the cooling time requires a longer time. Therefore, the cooling efficiency was evaluated in consideration of the density of the molded body. In the table, ○ indicates good and × indicates poor.

Figure 2006307177
Figure 2006307177

Figure 2006307177
Figure 2006307177

Figure 2006307177
Figure 2006307177

表3の結果より、本件発明の発泡粒子を用いれば、加圧処理を行わなくとも、空隙率の少ない外観に優れ、しかも遮水性に優れた成形体を製造することができることが分かる。また、圧縮率を小さくして成形しても、空隙率の少ない外観に優れ、しかも遮水性に優れた成形体を極めて短い冷却時間で製造することができることが分かる。また、成形時における圧縮率が小さく済む(無加圧成形時に必要となる発泡粒子の圧縮度合いが小さく済む)ため、得られる成形体の密度が発泡粒子の嵩密度に対してさほど大きくならず、発泡粒子本来の発泡倍率を有効に利用できる。
From the results in Table 3, it can be seen that if the foamed particles of the present invention are used, a molded article having an excellent appearance with a low porosity and an excellent water shielding property can be produced without performing a pressure treatment. In addition, it can be seen that even if the compression ratio is reduced, a molded article having an excellent appearance with a low porosity and an excellent water shielding property can be produced in a very short cooling time. In addition, since the compression rate at the time of molding is small (the degree of compression of the foamed particles required at the time of pressureless molding is small), the density of the obtained molded body is not so large with respect to the bulk density of the foamed particles, The original expansion ratio of the expanded particles can be used effectively.

本発明の発泡粒子の平面図である。It is a top view of the expanded particle of the present invention. 図1のII−IIに沿う断面図であり、半径方向平均気泡径LCV、円周方向平均気泡径LCHの測定法の説明図である。It is sectional drawing which follows II-II of FIG. 1, and is explanatory drawing of the measuring method of radial direction average bubble diameter L CV and circumferential direction average bubble diameter LCH . 本発明の発泡粒子の断面形状の例を示す、図2と同様な断面図である。It is sectional drawing similar to FIG. 2 which shows the example of the cross-sectional shape of the expanded particle of this invention. ポリプロピレン系樹脂発泡粒子のDSC曲線の一例を示す図である。It is a figure which shows an example of the DSC curve of a polypropylene resin expanded particle.

Claims (4)

ポリプロピレン系樹脂を含む基材樹脂からなり、複数の気泡を画成する気泡壁からなる発泡粒子であって、該発泡粒子は、内部に一端から他端に延びる貫通孔を有する球状体であると共に、下記により定義される最大径D(mm)、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、貫通孔の直径H(mm)を有し、比LCV/LCHが1.05以上であり、比H/Dが0.08〜0.4であり、比H/LCVが0.1〜10であることを特徴とする発泡粒子;
、LCV、LCH及びHの定義
前記最大径D、半径方向の平均気泡径LCV、円周方向平均気泡径LCH、および貫通孔の直径Hは、次のように測定される:
(a)10個の発泡粒子を任意に採取する、
(b)採取した各発泡粒子を前記貫通孔の一端と他端を結ぶ直線の中央位置において該直線に対して垂直な面で切断して、外周縁および内周縁を持つ環状断面を得る、
(c)断面を、顕微鏡を用いて画面上に写し出すか又は写真撮影する、
(d)該画面上に写し出された断面又は写真撮影された断面において、外周縁の2点D01、D02および内周縁の2点と交わり、かつ、2点D01、D02の間の距離が最大となるように第1の直線を引く、
(e)2点D01、D02の間の距離Dnを測定する、
(f)第1の直線と直交する直線であって、外周縁と2点d01、d02及び内周縁の2点と交わり、かつ、2点d01、d02の間の距離が最大となるように第2の直線を引く、
(g)第1および第2の直線の交点P1を中心として、半径Dn/4の円C1を描く、
(h)該円C1と該画面上に写し出された断面又は写真撮影された断面上の気泡壁との交点の数Nnを数える、
(i)第1の直線と円C1の外周との交点P2、P3の各々を中心として、半径Dn/8の円C2、C3を描く、
(j)第1の直線と、円C2およびC3の各々の上に位置する気泡壁との交点の数を数えて、大きいほうの数Nnを選択する、
(k)平均径LnCVを下記(1)式から求める、
LnCV=0.405×(Dn/Nn) (1)
(l)平均径LnCHを下記(2)式から求める、
LnCH=0.810×Dn×sin(π/Nn) (2)
(m)該画面上に写し出された断面又は写真撮影された断面において、貫通孔を形成する内周縁上の2点を結ぶ直線の中で最も長い直線の長さHn(mm)を測定する、
(n)最大径Dは採取した10個の発泡粒子のDnの相加平均である、
(o)半径方向の平均気泡径LCVは採取した10個の発泡粒子のLnCVの相加平均である、
(p)円周方向平均気泡径LCHは採取した10個の発泡粒子のLnCHの相加平均である、
(q)貫通孔の直径Hは採取した10個の発泡粒子のHnの相加平均である。
A foamed particle comprising a base resin containing a polypropylene resin and comprising a cell wall defining a plurality of bubbles, the foamed particle being a spherical body having a through-hole extending from one end to the other end inside , Having a maximum diameter D 0 (mm) defined by the following, an average bubble diameter L CV in the radial direction, an average bubble diameter L CH in the circumferential direction, a diameter H D (mm) of the through hole, and a ratio L CV / L Expanded particles, wherein CH is 1.05 or more, ratio H D / D 0 is 0.08 to 0.4, and ratio H D / L CV is 0.1 to 10;
D 0, L CV, L CH and H D defined the maximum diameter D 0, the average cell diameter L CV radial diameter H D of the circumferential average cell diameter L CH, and the through-hole, as follows Measured:
(A) arbitrarily collecting 10 expanded particles;
(B) cutting each of the collected expanded particles at a center position of a straight line connecting one end and the other end of the through hole with a surface perpendicular to the straight line to obtain an annular cross section having an outer peripheral edge and an inner peripheral edge;
(C) The cross section is projected on a screen or photographed using a microscope.
(D) In the Projected section or photographed cross-section on said screen, intersects the two points 2 points D 01, D 02 and the inner periphery of the outer peripheral edge, and, between the two points D 01, D 02 Draw the first straight line so that the distance is maximum,
(E) measuring the distance Dn 0 between the two points D 01 , D 02 ;
(F) A straight line orthogonal to the first straight line, intersecting the outer peripheral edge with the two points d 01 , d 02 and the inner peripheral edge, and the distance between the two points d 01 , d 02 being the maximum Draw a second straight line so that
(G) about the intersection P1 of the first and second straight line, draw a radius Dn 0/4 of the circle C1,
(H) Count the number of intersections Nn H between the circle C1 and the cross-section projected on the screen or the bubble wall on the photographed cross-section,
(I) about the respective intersections P2, P3 of the outer periphery of the first straight line and the circle C1, a circle C2, C3 of the radial Dn 0/8,
(J) Count the number of intersections between the first straight line and the bubble walls located on each of the circles C2 and C3, and select the larger number Nn V.
(K) The average diameter Ln CV is obtained from the following equation (1).
Ln CV = 0.405 × (Dn 0 / Nn V ) (1)
(L) determining the average diameter Ln CH from the following equation (2),
Ln CH = 0.810 × Dn 0 × sin (π / Nn H ) (2)
(M) The length Hn D (mm) of the longest straight line among the straight lines connecting two points on the inner peripheral edge forming the through hole is measured in the cross section projected on the screen or the cross section photographed. ,
(N) The maximum diameter D 0 is an arithmetic average of Dn 0 of 10 collected expanded particles.
(O) The average cell diameter L CV in the radial direction is an arithmetic average of Ln CV of 10 foam particles collected.
(P) Circumferential average cell diameter L CH is an arithmetic average of Ln CH of 10 foam particles collected.
(Q) The diameter H D of the through hole is an arithmetic average of Hn D of the 10 collected foam particles.
見掛け密度が36g/L未満である請求項1に記載の発泡粒子。   The expanded particle according to claim 1, wherein the apparent density is less than 36 g / L. 請求項1又は2に記載の発泡粒子を加圧処理することなく成形型内に充填し、スチームで型内成形することからなる、発泡粒子成形体の製造方法。   A method for producing a foamed particle molded body, comprising filling the foamed particles according to claim 1 or 2 into a mold without subjecting to pressure treatment, and molding the mold with steam. 請求項3に記載の方法により得られる発泡粒子成形体。   A foamed particle molded body obtained by the method according to claim 3.
JP2006080753A 2005-03-29 2006-03-23 POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY Active JP4883681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080753A JP4883681B2 (en) 2005-03-29 2006-03-23 POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005095066 2005-03-29
JP2005095066 2005-03-29
JP2006080753A JP4883681B2 (en) 2005-03-29 2006-03-23 POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY

Publications (2)

Publication Number Publication Date
JP2006307177A true JP2006307177A (en) 2006-11-09
JP4883681B2 JP4883681B2 (en) 2012-02-22

Family

ID=37474412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080753A Active JP4883681B2 (en) 2005-03-29 2006-03-23 POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY

Country Status (1)

Country Link
JP (1) JP4883681B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040507A (en) * 2012-08-21 2014-03-06 Jsp Corp Polyolefinic resin foam particles and molded artifact of the same
CN113045827A (en) * 2020-12-17 2021-06-29 株式会社Jsp Polypropylene resin expanded particles and expanded particle molded article
WO2022181762A1 (en) * 2021-02-25 2022-09-01 株式会社カネカ Polypropylene resin extruded foam particles and polypropylene resin foam molded body
WO2022270425A1 (en) * 2021-06-25 2022-12-29 株式会社ジェイエスピー Polypropylene resin foam particle molded body and method for producing same
WO2022270426A1 (en) * 2021-06-25 2022-12-29 株式会社ジェイエスピー Polypropylene resin foam particles, method for producing same, and polypropylene resin foam particle molded body
CN116120623A (en) * 2023-03-23 2023-05-16 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof
WO2023084881A1 (en) * 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335892A (en) * 2002-03-15 2003-11-28 Jsp Corp Polypropylene resin expanded particle, its preparation process and in-mold expansion molded product of polypropylene resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335892A (en) * 2002-03-15 2003-11-28 Jsp Corp Polypropylene resin expanded particle, its preparation process and in-mold expansion molded product of polypropylene resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040507A (en) * 2012-08-21 2014-03-06 Jsp Corp Polyolefinic resin foam particles and molded artifact of the same
CN113045827A (en) * 2020-12-17 2021-06-29 株式会社Jsp Polypropylene resin expanded particles and expanded particle molded article
WO2022181762A1 (en) * 2021-02-25 2022-09-01 株式会社カネカ Polypropylene resin extruded foam particles and polypropylene resin foam molded body
WO2022270425A1 (en) * 2021-06-25 2022-12-29 株式会社ジェイエスピー Polypropylene resin foam particle molded body and method for producing same
WO2022270426A1 (en) * 2021-06-25 2022-12-29 株式会社ジェイエスピー Polypropylene resin foam particles, method for producing same, and polypropylene resin foam particle molded body
JP7299555B2 (en) 2021-06-25 2023-06-28 株式会社ジェイエスピー POLYPROPYLENE RESIN EXPANDED BEET MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
JP7323852B2 (en) 2021-06-25 2023-08-09 株式会社ジェイエスピー Expanded polypropylene resin particles, method for producing the same, and expanded polypropylene resin bead molded product
WO2023084881A1 (en) * 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article
CN116120623A (en) * 2023-03-23 2023-05-16 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof
CN116120623B (en) * 2023-03-23 2024-03-15 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof

Also Published As

Publication number Publication date
JP4883681B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
KR101168192B1 (en) Expanded polypropylene resin beads, method of producing foam molding of expanded polypropylene resin beads and foam molding obtained by the method
US10221292B2 (en) Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
JP4883681B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY
EP0697274B1 (en) Expansion-molded article of polyolefin resin having open voids and production thereof
EP3339358B1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles and polypropylene resin in-mold foam-molded article
WO2011086937A1 (en) Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
WO2018088390A1 (en) Foam particles, and moulded article thereof
TWI691534B (en) Thermoplastic resin foaming particle
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
US20170275434A1 (en) Expanded polypropylene resin particle
JP6730979B2 (en) Expanded polypropylene resin particles and method for producing the same
KR101997947B1 (en) Polypropylene-based resin foamed particles, method for producing same, and molded article of polypropylene-based resin foamed particles
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
US6027806A (en) Expanded resin beads
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP5326583B2 (en) Method for producing polyolefin resin block-like foam molded article
EP4310134A1 (en) Polypropylene-based resin expanded beads and molded article thereof
EP4079797A1 (en) Multilayer expanded beads and molded article thereof
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
WO2023067953A1 (en) Polyethylene resin foam particles, and method for producing same
JP7382145B2 (en) Polyolefin resin particles and their use
TW202317682A (en) Multilayer expanded bead
WO2023189114A1 (en) Expanded beads, and expanded bead molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250